xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision de2138164cd16145ee5fd4d0aef1e8f952c1a9fb)
1 /*	$NetBSD: kvm_proc.c,v 1.68 2007/02/24 20:41:34 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.68 2007/02/24 20:41:34 christos Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80 
81 /*
82  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
83  * users of this code, so we've factored it out into a separate module.
84  * Thus, we keep this grunge out of the other kvm applications (i.e.,
85  * most other applications are interested only in open/close/read/nlist).
86  */
87 
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/resourcevar.h>
97 #include <sys/mutex.h>
98 #include <sys/specificdata.h>
99 
100 #include <errno.h>
101 #include <stdlib.h>
102 #include <stddef.h>
103 #include <string.h>
104 #include <unistd.h>
105 #include <nlist.h>
106 #include <kvm.h>
107 
108 #include <uvm/uvm_extern.h>
109 #include <uvm/uvm_amap.h>
110 
111 #include <sys/sysctl.h>
112 
113 #include <limits.h>
114 #include <db.h>
115 #include <paths.h>
116 
117 #include "kvm_private.h"
118 
119 /*
120  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
121  */
122 struct miniproc {
123 	struct	vmspace *p_vmspace;
124 	char	p_stat;
125 	struct	proc *p_paddr;
126 	pid_t	p_pid;
127 };
128 
129 /*
130  * Convert from struct proc and kinfo_proc{,2} to miniproc.
131  */
132 #define PTOMINI(kp, p) \
133 	do { \
134 		(p)->p_stat = (kp)->p_stat; \
135 		(p)->p_pid = (kp)->p_pid; \
136 		(p)->p_paddr = NULL; \
137 		(p)->p_vmspace = (kp)->p_vmspace; \
138 	} while (/*CONSTCOND*/0);
139 
140 #define KPTOMINI(kp, p) \
141 	do { \
142 		(p)->p_stat = (kp)->kp_proc.p_stat; \
143 		(p)->p_pid = (kp)->kp_proc.p_pid; \
144 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
145 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
146 	} while (/*CONSTCOND*/0);
147 
148 #define KP2TOMINI(kp, p) \
149 	do { \
150 		(p)->p_stat = (kp)->p_stat; \
151 		(p)->p_pid = (kp)->p_pid; \
152 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
153 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
154 	} while (/*CONSTCOND*/0);
155 
156 /*
157  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
158  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
159  * kvm(3) so dumps can be read properly.
160  *
161  * Whenever NetBSD starts exporting credentials to userland consistently (using
162  * 'struct uucred', or something) this will have to be updated again.
163  */
164 struct kvm_kauth_cred {
165 	kmutex_t cr_lock;		/* lock on cr_refcnt */
166 	u_int cr_refcnt;		/* reference count */
167 	uid_t cr_uid;			/* user id */
168 	uid_t cr_euid;			/* effective user id */
169 	uid_t cr_svuid;			/* saved effective user id */
170 	gid_t cr_gid;			/* group id */
171 	gid_t cr_egid;			/* effective group id */
172 	gid_t cr_svgid;			/* saved effective group id */
173 	u_int cr_ngroups;		/* number of groups */
174 	gid_t cr_groups[NGROUPS];	/* group memberships */
175 	specificdata_reference cr_sd;	/* specific data */
176 };
177 
178 #define KREAD(kd, addr, obj) \
179 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
180 
181 /* XXX: What uses these two functions? */
182 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
183 		    u_long *));
184 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
185 		    size_t));
186 
187 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
188 		    u_long *));
189 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
190 		    char *, size_t));
191 
192 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
193 		    int));
194 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
195 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
196 		    void (*)(struct ps_strings *, u_long *, int *)));
197 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
198 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
199 		    struct kinfo_proc *, int));
200 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
201 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
202 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
203 
204 
205 static char *
206 _kvm_ureadm(kd, p, va, cnt)
207 	kvm_t *kd;
208 	const struct miniproc *p;
209 	u_long va;
210 	u_long *cnt;
211 {
212 	int true = 1;
213 	u_long addr, head;
214 	u_long offset;
215 	struct vm_map_entry vme;
216 	struct vm_amap amap;
217 	struct vm_anon *anonp, anon;
218 	struct vm_page pg;
219 	u_long slot;
220 
221 	if (kd->swapspc == NULL) {
222 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
223 		if (kd->swapspc == NULL)
224 			return (NULL);
225 	}
226 
227 	/*
228 	 * Look through the address map for the memory object
229 	 * that corresponds to the given virtual address.
230 	 * The header just has the entire valid range.
231 	 */
232 	head = (u_long)&p->p_vmspace->vm_map.header;
233 	addr = head;
234 	while (true) {
235 		if (KREAD(kd, addr, &vme))
236 			return (NULL);
237 
238 		if (va >= vme.start && va < vme.end &&
239 		    vme.aref.ar_amap != NULL)
240 			break;
241 
242 		addr = (u_long)vme.next;
243 		if (addr == head)
244 			return (NULL);
245 	}
246 
247 	/*
248 	 * we found the map entry, now to find the object...
249 	 */
250 	if (vme.aref.ar_amap == NULL)
251 		return (NULL);
252 
253 	addr = (u_long)vme.aref.ar_amap;
254 	if (KREAD(kd, addr, &amap))
255 		return (NULL);
256 
257 	offset = va - vme.start;
258 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
259 	/* sanity-check slot number */
260 	if (slot > amap.am_nslot)
261 		return (NULL);
262 
263 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
264 	if (KREAD(kd, addr, &anonp))
265 		return (NULL);
266 
267 	addr = (u_long)anonp;
268 	if (KREAD(kd, addr, &anon))
269 		return (NULL);
270 
271 	addr = (u_long)anon.an_page;
272 	if (addr) {
273 		if (KREAD(kd, addr, &pg))
274 			return (NULL);
275 
276 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
277 		    (off_t)pg.phys_addr) != kd->nbpg)
278 			return (NULL);
279 	} else {
280 		if (kd->swfd < 0 ||
281 		    pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
282 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
283 			return (NULL);
284 	}
285 
286 	/* Found the page. */
287 	offset %= kd->nbpg;
288 	*cnt = kd->nbpg - offset;
289 	return (&kd->swapspc[(size_t)offset]);
290 }
291 
292 char *
293 _kvm_uread(kd, p, va, cnt)
294 	kvm_t *kd;
295 	const struct proc *p;
296 	u_long va;
297 	u_long *cnt;
298 {
299 	struct miniproc mp;
300 
301 	PTOMINI(p, &mp);
302 	return (_kvm_ureadm(kd, &mp, va, cnt));
303 }
304 
305 /*
306  * Convert credentials located in kernel space address 'cred' and store
307  * them in the appropriate members of 'eproc'.
308  */
309 static int
310 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
311 {
312 	struct kvm_kauth_cred kauthcred;
313 	struct ki_pcred *pc = &eproc->e_pcred;
314 	struct ki_ucred *uc = &eproc->e_ucred;
315 
316 	if (KREAD(kd, cred, &kauthcred) != 0)
317 		return (-1);
318 
319 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
320 	pc->p_ruid = kauthcred.cr_uid;
321 	pc->p_svuid = kauthcred.cr_svuid;
322 	pc->p_rgid = kauthcred.cr_gid;
323 	pc->p_svgid = kauthcred.cr_svgid;
324 	pc->p_refcnt = kauthcred.cr_refcnt;
325 	pc->p_pad = NULL;
326 
327 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
328 	uc->cr_ref = kauthcred.cr_refcnt;
329 	uc->cr_uid = kauthcred.cr_euid;
330 	uc->cr_gid = kauthcred.cr_egid;
331 	uc->cr_ngroups = MIN(kauthcred.cr_ngroups,
332 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
333 	memcpy(uc->cr_groups, kauthcred.cr_groups,
334 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
335 
336 	return (0);
337 }
338 
339 /*
340  * Read proc's from memory file into buffer bp, which has space to hold
341  * at most maxcnt procs.
342  */
343 static int
344 kvm_proclist(kd, what, arg, p, bp, maxcnt)
345 	kvm_t *kd;
346 	int what, arg;
347 	struct proc *p;
348 	struct kinfo_proc *bp;
349 	int maxcnt;
350 {
351 	int cnt = 0;
352 	int nlwps;
353 	struct kinfo_lwp *kl;
354 	struct eproc eproc;
355 	struct pgrp pgrp;
356 	struct session sess;
357 	struct tty tty;
358 	struct proc proc;
359 
360 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
361 		if (KREAD(kd, (u_long)p, &proc)) {
362 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
363 			return (-1);
364 		}
365 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
366 			_kvm_err(kd, kd->program,
367 			    "can't read proc credentials at %p", p);
368 			return (-1);
369 		}
370 
371 		switch (what) {
372 
373 		case KERN_PROC_PID:
374 			if (proc.p_pid != (pid_t)arg)
375 				continue;
376 			break;
377 
378 		case KERN_PROC_UID:
379 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
380 				continue;
381 			break;
382 
383 		case KERN_PROC_RUID:
384 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
385 				continue;
386 			break;
387 		}
388 		/*
389 		 * We're going to add another proc to the set.  If this
390 		 * will overflow the buffer, assume the reason is because
391 		 * nprocs (or the proc list) is corrupt and declare an error.
392 		 */
393 		if (cnt >= maxcnt) {
394 			_kvm_err(kd, kd->program, "nprocs corrupt");
395 			return (-1);
396 		}
397 		/*
398 		 * gather eproc
399 		 */
400 		eproc.e_paddr = p;
401 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
402 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
403 			    proc.p_pgrp);
404 			return (-1);
405 		}
406 		eproc.e_sess = pgrp.pg_session;
407 		eproc.e_pgid = pgrp.pg_id;
408 		eproc.e_jobc = pgrp.pg_jobc;
409 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
410 			_kvm_err(kd, kd->program, "can't read session at %p",
411 			    pgrp.pg_session);
412 			return (-1);
413 		}
414 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
415 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
416 				_kvm_err(kd, kd->program,
417 				    "can't read tty at %p", sess.s_ttyp);
418 				return (-1);
419 			}
420 			eproc.e_tdev = tty.t_dev;
421 			eproc.e_tsess = tty.t_session;
422 			if (tty.t_pgrp != NULL) {
423 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
424 					_kvm_err(kd, kd->program,
425 					    "can't read tpgrp at %p",
426 					    tty.t_pgrp);
427 					return (-1);
428 				}
429 				eproc.e_tpgid = pgrp.pg_id;
430 			} else
431 				eproc.e_tpgid = -1;
432 		} else
433 			eproc.e_tdev = NODEV;
434 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
435 		eproc.e_sid = sess.s_sid;
436 		if (sess.s_leader == p)
437 			eproc.e_flag |= EPROC_SLEADER;
438 		/*
439 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
440 		 * from the first available LWP.
441 		 */
442 		kl = kvm_getlwps(kd, proc.p_pid,
443 		    (u_long)PTRTOUINT64(eproc.e_paddr),
444 		    sizeof(struct kinfo_lwp), &nlwps);
445 		if (kl) {
446 			if (nlwps > 0) {
447 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
448 			}
449 		}
450 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
451 		    sizeof(eproc.e_vm));
452 
453 		eproc.e_xsize = eproc.e_xrssize = 0;
454 		eproc.e_xccount = eproc.e_xswrss = 0;
455 
456 		switch (what) {
457 
458 		case KERN_PROC_PGRP:
459 			if (eproc.e_pgid != (pid_t)arg)
460 				continue;
461 			break;
462 
463 		case KERN_PROC_TTY:
464 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
465 			    eproc.e_tdev != (dev_t)arg)
466 				continue;
467 			break;
468 		}
469 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
470 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
471 		++bp;
472 		++cnt;
473 	}
474 	return (cnt);
475 }
476 
477 /*
478  * Build proc info array by reading in proc list from a crash dump.
479  * Return number of procs read.  maxcnt is the max we will read.
480  */
481 static int
482 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
483 	kvm_t *kd;
484 	int what, arg;
485 	u_long a_allproc;
486 	u_long a_zombproc;
487 	int maxcnt;
488 {
489 	struct kinfo_proc *bp = kd->procbase;
490 	int acnt, zcnt;
491 	struct proc *p;
492 
493 	if (KREAD(kd, a_allproc, &p)) {
494 		_kvm_err(kd, kd->program, "cannot read allproc");
495 		return (-1);
496 	}
497 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
498 	if (acnt < 0)
499 		return (acnt);
500 
501 	if (KREAD(kd, a_zombproc, &p)) {
502 		_kvm_err(kd, kd->program, "cannot read zombproc");
503 		return (-1);
504 	}
505 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
506 	    maxcnt - acnt);
507 	if (zcnt < 0)
508 		zcnt = 0;
509 
510 	return (acnt + zcnt);
511 }
512 
513 struct kinfo_proc2 *
514 kvm_getproc2(kd, op, arg, esize, cnt)
515 	kvm_t *kd;
516 	int op, arg;
517 	size_t esize;
518 	int *cnt;
519 {
520 	size_t size;
521 	int mib[6], st, nprocs;
522 	struct pstats pstats;
523 
524 	if (ISSYSCTL(kd)) {
525 		size = 0;
526 		mib[0] = CTL_KERN;
527 		mib[1] = KERN_PROC2;
528 		mib[2] = op;
529 		mib[3] = arg;
530 		mib[4] = (int)esize;
531 again:
532 		mib[5] = 0;
533 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
534 		if (st == -1) {
535 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
536 			return (NULL);
537 		}
538 
539 		mib[5] = (int) (size / esize);
540 		KVM_ALLOC(kd, procbase2, size);
541 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
542 		if (st == -1) {
543 			if (errno == ENOMEM) {
544 				goto again;
545 			}
546 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
547 			return (NULL);
548 		}
549 		nprocs = (int) (size / esize);
550 	} else {
551 		char *kp2c;
552 		struct kinfo_proc *kp;
553 		struct kinfo_proc2 kp2, *kp2p;
554 		struct kinfo_lwp *kl;
555 		int i, nlwps;
556 
557 		kp = kvm_getprocs(kd, op, arg, &nprocs);
558 		if (kp == NULL)
559 			return (NULL);
560 
561 		size = nprocs * esize;
562 		KVM_ALLOC(kd, procbase2, size);
563 		kp2c = (char *)(void *)kd->procbase2;
564 		kp2p = &kp2;
565 		for (i = 0; i < nprocs; i++, kp++) {
566 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
567 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
568 			    sizeof(struct kinfo_lwp), &nlwps);
569 
570 			/* We use kl[0] as the "representative" LWP */
571 			memset(kp2p, 0, sizeof(kp2));
572 			kp2p->p_forw = kl[0].l_forw;
573 			kp2p->p_back = kl[0].l_back;
574 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
575 			kp2p->p_addr = kl[0].l_addr;
576 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
577 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
578 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
579 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
580 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
581 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
582 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
583 			kp2p->p_tsess = 0;
584 			kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru);
585 
586 			kp2p->p_eflag = 0;
587 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
588 			kp2p->p_flag = kp->kp_proc.p_flag;
589 
590 			kp2p->p_pid = kp->kp_proc.p_pid;
591 
592 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
593 			kp2p->p_sid = kp->kp_eproc.e_sid;
594 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
595 
596 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
597 
598 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
599 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
600 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
601 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
602 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
603 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
604 
605 			/*CONSTCOND*/
606 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
607 			    MIN(sizeof(kp2p->p_groups),
608 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
609 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
610 
611 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
612 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
613 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
614 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
615 
616 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
617 			kp2p->p_rtime_sec = kp->kp_proc.p_rtime.tv_sec;
618 			kp2p->p_rtime_usec = kp->kp_proc.p_rtime.tv_usec;
619 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
620 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
621 			kp2p->p_swtime = kl[0].l_swtime;
622 			kp2p->p_slptime = kl[0].l_slptime;
623 #if 0 /* XXX thorpej */
624 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
625 #else
626 			kp2p->p_schedflags = 0;
627 #endif
628 
629 			kp2p->p_uticks = kp->kp_proc.p_uticks;
630 			kp2p->p_sticks = kp->kp_proc.p_sticks;
631 			kp2p->p_iticks = kp->kp_proc.p_iticks;
632 
633 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
634 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
635 
636 			kp2p->p_holdcnt = kl[0].l_holdcnt;
637 
638 			memcpy(&kp2p->p_siglist,
639 			    &kp->kp_proc.p_sigpend.sp_set,
640 			    sizeof(ki_sigset_t));
641 			memset(&kp2p->p_sigmask, 0,
642 			    sizeof(ki_sigset_t));
643 			memcpy(&kp2p->p_sigignore,
644 			    &kp->kp_proc.p_sigctx.ps_sigignore,
645 			    sizeof(ki_sigset_t));
646 			memcpy(&kp2p->p_sigcatch,
647 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
648 			    sizeof(ki_sigset_t));
649 
650 			kp2p->p_stat = kl[0].l_stat;
651 			kp2p->p_priority = kl[0].l_priority;
652 			kp2p->p_usrpri = kl[0].l_usrpri;
653 			kp2p->p_nice = kp->kp_proc.p_nice;
654 
655 			kp2p->p_xstat = kp->kp_proc.p_xstat;
656 			kp2p->p_acflag = kp->kp_proc.p_acflag;
657 
658 			/*CONSTCOND*/
659 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
660 			    MIN(sizeof(kp2p->p_comm),
661 			    sizeof(kp->kp_proc.p_comm)));
662 
663 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
664 			    sizeof(kp2p->p_wmesg));
665 			kp2p->p_wchan = kl[0].l_wchan;
666 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
667 			    sizeof(kp2p->p_login));
668 
669 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
670 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
671 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
672 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
673 
674 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
675 
676 			kp2p->p_realflag = kp->kp_proc.p_flag;
677 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
678 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
679 			kp2p->p_realstat = kp->kp_proc.p_stat;
680 
681 			if (P_ZOMBIE(&kp->kp_proc) ||
682 			    kp->kp_proc.p_stats == NULL ||
683 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
684 				kp2p->p_uvalid = 0;
685 			} else {
686 				kp2p->p_uvalid = 1;
687 
688 				kp2p->p_ustart_sec = (u_int32_t)
689 				    pstats.p_start.tv_sec;
690 				kp2p->p_ustart_usec = (u_int32_t)
691 				    pstats.p_start.tv_usec;
692 
693 				kp2p->p_uutime_sec = (u_int32_t)
694 				    pstats.p_ru.ru_utime.tv_sec;
695 				kp2p->p_uutime_usec = (u_int32_t)
696 				    pstats.p_ru.ru_utime.tv_usec;
697 				kp2p->p_ustime_sec = (u_int32_t)
698 				    pstats.p_ru.ru_stime.tv_sec;
699 				kp2p->p_ustime_usec = (u_int32_t)
700 				    pstats.p_ru.ru_stime.tv_usec;
701 
702 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
703 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
704 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
705 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
706 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
707 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
708 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
709 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
710 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
711 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
712 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
713 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
714 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
715 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
716 
717 				kp2p->p_uctime_sec = (u_int32_t)
718 				    (pstats.p_cru.ru_utime.tv_sec +
719 				    pstats.p_cru.ru_stime.tv_sec);
720 				kp2p->p_uctime_usec = (u_int32_t)
721 				    (pstats.p_cru.ru_utime.tv_usec +
722 				    pstats.p_cru.ru_stime.tv_usec);
723 			}
724 
725 			memcpy(kp2c, &kp2, esize);
726 			kp2c += esize;
727 		}
728 	}
729 	*cnt = nprocs;
730 	return (kd->procbase2);
731 }
732 
733 struct kinfo_lwp *
734 kvm_getlwps(kd, pid, paddr, esize, cnt)
735 	kvm_t *kd;
736 	int pid;
737 	u_long paddr;
738 	size_t esize;
739 	int *cnt;
740 {
741 	size_t size;
742 	int mib[5], nlwps;
743 	ssize_t st;
744 	struct kinfo_lwp *kl;
745 
746 	if (ISSYSCTL(kd)) {
747 		size = 0;
748 		mib[0] = CTL_KERN;
749 		mib[1] = KERN_LWP;
750 		mib[2] = pid;
751 		mib[3] = (int)esize;
752 		mib[4] = 0;
753 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
754 		if (st == -1) {
755 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
756 			return (NULL);
757 		}
758 
759 		mib[4] = (int) (size / esize);
760 		KVM_ALLOC(kd, lwpbase, size);
761 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
762 		if (st == -1) {
763 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
764 			return (NULL);
765 		}
766 		nlwps = (int) (size / esize);
767 	} else {
768 		/* grovel through the memory image */
769 		struct proc p;
770 		struct lwp l;
771 		u_long laddr;
772 		int i;
773 
774 		st = kvm_read(kd, paddr, &p, sizeof(p));
775 		if (st == -1) {
776 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
777 			return (NULL);
778 		}
779 
780 		nlwps = p.p_nlwps;
781 		size = nlwps * sizeof(*kd->lwpbase);
782 		KVM_ALLOC(kd, lwpbase, size);
783 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
784 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
785 			st = kvm_read(kd, laddr, &l, sizeof(l));
786 			if (st == -1) {
787 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
788 				return (NULL);
789 			}
790 			kl = &kd->lwpbase[i];
791 			kl->l_laddr = laddr;
792 			kl->l_forw = PTRTOUINT64(l.l_forw);
793 			kl->l_back = PTRTOUINT64(l.l_back);
794 			kl->l_addr = PTRTOUINT64(l.l_addr);
795 			kl->l_lid = l.l_lid;
796 			kl->l_flag = l.l_flag;
797 			kl->l_swtime = l.l_swtime;
798 			kl->l_slptime = l.l_slptime;
799 			kl->l_schedflags = 0; /* XXX */
800 			kl->l_holdcnt = l.l_holdcnt;
801 			kl->l_priority = l.l_priority;
802 			kl->l_usrpri = l.l_usrpri;
803 			kl->l_stat = l.l_stat;
804 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
805 			if (l.l_wmesg)
806 				(void)kvm_read(kd, (u_long)l.l_wmesg,
807 				    kl->l_wmesg, (size_t)WMESGLEN);
808 			kl->l_cpuid = KI_NOCPU;
809 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
810 		}
811 	}
812 
813 	*cnt = nlwps;
814 	return (kd->lwpbase);
815 }
816 
817 struct kinfo_proc *
818 kvm_getprocs(kd, op, arg, cnt)
819 	kvm_t *kd;
820 	int op, arg;
821 	int *cnt;
822 {
823 	size_t size;
824 	int mib[4], st, nprocs;
825 
826 	if (ISKMEM(kd)) {
827 		size = 0;
828 		mib[0] = CTL_KERN;
829 		mib[1] = KERN_PROC;
830 		mib[2] = op;
831 		mib[3] = arg;
832 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
833 		if (st == -1) {
834 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
835 			return (NULL);
836 		}
837 		KVM_ALLOC(kd, procbase, size);
838 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
839 		if (st == -1) {
840 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
841 			return (NULL);
842 		}
843 		if (size % sizeof(struct kinfo_proc) != 0) {
844 			_kvm_err(kd, kd->program,
845 			    "proc size mismatch (%lu total, %lu chunks)",
846 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
847 			return (NULL);
848 		}
849 		nprocs = (int) (size / sizeof(struct kinfo_proc));
850 	} else if (ISSYSCTL(kd)) {
851 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
852 		    "can't use kvm_getprocs");
853 		return (NULL);
854 	} else {
855 		struct nlist nl[4], *p;
856 
857 		(void)memset(nl, 0, sizeof(nl));
858 		nl[0].n_name = "_nprocs";
859 		nl[1].n_name = "_allproc";
860 		nl[2].n_name = "_zombproc";
861 		nl[3].n_name = NULL;
862 
863 		if (kvm_nlist(kd, nl) != 0) {
864 			for (p = nl; p->n_type != 0; ++p)
865 				continue;
866 			_kvm_err(kd, kd->program,
867 			    "%s: no such symbol", p->n_name);
868 			return (NULL);
869 		}
870 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
871 			_kvm_err(kd, kd->program, "can't read nprocs");
872 			return (NULL);
873 		}
874 		size = nprocs * sizeof(*kd->procbase);
875 		KVM_ALLOC(kd, procbase, size);
876 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
877 		    nl[2].n_value, nprocs);
878 		if (nprocs < 0)
879 			return (NULL);
880 #ifdef notdef
881 		size = nprocs * sizeof(struct kinfo_proc);
882 		(void)realloc(kd->procbase, size);
883 #endif
884 	}
885 	*cnt = nprocs;
886 	return (kd->procbase);
887 }
888 
889 void *
890 _kvm_realloc(kd, p, n)
891 	kvm_t *kd;
892 	void *p;
893 	size_t n;
894 {
895 	void *np = realloc(p, n);
896 
897 	if (np == NULL)
898 		_kvm_err(kd, kd->program, "out of memory");
899 	return (np);
900 }
901 
902 /*
903  * Read in an argument vector from the user address space of process p.
904  * addr if the user-space base address of narg null-terminated contiguous
905  * strings.  This is used to read in both the command arguments and
906  * environment strings.  Read at most maxcnt characters of strings.
907  */
908 static char **
909 kvm_argv(kd, p, addr, narg, maxcnt)
910 	kvm_t *kd;
911 	const struct miniproc *p;
912 	u_long addr;
913 	int narg;
914 	int maxcnt;
915 {
916 	char *np, *cp, *ep, *ap;
917 	u_long oaddr = (u_long)~0L;
918 	u_long len;
919 	size_t cc;
920 	char **argv;
921 
922 	/*
923 	 * Check that there aren't an unreasonable number of arguments,
924 	 * and that the address is in user space.
925 	 */
926 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
927 		return (NULL);
928 
929 	if (kd->argv == NULL) {
930 		/*
931 		 * Try to avoid reallocs.
932 		 */
933 		kd->argc = MAX(narg + 1, 32);
934 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
935 		if (kd->argv == NULL)
936 			return (NULL);
937 	} else if (narg + 1 > kd->argc) {
938 		kd->argc = MAX(2 * kd->argc, narg + 1);
939 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
940 		    sizeof(*kd->argv));
941 		if (kd->argv == NULL)
942 			return (NULL);
943 	}
944 	if (kd->argspc == NULL) {
945 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
946 		if (kd->argspc == NULL)
947 			return (NULL);
948 		kd->argspc_len = kd->nbpg;
949 	}
950 	if (kd->argbuf == NULL) {
951 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
952 		if (kd->argbuf == NULL)
953 			return (NULL);
954 	}
955 	cc = sizeof(char *) * narg;
956 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
957 		return (NULL);
958 	ap = np = kd->argspc;
959 	argv = kd->argv;
960 	len = 0;
961 	/*
962 	 * Loop over pages, filling in the argument vector.
963 	 */
964 	while (argv < kd->argv + narg && *argv != NULL) {
965 		addr = (u_long)*argv & ~(kd->nbpg - 1);
966 		if (addr != oaddr) {
967 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
968 			    (size_t)kd->nbpg) != kd->nbpg)
969 				return (NULL);
970 			oaddr = addr;
971 		}
972 		addr = (u_long)*argv & (kd->nbpg - 1);
973 		cp = kd->argbuf + (size_t)addr;
974 		cc = kd->nbpg - (size_t)addr;
975 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
976 			cc = (size_t)(maxcnt - len);
977 		ep = memchr(cp, '\0', cc);
978 		if (ep != NULL)
979 			cc = ep - cp + 1;
980 		if (len + cc > kd->argspc_len) {
981 			ptrdiff_t off;
982 			char **pp;
983 			char *op = kd->argspc;
984 
985 			kd->argspc_len *= 2;
986 			kd->argspc = _kvm_realloc(kd, kd->argspc,
987 			    kd->argspc_len);
988 			if (kd->argspc == NULL)
989 				return (NULL);
990 			/*
991 			 * Adjust argv pointers in case realloc moved
992 			 * the string space.
993 			 */
994 			off = kd->argspc - op;
995 			for (pp = kd->argv; pp < argv; pp++)
996 				*pp += off;
997 			ap += off;
998 			np += off;
999 		}
1000 		memcpy(np, cp, cc);
1001 		np += cc;
1002 		len += cc;
1003 		if (ep != NULL) {
1004 			*argv++ = ap;
1005 			ap = np;
1006 		} else
1007 			*argv += cc;
1008 		if (maxcnt > 0 && len >= maxcnt) {
1009 			/*
1010 			 * We're stopping prematurely.  Terminate the
1011 			 * current string.
1012 			 */
1013 			if (ep == NULL) {
1014 				*np = '\0';
1015 				*argv++ = ap;
1016 			}
1017 			break;
1018 		}
1019 	}
1020 	/* Make sure argv is terminated. */
1021 	*argv = NULL;
1022 	return (kd->argv);
1023 }
1024 
1025 static void
1026 ps_str_a(p, addr, n)
1027 	struct ps_strings *p;
1028 	u_long *addr;
1029 	int *n;
1030 {
1031 
1032 	*addr = (u_long)p->ps_argvstr;
1033 	*n = p->ps_nargvstr;
1034 }
1035 
1036 static void
1037 ps_str_e(p, addr, n)
1038 	struct ps_strings *p;
1039 	u_long *addr;
1040 	int *n;
1041 {
1042 
1043 	*addr = (u_long)p->ps_envstr;
1044 	*n = p->ps_nenvstr;
1045 }
1046 
1047 /*
1048  * Determine if the proc indicated by p is still active.
1049  * This test is not 100% foolproof in theory, but chances of
1050  * being wrong are very low.
1051  */
1052 static int
1053 proc_verify(kd, kernp, p)
1054 	kvm_t *kd;
1055 	u_long kernp;
1056 	const struct miniproc *p;
1057 {
1058 	struct proc kernproc;
1059 
1060 	/*
1061 	 * Just read in the whole proc.  It's not that big relative
1062 	 * to the cost of the read system call.
1063 	 */
1064 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1065 	    sizeof(kernproc))
1066 		return (0);
1067 	return (p->p_pid == kernproc.p_pid &&
1068 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1069 }
1070 
1071 static char **
1072 kvm_doargv(kd, p, nchr, info)
1073 	kvm_t *kd;
1074 	const struct miniproc *p;
1075 	int nchr;
1076 	void (*info)(struct ps_strings *, u_long *, int *);
1077 {
1078 	char **ap;
1079 	u_long addr;
1080 	int cnt;
1081 	struct ps_strings arginfo;
1082 
1083 	/*
1084 	 * Pointers are stored at the top of the user stack.
1085 	 */
1086 	if (p->p_stat == SZOMB)
1087 		return (NULL);
1088 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1089 	    (void *)&arginfo, sizeof(arginfo));
1090 	if (cnt != sizeof(arginfo))
1091 		return (NULL);
1092 
1093 	(*info)(&arginfo, &addr, &cnt);
1094 	if (cnt == 0)
1095 		return (NULL);
1096 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1097 	/*
1098 	 * For live kernels, make sure this process didn't go away.
1099 	 */
1100 	if (ap != NULL && ISALIVE(kd) &&
1101 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1102 		ap = NULL;
1103 	return (ap);
1104 }
1105 
1106 /*
1107  * Get the command args.  This code is now machine independent.
1108  */
1109 char **
1110 kvm_getargv(kd, kp, nchr)
1111 	kvm_t *kd;
1112 	const struct kinfo_proc *kp;
1113 	int nchr;
1114 {
1115 	struct miniproc p;
1116 
1117 	KPTOMINI(kp, &p);
1118 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1119 }
1120 
1121 char **
1122 kvm_getenvv(kd, kp, nchr)
1123 	kvm_t *kd;
1124 	const struct kinfo_proc *kp;
1125 	int nchr;
1126 {
1127 	struct miniproc p;
1128 
1129 	KPTOMINI(kp, &p);
1130 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1131 }
1132 
1133 static char **
1134 kvm_doargv2(kd, pid, type, nchr)
1135 	kvm_t *kd;
1136 	pid_t pid;
1137 	int type;
1138 	int nchr;
1139 {
1140 	size_t bufs;
1141 	int narg, mib[4];
1142 	size_t newargspc_len;
1143 	char **ap, *bp, *endp;
1144 
1145 	/*
1146 	 * Check that there aren't an unreasonable number of arguments.
1147 	 */
1148 	if (nchr > ARG_MAX)
1149 		return (NULL);
1150 
1151 	if (nchr == 0)
1152 		nchr = ARG_MAX;
1153 
1154 	/* Get number of strings in argv */
1155 	mib[0] = CTL_KERN;
1156 	mib[1] = KERN_PROC_ARGS;
1157 	mib[2] = pid;
1158 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1159 	bufs = sizeof(narg);
1160 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1161 		return (NULL);
1162 
1163 	if (kd->argv == NULL) {
1164 		/*
1165 		 * Try to avoid reallocs.
1166 		 */
1167 		kd->argc = MAX(narg + 1, 32);
1168 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1169 		if (kd->argv == NULL)
1170 			return (NULL);
1171 	} else if (narg + 1 > kd->argc) {
1172 		kd->argc = MAX(2 * kd->argc, narg + 1);
1173 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1174 		    sizeof(*kd->argv));
1175 		if (kd->argv == NULL)
1176 			return (NULL);
1177 	}
1178 
1179 	newargspc_len = MIN(nchr, ARG_MAX);
1180 	KVM_ALLOC(kd, argspc, newargspc_len);
1181 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
1182 
1183 	mib[0] = CTL_KERN;
1184 	mib[1] = KERN_PROC_ARGS;
1185 	mib[2] = pid;
1186 	mib[3] = type;
1187 	bufs = kd->argspc_len;
1188 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1189 		return (NULL);
1190 
1191 	bp = kd->argspc;
1192 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
1193 	ap = kd->argv;
1194 	endp = bp + MIN(nchr, bufs);
1195 
1196 	while (bp < endp) {
1197 		*ap++ = bp;
1198 		/*
1199 		 * XXX: don't need following anymore, or stick check
1200 		 * for max argc in above while loop?
1201 		 */
1202 		if (ap >= kd->argv + kd->argc) {
1203 			kd->argc *= 2;
1204 			kd->argv = _kvm_realloc(kd, kd->argv,
1205 			    kd->argc * sizeof(*kd->argv));
1206 			ap = kd->argv;
1207 		}
1208 		bp += strlen(bp) + 1;
1209 	}
1210 	*ap = NULL;
1211 
1212 	return (kd->argv);
1213 }
1214 
1215 char **
1216 kvm_getargv2(kd, kp, nchr)
1217 	kvm_t *kd;
1218 	const struct kinfo_proc2 *kp;
1219 	int nchr;
1220 {
1221 
1222 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1223 }
1224 
1225 char **
1226 kvm_getenvv2(kd, kp, nchr)
1227 	kvm_t *kd;
1228 	const struct kinfo_proc2 *kp;
1229 	int nchr;
1230 {
1231 
1232 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1233 }
1234 
1235 /*
1236  * Read from user space.  The user context is given by p.
1237  */
1238 static ssize_t
1239 kvm_ureadm(kd, p, uva, buf, len)
1240 	kvm_t *kd;
1241 	const struct miniproc *p;
1242 	u_long uva;
1243 	char *buf;
1244 	size_t len;
1245 {
1246 	char *cp;
1247 
1248 	cp = buf;
1249 	while (len > 0) {
1250 		size_t cc;
1251 		char *dp;
1252 		u_long cnt;
1253 
1254 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1255 		if (dp == NULL) {
1256 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1257 			return (0);
1258 		}
1259 		cc = (size_t)MIN(cnt, len);
1260 		memcpy(cp, dp, cc);
1261 		cp += cc;
1262 		uva += cc;
1263 		len -= cc;
1264 	}
1265 	return (ssize_t)(cp - buf);
1266 }
1267 
1268 ssize_t
1269 kvm_uread(kd, p, uva, buf, len)
1270 	kvm_t *kd;
1271 	const struct proc *p;
1272 	u_long uva;
1273 	char *buf;
1274 	size_t len;
1275 {
1276 	struct miniproc mp;
1277 
1278 	PTOMINI(p, &mp);
1279 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1280 }
1281