xref: /netbsd-src/lib/libm/src/k_rem_pio2.c (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 
2 /* @(#)k_rem_pio2.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 #include <sys/cdefs.h>
15 #if 0
16 __FBSDID("$FreeBSD: head/lib/msun/src/k_rem_pio2.c 342651 2018-12-31 15:43:06Z pfg $");
17 #endif
18 #if defined(LIBM_SCCS) && !defined(lint)
19 __RCSID("$NetBSD: k_rem_pio2.c,v 1.14 2022/08/24 13:51:19 christos Exp $");
20 #endif
21 
22 /*
23  * __kernel_rem_pio2(x,y,e0,nx,prec)
24  * double x[],y[]; int e0,nx,prec;
25  *
26  * __kernel_rem_pio2 return the last three digits of N with
27  *		y = x - N*pi/2
28  * so that |y| < pi/2.
29  *
30  * The method is to compute the integer (mod 8) and fraction parts of
31  * (2/pi)*x without doing the full multiplication. In general we
32  * skip the part of the product that are known to be a huge integer (
33  * more accurately, = 0 mod 8 ). Thus the number of operations are
34  * independent of the exponent of the input.
35  *
36  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
37  *
38  * Input parameters:
39  * 	x[]	The input value (must be positive) is broken into nx
40  *		pieces of 24-bit integers in double precision format.
41  *		x[i] will be the i-th 24 bit of x. The scaled exponent
42  *		of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
43  *		match x's up to 24 bits.
44  *
45  *		Example of breaking a double positive z into x[0]+x[1]+x[2]:
46  *			e0 = ilogb(z)-23
47  *			z  = scalbn(z,-e0)
48  *		for i = 0,1,2
49  *			x[i] = floor(z)
50  *			z    = (z-x[i])*2**24
51  *
52  *
53  *	y[]	output result in an array of double precision numbers.
54  *		The dimension of y[] is:
55  *			24-bit  precision	1
56  *			53-bit  precision	2
57  *			64-bit  precision	2
58  *			113-bit precision	3
59  *		The actual value is the sum of them. Thus for 113-bit
60  *		precision, one may have to do something like:
61  *
62  *		long double t,w,r_head, r_tail;
63  *		t = (long double)y[2] + (long double)y[1];
64  *		w = (long double)y[0];
65  *		r_head = t+w;
66  *		r_tail = w - (r_head - t);
67  *
68  *	e0	The exponent of x[0]. Must be <= 16360 or you need to
69  *              expand the ipio2 table.
70  *
71  *	nx	dimension of x[]
72  *
73  *  	prec	an integer indicating the precision:
74  *			0	24  bits (single)
75  *			1	53  bits (double)
76  *			2	64  bits (extended)
77  *			3	113 bits (quad)
78  *
79  * External function:
80  *	double scalbn(), floor();
81  *
82  *
83  * Here is the description of some local variables:
84  *
85  * 	jk	jk+1 is the initial number of terms of ipio2[] needed
86  *		in the computation. The minimum and recommended value
87  *		for jk is 3,4,4,6 for single, double, extended, and quad.
88  *		jk+1 must be 2 larger than you might expect so that our
89  *		recomputation test works. (Up to 24 bits in the integer
90  *		part (the 24 bits of it that we compute) and 23 bits in
91  *		the fraction part may be lost to cancellation before we
92  *		recompute.)
93  *
94  * 	jz	local integer variable indicating the number of
95  *		terms of ipio2[] used.
96  *
97  *	jx	nx - 1
98  *
99  *	jv	index for pointing to the suitable ipio2[] for the
100  *		computation. In general, we want
101  *			( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
102  *		is an integer. Thus
103  *			e0-3-24*jv >= 0 or (e0-3)/24 >= jv
104  *		Hence jv = max(0,(e0-3)/24).
105  *
106  *	jp	jp+1 is the number of terms in PIo2[] needed, jp = jk.
107  *
108  * 	q[]	double array with integral value, representing the
109  *		24-bits chunk of the product of x and 2/pi.
110  *
111  *	q0	the corresponding exponent of q[0]. Note that the
112  *		exponent for q[i] would be q0-24*i.
113  *
114  *	PIo2[]	double precision array, obtained by cutting pi/2
115  *		into 24 bits chunks.
116  *
117  *	f[]	ipio2[] in floating point
118  *
119  *	iq[]	integer array by breaking up q[] in 24-bits chunk.
120  *
121  *	fq[]	final product of x*(2/pi) in fq[0],..,fq[jk]
122  *
123  *	ih	integer. If >0 it indicates q[] is >= 0.5, hence
124  *		it also indicates the *sign* of the result.
125  *
126  */
127 
128 
129 /*
130  * Constants:
131  * The hexadecimal values are the intended ones for the following
132  * constants. The decimal values may be used, provided that the
133  * compiler will convert from decimal to binary accurately enough
134  * to produce the hexadecimal values shown.
135  */
136 
137 #include "namespace.h"
138 #include <float.h>
139 
140 #include "math.h"
141 #include "math_private.h"
142 
143 static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
144 
145 /*
146  * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
147  *
148  *		integer array, contains the (24*i)-th to (24*i+23)-th
149  *		bit of 2/pi after binary point. The corresponding
150  *		floating value is
151  *
152  *			ipio2[i] * 2^(-24(i+1)).
153  *
154  * NB: This table must have at least (e0-3)/24 + jk terms.
155  *     For quad precision (e0 <= 16360, jk = 6), this is 686.
156  */
157 static const int32_t ipio2[] = {
158 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
159 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
160 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
161 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
162 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
163 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
164 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
165 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
166 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
167 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
168 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
169 
170 #if LDBL_MAX_EXP > 1024
171 #if LDBL_MAX_EXP > 16384
172 #error "ipio2 table needs to be expanded"
173 #endif
174 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
175 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
176 0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
177 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
178 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
179 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
180 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
181 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
182 0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
183 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
184 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
185 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
186 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
187 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
188 0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
189 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
190 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
191 0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
192 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
193 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
194 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
195 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
196 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
197 0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
198 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
199 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
200 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
201 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
202 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
203 0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
204 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
205 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
206 0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
207 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
208 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
209 0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
210 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
211 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
212 0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
213 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
214 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
215 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
216 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
217 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
218 0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
219 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
220 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
221 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
222 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
223 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
224 0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
225 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
226 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
227 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
228 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
229 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
230 0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
231 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
232 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
233 0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
234 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
235 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
236 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
237 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
238 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
239 0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
240 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
241 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
242 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
243 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
244 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
245 0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
246 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
247 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
248 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
249 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
250 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
251 0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
252 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
253 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
254 0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
255 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
256 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
257 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
258 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
259 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
260 0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
261 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
262 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
263 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
264 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
265 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
266 0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
267 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
268 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
269 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
270 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
271 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
272 0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
273 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
274 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
275 0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
276 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
277 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
278 #endif
279 
280 };
281 
282 static const double PIo2[] = {
283   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
284   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
285   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
286   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
287   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
288   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
289   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
290   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
291 };
292 
293 static const double
294 zero   = 0.0,
295 one    = 1.0,
296 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
297 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
298 
299 int
300 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec)
301 {
302 	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
303 	double z,fw,f[20],fq[20],q[20];
304 
305     /* initialize jk*/
306 	jk = init_jk[prec];
307 	jp = jk;
308 
309     /* determine jx,jv,q0, note that 3>q0 */
310 	jx =  nx-1;
311 	jv = (e0-3)/24; if(jv<0) jv=0;
312 	q0 =  e0-24*(jv+1);
313 
314     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
315 	j = jv-jx; m = jx+jk;
316 	for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
317 
318     /* compute q[0],q[1],...q[jk] */
319 	for (i=0;i<=jk;i++) {
320 	    for(j=0,fw=0.0;j<=jx;j++)
321 		    fw += x[j]*f[jx+i-j];
322 	    q[i] = fw;
323 	}
324 
325 	jz = jk;
326 recompute:
327     /* distill q[] into iq[] reversingly */
328 	for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
329 	    fw    =  (double)((int32_t)(twon24* z));
330 	    iq[i] =  (int32_t)(z-two24*fw);
331 	    z     =  q[j-1]+fw;
332 	}
333 
334     /* compute n */
335 	z  = scalbn(z,q0);		/* actual value of z */
336 	z -= 8.0*floor(z*0.125);		/* trim off integer >= 8 */
337 	n  = (int32_t) z;
338 	z -= (double)n;
339 	ih = 0;
340 	if(q0>0) {	/* need iq[jz-1] to determine n */
341 	    i  = (iq[jz-1]>>(24-q0)); n += i;
342 	    iq[jz-1] -= i<<(24-q0);
343 	    ih = iq[jz-1]>>(23-q0);
344 	}
345 	else if(q0==0) ih = iq[jz-1]>>23;
346 	else if(z>=0.5) ih=2;
347 
348 	if(ih>0) {	/* q > 0.5 */
349 	    n += 1; carry = 0;
350 	    for(i=0;i<jz ;i++) {	/* compute 1-q */
351 		j = iq[i];
352 		if(carry==0) {
353 		    if(j!=0) {
354 			carry = 1; iq[i] = 0x1000000- j;
355 		    }
356 		} else  iq[i] = 0xffffff - j;
357 	    }
358 	    if(q0>0) {		/* rare case: chance is 1 in 12 */
359 	        switch(q0) {
360 	        case 1:
361 	    	   iq[jz-1] &= 0x7fffff; break;
362 	    	case 2:
363 	    	   iq[jz-1] &= 0x3fffff; break;
364 	        }
365 	    }
366 	    if(ih==2) {
367 		z = one - z;
368 		if(carry!=0) z -= scalbn(one,q0);
369 	    }
370 	}
371 
372     /* check if recomputation is needed */
373 	if(z==zero) {
374 	    j = 0;
375 	    for (i=jz-1;i>=jk;i--) j |= iq[i];
376 	    if(j==0) { /* need recomputation */
377 		for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
378 
379 		for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
380 		    f[jx+i] = (double) ipio2[jv+i];
381 		    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
382 		    q[i] = fw;
383 		}
384 		jz += k;
385 		goto recompute;
386 	    }
387 	}
388 
389     /* chop off zero terms */
390 	if(z==0.0) {
391 	    jz -= 1; q0 -= 24;
392 	    while(iq[jz]==0) { jz--; q0-=24;}
393 	} else { /* break z into 24-bit if necessary */
394 	    z = scalbn(z,-q0);
395 	    if(z>=two24) {
396 		fw = (double)((int32_t)(twon24*z));
397 		iq[jz] = (int32_t)(z-two24*fw);
398 		jz += 1; q0 += 24;
399 		iq[jz] = (int32_t) fw;
400 	    } else iq[jz] = (int32_t) z ;
401 	}
402 
403     /* convert integer "bit" chunk to floating-point value */
404 	fw = scalbn(one,q0);
405 	for(i=jz;i>=0;i--) {
406 	    q[i] = fw*(double)iq[i]; fw*=twon24;
407 	}
408 
409     /* compute PIo2[0,...,jp]*q[jz,...,0] */
410 	for(i=jz;i>=0;i--) {
411 	    for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
412 	    fq[jz-i] = fw;
413 	}
414 
415     /* compress fq[] into y[] */
416 	switch(prec) {
417 	    case 0:
418 		fw = 0.0;
419 		for (i=jz;i>=0;i--) fw += fq[i];
420 		y[0] = (ih==0)? fw: -fw;
421 		break;
422 	    case 1:
423 	    case 2:
424 		fw = 0.0;
425 		for (i=jz;i>=0;i--) fw += fq[i];
426 		STRICT_ASSIGN(double,fw,fw);
427 		y[0] = (ih==0)? fw: -fw;
428 		fw = fq[0]-fw;
429 		for (i=1;i<=jz;i++) fw += fq[i];
430 		y[1] = (ih==0)? fw: -fw;
431 		break;
432 	    case 3:	/* painful */
433 		for (i=jz;i>0;i--) {
434 		    fw      = fq[i-1]+fq[i];
435 		    fq[i]  += fq[i-1]-fw;
436 		    fq[i-1] = fw;
437 		}
438 		for (i=jz;i>1;i--) {
439 		    fw      = fq[i-1]+fq[i];
440 		    fq[i]  += fq[i-1]-fw;
441 		    fq[i-1] = fw;
442 		}
443 		for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
444 		if(ih==0) {
445 		    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
446 		} else {
447 		    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
448 		}
449 	}
450 	return n&7;
451 }
452