xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision c62a74e6d5cfb2fb5034e98b983da7e2fc87709d)
1 /*	$NetBSD: kvm_proc.c,v 1.46 2003/01/18 10:40:41 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. All advertising materials mentioning features or use of this software
56  *    must display the following acknowledgement:
57  *	This product includes software developed by the University of
58  *	California, Berkeley and its contributors.
59  * 4. Neither the name of the University nor the names of its contributors
60  *    may be used to endorse or promote products derived from this software
61  *    without specific prior written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73  * SUCH DAMAGE.
74  */
75 
76 #include <sys/cdefs.h>
77 #if defined(LIBC_SCCS) && !defined(lint)
78 #if 0
79 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
80 #else
81 __RCSID("$NetBSD: kvm_proc.c,v 1.46 2003/01/18 10:40:41 thorpej Exp $");
82 #endif
83 #endif /* LIBC_SCCS and not lint */
84 
85 /*
86  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
87  * users of this code, so we've factored it out into a separate module.
88  * Thus, we keep this grunge out of the other kvm applications (i.e.,
89  * most other applications are interested only in open/close/read/nlist).
90  */
91 
92 #include <sys/param.h>
93 #include <sys/user.h>
94 #include <sys/lwp.h>
95 #include <sys/proc.h>
96 #include <sys/exec.h>
97 #include <sys/stat.h>
98 #include <sys/ioctl.h>
99 #include <sys/tty.h>
100 #include <stdlib.h>
101 #include <string.h>
102 #include <unistd.h>
103 #include <nlist.h>
104 #include <kvm.h>
105 
106 #include <uvm/uvm_extern.h>
107 #include <uvm/uvm_amap.h>
108 
109 #include <sys/sysctl.h>
110 
111 #include <limits.h>
112 #include <db.h>
113 #include <paths.h>
114 
115 #include "kvm_private.h"
116 
117 /*
118  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
119  */
120 struct miniproc {
121 	struct	vmspace *p_vmspace;
122 	char	p_stat;
123 	struct	proc *p_paddr;
124 	pid_t	p_pid;
125 };
126 
127 /*
128  * Convert from struct proc and kinfo_proc{,2} to miniproc.
129  */
130 #define PTOMINI(kp, p) \
131 		do { \
132 		(p)->p_stat = (kp)->p_stat; \
133 		(p)->p_pid = (kp)->p_pid; \
134 		(p)->p_paddr = NULL; \
135 		(p)->p_vmspace = (kp)->p_vmspace; \
136 	} while (/*CONSTCOND*/0);
137 
138 #define KPTOMINI(kp, p) \
139 		do { \
140 		(p)->p_stat = (kp)->kp_proc.p_stat; \
141 		(p)->p_pid = (kp)->kp_proc.p_pid; \
142 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
143 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
144 	} while (/*CONSTCOND*/0);
145 
146 #define KP2TOMINI(kp, p) \
147 		do { \
148 		(p)->p_stat = (kp)->p_stat; \
149 		(p)->p_pid = (kp)->p_pid; \
150 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
151 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
152 	} while (/*CONSTCOND*/0);
153 
154 
155 #define	PTRTOINT64(foo)	((u_int64_t)(uintptr_t)(void *)(foo))
156 
157 #define KREAD(kd, addr, obj) \
158 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
159 
160 /* XXX: What uses these two functions? */
161 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
162 		    u_long *));
163 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
164 		    size_t));
165 
166 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
167 		    u_long *));
168 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
169 		    char *, size_t));
170 
171 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
172 		    int));
173 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
174 		    int));
175 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
176 		    void (*)(struct ps_strings *, u_long *, int *)));
177 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
178 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
179 		    struct kinfo_proc *, int));
180 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
181 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
182 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
183 
184 
185 static char *
186 _kvm_ureadm(kd, p, va, cnt)
187 	kvm_t *kd;
188 	const struct miniproc *p;
189 	u_long va;
190 	u_long *cnt;
191 {
192 	int true = 1;
193 	u_long addr, head;
194 	u_long offset;
195 	struct vm_map_entry vme;
196 	struct vm_amap amap;
197 	struct vm_anon *anonp, anon;
198 	struct vm_page pg;
199 	u_long slot;
200 
201 	if (kd->swapspc == NULL) {
202 		kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
203 		if (kd->swapspc == NULL)
204 			return NULL;
205 	}
206 
207 	/*
208 	 * Look through the address map for the memory object
209 	 * that corresponds to the given virtual address.
210 	 * The header just has the entire valid range.
211 	 */
212 	head = (u_long)&p->p_vmspace->vm_map.header;
213 	addr = head;
214 	while (true) {
215 		if (KREAD(kd, addr, &vme))
216 			return NULL;
217 
218 		if (va >= vme.start && va < vme.end &&
219 		    vme.aref.ar_amap != NULL)
220 			break;
221 
222 		addr = (u_long)vme.next;
223 		if (addr == head)
224 			return NULL;
225 
226 	}
227 
228 	/*
229 	 * we found the map entry, now to find the object...
230 	 */
231 	if (vme.aref.ar_amap == NULL)
232 		return NULL;
233 
234 	addr = (u_long)vme.aref.ar_amap;
235 	if (KREAD(kd, addr, &amap))
236 		return NULL;
237 
238 	offset = va - vme.start;
239 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
240 	/* sanity-check slot number */
241 	if (slot  > amap.am_nslot)
242 		return NULL;
243 
244 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
245 	if (KREAD(kd, addr, &anonp))
246 		return NULL;
247 
248 	addr = (u_long)anonp;
249 	if (KREAD(kd, addr, &anon))
250 		return NULL;
251 
252 	addr = (u_long)anon.u.an_page;
253 	if (addr) {
254 		if (KREAD(kd, addr, &pg))
255 			return NULL;
256 
257 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
258 		    (off_t)pg.phys_addr) != kd->nbpg)
259 			return NULL;
260 	}
261 	else {
262 		if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
263 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
264 			return NULL;
265 	}
266 
267 	/* Found the page. */
268 	offset %= kd->nbpg;
269 	*cnt = kd->nbpg - offset;
270 	return (&kd->swapspc[(size_t)offset]);
271 }
272 
273 char *
274 _kvm_uread(kd, p, va, cnt)
275 	kvm_t *kd;
276 	const struct proc *p;
277 	u_long va;
278 	u_long *cnt;
279 {
280 	struct miniproc mp;
281 
282 	PTOMINI(p, &mp);
283 	return (_kvm_ureadm(kd, &mp, va, cnt));
284 }
285 
286 /*
287  * Read proc's from memory file into buffer bp, which has space to hold
288  * at most maxcnt procs.
289  */
290 static int
291 kvm_proclist(kd, what, arg, p, bp, maxcnt)
292 	kvm_t *kd;
293 	int what, arg;
294 	struct proc *p;
295 	struct kinfo_proc *bp;
296 	int maxcnt;
297 {
298 	int cnt = 0;
299 	int nlwps;
300 	struct kinfo_lwp *kl;
301 	struct eproc eproc;
302 	struct pgrp pgrp;
303 	struct session sess;
304 	struct tty tty;
305 	struct proc proc;
306 
307 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
308 		if (KREAD(kd, (u_long)p, &proc)) {
309 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
310 			return (-1);
311 		}
312 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
313 			if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
314 			    &eproc.e_ucred)) {
315 				_kvm_err(kd, kd->program,
316 				    "can't read proc credentials at %p", p);
317 				return -1;
318 			}
319 
320 		switch(what) {
321 
322 		case KERN_PROC_PID:
323 			if (proc.p_pid != (pid_t)arg)
324 				continue;
325 			break;
326 
327 		case KERN_PROC_UID:
328 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
329 				continue;
330 			break;
331 
332 		case KERN_PROC_RUID:
333 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
334 				continue;
335 			break;
336 		}
337 		/*
338 		 * We're going to add another proc to the set.  If this
339 		 * will overflow the buffer, assume the reason is because
340 		 * nprocs (or the proc list) is corrupt and declare an error.
341 		 */
342 		if (cnt >= maxcnt) {
343 			_kvm_err(kd, kd->program, "nprocs corrupt");
344 			return (-1);
345 		}
346 		/*
347 		 * gather eproc
348 		 */
349 		eproc.e_paddr = p;
350 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
351 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
352 				 proc.p_pgrp);
353 			return (-1);
354 		}
355 		eproc.e_sess = pgrp.pg_session;
356 		eproc.e_pgid = pgrp.pg_id;
357 		eproc.e_jobc = pgrp.pg_jobc;
358 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
359 			_kvm_err(kd, kd->program, "can't read session at %p",
360 				pgrp.pg_session);
361 			return (-1);
362 		}
363 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
364 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
365 				_kvm_err(kd, kd->program,
366 					 "can't read tty at %p", sess.s_ttyp);
367 				return (-1);
368 			}
369 			eproc.e_tdev = tty.t_dev;
370 			eproc.e_tsess = tty.t_session;
371 			if (tty.t_pgrp != NULL) {
372 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
373 					_kvm_err(kd, kd->program,
374 						 "can't read tpgrp at %p",
375 						tty.t_pgrp);
376 					return (-1);
377 				}
378 				eproc.e_tpgid = pgrp.pg_id;
379 			} else
380 				eproc.e_tpgid = -1;
381 		} else
382 			eproc.e_tdev = NODEV;
383 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
384 		eproc.e_sid = sess.s_sid;
385 		if (sess.s_leader == p)
386 			eproc.e_flag |= EPROC_SLEADER;
387 		/* Fill in the old-style proc.p_wmesg by copying the wmesg
388 		 * from the first avaliable LWP.
389 		 */
390 		kl = kvm_getlwps(kd, proc.p_pid, PTRTOINT64(eproc.e_paddr),
391 		    sizeof(struct kinfo_lwp), &nlwps);
392 		if (kl) {
393 			if (nlwps > 0) {
394 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
395 			}
396 		}
397 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
398 		    sizeof(eproc.e_vm));
399 
400 		eproc.e_xsize = eproc.e_xrssize = 0;
401 		eproc.e_xccount = eproc.e_xswrss = 0;
402 
403 		switch (what) {
404 
405 		case KERN_PROC_PGRP:
406 			if (eproc.e_pgid != (pid_t)arg)
407 				continue;
408 			break;
409 
410 		case KERN_PROC_TTY:
411 			if ((proc.p_flag & P_CONTROLT) == 0 ||
412 			     eproc.e_tdev != (dev_t)arg)
413 				continue;
414 			break;
415 		}
416 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
417 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
418 		++bp;
419 		++cnt;
420 	}
421 	return (cnt);
422 }
423 
424 /*
425  * Build proc info array by reading in proc list from a crash dump.
426  * Return number of procs read.  maxcnt is the max we will read.
427  */
428 static int
429 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
430 	kvm_t *kd;
431 	int what, arg;
432 	u_long a_allproc;
433 	u_long a_deadproc;
434 	u_long a_zombproc;
435 	int maxcnt;
436 {
437 	struct kinfo_proc *bp = kd->procbase;
438 	int acnt, dcnt, zcnt;
439 	struct proc *p;
440 
441 	if (KREAD(kd, a_allproc, &p)) {
442 		_kvm_err(kd, kd->program, "cannot read allproc");
443 		return (-1);
444 	}
445 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
446 	if (acnt < 0)
447 		return (acnt);
448 
449 	if (KREAD(kd, a_deadproc, &p)) {
450 		_kvm_err(kd, kd->program, "cannot read deadproc");
451 		return (-1);
452 	}
453 
454 	dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
455 	if (dcnt < 0)
456 		dcnt = 0;
457 
458 	if (KREAD(kd, a_zombproc, &p)) {
459 		_kvm_err(kd, kd->program, "cannot read zombproc");
460 		return (-1);
461 	}
462 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
463 	    maxcnt - (acnt + dcnt));
464 	if (zcnt < 0)
465 		zcnt = 0;
466 
467 	return (acnt + zcnt);
468 }
469 
470 struct kinfo_proc2 *
471 kvm_getproc2(kd, op, arg, esize, cnt)
472 	kvm_t *kd;
473 	int op, arg;
474 	size_t esize;
475 	int *cnt;
476 {
477 	size_t size;
478 	int mib[6], st, nprocs;
479 	struct pstats pstats;
480 
481 	if (kd->procbase2 != NULL) {
482 		free(kd->procbase2);
483 		/*
484 		 * Clear this pointer in case this call fails.  Otherwise,
485 		 * kvm_close() will free it again.
486 		 */
487 		kd->procbase2 = NULL;
488 	}
489 
490 	if (ISSYSCTL(kd)) {
491 		size = 0;
492 		mib[0] = CTL_KERN;
493 		mib[1] = KERN_PROC2;
494 		mib[2] = op;
495 		mib[3] = arg;
496 		mib[4] = esize;
497 		mib[5] = 0;
498 		st = sysctl(mib, 6, NULL, &size, NULL, 0);
499 		if (st == -1) {
500 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
501 			return NULL;
502 		}
503 
504 		mib[5] = size / esize;
505 		kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
506 		if (kd->procbase2 == NULL)
507 			return NULL;
508 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
509 		if (st == -1) {
510 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
511 			return NULL;
512 		}
513 		nprocs = size / esize;
514 	} else {
515 		char *kp2c;
516 		struct kinfo_proc *kp;
517 		struct kinfo_proc2 kp2, *kp2p;
518 		struct kinfo_lwp *kl;
519 		int i, nlwps;
520 
521 		kp = kvm_getprocs(kd, op, arg, &nprocs);
522 		if (kp == NULL)
523 			return NULL;
524 
525 		kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
526 		kp2c = (char *)(void *)kd->procbase2;
527 		kp2p = &kp2;
528 		for (i = 0; i < nprocs; i++, kp++) {
529 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
530 			    PTRTOINT64(kp->kp_eproc.e_paddr),
531 			    sizeof(struct kinfo_lwp), &nlwps);
532 			/* We use kl[0] as the "representative" LWP */
533 			memset(kp2p, 0, sizeof(kp2));
534 			kp2p->p_forw = kl[0].l_forw;
535 			kp2p->p_back = kl[0].l_back;
536 			kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
537 			kp2p->p_addr = kl[0].l_addr;
538 			kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
539 			kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
540 			kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
541 			kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
542 			kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
543 			kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
544 			kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
545 			kp2p->p_tsess = 0;
546 			kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
547 
548 			kp2p->p_eflag = 0;
549 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
550 			kp2p->p_flag = kp->kp_proc.p_flag;
551 
552 			kp2p->p_pid = kp->kp_proc.p_pid;
553 
554 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
555 			kp2p->p_sid = kp->kp_eproc.e_sid;
556 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
557 
558 			kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
559 
560 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
561 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
562 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
563 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
564 
565 			/*CONSTCOND*/
566 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
567 			    MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups)));
568 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
569 
570 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
571 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
572 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
573 			kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
574 
575 			kp2p->p_estcpu = kp->kp_proc.p_estcpu;
576 			kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
577 			kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
578 			kp2p->p_cpticks = kp->kp_proc.p_cpticks;
579 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
580 			kp2p->p_swtime = kl[0].l_swtime;
581 			kp2p->p_slptime = kl[0].l_slptime;
582 #if 0 /* XXX thorpej */
583 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
584 #else
585 			kp2p->p_schedflags = 0;
586 #endif
587 
588 			kp2p->p_uticks = kp->kp_proc.p_uticks;
589 			kp2p->p_sticks = kp->kp_proc.p_sticks;
590 			kp2p->p_iticks = kp->kp_proc.p_iticks;
591 
592 			kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
593 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
594 
595 			kp2p->p_holdcnt = kl[0].l_holdcnt;
596 
597 			memcpy(&kp2p->p_siglist, &kp->kp_proc.p_sigctx.ps_siglist, sizeof(ki_sigset_t));
598 			memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigctx.ps_sigmask, sizeof(ki_sigset_t));
599 			memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigctx.ps_sigignore, sizeof(ki_sigset_t));
600 			memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
601 
602 			kp2p->p_stat = kp->kp_proc.p_stat;
603 			kp2p->p_priority = kl[0].l_priority;
604 			kp2p->p_usrpri = kl[0].l_usrpri;
605 			kp2p->p_nice = kp->kp_proc.p_nice;
606 
607 			kp2p->p_xstat = kp->kp_proc.p_xstat;
608 			kp2p->p_acflag = kp->kp_proc.p_acflag;
609 
610 			/*CONSTCOND*/
611 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
612 			    MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm)));
613 
614 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg));
615 			kp2p->p_wchan = kl[0].l_wchan;
616 			strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login));
617 
618 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
619 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
620 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
621 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
622 
623 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
624 
625 			kp2p->p_realflag = kp->kp_proc.p_flag;
626 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
627 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
628 			kp2p->p_realstat = kp->kp_proc.p_stat;
629 
630 			if (P_ZOMBIE(&kp->kp_proc)
631 			    ||
632 			    kp->kp_proc.p_stats == NULL ||
633 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)
634 ) {
635 				kp2p->p_uvalid = 0;
636 			} else {
637 				kp2p->p_uvalid = 1;
638 
639 				kp2p->p_ustart_sec = (u_int32_t)
640 				    pstats.p_start.tv_sec;
641 				kp2p->p_ustart_usec = (u_int32_t)
642 				    pstats.p_start.tv_usec;
643 
644 				kp2p->p_uutime_sec = (u_int32_t)
645 				    pstats.p_ru.ru_utime.tv_sec;
646 				kp2p->p_uutime_usec = (u_int32_t)
647 				    pstats.p_ru.ru_utime.tv_usec;
648 				kp2p->p_ustime_sec = (u_int32_t)
649 				    pstats.p_ru.ru_stime.tv_sec;
650 				kp2p->p_ustime_usec = (u_int32_t)
651 				    pstats.p_ru.ru_stime.tv_usec;
652 
653 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
654 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
655 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
656 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
657 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
658 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
659 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
660 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
661 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
662 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
663 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
664 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
665 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
666 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
667 
668 				kp2p->p_uctime_sec = (u_int32_t)
669 				    (pstats.p_cru.ru_utime.tv_sec +
670 				    pstats.p_cru.ru_stime.tv_sec);
671 				kp2p->p_uctime_usec = (u_int32_t)
672 				    (pstats.p_cru.ru_utime.tv_usec +
673 				    pstats.p_cru.ru_stime.tv_usec);
674 			}
675 
676 			memcpy(kp2c, &kp2, esize);
677 			kp2c += esize;
678 		}
679 
680 		free(kd->procbase);
681 	}
682 	*cnt = nprocs;
683 	return (kd->procbase2);
684 }
685 
686 struct kinfo_lwp *
687 kvm_getlwps(kd, pid, paddr, esize, cnt)
688 	kvm_t *kd;
689 	int pid;
690 	u_long paddr;
691 	size_t esize;
692 	int *cnt;
693 {
694 	size_t size;
695 	int mib[5], st, nlwps;
696 	struct kinfo_lwp *kl;
697 
698 	if (kd->lwpbase != NULL) {
699 		free(kd->lwpbase);
700 		/*
701 		 * Clear this pointer in case this call fails.  Otherwise,
702 		 * kvm_close() will free it again.
703 		 */
704 		kd->lwpbase = NULL;
705 	}
706 
707 	if (ISSYSCTL(kd)) {
708 		size = 0;
709 		mib[0] = CTL_KERN;
710 		mib[1] = KERN_LWP;
711 		mib[2] = pid;
712 		mib[3] = esize;
713 		mib[4] = 0;
714 		st = sysctl(mib, 5, NULL, &size, NULL, 0);
715 		if (st == -1) {
716 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
717 			return NULL;
718 		}
719 
720 		mib[4] = size / esize;
721 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
722 		if (kd->lwpbase == NULL)
723 			return NULL;
724 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, 0);
725 		if (st == -1) {
726 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
727 			return NULL;
728 		}
729 		nlwps = size / esize;
730 	} else {
731 		/* grovel through the memory image */
732 		struct proc p;
733 		struct lwp l;
734 		u_long laddr;
735 		int i;
736 
737 		st = kvm_read(kd, paddr, &p, sizeof(p));
738 		if (st == -1) {
739 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
740 			return NULL;
741 		}
742 
743 		nlwps = p.p_nlwps;
744 		kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
745 		    nlwps * sizeof(struct kinfo_lwp));
746 		if (kd->lwpbase == NULL)
747 			return NULL;
748 		laddr = PTRTOINT64(p.p_lwps.lh_first);
749 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
750 			st = kvm_read(kd, laddr, &l, sizeof(l));
751 			if (st == -1) {
752 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
753 				return NULL;
754 			}
755 			kl = &kd->lwpbase[i];
756 			kl->l_laddr = laddr;
757 			kl->l_forw = PTRTOINT64(l.l_forw);
758 			kl->l_back = PTRTOINT64(l.l_back);
759 			kl->l_addr = PTRTOINT64(l.l_addr);
760 			kl->l_lid = l.l_lid;
761 			kl->l_flag = l.l_flag;
762 			kl->l_swtime = l.l_swtime;
763 			kl->l_slptime = l.l_slptime;
764 			kl->l_schedflags = 0; /* XXX */
765 			kl->l_holdcnt = l.l_holdcnt;
766 			kl->l_priority = l.l_priority;
767 			kl->l_usrpri = l.l_usrpri;
768 			kl->l_stat = l.l_stat;
769 			kl->l_wchan = PTRTOINT64(l.l_wchan);
770 			if (l.l_wmesg)
771 				(void)kvm_read(kd, (u_long)l.l_wmesg,
772 				    kl->l_wmesg, WMESGLEN);
773 			kl->l_cpuid = KI_NOCPU;
774 			laddr = PTRTOINT64(l.l_sibling.le_next);
775 		}
776 	}
777 
778 	*cnt = nlwps;
779 	return kd->lwpbase;
780 }
781 
782 struct kinfo_proc *
783 kvm_getprocs(kd, op, arg, cnt)
784 	kvm_t *kd;
785 	int op, arg;
786 	int *cnt;
787 {
788 	size_t size;
789 	int mib[4], st, nprocs;
790 
791 	if (kd->procbase != NULL) {
792 		free(kd->procbase);
793 		/*
794 		 * Clear this pointer in case this call fails.  Otherwise,
795 		 * kvm_close() will free it again.
796 		 */
797 		kd->procbase = NULL;
798 	}
799 	if (ISKMEM(kd)) {
800 		size = 0;
801 		mib[0] = CTL_KERN;
802 		mib[1] = KERN_PROC;
803 		mib[2] = op;
804 		mib[3] = arg;
805 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
806 		if (st == -1) {
807 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
808 			return NULL;
809 		}
810 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
811 		if (kd->procbase == NULL)
812 			return NULL;
813 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
814 		if (st == -1) {
815 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
816 			return NULL;
817 		}
818 		if (size % sizeof(struct kinfo_proc) != 0) {
819 			_kvm_err(kd, kd->program,
820 			    "proc size mismatch (%lu total, %lu chunks)",
821 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
822 			return NULL;
823 		}
824 		nprocs = size / sizeof(struct kinfo_proc);
825 	} else if (ISSYSCTL(kd)) {
826 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
827 		    "can't use kvm_getprocs");
828 		return NULL;
829 	} else {
830 		struct nlist nl[5], *p;
831 
832 		nl[0].n_name = "_nprocs";
833 		nl[1].n_name = "_allproc";
834 		nl[2].n_name = "_deadproc";
835 		nl[3].n_name = "_zombproc";
836 		nl[4].n_name = NULL;
837 
838 		if (kvm_nlist(kd, nl) != 0) {
839 			for (p = nl; p->n_type != 0; ++p)
840 				;
841 			_kvm_err(kd, kd->program,
842 				 "%s: no such symbol", p->n_name);
843 			return NULL;
844 		}
845 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
846 			_kvm_err(kd, kd->program, "can't read nprocs");
847 			return NULL;
848 		}
849 		size = nprocs * sizeof(struct kinfo_proc);
850 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
851 		if (kd->procbase == NULL)
852 			return NULL;
853 
854 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
855 		    nl[2].n_value, nl[3].n_value, nprocs);
856 		if (nprocs < 0)
857 			return NULL;
858 #ifdef notdef
859 		size = nprocs * sizeof(struct kinfo_proc);
860 		(void)realloc(kd->procbase, size);
861 #endif
862 	}
863 	*cnt = nprocs;
864 	return (kd->procbase);
865 }
866 
867 void
868 _kvm_freeprocs(kd)
869 	kvm_t *kd;
870 {
871 	if (kd->procbase) {
872 		free(kd->procbase);
873 		kd->procbase = NULL;
874 	}
875 }
876 
877 void *
878 _kvm_realloc(kd, p, n)
879 	kvm_t *kd;
880 	void *p;
881 	size_t n;
882 {
883 	void *np = realloc(p, n);
884 
885 	if (np == NULL)
886 		_kvm_err(kd, kd->program, "out of memory");
887 	return (np);
888 }
889 
890 /*
891  * Read in an argument vector from the user address space of process p.
892  * addr if the user-space base address of narg null-terminated contiguous
893  * strings.  This is used to read in both the command arguments and
894  * environment strings.  Read at most maxcnt characters of strings.
895  */
896 static char **
897 kvm_argv(kd, p, addr, narg, maxcnt)
898 	kvm_t *kd;
899 	const struct miniproc *p;
900 	u_long addr;
901 	int narg;
902 	int maxcnt;
903 {
904 	char *np, *cp, *ep, *ap;
905 	u_long oaddr = (u_long)~0L;
906 	u_long len;
907 	size_t cc;
908 	char **argv;
909 
910 	/*
911 	 * Check that there aren't an unreasonable number of agruments,
912 	 * and that the address is in user space.
913 	 */
914 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
915 		return NULL;
916 
917 	if (kd->argv == NULL) {
918 		/*
919 		 * Try to avoid reallocs.
920 		 */
921 		kd->argc = MAX(narg + 1, 32);
922 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
923 						sizeof(*kd->argv));
924 		if (kd->argv == NULL)
925 			return NULL;
926 	} else if (narg + 1 > kd->argc) {
927 		kd->argc = MAX(2 * kd->argc, narg + 1);
928 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
929 						sizeof(*kd->argv));
930 		if (kd->argv == NULL)
931 			return NULL;
932 	}
933 	if (kd->argspc == NULL) {
934 		kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
935 		if (kd->argspc == NULL)
936 			return NULL;
937 		kd->arglen = kd->nbpg;
938 	}
939 	if (kd->argbuf == NULL) {
940 		kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
941 		if (kd->argbuf == NULL)
942 			return NULL;
943 	}
944 	cc = sizeof(char *) * narg;
945 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
946 		return NULL;
947 	ap = np = kd->argspc;
948 	argv = kd->argv;
949 	len = 0;
950 	/*
951 	 * Loop over pages, filling in the argument vector.
952 	 */
953 	while (argv < kd->argv + narg && *argv != NULL) {
954 		addr = (u_long)*argv & ~(kd->nbpg - 1);
955 		if (addr != oaddr) {
956 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
957 			    (size_t)kd->nbpg) != kd->nbpg)
958 				return NULL;
959 			oaddr = addr;
960 		}
961 		addr = (u_long)*argv & (kd->nbpg - 1);
962 		cp = kd->argbuf + (size_t)addr;
963 		cc = kd->nbpg - (size_t)addr;
964 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
965 			cc = (size_t)(maxcnt - len);
966 		ep = memchr(cp, '\0', cc);
967 		if (ep != NULL)
968 			cc = ep - cp + 1;
969 		if (len + cc > kd->arglen) {
970 			int off;
971 			char **pp;
972 			char *op = kd->argspc;
973 
974 			kd->arglen *= 2;
975 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
976 			    (size_t)kd->arglen);
977 			if (kd->argspc == NULL)
978 				return NULL;
979 			/*
980 			 * Adjust argv pointers in case realloc moved
981 			 * the string space.
982 			 */
983 			off = kd->argspc - op;
984 			for (pp = kd->argv; pp < argv; pp++)
985 				*pp += off;
986 			ap += off;
987 			np += off;
988 		}
989 		memcpy(np, cp, cc);
990 		np += cc;
991 		len += cc;
992 		if (ep != NULL) {
993 			*argv++ = ap;
994 			ap = np;
995 		} else
996 			*argv += cc;
997 		if (maxcnt > 0 && len >= maxcnt) {
998 			/*
999 			 * We're stopping prematurely.  Terminate the
1000 			 * current string.
1001 			 */
1002 			if (ep == NULL) {
1003 				*np = '\0';
1004 				*argv++ = ap;
1005 			}
1006 			break;
1007 		}
1008 	}
1009 	/* Make sure argv is terminated. */
1010 	*argv = NULL;
1011 	return (kd->argv);
1012 }
1013 
1014 static void
1015 ps_str_a(p, addr, n)
1016 	struct ps_strings *p;
1017 	u_long *addr;
1018 	int *n;
1019 {
1020 	*addr = (u_long)p->ps_argvstr;
1021 	*n = p->ps_nargvstr;
1022 }
1023 
1024 static void
1025 ps_str_e(p, addr, n)
1026 	struct ps_strings *p;
1027 	u_long *addr;
1028 	int *n;
1029 {
1030 	*addr = (u_long)p->ps_envstr;
1031 	*n = p->ps_nenvstr;
1032 }
1033 
1034 /*
1035  * Determine if the proc indicated by p is still active.
1036  * This test is not 100% foolproof in theory, but chances of
1037  * being wrong are very low.
1038  */
1039 static int
1040 proc_verify(kd, kernp, p)
1041 	kvm_t *kd;
1042 	u_long kernp;
1043 	const struct miniproc *p;
1044 {
1045 	struct proc kernproc;
1046 
1047 	/*
1048 	 * Just read in the whole proc.  It's not that big relative
1049 	 * to the cost of the read system call.
1050 	 */
1051 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1052 	    sizeof(kernproc))
1053 		return 0;
1054 	return (p->p_pid == kernproc.p_pid &&
1055 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1056 }
1057 
1058 static char **
1059 kvm_doargv(kd, p, nchr, info)
1060 	kvm_t *kd;
1061 	const struct miniproc *p;
1062 	int nchr;
1063 	void (*info)(struct ps_strings *, u_long *, int *);
1064 {
1065 	char **ap;
1066 	u_long addr;
1067 	int cnt;
1068 	struct ps_strings arginfo;
1069 
1070 	/*
1071 	 * Pointers are stored at the top of the user stack.
1072 	 */
1073 	if (p->p_stat == SZOMB)
1074 		return NULL;
1075 	cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1076 	    (void *)&arginfo, sizeof(arginfo));
1077 	if (cnt != sizeof(arginfo))
1078 		return NULL;
1079 
1080 	(*info)(&arginfo, &addr, &cnt);
1081 	if (cnt == 0)
1082 		return NULL;
1083 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1084 	/*
1085 	 * For live kernels, make sure this process didn't go away.
1086 	 */
1087 	if (ap != NULL && ISALIVE(kd) &&
1088 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1089 		ap = NULL;
1090 	return (ap);
1091 }
1092 
1093 /*
1094  * Get the command args.  This code is now machine independent.
1095  */
1096 char **
1097 kvm_getargv(kd, kp, nchr)
1098 	kvm_t *kd;
1099 	const struct kinfo_proc *kp;
1100 	int nchr;
1101 {
1102 	struct miniproc p;
1103 
1104 	KPTOMINI(kp, &p);
1105 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1106 }
1107 
1108 char **
1109 kvm_getenvv(kd, kp, nchr)
1110 	kvm_t *kd;
1111 	const struct kinfo_proc *kp;
1112 	int nchr;
1113 {
1114 	struct miniproc p;
1115 
1116 	KPTOMINI(kp, &p);
1117 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1118 }
1119 
1120 static char **
1121 kvm_doargv2(kd, pid, type, nchr)
1122 	kvm_t *kd;
1123 	pid_t pid;
1124 	int type;
1125 	int nchr;
1126 {
1127 	size_t bufs;
1128 	int narg, mib[4];
1129 	size_t newarglen;
1130 	char **ap, *bp, *endp;
1131 
1132 	/*
1133 	 * Check that there aren't an unreasonable number of agruments.
1134 	 */
1135 	if (nchr > ARG_MAX)
1136 		return NULL;
1137 
1138 	if (nchr == 0)
1139 		nchr = ARG_MAX;
1140 
1141 	/* Get number of strings in argv */
1142 	mib[0] = CTL_KERN;
1143 	mib[1] = KERN_PROC_ARGS;
1144 	mib[2] = pid;
1145 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1146 	bufs = sizeof(narg);
1147 	if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
1148 		return NULL;
1149 
1150 	if (kd->argv == NULL) {
1151 		/*
1152 		 * Try to avoid reallocs.
1153 		 */
1154 		kd->argc = MAX(narg + 1, 32);
1155 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
1156 						sizeof(*kd->argv));
1157 		if (kd->argv == NULL)
1158 			return NULL;
1159 	} else if (narg + 1 > kd->argc) {
1160 		kd->argc = MAX(2 * kd->argc, narg + 1);
1161 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
1162 						sizeof(*kd->argv));
1163 		if (kd->argv == NULL)
1164 			return NULL;
1165 	}
1166 
1167 	newarglen = MIN(nchr, ARG_MAX);
1168 	if (kd->arglen < newarglen) {
1169 		if (kd->arglen == 0)
1170 			kd->argspc = (char *)_kvm_malloc(kd, newarglen);
1171 		else
1172 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
1173 			    newarglen);
1174 		if (kd->argspc == NULL)
1175 			return NULL;
1176 		kd->arglen = newarglen;
1177 	}
1178 	memset(kd->argspc, 0, (size_t)kd->arglen);	/* XXX necessary? */
1179 
1180 	mib[0] = CTL_KERN;
1181 	mib[1] = KERN_PROC_ARGS;
1182 	mib[2] = pid;
1183 	mib[3] = type;
1184 	bufs = kd->arglen;
1185 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
1186 		return NULL;
1187 
1188 	bp = kd->argspc;
1189 	bp[kd->arglen-1] = '\0';	/* make sure the string ends with nul */
1190 	ap = kd->argv;
1191 	endp = bp + MIN(nchr, bufs);
1192 
1193 	while (bp < endp) {
1194 		*ap++ = bp;
1195 		/* XXX: don't need following anymore, or stick check for max argc in above while loop? */
1196 		if (ap >= kd->argv + kd->argc) {
1197 			kd->argc *= 2;
1198 			kd->argv = _kvm_realloc(kd, kd->argv,
1199 			    kd->argc * sizeof(*kd->argv));
1200 			ap = kd->argv;
1201 		}
1202 		bp += strlen(bp) + 1;
1203 	}
1204 	*ap = NULL;
1205 
1206 	return (kd->argv);
1207 }
1208 
1209 char **
1210 kvm_getargv2(kd, kp, nchr)
1211 	kvm_t *kd;
1212 	const struct kinfo_proc2 *kp;
1213 	int nchr;
1214 {
1215 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1216 }
1217 
1218 char **
1219 kvm_getenvv2(kd, kp, nchr)
1220 	kvm_t *kd;
1221 	const struct kinfo_proc2 *kp;
1222 	int nchr;
1223 {
1224 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1225 }
1226 
1227 /*
1228  * Read from user space.  The user context is given by p.
1229  */
1230 static ssize_t
1231 kvm_ureadm(kd, p, uva, buf, len)
1232 	kvm_t *kd;
1233 	const struct miniproc *p;
1234 	u_long uva;
1235 	char *buf;
1236 	size_t len;
1237 {
1238 	char *cp;
1239 
1240 	cp = buf;
1241 	while (len > 0) {
1242 		size_t cc;
1243 		char *dp;
1244 		u_long cnt;
1245 
1246 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1247 		if (dp == NULL) {
1248 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1249 			return 0;
1250 		}
1251 		cc = (size_t)MIN(cnt, len);
1252 		memcpy(cp, dp, cc);
1253 		cp += cc;
1254 		uva += cc;
1255 		len -= cc;
1256 	}
1257 	return (ssize_t)(cp - buf);
1258 }
1259 
1260 ssize_t
1261 kvm_uread(kd, p, uva, buf, len)
1262 	kvm_t *kd;
1263 	const struct proc *p;
1264 	u_long uva;
1265 	char *buf;
1266 	size_t len;
1267 {
1268 	struct miniproc mp;
1269 
1270 	PTOMINI(p, &mp);
1271 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1272 }
1273