1 /* $NetBSD: kvm_proc.c,v 1.68 2007/02/24 20:41:34 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 #if defined(LIBC_SCCS) && !defined(lint) 74 #if 0 75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 76 #else 77 __RCSID("$NetBSD: kvm_proc.c,v 1.68 2007/02/24 20:41:34 christos Exp $"); 78 #endif 79 #endif /* LIBC_SCCS and not lint */ 80 81 /* 82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 83 * users of this code, so we've factored it out into a separate module. 84 * Thus, we keep this grunge out of the other kvm applications (i.e., 85 * most other applications are interested only in open/close/read/nlist). 86 */ 87 88 #include <sys/param.h> 89 #include <sys/user.h> 90 #include <sys/lwp.h> 91 #include <sys/proc.h> 92 #include <sys/exec.h> 93 #include <sys/stat.h> 94 #include <sys/ioctl.h> 95 #include <sys/tty.h> 96 #include <sys/resourcevar.h> 97 #include <sys/mutex.h> 98 #include <sys/specificdata.h> 99 100 #include <errno.h> 101 #include <stdlib.h> 102 #include <stddef.h> 103 #include <string.h> 104 #include <unistd.h> 105 #include <nlist.h> 106 #include <kvm.h> 107 108 #include <uvm/uvm_extern.h> 109 #include <uvm/uvm_amap.h> 110 111 #include <sys/sysctl.h> 112 113 #include <limits.h> 114 #include <db.h> 115 #include <paths.h> 116 117 #include "kvm_private.h" 118 119 /* 120 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 121 */ 122 struct miniproc { 123 struct vmspace *p_vmspace; 124 char p_stat; 125 struct proc *p_paddr; 126 pid_t p_pid; 127 }; 128 129 /* 130 * Convert from struct proc and kinfo_proc{,2} to miniproc. 131 */ 132 #define PTOMINI(kp, p) \ 133 do { \ 134 (p)->p_stat = (kp)->p_stat; \ 135 (p)->p_pid = (kp)->p_pid; \ 136 (p)->p_paddr = NULL; \ 137 (p)->p_vmspace = (kp)->p_vmspace; \ 138 } while (/*CONSTCOND*/0); 139 140 #define KPTOMINI(kp, p) \ 141 do { \ 142 (p)->p_stat = (kp)->kp_proc.p_stat; \ 143 (p)->p_pid = (kp)->kp_proc.p_pid; \ 144 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 145 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 146 } while (/*CONSTCOND*/0); 147 148 #define KP2TOMINI(kp, p) \ 149 do { \ 150 (p)->p_stat = (kp)->p_stat; \ 151 (p)->p_pid = (kp)->p_pid; \ 152 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 153 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 154 } while (/*CONSTCOND*/0); 155 156 /* 157 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 158 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 159 * kvm(3) so dumps can be read properly. 160 * 161 * Whenever NetBSD starts exporting credentials to userland consistently (using 162 * 'struct uucred', or something) this will have to be updated again. 163 */ 164 struct kvm_kauth_cred { 165 kmutex_t cr_lock; /* lock on cr_refcnt */ 166 u_int cr_refcnt; /* reference count */ 167 uid_t cr_uid; /* user id */ 168 uid_t cr_euid; /* effective user id */ 169 uid_t cr_svuid; /* saved effective user id */ 170 gid_t cr_gid; /* group id */ 171 gid_t cr_egid; /* effective group id */ 172 gid_t cr_svgid; /* saved effective group id */ 173 u_int cr_ngroups; /* number of groups */ 174 gid_t cr_groups[NGROUPS]; /* group memberships */ 175 specificdata_reference cr_sd; /* specific data */ 176 }; 177 178 #define KREAD(kd, addr, obj) \ 179 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 180 181 /* XXX: What uses these two functions? */ 182 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 183 u_long *)); 184 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 185 size_t)); 186 187 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 188 u_long *)); 189 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 190 char *, size_t)); 191 192 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 193 int)); 194 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 195 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 196 void (*)(struct ps_strings *, u_long *, int *))); 197 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 198 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 199 struct kinfo_proc *, int)); 200 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 201 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 202 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 203 204 205 static char * 206 _kvm_ureadm(kd, p, va, cnt) 207 kvm_t *kd; 208 const struct miniproc *p; 209 u_long va; 210 u_long *cnt; 211 { 212 int true = 1; 213 u_long addr, head; 214 u_long offset; 215 struct vm_map_entry vme; 216 struct vm_amap amap; 217 struct vm_anon *anonp, anon; 218 struct vm_page pg; 219 u_long slot; 220 221 if (kd->swapspc == NULL) { 222 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 223 if (kd->swapspc == NULL) 224 return (NULL); 225 } 226 227 /* 228 * Look through the address map for the memory object 229 * that corresponds to the given virtual address. 230 * The header just has the entire valid range. 231 */ 232 head = (u_long)&p->p_vmspace->vm_map.header; 233 addr = head; 234 while (true) { 235 if (KREAD(kd, addr, &vme)) 236 return (NULL); 237 238 if (va >= vme.start && va < vme.end && 239 vme.aref.ar_amap != NULL) 240 break; 241 242 addr = (u_long)vme.next; 243 if (addr == head) 244 return (NULL); 245 } 246 247 /* 248 * we found the map entry, now to find the object... 249 */ 250 if (vme.aref.ar_amap == NULL) 251 return (NULL); 252 253 addr = (u_long)vme.aref.ar_amap; 254 if (KREAD(kd, addr, &amap)) 255 return (NULL); 256 257 offset = va - vme.start; 258 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 259 /* sanity-check slot number */ 260 if (slot > amap.am_nslot) 261 return (NULL); 262 263 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 264 if (KREAD(kd, addr, &anonp)) 265 return (NULL); 266 267 addr = (u_long)anonp; 268 if (KREAD(kd, addr, &anon)) 269 return (NULL); 270 271 addr = (u_long)anon.an_page; 272 if (addr) { 273 if (KREAD(kd, addr, &pg)) 274 return (NULL); 275 276 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 277 (off_t)pg.phys_addr) != kd->nbpg) 278 return (NULL); 279 } else { 280 if (kd->swfd < 0 || 281 pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 282 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 283 return (NULL); 284 } 285 286 /* Found the page. */ 287 offset %= kd->nbpg; 288 *cnt = kd->nbpg - offset; 289 return (&kd->swapspc[(size_t)offset]); 290 } 291 292 char * 293 _kvm_uread(kd, p, va, cnt) 294 kvm_t *kd; 295 const struct proc *p; 296 u_long va; 297 u_long *cnt; 298 { 299 struct miniproc mp; 300 301 PTOMINI(p, &mp); 302 return (_kvm_ureadm(kd, &mp, va, cnt)); 303 } 304 305 /* 306 * Convert credentials located in kernel space address 'cred' and store 307 * them in the appropriate members of 'eproc'. 308 */ 309 static int 310 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 311 { 312 struct kvm_kauth_cred kauthcred; 313 struct ki_pcred *pc = &eproc->e_pcred; 314 struct ki_ucred *uc = &eproc->e_ucred; 315 316 if (KREAD(kd, cred, &kauthcred) != 0) 317 return (-1); 318 319 /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 320 pc->p_ruid = kauthcred.cr_uid; 321 pc->p_svuid = kauthcred.cr_svuid; 322 pc->p_rgid = kauthcred.cr_gid; 323 pc->p_svgid = kauthcred.cr_svgid; 324 pc->p_refcnt = kauthcred.cr_refcnt; 325 pc->p_pad = NULL; 326 327 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 328 uc->cr_ref = kauthcred.cr_refcnt; 329 uc->cr_uid = kauthcred.cr_euid; 330 uc->cr_gid = kauthcred.cr_egid; 331 uc->cr_ngroups = MIN(kauthcred.cr_ngroups, 332 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 333 memcpy(uc->cr_groups, kauthcred.cr_groups, 334 uc->cr_ngroups * sizeof(uc->cr_groups[0])); 335 336 return (0); 337 } 338 339 /* 340 * Read proc's from memory file into buffer bp, which has space to hold 341 * at most maxcnt procs. 342 */ 343 static int 344 kvm_proclist(kd, what, arg, p, bp, maxcnt) 345 kvm_t *kd; 346 int what, arg; 347 struct proc *p; 348 struct kinfo_proc *bp; 349 int maxcnt; 350 { 351 int cnt = 0; 352 int nlwps; 353 struct kinfo_lwp *kl; 354 struct eproc eproc; 355 struct pgrp pgrp; 356 struct session sess; 357 struct tty tty; 358 struct proc proc; 359 360 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 361 if (KREAD(kd, (u_long)p, &proc)) { 362 _kvm_err(kd, kd->program, "can't read proc at %p", p); 363 return (-1); 364 } 365 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 366 _kvm_err(kd, kd->program, 367 "can't read proc credentials at %p", p); 368 return (-1); 369 } 370 371 switch (what) { 372 373 case KERN_PROC_PID: 374 if (proc.p_pid != (pid_t)arg) 375 continue; 376 break; 377 378 case KERN_PROC_UID: 379 if (eproc.e_ucred.cr_uid != (uid_t)arg) 380 continue; 381 break; 382 383 case KERN_PROC_RUID: 384 if (eproc.e_pcred.p_ruid != (uid_t)arg) 385 continue; 386 break; 387 } 388 /* 389 * We're going to add another proc to the set. If this 390 * will overflow the buffer, assume the reason is because 391 * nprocs (or the proc list) is corrupt and declare an error. 392 */ 393 if (cnt >= maxcnt) { 394 _kvm_err(kd, kd->program, "nprocs corrupt"); 395 return (-1); 396 } 397 /* 398 * gather eproc 399 */ 400 eproc.e_paddr = p; 401 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 402 _kvm_err(kd, kd->program, "can't read pgrp at %p", 403 proc.p_pgrp); 404 return (-1); 405 } 406 eproc.e_sess = pgrp.pg_session; 407 eproc.e_pgid = pgrp.pg_id; 408 eproc.e_jobc = pgrp.pg_jobc; 409 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 410 _kvm_err(kd, kd->program, "can't read session at %p", 411 pgrp.pg_session); 412 return (-1); 413 } 414 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 415 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 416 _kvm_err(kd, kd->program, 417 "can't read tty at %p", sess.s_ttyp); 418 return (-1); 419 } 420 eproc.e_tdev = tty.t_dev; 421 eproc.e_tsess = tty.t_session; 422 if (tty.t_pgrp != NULL) { 423 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 424 _kvm_err(kd, kd->program, 425 "can't read tpgrp at %p", 426 tty.t_pgrp); 427 return (-1); 428 } 429 eproc.e_tpgid = pgrp.pg_id; 430 } else 431 eproc.e_tpgid = -1; 432 } else 433 eproc.e_tdev = NODEV; 434 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 435 eproc.e_sid = sess.s_sid; 436 if (sess.s_leader == p) 437 eproc.e_flag |= EPROC_SLEADER; 438 /* 439 * Fill in the old-style proc.p_wmesg by copying the wmesg 440 * from the first available LWP. 441 */ 442 kl = kvm_getlwps(kd, proc.p_pid, 443 (u_long)PTRTOUINT64(eproc.e_paddr), 444 sizeof(struct kinfo_lwp), &nlwps); 445 if (kl) { 446 if (nlwps > 0) { 447 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 448 } 449 } 450 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 451 sizeof(eproc.e_vm)); 452 453 eproc.e_xsize = eproc.e_xrssize = 0; 454 eproc.e_xccount = eproc.e_xswrss = 0; 455 456 switch (what) { 457 458 case KERN_PROC_PGRP: 459 if (eproc.e_pgid != (pid_t)arg) 460 continue; 461 break; 462 463 case KERN_PROC_TTY: 464 if ((proc.p_lflag & PL_CONTROLT) == 0 || 465 eproc.e_tdev != (dev_t)arg) 466 continue; 467 break; 468 } 469 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 470 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 471 ++bp; 472 ++cnt; 473 } 474 return (cnt); 475 } 476 477 /* 478 * Build proc info array by reading in proc list from a crash dump. 479 * Return number of procs read. maxcnt is the max we will read. 480 */ 481 static int 482 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 483 kvm_t *kd; 484 int what, arg; 485 u_long a_allproc; 486 u_long a_zombproc; 487 int maxcnt; 488 { 489 struct kinfo_proc *bp = kd->procbase; 490 int acnt, zcnt; 491 struct proc *p; 492 493 if (KREAD(kd, a_allproc, &p)) { 494 _kvm_err(kd, kd->program, "cannot read allproc"); 495 return (-1); 496 } 497 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 498 if (acnt < 0) 499 return (acnt); 500 501 if (KREAD(kd, a_zombproc, &p)) { 502 _kvm_err(kd, kd->program, "cannot read zombproc"); 503 return (-1); 504 } 505 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 506 maxcnt - acnt); 507 if (zcnt < 0) 508 zcnt = 0; 509 510 return (acnt + zcnt); 511 } 512 513 struct kinfo_proc2 * 514 kvm_getproc2(kd, op, arg, esize, cnt) 515 kvm_t *kd; 516 int op, arg; 517 size_t esize; 518 int *cnt; 519 { 520 size_t size; 521 int mib[6], st, nprocs; 522 struct pstats pstats; 523 524 if (ISSYSCTL(kd)) { 525 size = 0; 526 mib[0] = CTL_KERN; 527 mib[1] = KERN_PROC2; 528 mib[2] = op; 529 mib[3] = arg; 530 mib[4] = (int)esize; 531 again: 532 mib[5] = 0; 533 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 534 if (st == -1) { 535 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 536 return (NULL); 537 } 538 539 mib[5] = (int) (size / esize); 540 KVM_ALLOC(kd, procbase2, size); 541 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 542 if (st == -1) { 543 if (errno == ENOMEM) { 544 goto again; 545 } 546 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 547 return (NULL); 548 } 549 nprocs = (int) (size / esize); 550 } else { 551 char *kp2c; 552 struct kinfo_proc *kp; 553 struct kinfo_proc2 kp2, *kp2p; 554 struct kinfo_lwp *kl; 555 int i, nlwps; 556 557 kp = kvm_getprocs(kd, op, arg, &nprocs); 558 if (kp == NULL) 559 return (NULL); 560 561 size = nprocs * esize; 562 KVM_ALLOC(kd, procbase2, size); 563 kp2c = (char *)(void *)kd->procbase2; 564 kp2p = &kp2; 565 for (i = 0; i < nprocs; i++, kp++) { 566 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 567 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 568 sizeof(struct kinfo_lwp), &nlwps); 569 570 /* We use kl[0] as the "representative" LWP */ 571 memset(kp2p, 0, sizeof(kp2)); 572 kp2p->p_forw = kl[0].l_forw; 573 kp2p->p_back = kl[0].l_back; 574 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 575 kp2p->p_addr = kl[0].l_addr; 576 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 577 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 578 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 579 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 580 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 581 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 582 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 583 kp2p->p_tsess = 0; 584 kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru); 585 586 kp2p->p_eflag = 0; 587 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 588 kp2p->p_flag = kp->kp_proc.p_flag; 589 590 kp2p->p_pid = kp->kp_proc.p_pid; 591 592 kp2p->p_ppid = kp->kp_eproc.e_ppid; 593 kp2p->p_sid = kp->kp_eproc.e_sid; 594 kp2p->p__pgid = kp->kp_eproc.e_pgid; 595 596 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 597 598 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 599 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 600 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 601 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 602 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 603 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 604 605 /*CONSTCOND*/ 606 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 607 MIN(sizeof(kp2p->p_groups), 608 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 609 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 610 611 kp2p->p_jobc = kp->kp_eproc.e_jobc; 612 kp2p->p_tdev = kp->kp_eproc.e_tdev; 613 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 614 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 615 616 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 617 kp2p->p_rtime_sec = kp->kp_proc.p_rtime.tv_sec; 618 kp2p->p_rtime_usec = kp->kp_proc.p_rtime.tv_usec; 619 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 620 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 621 kp2p->p_swtime = kl[0].l_swtime; 622 kp2p->p_slptime = kl[0].l_slptime; 623 #if 0 /* XXX thorpej */ 624 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 625 #else 626 kp2p->p_schedflags = 0; 627 #endif 628 629 kp2p->p_uticks = kp->kp_proc.p_uticks; 630 kp2p->p_sticks = kp->kp_proc.p_sticks; 631 kp2p->p_iticks = kp->kp_proc.p_iticks; 632 633 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 634 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 635 636 kp2p->p_holdcnt = kl[0].l_holdcnt; 637 638 memcpy(&kp2p->p_siglist, 639 &kp->kp_proc.p_sigpend.sp_set, 640 sizeof(ki_sigset_t)); 641 memset(&kp2p->p_sigmask, 0, 642 sizeof(ki_sigset_t)); 643 memcpy(&kp2p->p_sigignore, 644 &kp->kp_proc.p_sigctx.ps_sigignore, 645 sizeof(ki_sigset_t)); 646 memcpy(&kp2p->p_sigcatch, 647 &kp->kp_proc.p_sigctx.ps_sigcatch, 648 sizeof(ki_sigset_t)); 649 650 kp2p->p_stat = kl[0].l_stat; 651 kp2p->p_priority = kl[0].l_priority; 652 kp2p->p_usrpri = kl[0].l_usrpri; 653 kp2p->p_nice = kp->kp_proc.p_nice; 654 655 kp2p->p_xstat = kp->kp_proc.p_xstat; 656 kp2p->p_acflag = kp->kp_proc.p_acflag; 657 658 /*CONSTCOND*/ 659 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 660 MIN(sizeof(kp2p->p_comm), 661 sizeof(kp->kp_proc.p_comm))); 662 663 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 664 sizeof(kp2p->p_wmesg)); 665 kp2p->p_wchan = kl[0].l_wchan; 666 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 667 sizeof(kp2p->p_login)); 668 669 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 670 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 671 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 672 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 673 674 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 675 676 kp2p->p_realflag = kp->kp_proc.p_flag; 677 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 678 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 679 kp2p->p_realstat = kp->kp_proc.p_stat; 680 681 if (P_ZOMBIE(&kp->kp_proc) || 682 kp->kp_proc.p_stats == NULL || 683 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 684 kp2p->p_uvalid = 0; 685 } else { 686 kp2p->p_uvalid = 1; 687 688 kp2p->p_ustart_sec = (u_int32_t) 689 pstats.p_start.tv_sec; 690 kp2p->p_ustart_usec = (u_int32_t) 691 pstats.p_start.tv_usec; 692 693 kp2p->p_uutime_sec = (u_int32_t) 694 pstats.p_ru.ru_utime.tv_sec; 695 kp2p->p_uutime_usec = (u_int32_t) 696 pstats.p_ru.ru_utime.tv_usec; 697 kp2p->p_ustime_sec = (u_int32_t) 698 pstats.p_ru.ru_stime.tv_sec; 699 kp2p->p_ustime_usec = (u_int32_t) 700 pstats.p_ru.ru_stime.tv_usec; 701 702 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 703 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 704 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 705 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 706 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 707 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 708 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 709 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 710 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 711 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 712 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 713 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 714 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 715 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 716 717 kp2p->p_uctime_sec = (u_int32_t) 718 (pstats.p_cru.ru_utime.tv_sec + 719 pstats.p_cru.ru_stime.tv_sec); 720 kp2p->p_uctime_usec = (u_int32_t) 721 (pstats.p_cru.ru_utime.tv_usec + 722 pstats.p_cru.ru_stime.tv_usec); 723 } 724 725 memcpy(kp2c, &kp2, esize); 726 kp2c += esize; 727 } 728 } 729 *cnt = nprocs; 730 return (kd->procbase2); 731 } 732 733 struct kinfo_lwp * 734 kvm_getlwps(kd, pid, paddr, esize, cnt) 735 kvm_t *kd; 736 int pid; 737 u_long paddr; 738 size_t esize; 739 int *cnt; 740 { 741 size_t size; 742 int mib[5], nlwps; 743 ssize_t st; 744 struct kinfo_lwp *kl; 745 746 if (ISSYSCTL(kd)) { 747 size = 0; 748 mib[0] = CTL_KERN; 749 mib[1] = KERN_LWP; 750 mib[2] = pid; 751 mib[3] = (int)esize; 752 mib[4] = 0; 753 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 754 if (st == -1) { 755 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 756 return (NULL); 757 } 758 759 mib[4] = (int) (size / esize); 760 KVM_ALLOC(kd, lwpbase, size); 761 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 762 if (st == -1) { 763 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 764 return (NULL); 765 } 766 nlwps = (int) (size / esize); 767 } else { 768 /* grovel through the memory image */ 769 struct proc p; 770 struct lwp l; 771 u_long laddr; 772 int i; 773 774 st = kvm_read(kd, paddr, &p, sizeof(p)); 775 if (st == -1) { 776 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 777 return (NULL); 778 } 779 780 nlwps = p.p_nlwps; 781 size = nlwps * sizeof(*kd->lwpbase); 782 KVM_ALLOC(kd, lwpbase, size); 783 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 784 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 785 st = kvm_read(kd, laddr, &l, sizeof(l)); 786 if (st == -1) { 787 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 788 return (NULL); 789 } 790 kl = &kd->lwpbase[i]; 791 kl->l_laddr = laddr; 792 kl->l_forw = PTRTOUINT64(l.l_forw); 793 kl->l_back = PTRTOUINT64(l.l_back); 794 kl->l_addr = PTRTOUINT64(l.l_addr); 795 kl->l_lid = l.l_lid; 796 kl->l_flag = l.l_flag; 797 kl->l_swtime = l.l_swtime; 798 kl->l_slptime = l.l_slptime; 799 kl->l_schedflags = 0; /* XXX */ 800 kl->l_holdcnt = l.l_holdcnt; 801 kl->l_priority = l.l_priority; 802 kl->l_usrpri = l.l_usrpri; 803 kl->l_stat = l.l_stat; 804 kl->l_wchan = PTRTOUINT64(l.l_wchan); 805 if (l.l_wmesg) 806 (void)kvm_read(kd, (u_long)l.l_wmesg, 807 kl->l_wmesg, (size_t)WMESGLEN); 808 kl->l_cpuid = KI_NOCPU; 809 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 810 } 811 } 812 813 *cnt = nlwps; 814 return (kd->lwpbase); 815 } 816 817 struct kinfo_proc * 818 kvm_getprocs(kd, op, arg, cnt) 819 kvm_t *kd; 820 int op, arg; 821 int *cnt; 822 { 823 size_t size; 824 int mib[4], st, nprocs; 825 826 if (ISKMEM(kd)) { 827 size = 0; 828 mib[0] = CTL_KERN; 829 mib[1] = KERN_PROC; 830 mib[2] = op; 831 mib[3] = arg; 832 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 833 if (st == -1) { 834 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 835 return (NULL); 836 } 837 KVM_ALLOC(kd, procbase, size); 838 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 839 if (st == -1) { 840 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 841 return (NULL); 842 } 843 if (size % sizeof(struct kinfo_proc) != 0) { 844 _kvm_err(kd, kd->program, 845 "proc size mismatch (%lu total, %lu chunks)", 846 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 847 return (NULL); 848 } 849 nprocs = (int) (size / sizeof(struct kinfo_proc)); 850 } else if (ISSYSCTL(kd)) { 851 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 852 "can't use kvm_getprocs"); 853 return (NULL); 854 } else { 855 struct nlist nl[4], *p; 856 857 (void)memset(nl, 0, sizeof(nl)); 858 nl[0].n_name = "_nprocs"; 859 nl[1].n_name = "_allproc"; 860 nl[2].n_name = "_zombproc"; 861 nl[3].n_name = NULL; 862 863 if (kvm_nlist(kd, nl) != 0) { 864 for (p = nl; p->n_type != 0; ++p) 865 continue; 866 _kvm_err(kd, kd->program, 867 "%s: no such symbol", p->n_name); 868 return (NULL); 869 } 870 if (KREAD(kd, nl[0].n_value, &nprocs)) { 871 _kvm_err(kd, kd->program, "can't read nprocs"); 872 return (NULL); 873 } 874 size = nprocs * sizeof(*kd->procbase); 875 KVM_ALLOC(kd, procbase, size); 876 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 877 nl[2].n_value, nprocs); 878 if (nprocs < 0) 879 return (NULL); 880 #ifdef notdef 881 size = nprocs * sizeof(struct kinfo_proc); 882 (void)realloc(kd->procbase, size); 883 #endif 884 } 885 *cnt = nprocs; 886 return (kd->procbase); 887 } 888 889 void * 890 _kvm_realloc(kd, p, n) 891 kvm_t *kd; 892 void *p; 893 size_t n; 894 { 895 void *np = realloc(p, n); 896 897 if (np == NULL) 898 _kvm_err(kd, kd->program, "out of memory"); 899 return (np); 900 } 901 902 /* 903 * Read in an argument vector from the user address space of process p. 904 * addr if the user-space base address of narg null-terminated contiguous 905 * strings. This is used to read in both the command arguments and 906 * environment strings. Read at most maxcnt characters of strings. 907 */ 908 static char ** 909 kvm_argv(kd, p, addr, narg, maxcnt) 910 kvm_t *kd; 911 const struct miniproc *p; 912 u_long addr; 913 int narg; 914 int maxcnt; 915 { 916 char *np, *cp, *ep, *ap; 917 u_long oaddr = (u_long)~0L; 918 u_long len; 919 size_t cc; 920 char **argv; 921 922 /* 923 * Check that there aren't an unreasonable number of arguments, 924 * and that the address is in user space. 925 */ 926 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 927 return (NULL); 928 929 if (kd->argv == NULL) { 930 /* 931 * Try to avoid reallocs. 932 */ 933 kd->argc = MAX(narg + 1, 32); 934 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 935 if (kd->argv == NULL) 936 return (NULL); 937 } else if (narg + 1 > kd->argc) { 938 kd->argc = MAX(2 * kd->argc, narg + 1); 939 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 940 sizeof(*kd->argv)); 941 if (kd->argv == NULL) 942 return (NULL); 943 } 944 if (kd->argspc == NULL) { 945 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 946 if (kd->argspc == NULL) 947 return (NULL); 948 kd->argspc_len = kd->nbpg; 949 } 950 if (kd->argbuf == NULL) { 951 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 952 if (kd->argbuf == NULL) 953 return (NULL); 954 } 955 cc = sizeof(char *) * narg; 956 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 957 return (NULL); 958 ap = np = kd->argspc; 959 argv = kd->argv; 960 len = 0; 961 /* 962 * Loop over pages, filling in the argument vector. 963 */ 964 while (argv < kd->argv + narg && *argv != NULL) { 965 addr = (u_long)*argv & ~(kd->nbpg - 1); 966 if (addr != oaddr) { 967 if (kvm_ureadm(kd, p, addr, kd->argbuf, 968 (size_t)kd->nbpg) != kd->nbpg) 969 return (NULL); 970 oaddr = addr; 971 } 972 addr = (u_long)*argv & (kd->nbpg - 1); 973 cp = kd->argbuf + (size_t)addr; 974 cc = kd->nbpg - (size_t)addr; 975 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 976 cc = (size_t)(maxcnt - len); 977 ep = memchr(cp, '\0', cc); 978 if (ep != NULL) 979 cc = ep - cp + 1; 980 if (len + cc > kd->argspc_len) { 981 ptrdiff_t off; 982 char **pp; 983 char *op = kd->argspc; 984 985 kd->argspc_len *= 2; 986 kd->argspc = _kvm_realloc(kd, kd->argspc, 987 kd->argspc_len); 988 if (kd->argspc == NULL) 989 return (NULL); 990 /* 991 * Adjust argv pointers in case realloc moved 992 * the string space. 993 */ 994 off = kd->argspc - op; 995 for (pp = kd->argv; pp < argv; pp++) 996 *pp += off; 997 ap += off; 998 np += off; 999 } 1000 memcpy(np, cp, cc); 1001 np += cc; 1002 len += cc; 1003 if (ep != NULL) { 1004 *argv++ = ap; 1005 ap = np; 1006 } else 1007 *argv += cc; 1008 if (maxcnt > 0 && len >= maxcnt) { 1009 /* 1010 * We're stopping prematurely. Terminate the 1011 * current string. 1012 */ 1013 if (ep == NULL) { 1014 *np = '\0'; 1015 *argv++ = ap; 1016 } 1017 break; 1018 } 1019 } 1020 /* Make sure argv is terminated. */ 1021 *argv = NULL; 1022 return (kd->argv); 1023 } 1024 1025 static void 1026 ps_str_a(p, addr, n) 1027 struct ps_strings *p; 1028 u_long *addr; 1029 int *n; 1030 { 1031 1032 *addr = (u_long)p->ps_argvstr; 1033 *n = p->ps_nargvstr; 1034 } 1035 1036 static void 1037 ps_str_e(p, addr, n) 1038 struct ps_strings *p; 1039 u_long *addr; 1040 int *n; 1041 { 1042 1043 *addr = (u_long)p->ps_envstr; 1044 *n = p->ps_nenvstr; 1045 } 1046 1047 /* 1048 * Determine if the proc indicated by p is still active. 1049 * This test is not 100% foolproof in theory, but chances of 1050 * being wrong are very low. 1051 */ 1052 static int 1053 proc_verify(kd, kernp, p) 1054 kvm_t *kd; 1055 u_long kernp; 1056 const struct miniproc *p; 1057 { 1058 struct proc kernproc; 1059 1060 /* 1061 * Just read in the whole proc. It's not that big relative 1062 * to the cost of the read system call. 1063 */ 1064 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1065 sizeof(kernproc)) 1066 return (0); 1067 return (p->p_pid == kernproc.p_pid && 1068 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1069 } 1070 1071 static char ** 1072 kvm_doargv(kd, p, nchr, info) 1073 kvm_t *kd; 1074 const struct miniproc *p; 1075 int nchr; 1076 void (*info)(struct ps_strings *, u_long *, int *); 1077 { 1078 char **ap; 1079 u_long addr; 1080 int cnt; 1081 struct ps_strings arginfo; 1082 1083 /* 1084 * Pointers are stored at the top of the user stack. 1085 */ 1086 if (p->p_stat == SZOMB) 1087 return (NULL); 1088 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1089 (void *)&arginfo, sizeof(arginfo)); 1090 if (cnt != sizeof(arginfo)) 1091 return (NULL); 1092 1093 (*info)(&arginfo, &addr, &cnt); 1094 if (cnt == 0) 1095 return (NULL); 1096 ap = kvm_argv(kd, p, addr, cnt, nchr); 1097 /* 1098 * For live kernels, make sure this process didn't go away. 1099 */ 1100 if (ap != NULL && ISALIVE(kd) && 1101 !proc_verify(kd, (u_long)p->p_paddr, p)) 1102 ap = NULL; 1103 return (ap); 1104 } 1105 1106 /* 1107 * Get the command args. This code is now machine independent. 1108 */ 1109 char ** 1110 kvm_getargv(kd, kp, nchr) 1111 kvm_t *kd; 1112 const struct kinfo_proc *kp; 1113 int nchr; 1114 { 1115 struct miniproc p; 1116 1117 KPTOMINI(kp, &p); 1118 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1119 } 1120 1121 char ** 1122 kvm_getenvv(kd, kp, nchr) 1123 kvm_t *kd; 1124 const struct kinfo_proc *kp; 1125 int nchr; 1126 { 1127 struct miniproc p; 1128 1129 KPTOMINI(kp, &p); 1130 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1131 } 1132 1133 static char ** 1134 kvm_doargv2(kd, pid, type, nchr) 1135 kvm_t *kd; 1136 pid_t pid; 1137 int type; 1138 int nchr; 1139 { 1140 size_t bufs; 1141 int narg, mib[4]; 1142 size_t newargspc_len; 1143 char **ap, *bp, *endp; 1144 1145 /* 1146 * Check that there aren't an unreasonable number of arguments. 1147 */ 1148 if (nchr > ARG_MAX) 1149 return (NULL); 1150 1151 if (nchr == 0) 1152 nchr = ARG_MAX; 1153 1154 /* Get number of strings in argv */ 1155 mib[0] = CTL_KERN; 1156 mib[1] = KERN_PROC_ARGS; 1157 mib[2] = pid; 1158 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1159 bufs = sizeof(narg); 1160 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1161 return (NULL); 1162 1163 if (kd->argv == NULL) { 1164 /* 1165 * Try to avoid reallocs. 1166 */ 1167 kd->argc = MAX(narg + 1, 32); 1168 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1169 if (kd->argv == NULL) 1170 return (NULL); 1171 } else if (narg + 1 > kd->argc) { 1172 kd->argc = MAX(2 * kd->argc, narg + 1); 1173 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1174 sizeof(*kd->argv)); 1175 if (kd->argv == NULL) 1176 return (NULL); 1177 } 1178 1179 newargspc_len = MIN(nchr, ARG_MAX); 1180 KVM_ALLOC(kd, argspc, newargspc_len); 1181 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1182 1183 mib[0] = CTL_KERN; 1184 mib[1] = KERN_PROC_ARGS; 1185 mib[2] = pid; 1186 mib[3] = type; 1187 bufs = kd->argspc_len; 1188 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1189 return (NULL); 1190 1191 bp = kd->argspc; 1192 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1193 ap = kd->argv; 1194 endp = bp + MIN(nchr, bufs); 1195 1196 while (bp < endp) { 1197 *ap++ = bp; 1198 /* 1199 * XXX: don't need following anymore, or stick check 1200 * for max argc in above while loop? 1201 */ 1202 if (ap >= kd->argv + kd->argc) { 1203 kd->argc *= 2; 1204 kd->argv = _kvm_realloc(kd, kd->argv, 1205 kd->argc * sizeof(*kd->argv)); 1206 ap = kd->argv; 1207 } 1208 bp += strlen(bp) + 1; 1209 } 1210 *ap = NULL; 1211 1212 return (kd->argv); 1213 } 1214 1215 char ** 1216 kvm_getargv2(kd, kp, nchr) 1217 kvm_t *kd; 1218 const struct kinfo_proc2 *kp; 1219 int nchr; 1220 { 1221 1222 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1223 } 1224 1225 char ** 1226 kvm_getenvv2(kd, kp, nchr) 1227 kvm_t *kd; 1228 const struct kinfo_proc2 *kp; 1229 int nchr; 1230 { 1231 1232 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1233 } 1234 1235 /* 1236 * Read from user space. The user context is given by p. 1237 */ 1238 static ssize_t 1239 kvm_ureadm(kd, p, uva, buf, len) 1240 kvm_t *kd; 1241 const struct miniproc *p; 1242 u_long uva; 1243 char *buf; 1244 size_t len; 1245 { 1246 char *cp; 1247 1248 cp = buf; 1249 while (len > 0) { 1250 size_t cc; 1251 char *dp; 1252 u_long cnt; 1253 1254 dp = _kvm_ureadm(kd, p, uva, &cnt); 1255 if (dp == NULL) { 1256 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1257 return (0); 1258 } 1259 cc = (size_t)MIN(cnt, len); 1260 memcpy(cp, dp, cc); 1261 cp += cc; 1262 uva += cc; 1263 len -= cc; 1264 } 1265 return (ssize_t)(cp - buf); 1266 } 1267 1268 ssize_t 1269 kvm_uread(kd, p, uva, buf, len) 1270 kvm_t *kd; 1271 const struct proc *p; 1272 u_long uva; 1273 char *buf; 1274 size_t len; 1275 { 1276 struct miniproc mp; 1277 1278 PTOMINI(p, &mp); 1279 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1280 } 1281