1 /* $NetBSD: kvm_proc.c,v 1.92 2016/04/04 22:14:38 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1989, 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software developed by the Computer Systems 37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 * BG 91-66 and contributed to Berkeley. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #include <sys/cdefs.h> 66 #if defined(LIBC_SCCS) && !defined(lint) 67 #if 0 68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 69 #else 70 __RCSID("$NetBSD: kvm_proc.c,v 1.92 2016/04/04 22:14:38 christos Exp $"); 71 #endif 72 #endif /* LIBC_SCCS and not lint */ 73 74 /* 75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 76 * users of this code, so we've factored it out into a separate module. 77 * Thus, we keep this grunge out of the other kvm applications (i.e., 78 * most other applications are interested only in open/close/read/nlist). 79 */ 80 81 #include <sys/param.h> 82 #include <sys/lwp.h> 83 #include <sys/wait.h> 84 #include <sys/proc.h> 85 #include <sys/exec.h> 86 #include <sys/stat.h> 87 #include <sys/ioctl.h> 88 #include <sys/tty.h> 89 #include <sys/resourcevar.h> 90 #include <sys/mutex.h> 91 #include <sys/specificdata.h> 92 #include <sys/types.h> 93 94 #include <errno.h> 95 #include <stdlib.h> 96 #include <stddef.h> 97 #include <string.h> 98 #include <unistd.h> 99 #include <nlist.h> 100 #include <kvm.h> 101 102 #include <uvm/uvm_extern.h> 103 #include <uvm/uvm_param.h> 104 #include <uvm/uvm_amap.h> 105 #include <uvm/uvm_page.h> 106 107 #include <sys/sysctl.h> 108 109 #include <limits.h> 110 #include <db.h> 111 #include <paths.h> 112 113 #include "kvm_private.h" 114 115 /* 116 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 117 */ 118 struct miniproc { 119 struct vmspace *p_vmspace; 120 char p_stat; 121 struct proc *p_paddr; 122 pid_t p_pid; 123 }; 124 125 /* 126 * Convert from struct proc and kinfo_proc{,2} to miniproc. 127 */ 128 #define PTOMINI(kp, p) \ 129 do { \ 130 (p)->p_stat = (kp)->p_stat; \ 131 (p)->p_pid = (kp)->p_pid; \ 132 (p)->p_paddr = NULL; \ 133 (p)->p_vmspace = (kp)->p_vmspace; \ 134 } while (/*CONSTCOND*/0); 135 136 #define KPTOMINI(kp, p) \ 137 do { \ 138 (p)->p_stat = (kp)->kp_proc.p_stat; \ 139 (p)->p_pid = (kp)->kp_proc.p_pid; \ 140 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 141 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 142 } while (/*CONSTCOND*/0); 143 144 #define KP2TOMINI(kp, p) \ 145 do { \ 146 (p)->p_stat = (kp)->p_stat; \ 147 (p)->p_pid = (kp)->p_pid; \ 148 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 149 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 150 } while (/*CONSTCOND*/0); 151 152 /* 153 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 154 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 155 * kvm(3) so dumps can be read properly. 156 * 157 * Whenever NetBSD starts exporting credentials to userland consistently (using 158 * 'struct uucred', or something) this will have to be updated again. 159 */ 160 struct kvm_kauth_cred { 161 u_int cr_refcnt; /* reference count */ 162 uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)]; 163 uid_t cr_uid; /* user id */ 164 uid_t cr_euid; /* effective user id */ 165 uid_t cr_svuid; /* saved effective user id */ 166 gid_t cr_gid; /* group id */ 167 gid_t cr_egid; /* effective group id */ 168 gid_t cr_svgid; /* saved effective group id */ 169 u_int cr_ngroups; /* number of groups */ 170 gid_t cr_groups[NGROUPS]; /* group memberships */ 171 specificdata_reference cr_sd; /* specific data */ 172 }; 173 174 /* XXX: What uses these two functions? */ 175 char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *); 176 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *, 177 size_t); 178 179 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 180 u_long *); 181 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 182 char *, size_t); 183 184 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int); 185 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int); 186 static char **kvm_doargv(kvm_t *, const struct miniproc *, int, 187 void (*)(struct ps_strings *, u_long *, int *)); 188 static char **kvm_doargv2(kvm_t *, pid_t, int, int); 189 static int kvm_proclist(kvm_t *, int, int, struct proc *, 190 struct kinfo_proc *, int); 191 static int proc_verify(kvm_t *, u_long, const struct miniproc *); 192 static void ps_str_a(struct ps_strings *, u_long *, int *); 193 static void ps_str_e(struct ps_strings *, u_long *, int *); 194 195 196 static char * 197 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt) 198 { 199 u_long addr, head; 200 u_long offset; 201 struct vm_map_entry vme; 202 struct vm_amap amap; 203 struct vm_anon *anonp, anon; 204 struct vm_page pg; 205 u_long slot; 206 207 if (kd->swapspc == NULL) { 208 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 209 if (kd->swapspc == NULL) 210 return (NULL); 211 } 212 213 /* 214 * Look through the address map for the memory object 215 * that corresponds to the given virtual address. 216 * The header just has the entire valid range. 217 */ 218 head = (u_long)&p->p_vmspace->vm_map.header; 219 addr = head; 220 for (;;) { 221 if (KREAD(kd, addr, &vme)) 222 return (NULL); 223 224 if (va >= vme.start && va < vme.end && 225 vme.aref.ar_amap != NULL) 226 break; 227 228 addr = (u_long)vme.next; 229 if (addr == head) 230 return (NULL); 231 } 232 233 /* 234 * we found the map entry, now to find the object... 235 */ 236 if (vme.aref.ar_amap == NULL) 237 return (NULL); 238 239 addr = (u_long)vme.aref.ar_amap; 240 if (KREAD(kd, addr, &amap)) 241 return (NULL); 242 243 offset = va - vme.start; 244 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 245 /* sanity-check slot number */ 246 if (slot > amap.am_nslot) 247 return (NULL); 248 249 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 250 if (KREAD(kd, addr, &anonp)) 251 return (NULL); 252 253 addr = (u_long)anonp; 254 if (KREAD(kd, addr, &anon)) 255 return (NULL); 256 257 addr = (u_long)anon.an_page; 258 if (addr) { 259 if (KREAD(kd, addr, &pg)) 260 return (NULL); 261 262 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 263 (off_t)pg.phys_addr) != kd->nbpg) 264 return (NULL); 265 } else { 266 if (kd->swfd < 0 || 267 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg, 268 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 269 return (NULL); 270 } 271 272 /* Found the page. */ 273 offset %= kd->nbpg; 274 *cnt = kd->nbpg - offset; 275 return (&kd->swapspc[(size_t)offset]); 276 } 277 278 char * 279 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt) 280 { 281 struct miniproc mp; 282 283 PTOMINI(p, &mp); 284 return (_kvm_ureadm(kd, &mp, va, cnt)); 285 } 286 287 /* 288 * Convert credentials located in kernel space address 'cred' and store 289 * them in the appropriate members of 'eproc'. 290 */ 291 static int 292 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 293 { 294 struct kvm_kauth_cred kauthcred; 295 struct ki_pcred *pc = &eproc->e_pcred; 296 struct ki_ucred *uc = &eproc->e_ucred; 297 298 if (KREAD(kd, cred, &kauthcred) != 0) 299 return (-1); 300 301 /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 302 pc->p_ruid = kauthcred.cr_uid; 303 pc->p_svuid = kauthcred.cr_svuid; 304 pc->p_rgid = kauthcred.cr_gid; 305 pc->p_svgid = kauthcred.cr_svgid; 306 pc->p_refcnt = kauthcred.cr_refcnt; 307 pc->p_pad = NULL; 308 309 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 310 uc->cr_ref = kauthcred.cr_refcnt; 311 uc->cr_uid = kauthcred.cr_euid; 312 uc->cr_gid = kauthcred.cr_egid; 313 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, 314 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 315 memcpy(uc->cr_groups, kauthcred.cr_groups, 316 uc->cr_ngroups * sizeof(uc->cr_groups[0])); 317 318 return (0); 319 } 320 321 /* 322 * Read proc's from memory file into buffer bp, which has space to hold 323 * at most maxcnt procs. 324 */ 325 static int 326 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 327 struct kinfo_proc *bp, int maxcnt) 328 { 329 int cnt = 0; 330 int nlwps; 331 struct kinfo_lwp *kl; 332 struct eproc eproc; 333 struct pgrp pgrp; 334 struct session sess; 335 struct tty tty; 336 struct proc proc; 337 338 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 339 if (KREAD(kd, (u_long)p, &proc)) { 340 _kvm_err(kd, kd->program, "can't read proc at %p", p); 341 return (-1); 342 } 343 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 344 _kvm_err(kd, kd->program, 345 "can't read proc credentials at %p", p); 346 return (-1); 347 } 348 349 switch (what) { 350 351 case KERN_PROC_PID: 352 if (proc.p_pid != (pid_t)arg) 353 continue; 354 break; 355 356 case KERN_PROC_UID: 357 if (eproc.e_ucred.cr_uid != (uid_t)arg) 358 continue; 359 break; 360 361 case KERN_PROC_RUID: 362 if (eproc.e_pcred.p_ruid != (uid_t)arg) 363 continue; 364 break; 365 } 366 /* 367 * We're going to add another proc to the set. If this 368 * will overflow the buffer, assume the reason is because 369 * nprocs (or the proc list) is corrupt and declare an error. 370 */ 371 if (cnt >= maxcnt) { 372 _kvm_err(kd, kd->program, "nprocs corrupt"); 373 return (-1); 374 } 375 /* 376 * gather eproc 377 */ 378 eproc.e_paddr = p; 379 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 380 _kvm_err(kd, kd->program, "can't read pgrp at %p", 381 proc.p_pgrp); 382 return (-1); 383 } 384 eproc.e_sess = pgrp.pg_session; 385 eproc.e_pgid = pgrp.pg_id; 386 eproc.e_jobc = pgrp.pg_jobc; 387 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 388 _kvm_err(kd, kd->program, "can't read session at %p", 389 pgrp.pg_session); 390 return (-1); 391 } 392 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 393 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 394 _kvm_err(kd, kd->program, 395 "can't read tty at %p", sess.s_ttyp); 396 return (-1); 397 } 398 eproc.e_tdev = (uint32_t)tty.t_dev; 399 eproc.e_tsess = tty.t_session; 400 if (tty.t_pgrp != NULL) { 401 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 402 _kvm_err(kd, kd->program, 403 "can't read tpgrp at %p", 404 tty.t_pgrp); 405 return (-1); 406 } 407 eproc.e_tpgid = pgrp.pg_id; 408 } else 409 eproc.e_tpgid = -1; 410 } else 411 eproc.e_tdev = (uint32_t)NODEV; 412 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 413 eproc.e_sid = sess.s_sid; 414 if (sess.s_leader == p) 415 eproc.e_flag |= EPROC_SLEADER; 416 /* 417 * Fill in the old-style proc.p_wmesg by copying the wmesg 418 * from the first available LWP. 419 */ 420 kl = kvm_getlwps(kd, proc.p_pid, 421 (u_long)PTRTOUINT64(eproc.e_paddr), 422 sizeof(struct kinfo_lwp), &nlwps); 423 if (kl) { 424 if (nlwps > 0) { 425 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 426 } 427 } 428 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 429 sizeof(eproc.e_vm)); 430 431 eproc.e_xsize = eproc.e_xrssize = 0; 432 eproc.e_xccount = eproc.e_xswrss = 0; 433 434 switch (what) { 435 436 case KERN_PROC_PGRP: 437 if (eproc.e_pgid != (pid_t)arg) 438 continue; 439 break; 440 441 case KERN_PROC_TTY: 442 if ((proc.p_lflag & PL_CONTROLT) == 0 || 443 eproc.e_tdev != (dev_t)arg) 444 continue; 445 break; 446 } 447 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 448 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 449 ++bp; 450 ++cnt; 451 } 452 return (cnt); 453 } 454 455 /* 456 * Build proc info array by reading in proc list from a crash dump. 457 * Return number of procs read. maxcnt is the max we will read. 458 */ 459 static int 460 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 461 u_long a_zombproc, int maxcnt) 462 { 463 struct kinfo_proc *bp = kd->procbase; 464 int acnt, zcnt; 465 struct proc *p; 466 467 if (KREAD(kd, a_allproc, &p)) { 468 _kvm_err(kd, kd->program, "cannot read allproc"); 469 return (-1); 470 } 471 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 472 if (acnt < 0) 473 return (acnt); 474 475 if (KREAD(kd, a_zombproc, &p)) { 476 _kvm_err(kd, kd->program, "cannot read zombproc"); 477 return (-1); 478 } 479 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 480 maxcnt - acnt); 481 if (zcnt < 0) 482 zcnt = 0; 483 484 return (acnt + zcnt); 485 } 486 487 struct kinfo_proc2 * 488 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt) 489 { 490 size_t size; 491 int mib[6], st, nprocs; 492 struct pstats pstats; 493 494 if (ISSYSCTL(kd)) { 495 size = 0; 496 mib[0] = CTL_KERN; 497 mib[1] = KERN_PROC2; 498 mib[2] = op; 499 mib[3] = arg; 500 mib[4] = (int)esize; 501 again: 502 mib[5] = 0; 503 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 504 if (st == -1) { 505 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 506 return (NULL); 507 } 508 509 mib[5] = (int) (size / esize); 510 KVM_ALLOC(kd, procbase2, size); 511 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 512 if (st == -1) { 513 if (errno == ENOMEM) { 514 goto again; 515 } 516 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 517 return (NULL); 518 } 519 nprocs = (int) (size / esize); 520 } else { 521 char *kp2c; 522 struct kinfo_proc *kp; 523 struct kinfo_proc2 kp2, *kp2p; 524 struct kinfo_lwp *kl; 525 int i, nlwps; 526 527 kp = kvm_getprocs(kd, op, arg, &nprocs); 528 if (kp == NULL) 529 return (NULL); 530 531 size = nprocs * esize; 532 KVM_ALLOC(kd, procbase2, size); 533 kp2c = (char *)(void *)kd->procbase2; 534 kp2p = &kp2; 535 for (i = 0; i < nprocs; i++, kp++) { 536 struct timeval tv; 537 538 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 539 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 540 sizeof(struct kinfo_lwp), &nlwps); 541 542 if (kl == NULL) { 543 _kvm_syserr(kd, NULL, 544 "kvm_getlwps() failed on process %u\n", 545 kp->kp_proc.p_pid); 546 if (nlwps == 0) 547 return NULL; 548 else 549 continue; 550 } 551 552 /* We use kl[0] as the "representative" LWP */ 553 memset(kp2p, 0, sizeof(kp2)); 554 kp2p->p_forw = kl[0].l_forw; 555 kp2p->p_back = kl[0].l_back; 556 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 557 kp2p->p_addr = kl[0].l_addr; 558 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 559 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 560 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 561 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 562 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 563 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 564 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 565 kp2p->p_tsess = 0; 566 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ 567 kp2p->p_ru = 0; 568 #else 569 kp2p->p_ru = PTRTOUINT64(pstats.p_ru); 570 #endif 571 572 kp2p->p_eflag = 0; 573 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 574 kp2p->p_flag = kp->kp_proc.p_flag; 575 576 kp2p->p_pid = kp->kp_proc.p_pid; 577 578 kp2p->p_ppid = kp->kp_eproc.e_ppid; 579 kp2p->p_sid = kp->kp_eproc.e_sid; 580 kp2p->p__pgid = kp->kp_eproc.e_pgid; 581 582 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 583 584 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 585 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 586 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 587 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 588 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 589 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 590 591 /*CONSTCOND*/ 592 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 593 MIN(sizeof(kp2p->p_groups), 594 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 595 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 596 597 kp2p->p_jobc = kp->kp_eproc.e_jobc; 598 kp2p->p_tdev = kp->kp_eproc.e_tdev; 599 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 600 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 601 602 kp2p->p_estcpu = 0; 603 bintime2timeval(&kp->kp_proc.p_rtime, &tv); 604 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec; 605 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec; 606 kp2p->p_cpticks = kl[0].l_cpticks; 607 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 608 kp2p->p_swtime = kl[0].l_swtime; 609 kp2p->p_slptime = kl[0].l_slptime; 610 #if 0 /* XXX thorpej */ 611 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 612 #else 613 kp2p->p_schedflags = 0; 614 #endif 615 616 kp2p->p_uticks = kp->kp_proc.p_uticks; 617 kp2p->p_sticks = kp->kp_proc.p_sticks; 618 kp2p->p_iticks = kp->kp_proc.p_iticks; 619 620 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 621 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 622 623 kp2p->p_holdcnt = kl[0].l_holdcnt; 624 625 memcpy(&kp2p->p_siglist, 626 &kp->kp_proc.p_sigpend.sp_set, 627 sizeof(ki_sigset_t)); 628 memset(&kp2p->p_sigmask, 0, 629 sizeof(ki_sigset_t)); 630 memcpy(&kp2p->p_sigignore, 631 &kp->kp_proc.p_sigctx.ps_sigignore, 632 sizeof(ki_sigset_t)); 633 memcpy(&kp2p->p_sigcatch, 634 &kp->kp_proc.p_sigctx.ps_sigcatch, 635 sizeof(ki_sigset_t)); 636 637 kp2p->p_stat = kl[0].l_stat; 638 kp2p->p_priority = kl[0].l_priority; 639 kp2p->p_usrpri = kl[0].l_priority; 640 kp2p->p_nice = kp->kp_proc.p_nice; 641 642 kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc); 643 kp2p->p_acflag = kp->kp_proc.p_acflag; 644 645 /*CONSTCOND*/ 646 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 647 MIN(sizeof(kp2p->p_comm), 648 sizeof(kp->kp_proc.p_comm))); 649 650 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 651 sizeof(kp2p->p_wmesg)); 652 kp2p->p_wchan = kl[0].l_wchan; 653 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 654 sizeof(kp2p->p_login)); 655 656 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 657 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 658 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 659 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 660 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size 661 / kd->nbpg; 662 /* Adjust mapped size */ 663 kp2p->p_vm_msize = 664 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) - 665 kp->kp_eproc.e_vm.vm_issize + 666 kp->kp_eproc.e_vm.vm_ssize; 667 668 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 669 670 kp2p->p_realflag = kp->kp_proc.p_flag; 671 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 672 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 673 kp2p->p_realstat = kp->kp_proc.p_stat; 674 675 if (P_ZOMBIE(&kp->kp_proc) || 676 kp->kp_proc.p_stats == NULL || 677 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 678 kp2p->p_uvalid = 0; 679 } else { 680 kp2p->p_uvalid = 1; 681 682 kp2p->p_ustart_sec = (u_int32_t) 683 pstats.p_start.tv_sec; 684 kp2p->p_ustart_usec = (u_int32_t) 685 pstats.p_start.tv_usec; 686 687 kp2p->p_uutime_sec = (u_int32_t) 688 pstats.p_ru.ru_utime.tv_sec; 689 kp2p->p_uutime_usec = (u_int32_t) 690 pstats.p_ru.ru_utime.tv_usec; 691 kp2p->p_ustime_sec = (u_int32_t) 692 pstats.p_ru.ru_stime.tv_sec; 693 kp2p->p_ustime_usec = (u_int32_t) 694 pstats.p_ru.ru_stime.tv_usec; 695 696 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 697 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 698 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 699 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 700 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 701 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 702 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 703 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 704 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 705 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 706 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 707 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 708 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 709 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 710 711 kp2p->p_uctime_sec = (u_int32_t) 712 (pstats.p_cru.ru_utime.tv_sec + 713 pstats.p_cru.ru_stime.tv_sec); 714 kp2p->p_uctime_usec = (u_int32_t) 715 (pstats.p_cru.ru_utime.tv_usec + 716 pstats.p_cru.ru_stime.tv_usec); 717 } 718 719 memcpy(kp2c, &kp2, esize); 720 kp2c += esize; 721 } 722 } 723 *cnt = nprocs; 724 return (kd->procbase2); 725 } 726 727 struct kinfo_lwp * 728 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt) 729 { 730 size_t size; 731 int mib[5], nlwps; 732 ssize_t st; 733 struct kinfo_lwp *kl; 734 735 if (ISSYSCTL(kd)) { 736 size = 0; 737 mib[0] = CTL_KERN; 738 mib[1] = KERN_LWP; 739 mib[2] = pid; 740 mib[3] = (int)esize; 741 mib[4] = 0; 742 again: 743 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 744 if (st == -1) { 745 switch (errno) { 746 case ESRCH: /* Treat this as a soft error; see kvm.c */ 747 _kvm_syserr(kd, NULL, "kvm_getlwps"); 748 return NULL; 749 default: 750 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 751 return NULL; 752 } 753 } 754 mib[4] = (int) (size / esize); 755 KVM_ALLOC(kd, lwpbase, size); 756 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 757 if (st == -1) { 758 switch (errno) { 759 case ESRCH: /* Treat this as a soft error; see kvm.c */ 760 _kvm_syserr(kd, NULL, "kvm_getlwps"); 761 return NULL; 762 case ENOMEM: 763 goto again; 764 default: 765 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 766 return NULL; 767 } 768 } 769 nlwps = (int) (size / esize); 770 } else { 771 /* grovel through the memory image */ 772 struct proc p; 773 struct lwp l; 774 u_long laddr; 775 void *back; 776 int i; 777 778 st = kvm_read(kd, paddr, &p, sizeof(p)); 779 if (st == -1) { 780 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 781 return (NULL); 782 } 783 784 nlwps = p.p_nlwps; 785 size = nlwps * sizeof(*kd->lwpbase); 786 KVM_ALLOC(kd, lwpbase, size); 787 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 788 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 789 st = kvm_read(kd, laddr, &l, sizeof(l)); 790 if (st == -1) { 791 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 792 return (NULL); 793 } 794 kl = &kd->lwpbase[i]; 795 kl->l_laddr = laddr; 796 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); 797 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); 798 st = kvm_read(kd, laddr, &back, sizeof(back)); 799 if (st == -1) { 800 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 801 return (NULL); 802 } 803 kl->l_back = PTRTOUINT64(back); 804 kl->l_addr = PTRTOUINT64(l.l_addr); 805 kl->l_lid = l.l_lid; 806 kl->l_flag = l.l_flag; 807 kl->l_swtime = l.l_swtime; 808 kl->l_slptime = l.l_slptime; 809 kl->l_schedflags = 0; /* XXX */ 810 kl->l_holdcnt = 0; 811 kl->l_priority = l.l_priority; 812 kl->l_usrpri = l.l_priority; 813 kl->l_stat = l.l_stat; 814 kl->l_wchan = PTRTOUINT64(l.l_wchan); 815 if (l.l_wmesg) 816 (void)kvm_read(kd, (u_long)l.l_wmesg, 817 kl->l_wmesg, (size_t)WMESGLEN); 818 kl->l_cpuid = KI_NOCPU; 819 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 820 } 821 } 822 823 *cnt = nlwps; 824 return (kd->lwpbase); 825 } 826 827 struct kinfo_proc * 828 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 829 { 830 size_t size; 831 int mib[4], st, nprocs; 832 833 if (ISALIVE(kd)) { 834 size = 0; 835 mib[0] = CTL_KERN; 836 mib[1] = KERN_PROC; 837 mib[2] = op; 838 mib[3] = arg; 839 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 840 if (st == -1) { 841 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 842 return (NULL); 843 } 844 KVM_ALLOC(kd, procbase, size); 845 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 846 if (st == -1) { 847 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 848 return (NULL); 849 } 850 if (size % sizeof(struct kinfo_proc) != 0) { 851 _kvm_err(kd, kd->program, 852 "proc size mismatch (%lu total, %lu chunks)", 853 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 854 return (NULL); 855 } 856 nprocs = (int) (size / sizeof(struct kinfo_proc)); 857 } else { 858 struct nlist nl[4], *p; 859 860 (void)memset(nl, 0, sizeof(nl)); 861 nl[0].n_name = "_nprocs"; 862 nl[1].n_name = "_allproc"; 863 nl[2].n_name = "_zombproc"; 864 nl[3].n_name = NULL; 865 866 if (kvm_nlist(kd, nl) != 0) { 867 for (p = nl; p->n_type != 0; ++p) 868 continue; 869 _kvm_err(kd, kd->program, 870 "%s: no such symbol", p->n_name); 871 return (NULL); 872 } 873 if (KREAD(kd, nl[0].n_value, &nprocs)) { 874 _kvm_err(kd, kd->program, "can't read nprocs"); 875 return (NULL); 876 } 877 size = nprocs * sizeof(*kd->procbase); 878 KVM_ALLOC(kd, procbase, size); 879 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 880 nl[2].n_value, nprocs); 881 if (nprocs < 0) 882 return (NULL); 883 #ifdef notdef 884 size = nprocs * sizeof(struct kinfo_proc); 885 (void)realloc(kd->procbase, size); 886 #endif 887 } 888 *cnt = nprocs; 889 return (kd->procbase); 890 } 891 892 void * 893 _kvm_realloc(kvm_t *kd, void *p, size_t n) 894 { 895 void *np = realloc(p, n); 896 897 if (np == NULL) 898 _kvm_err(kd, kd->program, "out of memory"); 899 return (np); 900 } 901 902 /* 903 * Read in an argument vector from the user address space of process p. 904 * addr if the user-space base address of narg null-terminated contiguous 905 * strings. This is used to read in both the command arguments and 906 * environment strings. Read at most maxcnt characters of strings. 907 */ 908 static char ** 909 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg, 910 int maxcnt) 911 { 912 char *np, *cp, *ep, *ap; 913 u_long oaddr = (u_long)~0L; 914 u_long len; 915 size_t cc; 916 char **argv; 917 918 /* 919 * Check that there aren't an unreasonable number of arguments, 920 * and that the address is in user space. 921 */ 922 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 923 return (NULL); 924 925 if (kd->argv == NULL) { 926 /* 927 * Try to avoid reallocs. 928 */ 929 kd->argc = MAX(narg + 1, 32); 930 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 931 if (kd->argv == NULL) 932 return (NULL); 933 } else if (narg + 1 > kd->argc) { 934 kd->argc = MAX(2 * kd->argc, narg + 1); 935 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 936 sizeof(*kd->argv)); 937 if (kd->argv == NULL) 938 return (NULL); 939 } 940 if (kd->argspc == NULL) { 941 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 942 if (kd->argspc == NULL) 943 return (NULL); 944 kd->argspc_len = kd->nbpg; 945 } 946 if (kd->argbuf == NULL) { 947 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 948 if (kd->argbuf == NULL) 949 return (NULL); 950 } 951 cc = sizeof(char *) * narg; 952 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 953 return (NULL); 954 ap = np = kd->argspc; 955 argv = kd->argv; 956 len = 0; 957 /* 958 * Loop over pages, filling in the argument vector. 959 */ 960 while (argv < kd->argv + narg && *argv != NULL) { 961 addr = (u_long)*argv & ~(kd->nbpg - 1); 962 if (addr != oaddr) { 963 if (kvm_ureadm(kd, p, addr, kd->argbuf, 964 (size_t)kd->nbpg) != kd->nbpg) 965 return (NULL); 966 oaddr = addr; 967 } 968 addr = (u_long)*argv & (kd->nbpg - 1); 969 cp = kd->argbuf + (size_t)addr; 970 cc = kd->nbpg - (size_t)addr; 971 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 972 cc = (size_t)(maxcnt - len); 973 ep = memchr(cp, '\0', cc); 974 if (ep != NULL) 975 cc = ep - cp + 1; 976 if (len + cc > kd->argspc_len) { 977 ptrdiff_t off; 978 char **pp; 979 char *op = kd->argspc; 980 981 kd->argspc_len *= 2; 982 kd->argspc = _kvm_realloc(kd, kd->argspc, 983 kd->argspc_len); 984 if (kd->argspc == NULL) 985 return (NULL); 986 /* 987 * Adjust argv pointers in case realloc moved 988 * the string space. 989 */ 990 off = kd->argspc - op; 991 for (pp = kd->argv; pp < argv; pp++) 992 *pp += off; 993 ap += off; 994 np += off; 995 } 996 memcpy(np, cp, cc); 997 np += cc; 998 len += cc; 999 if (ep != NULL) { 1000 *argv++ = ap; 1001 ap = np; 1002 } else 1003 *argv += cc; 1004 if (maxcnt > 0 && len >= maxcnt) { 1005 /* 1006 * We're stopping prematurely. Terminate the 1007 * current string. 1008 */ 1009 if (ep == NULL) { 1010 *np = '\0'; 1011 *argv++ = ap; 1012 } 1013 break; 1014 } 1015 } 1016 /* Make sure argv is terminated. */ 1017 *argv = NULL; 1018 return (kd->argv); 1019 } 1020 1021 static void 1022 ps_str_a(struct ps_strings *p, u_long *addr, int *n) 1023 { 1024 1025 *addr = (u_long)p->ps_argvstr; 1026 *n = p->ps_nargvstr; 1027 } 1028 1029 static void 1030 ps_str_e(struct ps_strings *p, u_long *addr, int *n) 1031 { 1032 1033 *addr = (u_long)p->ps_envstr; 1034 *n = p->ps_nenvstr; 1035 } 1036 1037 /* 1038 * Determine if the proc indicated by p is still active. 1039 * This test is not 100% foolproof in theory, but chances of 1040 * being wrong are very low. 1041 */ 1042 static int 1043 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p) 1044 { 1045 struct proc kernproc; 1046 1047 /* 1048 * Just read in the whole proc. It's not that big relative 1049 * to the cost of the read system call. 1050 */ 1051 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1052 sizeof(kernproc)) 1053 return (0); 1054 return (p->p_pid == kernproc.p_pid && 1055 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1056 } 1057 1058 static char ** 1059 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr, 1060 void (*info)(struct ps_strings *, u_long *, int *)) 1061 { 1062 char **ap; 1063 u_long addr; 1064 int cnt; 1065 struct ps_strings arginfo; 1066 1067 /* 1068 * Pointers are stored at the top of the user stack. 1069 */ 1070 if (p->p_stat == SZOMB) 1071 return (NULL); 1072 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1073 (void *)&arginfo, sizeof(arginfo)); 1074 if (cnt != sizeof(arginfo)) 1075 return (NULL); 1076 1077 (*info)(&arginfo, &addr, &cnt); 1078 if (cnt == 0) 1079 return (NULL); 1080 ap = kvm_argv(kd, p, addr, cnt, nchr); 1081 /* 1082 * For live kernels, make sure this process didn't go away. 1083 */ 1084 if (ap != NULL && ISALIVE(kd) && 1085 !proc_verify(kd, (u_long)p->p_paddr, p)) 1086 ap = NULL; 1087 return (ap); 1088 } 1089 1090 /* 1091 * Get the command args. This code is now machine independent. 1092 */ 1093 char ** 1094 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1095 { 1096 struct miniproc p; 1097 1098 KPTOMINI(kp, &p); 1099 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1100 } 1101 1102 char ** 1103 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1104 { 1105 struct miniproc p; 1106 1107 KPTOMINI(kp, &p); 1108 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1109 } 1110 1111 static char ** 1112 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr) 1113 { 1114 size_t bufs; 1115 int narg, mib[4]; 1116 size_t newargspc_len; 1117 char **ap, *bp, *endp; 1118 1119 /* 1120 * Check that there aren't an unreasonable number of arguments. 1121 */ 1122 if (nchr > ARG_MAX) 1123 return (NULL); 1124 1125 if (nchr == 0) 1126 nchr = ARG_MAX; 1127 1128 /* Get number of strings in argv */ 1129 mib[0] = CTL_KERN; 1130 mib[1] = KERN_PROC_ARGS; 1131 mib[2] = pid; 1132 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1133 bufs = sizeof(narg); 1134 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1135 return (NULL); 1136 1137 if (kd->argv == NULL) { 1138 /* 1139 * Try to avoid reallocs. 1140 */ 1141 kd->argc = MAX(narg + 1, 32); 1142 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1143 if (kd->argv == NULL) 1144 return (NULL); 1145 } else if (narg + 1 > kd->argc) { 1146 kd->argc = MAX(2 * kd->argc, narg + 1); 1147 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1148 sizeof(*kd->argv)); 1149 if (kd->argv == NULL) 1150 return (NULL); 1151 } 1152 1153 newargspc_len = MIN(nchr, ARG_MAX); 1154 KVM_ALLOC(kd, argspc, newargspc_len); 1155 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1156 1157 mib[0] = CTL_KERN; 1158 mib[1] = KERN_PROC_ARGS; 1159 mib[2] = pid; 1160 mib[3] = type; 1161 bufs = kd->argspc_len; 1162 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1163 return (NULL); 1164 1165 bp = kd->argspc; 1166 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1167 ap = kd->argv; 1168 endp = bp + MIN(nchr, bufs); 1169 1170 while (bp < endp) { 1171 *ap++ = bp; 1172 /* 1173 * XXX: don't need following anymore, or stick check 1174 * for max argc in above while loop? 1175 */ 1176 if (ap >= kd->argv + kd->argc) { 1177 kd->argc *= 2; 1178 kd->argv = _kvm_realloc(kd, kd->argv, 1179 kd->argc * sizeof(*kd->argv)); 1180 ap = kd->argv; 1181 } 1182 bp += strlen(bp) + 1; 1183 } 1184 *ap = NULL; 1185 1186 return (kd->argv); 1187 } 1188 1189 char ** 1190 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1191 { 1192 1193 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1194 } 1195 1196 char ** 1197 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1198 { 1199 1200 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1201 } 1202 1203 /* 1204 * Read from user space. The user context is given by p. 1205 */ 1206 static ssize_t 1207 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, 1208 char *buf, size_t len) 1209 { 1210 char *cp; 1211 1212 cp = buf; 1213 while (len > 0) { 1214 size_t cc; 1215 char *dp; 1216 u_long cnt; 1217 1218 dp = _kvm_ureadm(kd, p, uva, &cnt); 1219 if (dp == NULL) { 1220 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1221 return (0); 1222 } 1223 cc = (size_t)MIN(cnt, len); 1224 memcpy(cp, dp, cc); 1225 cp += cc; 1226 uva += cc; 1227 len -= cc; 1228 } 1229 return (ssize_t)(cp - buf); 1230 } 1231 1232 ssize_t 1233 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len) 1234 { 1235 struct miniproc mp; 1236 1237 PTOMINI(p, &mp); 1238 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1239 } 1240