1 /* $NetBSD: kvm_proc.c,v 1.46 2003/01/18 10:40:41 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. All advertising materials mentioning features or use of this software 56 * must display the following acknowledgement: 57 * This product includes software developed by the University of 58 * California, Berkeley and its contributors. 59 * 4. Neither the name of the University nor the names of its contributors 60 * may be used to endorse or promote products derived from this software 61 * without specific prior written permission. 62 * 63 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 65 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 66 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 67 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 68 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 69 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 70 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 71 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 72 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 73 * SUCH DAMAGE. 74 */ 75 76 #include <sys/cdefs.h> 77 #if defined(LIBC_SCCS) && !defined(lint) 78 #if 0 79 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 80 #else 81 __RCSID("$NetBSD: kvm_proc.c,v 1.46 2003/01/18 10:40:41 thorpej Exp $"); 82 #endif 83 #endif /* LIBC_SCCS and not lint */ 84 85 /* 86 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 87 * users of this code, so we've factored it out into a separate module. 88 * Thus, we keep this grunge out of the other kvm applications (i.e., 89 * most other applications are interested only in open/close/read/nlist). 90 */ 91 92 #include <sys/param.h> 93 #include <sys/user.h> 94 #include <sys/lwp.h> 95 #include <sys/proc.h> 96 #include <sys/exec.h> 97 #include <sys/stat.h> 98 #include <sys/ioctl.h> 99 #include <sys/tty.h> 100 #include <stdlib.h> 101 #include <string.h> 102 #include <unistd.h> 103 #include <nlist.h> 104 #include <kvm.h> 105 106 #include <uvm/uvm_extern.h> 107 #include <uvm/uvm_amap.h> 108 109 #include <sys/sysctl.h> 110 111 #include <limits.h> 112 #include <db.h> 113 #include <paths.h> 114 115 #include "kvm_private.h" 116 117 /* 118 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 119 */ 120 struct miniproc { 121 struct vmspace *p_vmspace; 122 char p_stat; 123 struct proc *p_paddr; 124 pid_t p_pid; 125 }; 126 127 /* 128 * Convert from struct proc and kinfo_proc{,2} to miniproc. 129 */ 130 #define PTOMINI(kp, p) \ 131 do { \ 132 (p)->p_stat = (kp)->p_stat; \ 133 (p)->p_pid = (kp)->p_pid; \ 134 (p)->p_paddr = NULL; \ 135 (p)->p_vmspace = (kp)->p_vmspace; \ 136 } while (/*CONSTCOND*/0); 137 138 #define KPTOMINI(kp, p) \ 139 do { \ 140 (p)->p_stat = (kp)->kp_proc.p_stat; \ 141 (p)->p_pid = (kp)->kp_proc.p_pid; \ 142 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 143 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 144 } while (/*CONSTCOND*/0); 145 146 #define KP2TOMINI(kp, p) \ 147 do { \ 148 (p)->p_stat = (kp)->p_stat; \ 149 (p)->p_pid = (kp)->p_pid; \ 150 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 151 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 152 } while (/*CONSTCOND*/0); 153 154 155 #define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(void *)(foo)) 156 157 #define KREAD(kd, addr, obj) \ 158 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 159 160 /* XXX: What uses these two functions? */ 161 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 162 u_long *)); 163 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 164 size_t)); 165 166 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 167 u_long *)); 168 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 169 char *, size_t)); 170 171 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 172 int)); 173 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long, 174 int)); 175 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 176 void (*)(struct ps_strings *, u_long *, int *))); 177 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 178 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 179 struct kinfo_proc *, int)); 180 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 181 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 182 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 183 184 185 static char * 186 _kvm_ureadm(kd, p, va, cnt) 187 kvm_t *kd; 188 const struct miniproc *p; 189 u_long va; 190 u_long *cnt; 191 { 192 int true = 1; 193 u_long addr, head; 194 u_long offset; 195 struct vm_map_entry vme; 196 struct vm_amap amap; 197 struct vm_anon *anonp, anon; 198 struct vm_page pg; 199 u_long slot; 200 201 if (kd->swapspc == NULL) { 202 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 203 if (kd->swapspc == NULL) 204 return NULL; 205 } 206 207 /* 208 * Look through the address map for the memory object 209 * that corresponds to the given virtual address. 210 * The header just has the entire valid range. 211 */ 212 head = (u_long)&p->p_vmspace->vm_map.header; 213 addr = head; 214 while (true) { 215 if (KREAD(kd, addr, &vme)) 216 return NULL; 217 218 if (va >= vme.start && va < vme.end && 219 vme.aref.ar_amap != NULL) 220 break; 221 222 addr = (u_long)vme.next; 223 if (addr == head) 224 return NULL; 225 226 } 227 228 /* 229 * we found the map entry, now to find the object... 230 */ 231 if (vme.aref.ar_amap == NULL) 232 return NULL; 233 234 addr = (u_long)vme.aref.ar_amap; 235 if (KREAD(kd, addr, &amap)) 236 return NULL; 237 238 offset = va - vme.start; 239 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 240 /* sanity-check slot number */ 241 if (slot > amap.am_nslot) 242 return NULL; 243 244 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 245 if (KREAD(kd, addr, &anonp)) 246 return NULL; 247 248 addr = (u_long)anonp; 249 if (KREAD(kd, addr, &anon)) 250 return NULL; 251 252 addr = (u_long)anon.u.an_page; 253 if (addr) { 254 if (KREAD(kd, addr, &pg)) 255 return NULL; 256 257 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 258 (off_t)pg.phys_addr) != kd->nbpg) 259 return NULL; 260 } 261 else { 262 if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 263 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 264 return NULL; 265 } 266 267 /* Found the page. */ 268 offset %= kd->nbpg; 269 *cnt = kd->nbpg - offset; 270 return (&kd->swapspc[(size_t)offset]); 271 } 272 273 char * 274 _kvm_uread(kd, p, va, cnt) 275 kvm_t *kd; 276 const struct proc *p; 277 u_long va; 278 u_long *cnt; 279 { 280 struct miniproc mp; 281 282 PTOMINI(p, &mp); 283 return (_kvm_ureadm(kd, &mp, va, cnt)); 284 } 285 286 /* 287 * Read proc's from memory file into buffer bp, which has space to hold 288 * at most maxcnt procs. 289 */ 290 static int 291 kvm_proclist(kd, what, arg, p, bp, maxcnt) 292 kvm_t *kd; 293 int what, arg; 294 struct proc *p; 295 struct kinfo_proc *bp; 296 int maxcnt; 297 { 298 int cnt = 0; 299 int nlwps; 300 struct kinfo_lwp *kl; 301 struct eproc eproc; 302 struct pgrp pgrp; 303 struct session sess; 304 struct tty tty; 305 struct proc proc; 306 307 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 308 if (KREAD(kd, (u_long)p, &proc)) { 309 _kvm_err(kd, kd->program, "can't read proc at %p", p); 310 return (-1); 311 } 312 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 313 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 314 &eproc.e_ucred)) { 315 _kvm_err(kd, kd->program, 316 "can't read proc credentials at %p", p); 317 return -1; 318 } 319 320 switch(what) { 321 322 case KERN_PROC_PID: 323 if (proc.p_pid != (pid_t)arg) 324 continue; 325 break; 326 327 case KERN_PROC_UID: 328 if (eproc.e_ucred.cr_uid != (uid_t)arg) 329 continue; 330 break; 331 332 case KERN_PROC_RUID: 333 if (eproc.e_pcred.p_ruid != (uid_t)arg) 334 continue; 335 break; 336 } 337 /* 338 * We're going to add another proc to the set. If this 339 * will overflow the buffer, assume the reason is because 340 * nprocs (or the proc list) is corrupt and declare an error. 341 */ 342 if (cnt >= maxcnt) { 343 _kvm_err(kd, kd->program, "nprocs corrupt"); 344 return (-1); 345 } 346 /* 347 * gather eproc 348 */ 349 eproc.e_paddr = p; 350 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 351 _kvm_err(kd, kd->program, "can't read pgrp at %p", 352 proc.p_pgrp); 353 return (-1); 354 } 355 eproc.e_sess = pgrp.pg_session; 356 eproc.e_pgid = pgrp.pg_id; 357 eproc.e_jobc = pgrp.pg_jobc; 358 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 359 _kvm_err(kd, kd->program, "can't read session at %p", 360 pgrp.pg_session); 361 return (-1); 362 } 363 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 364 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 365 _kvm_err(kd, kd->program, 366 "can't read tty at %p", sess.s_ttyp); 367 return (-1); 368 } 369 eproc.e_tdev = tty.t_dev; 370 eproc.e_tsess = tty.t_session; 371 if (tty.t_pgrp != NULL) { 372 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 373 _kvm_err(kd, kd->program, 374 "can't read tpgrp at %p", 375 tty.t_pgrp); 376 return (-1); 377 } 378 eproc.e_tpgid = pgrp.pg_id; 379 } else 380 eproc.e_tpgid = -1; 381 } else 382 eproc.e_tdev = NODEV; 383 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 384 eproc.e_sid = sess.s_sid; 385 if (sess.s_leader == p) 386 eproc.e_flag |= EPROC_SLEADER; 387 /* Fill in the old-style proc.p_wmesg by copying the wmesg 388 * from the first avaliable LWP. 389 */ 390 kl = kvm_getlwps(kd, proc.p_pid, PTRTOINT64(eproc.e_paddr), 391 sizeof(struct kinfo_lwp), &nlwps); 392 if (kl) { 393 if (nlwps > 0) { 394 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 395 } 396 } 397 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 398 sizeof(eproc.e_vm)); 399 400 eproc.e_xsize = eproc.e_xrssize = 0; 401 eproc.e_xccount = eproc.e_xswrss = 0; 402 403 switch (what) { 404 405 case KERN_PROC_PGRP: 406 if (eproc.e_pgid != (pid_t)arg) 407 continue; 408 break; 409 410 case KERN_PROC_TTY: 411 if ((proc.p_flag & P_CONTROLT) == 0 || 412 eproc.e_tdev != (dev_t)arg) 413 continue; 414 break; 415 } 416 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 417 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 418 ++bp; 419 ++cnt; 420 } 421 return (cnt); 422 } 423 424 /* 425 * Build proc info array by reading in proc list from a crash dump. 426 * Return number of procs read. maxcnt is the max we will read. 427 */ 428 static int 429 kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt) 430 kvm_t *kd; 431 int what, arg; 432 u_long a_allproc; 433 u_long a_deadproc; 434 u_long a_zombproc; 435 int maxcnt; 436 { 437 struct kinfo_proc *bp = kd->procbase; 438 int acnt, dcnt, zcnt; 439 struct proc *p; 440 441 if (KREAD(kd, a_allproc, &p)) { 442 _kvm_err(kd, kd->program, "cannot read allproc"); 443 return (-1); 444 } 445 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 446 if (acnt < 0) 447 return (acnt); 448 449 if (KREAD(kd, a_deadproc, &p)) { 450 _kvm_err(kd, kd->program, "cannot read deadproc"); 451 return (-1); 452 } 453 454 dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt); 455 if (dcnt < 0) 456 dcnt = 0; 457 458 if (KREAD(kd, a_zombproc, &p)) { 459 _kvm_err(kd, kd->program, "cannot read zombproc"); 460 return (-1); 461 } 462 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 463 maxcnt - (acnt + dcnt)); 464 if (zcnt < 0) 465 zcnt = 0; 466 467 return (acnt + zcnt); 468 } 469 470 struct kinfo_proc2 * 471 kvm_getproc2(kd, op, arg, esize, cnt) 472 kvm_t *kd; 473 int op, arg; 474 size_t esize; 475 int *cnt; 476 { 477 size_t size; 478 int mib[6], st, nprocs; 479 struct pstats pstats; 480 481 if (kd->procbase2 != NULL) { 482 free(kd->procbase2); 483 /* 484 * Clear this pointer in case this call fails. Otherwise, 485 * kvm_close() will free it again. 486 */ 487 kd->procbase2 = NULL; 488 } 489 490 if (ISSYSCTL(kd)) { 491 size = 0; 492 mib[0] = CTL_KERN; 493 mib[1] = KERN_PROC2; 494 mib[2] = op; 495 mib[3] = arg; 496 mib[4] = esize; 497 mib[5] = 0; 498 st = sysctl(mib, 6, NULL, &size, NULL, 0); 499 if (st == -1) { 500 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 501 return NULL; 502 } 503 504 mib[5] = size / esize; 505 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size); 506 if (kd->procbase2 == NULL) 507 return NULL; 508 st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0); 509 if (st == -1) { 510 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 511 return NULL; 512 } 513 nprocs = size / esize; 514 } else { 515 char *kp2c; 516 struct kinfo_proc *kp; 517 struct kinfo_proc2 kp2, *kp2p; 518 struct kinfo_lwp *kl; 519 int i, nlwps; 520 521 kp = kvm_getprocs(kd, op, arg, &nprocs); 522 if (kp == NULL) 523 return NULL; 524 525 kd->procbase2 = _kvm_malloc(kd, nprocs * esize); 526 kp2c = (char *)(void *)kd->procbase2; 527 kp2p = &kp2; 528 for (i = 0; i < nprocs; i++, kp++) { 529 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 530 PTRTOINT64(kp->kp_eproc.e_paddr), 531 sizeof(struct kinfo_lwp), &nlwps); 532 /* We use kl[0] as the "representative" LWP */ 533 memset(kp2p, 0, sizeof(kp2)); 534 kp2p->p_forw = kl[0].l_forw; 535 kp2p->p_back = kl[0].l_back; 536 kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr); 537 kp2p->p_addr = kl[0].l_addr; 538 kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd); 539 kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi); 540 kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats); 541 kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit); 542 kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace); 543 kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts); 544 kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess); 545 kp2p->p_tsess = 0; 546 kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru); 547 548 kp2p->p_eflag = 0; 549 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 550 kp2p->p_flag = kp->kp_proc.p_flag; 551 552 kp2p->p_pid = kp->kp_proc.p_pid; 553 554 kp2p->p_ppid = kp->kp_eproc.e_ppid; 555 kp2p->p_sid = kp->kp_eproc.e_sid; 556 kp2p->p__pgid = kp->kp_eproc.e_pgid; 557 558 kp2p->p_tpgid = 30001 /* XXX NO_PID! */; 559 560 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 561 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 562 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 563 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 564 565 /*CONSTCOND*/ 566 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 567 MIN(sizeof(kp2p->p_groups), sizeof(kp->kp_eproc.e_ucred.cr_groups))); 568 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 569 570 kp2p->p_jobc = kp->kp_eproc.e_jobc; 571 kp2p->p_tdev = kp->kp_eproc.e_tdev; 572 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 573 kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess); 574 575 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 576 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 577 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 578 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 579 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 580 kp2p->p_swtime = kl[0].l_swtime; 581 kp2p->p_slptime = kl[0].l_slptime; 582 #if 0 /* XXX thorpej */ 583 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 584 #else 585 kp2p->p_schedflags = 0; 586 #endif 587 588 kp2p->p_uticks = kp->kp_proc.p_uticks; 589 kp2p->p_sticks = kp->kp_proc.p_sticks; 590 kp2p->p_iticks = kp->kp_proc.p_iticks; 591 592 kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep); 593 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 594 595 kp2p->p_holdcnt = kl[0].l_holdcnt; 596 597 memcpy(&kp2p->p_siglist, &kp->kp_proc.p_sigctx.ps_siglist, sizeof(ki_sigset_t)); 598 memcpy(&kp2p->p_sigmask, &kp->kp_proc.p_sigctx.ps_sigmask, sizeof(ki_sigset_t)); 599 memcpy(&kp2p->p_sigignore, &kp->kp_proc.p_sigctx.ps_sigignore, sizeof(ki_sigset_t)); 600 memcpy(&kp2p->p_sigcatch, &kp->kp_proc.p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); 601 602 kp2p->p_stat = kp->kp_proc.p_stat; 603 kp2p->p_priority = kl[0].l_priority; 604 kp2p->p_usrpri = kl[0].l_usrpri; 605 kp2p->p_nice = kp->kp_proc.p_nice; 606 607 kp2p->p_xstat = kp->kp_proc.p_xstat; 608 kp2p->p_acflag = kp->kp_proc.p_acflag; 609 610 /*CONSTCOND*/ 611 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 612 MIN(sizeof(kp2p->p_comm), sizeof(kp->kp_proc.p_comm))); 613 614 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, sizeof(kp2p->p_wmesg)); 615 kp2p->p_wchan = kl[0].l_wchan; 616 strncpy(kp2p->p_login, kp->kp_eproc.e_login, sizeof(kp2p->p_login)); 617 618 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 619 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 620 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 621 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 622 623 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 624 625 kp2p->p_realflag = kp->kp_proc.p_flag; 626 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 627 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 628 kp2p->p_realstat = kp->kp_proc.p_stat; 629 630 if (P_ZOMBIE(&kp->kp_proc) 631 || 632 kp->kp_proc.p_stats == NULL || 633 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats) 634 ) { 635 kp2p->p_uvalid = 0; 636 } else { 637 kp2p->p_uvalid = 1; 638 639 kp2p->p_ustart_sec = (u_int32_t) 640 pstats.p_start.tv_sec; 641 kp2p->p_ustart_usec = (u_int32_t) 642 pstats.p_start.tv_usec; 643 644 kp2p->p_uutime_sec = (u_int32_t) 645 pstats.p_ru.ru_utime.tv_sec; 646 kp2p->p_uutime_usec = (u_int32_t) 647 pstats.p_ru.ru_utime.tv_usec; 648 kp2p->p_ustime_sec = (u_int32_t) 649 pstats.p_ru.ru_stime.tv_sec; 650 kp2p->p_ustime_usec = (u_int32_t) 651 pstats.p_ru.ru_stime.tv_usec; 652 653 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 654 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 655 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 656 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 657 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 658 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 659 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 660 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 661 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 662 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 663 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 664 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 665 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 666 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 667 668 kp2p->p_uctime_sec = (u_int32_t) 669 (pstats.p_cru.ru_utime.tv_sec + 670 pstats.p_cru.ru_stime.tv_sec); 671 kp2p->p_uctime_usec = (u_int32_t) 672 (pstats.p_cru.ru_utime.tv_usec + 673 pstats.p_cru.ru_stime.tv_usec); 674 } 675 676 memcpy(kp2c, &kp2, esize); 677 kp2c += esize; 678 } 679 680 free(kd->procbase); 681 } 682 *cnt = nprocs; 683 return (kd->procbase2); 684 } 685 686 struct kinfo_lwp * 687 kvm_getlwps(kd, pid, paddr, esize, cnt) 688 kvm_t *kd; 689 int pid; 690 u_long paddr; 691 size_t esize; 692 int *cnt; 693 { 694 size_t size; 695 int mib[5], st, nlwps; 696 struct kinfo_lwp *kl; 697 698 if (kd->lwpbase != NULL) { 699 free(kd->lwpbase); 700 /* 701 * Clear this pointer in case this call fails. Otherwise, 702 * kvm_close() will free it again. 703 */ 704 kd->lwpbase = NULL; 705 } 706 707 if (ISSYSCTL(kd)) { 708 size = 0; 709 mib[0] = CTL_KERN; 710 mib[1] = KERN_LWP; 711 mib[2] = pid; 712 mib[3] = esize; 713 mib[4] = 0; 714 st = sysctl(mib, 5, NULL, &size, NULL, 0); 715 if (st == -1) { 716 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 717 return NULL; 718 } 719 720 mib[4] = size / esize; 721 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size); 722 if (kd->lwpbase == NULL) 723 return NULL; 724 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, 0); 725 if (st == -1) { 726 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 727 return NULL; 728 } 729 nlwps = size / esize; 730 } else { 731 /* grovel through the memory image */ 732 struct proc p; 733 struct lwp l; 734 u_long laddr; 735 int i; 736 737 st = kvm_read(kd, paddr, &p, sizeof(p)); 738 if (st == -1) { 739 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 740 return NULL; 741 } 742 743 nlwps = p.p_nlwps; 744 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, 745 nlwps * sizeof(struct kinfo_lwp)); 746 if (kd->lwpbase == NULL) 747 return NULL; 748 laddr = PTRTOINT64(p.p_lwps.lh_first); 749 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 750 st = kvm_read(kd, laddr, &l, sizeof(l)); 751 if (st == -1) { 752 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 753 return NULL; 754 } 755 kl = &kd->lwpbase[i]; 756 kl->l_laddr = laddr; 757 kl->l_forw = PTRTOINT64(l.l_forw); 758 kl->l_back = PTRTOINT64(l.l_back); 759 kl->l_addr = PTRTOINT64(l.l_addr); 760 kl->l_lid = l.l_lid; 761 kl->l_flag = l.l_flag; 762 kl->l_swtime = l.l_swtime; 763 kl->l_slptime = l.l_slptime; 764 kl->l_schedflags = 0; /* XXX */ 765 kl->l_holdcnt = l.l_holdcnt; 766 kl->l_priority = l.l_priority; 767 kl->l_usrpri = l.l_usrpri; 768 kl->l_stat = l.l_stat; 769 kl->l_wchan = PTRTOINT64(l.l_wchan); 770 if (l.l_wmesg) 771 (void)kvm_read(kd, (u_long)l.l_wmesg, 772 kl->l_wmesg, WMESGLEN); 773 kl->l_cpuid = KI_NOCPU; 774 laddr = PTRTOINT64(l.l_sibling.le_next); 775 } 776 } 777 778 *cnt = nlwps; 779 return kd->lwpbase; 780 } 781 782 struct kinfo_proc * 783 kvm_getprocs(kd, op, arg, cnt) 784 kvm_t *kd; 785 int op, arg; 786 int *cnt; 787 { 788 size_t size; 789 int mib[4], st, nprocs; 790 791 if (kd->procbase != NULL) { 792 free(kd->procbase); 793 /* 794 * Clear this pointer in case this call fails. Otherwise, 795 * kvm_close() will free it again. 796 */ 797 kd->procbase = NULL; 798 } 799 if (ISKMEM(kd)) { 800 size = 0; 801 mib[0] = CTL_KERN; 802 mib[1] = KERN_PROC; 803 mib[2] = op; 804 mib[3] = arg; 805 st = sysctl(mib, 4, NULL, &size, NULL, 0); 806 if (st == -1) { 807 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 808 return NULL; 809 } 810 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 811 if (kd->procbase == NULL) 812 return NULL; 813 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 814 if (st == -1) { 815 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 816 return NULL; 817 } 818 if (size % sizeof(struct kinfo_proc) != 0) { 819 _kvm_err(kd, kd->program, 820 "proc size mismatch (%lu total, %lu chunks)", 821 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 822 return NULL; 823 } 824 nprocs = size / sizeof(struct kinfo_proc); 825 } else if (ISSYSCTL(kd)) { 826 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 827 "can't use kvm_getprocs"); 828 return NULL; 829 } else { 830 struct nlist nl[5], *p; 831 832 nl[0].n_name = "_nprocs"; 833 nl[1].n_name = "_allproc"; 834 nl[2].n_name = "_deadproc"; 835 nl[3].n_name = "_zombproc"; 836 nl[4].n_name = NULL; 837 838 if (kvm_nlist(kd, nl) != 0) { 839 for (p = nl; p->n_type != 0; ++p) 840 ; 841 _kvm_err(kd, kd->program, 842 "%s: no such symbol", p->n_name); 843 return NULL; 844 } 845 if (KREAD(kd, nl[0].n_value, &nprocs)) { 846 _kvm_err(kd, kd->program, "can't read nprocs"); 847 return NULL; 848 } 849 size = nprocs * sizeof(struct kinfo_proc); 850 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 851 if (kd->procbase == NULL) 852 return NULL; 853 854 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 855 nl[2].n_value, nl[3].n_value, nprocs); 856 if (nprocs < 0) 857 return NULL; 858 #ifdef notdef 859 size = nprocs * sizeof(struct kinfo_proc); 860 (void)realloc(kd->procbase, size); 861 #endif 862 } 863 *cnt = nprocs; 864 return (kd->procbase); 865 } 866 867 void 868 _kvm_freeprocs(kd) 869 kvm_t *kd; 870 { 871 if (kd->procbase) { 872 free(kd->procbase); 873 kd->procbase = NULL; 874 } 875 } 876 877 void * 878 _kvm_realloc(kd, p, n) 879 kvm_t *kd; 880 void *p; 881 size_t n; 882 { 883 void *np = realloc(p, n); 884 885 if (np == NULL) 886 _kvm_err(kd, kd->program, "out of memory"); 887 return (np); 888 } 889 890 /* 891 * Read in an argument vector from the user address space of process p. 892 * addr if the user-space base address of narg null-terminated contiguous 893 * strings. This is used to read in both the command arguments and 894 * environment strings. Read at most maxcnt characters of strings. 895 */ 896 static char ** 897 kvm_argv(kd, p, addr, narg, maxcnt) 898 kvm_t *kd; 899 const struct miniproc *p; 900 u_long addr; 901 int narg; 902 int maxcnt; 903 { 904 char *np, *cp, *ep, *ap; 905 u_long oaddr = (u_long)~0L; 906 u_long len; 907 size_t cc; 908 char **argv; 909 910 /* 911 * Check that there aren't an unreasonable number of agruments, 912 * and that the address is in user space. 913 */ 914 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 915 return NULL; 916 917 if (kd->argv == NULL) { 918 /* 919 * Try to avoid reallocs. 920 */ 921 kd->argc = MAX(narg + 1, 32); 922 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 923 sizeof(*kd->argv)); 924 if (kd->argv == NULL) 925 return NULL; 926 } else if (narg + 1 > kd->argc) { 927 kd->argc = MAX(2 * kd->argc, narg + 1); 928 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 929 sizeof(*kd->argv)); 930 if (kd->argv == NULL) 931 return NULL; 932 } 933 if (kd->argspc == NULL) { 934 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 935 if (kd->argspc == NULL) 936 return NULL; 937 kd->arglen = kd->nbpg; 938 } 939 if (kd->argbuf == NULL) { 940 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 941 if (kd->argbuf == NULL) 942 return NULL; 943 } 944 cc = sizeof(char *) * narg; 945 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 946 return NULL; 947 ap = np = kd->argspc; 948 argv = kd->argv; 949 len = 0; 950 /* 951 * Loop over pages, filling in the argument vector. 952 */ 953 while (argv < kd->argv + narg && *argv != NULL) { 954 addr = (u_long)*argv & ~(kd->nbpg - 1); 955 if (addr != oaddr) { 956 if (kvm_ureadm(kd, p, addr, kd->argbuf, 957 (size_t)kd->nbpg) != kd->nbpg) 958 return NULL; 959 oaddr = addr; 960 } 961 addr = (u_long)*argv & (kd->nbpg - 1); 962 cp = kd->argbuf + (size_t)addr; 963 cc = kd->nbpg - (size_t)addr; 964 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 965 cc = (size_t)(maxcnt - len); 966 ep = memchr(cp, '\0', cc); 967 if (ep != NULL) 968 cc = ep - cp + 1; 969 if (len + cc > kd->arglen) { 970 int off; 971 char **pp; 972 char *op = kd->argspc; 973 974 kd->arglen *= 2; 975 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 976 (size_t)kd->arglen); 977 if (kd->argspc == NULL) 978 return NULL; 979 /* 980 * Adjust argv pointers in case realloc moved 981 * the string space. 982 */ 983 off = kd->argspc - op; 984 for (pp = kd->argv; pp < argv; pp++) 985 *pp += off; 986 ap += off; 987 np += off; 988 } 989 memcpy(np, cp, cc); 990 np += cc; 991 len += cc; 992 if (ep != NULL) { 993 *argv++ = ap; 994 ap = np; 995 } else 996 *argv += cc; 997 if (maxcnt > 0 && len >= maxcnt) { 998 /* 999 * We're stopping prematurely. Terminate the 1000 * current string. 1001 */ 1002 if (ep == NULL) { 1003 *np = '\0'; 1004 *argv++ = ap; 1005 } 1006 break; 1007 } 1008 } 1009 /* Make sure argv is terminated. */ 1010 *argv = NULL; 1011 return (kd->argv); 1012 } 1013 1014 static void 1015 ps_str_a(p, addr, n) 1016 struct ps_strings *p; 1017 u_long *addr; 1018 int *n; 1019 { 1020 *addr = (u_long)p->ps_argvstr; 1021 *n = p->ps_nargvstr; 1022 } 1023 1024 static void 1025 ps_str_e(p, addr, n) 1026 struct ps_strings *p; 1027 u_long *addr; 1028 int *n; 1029 { 1030 *addr = (u_long)p->ps_envstr; 1031 *n = p->ps_nenvstr; 1032 } 1033 1034 /* 1035 * Determine if the proc indicated by p is still active. 1036 * This test is not 100% foolproof in theory, but chances of 1037 * being wrong are very low. 1038 */ 1039 static int 1040 proc_verify(kd, kernp, p) 1041 kvm_t *kd; 1042 u_long kernp; 1043 const struct miniproc *p; 1044 { 1045 struct proc kernproc; 1046 1047 /* 1048 * Just read in the whole proc. It's not that big relative 1049 * to the cost of the read system call. 1050 */ 1051 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1052 sizeof(kernproc)) 1053 return 0; 1054 return (p->p_pid == kernproc.p_pid && 1055 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1056 } 1057 1058 static char ** 1059 kvm_doargv(kd, p, nchr, info) 1060 kvm_t *kd; 1061 const struct miniproc *p; 1062 int nchr; 1063 void (*info)(struct ps_strings *, u_long *, int *); 1064 { 1065 char **ap; 1066 u_long addr; 1067 int cnt; 1068 struct ps_strings arginfo; 1069 1070 /* 1071 * Pointers are stored at the top of the user stack. 1072 */ 1073 if (p->p_stat == SZOMB) 1074 return NULL; 1075 cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1076 (void *)&arginfo, sizeof(arginfo)); 1077 if (cnt != sizeof(arginfo)) 1078 return NULL; 1079 1080 (*info)(&arginfo, &addr, &cnt); 1081 if (cnt == 0) 1082 return NULL; 1083 ap = kvm_argv(kd, p, addr, cnt, nchr); 1084 /* 1085 * For live kernels, make sure this process didn't go away. 1086 */ 1087 if (ap != NULL && ISALIVE(kd) && 1088 !proc_verify(kd, (u_long)p->p_paddr, p)) 1089 ap = NULL; 1090 return (ap); 1091 } 1092 1093 /* 1094 * Get the command args. This code is now machine independent. 1095 */ 1096 char ** 1097 kvm_getargv(kd, kp, nchr) 1098 kvm_t *kd; 1099 const struct kinfo_proc *kp; 1100 int nchr; 1101 { 1102 struct miniproc p; 1103 1104 KPTOMINI(kp, &p); 1105 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1106 } 1107 1108 char ** 1109 kvm_getenvv(kd, kp, nchr) 1110 kvm_t *kd; 1111 const struct kinfo_proc *kp; 1112 int nchr; 1113 { 1114 struct miniproc p; 1115 1116 KPTOMINI(kp, &p); 1117 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1118 } 1119 1120 static char ** 1121 kvm_doargv2(kd, pid, type, nchr) 1122 kvm_t *kd; 1123 pid_t pid; 1124 int type; 1125 int nchr; 1126 { 1127 size_t bufs; 1128 int narg, mib[4]; 1129 size_t newarglen; 1130 char **ap, *bp, *endp; 1131 1132 /* 1133 * Check that there aren't an unreasonable number of agruments. 1134 */ 1135 if (nchr > ARG_MAX) 1136 return NULL; 1137 1138 if (nchr == 0) 1139 nchr = ARG_MAX; 1140 1141 /* Get number of strings in argv */ 1142 mib[0] = CTL_KERN; 1143 mib[1] = KERN_PROC_ARGS; 1144 mib[2] = pid; 1145 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1146 bufs = sizeof(narg); 1147 if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1) 1148 return NULL; 1149 1150 if (kd->argv == NULL) { 1151 /* 1152 * Try to avoid reallocs. 1153 */ 1154 kd->argc = MAX(narg + 1, 32); 1155 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 1156 sizeof(*kd->argv)); 1157 if (kd->argv == NULL) 1158 return NULL; 1159 } else if (narg + 1 > kd->argc) { 1160 kd->argc = MAX(2 * kd->argc, narg + 1); 1161 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 1162 sizeof(*kd->argv)); 1163 if (kd->argv == NULL) 1164 return NULL; 1165 } 1166 1167 newarglen = MIN(nchr, ARG_MAX); 1168 if (kd->arglen < newarglen) { 1169 if (kd->arglen == 0) 1170 kd->argspc = (char *)_kvm_malloc(kd, newarglen); 1171 else 1172 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 1173 newarglen); 1174 if (kd->argspc == NULL) 1175 return NULL; 1176 kd->arglen = newarglen; 1177 } 1178 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */ 1179 1180 mib[0] = CTL_KERN; 1181 mib[1] = KERN_PROC_ARGS; 1182 mib[2] = pid; 1183 mib[3] = type; 1184 bufs = kd->arglen; 1185 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1) 1186 return NULL; 1187 1188 bp = kd->argspc; 1189 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */ 1190 ap = kd->argv; 1191 endp = bp + MIN(nchr, bufs); 1192 1193 while (bp < endp) { 1194 *ap++ = bp; 1195 /* XXX: don't need following anymore, or stick check for max argc in above while loop? */ 1196 if (ap >= kd->argv + kd->argc) { 1197 kd->argc *= 2; 1198 kd->argv = _kvm_realloc(kd, kd->argv, 1199 kd->argc * sizeof(*kd->argv)); 1200 ap = kd->argv; 1201 } 1202 bp += strlen(bp) + 1; 1203 } 1204 *ap = NULL; 1205 1206 return (kd->argv); 1207 } 1208 1209 char ** 1210 kvm_getargv2(kd, kp, nchr) 1211 kvm_t *kd; 1212 const struct kinfo_proc2 *kp; 1213 int nchr; 1214 { 1215 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1216 } 1217 1218 char ** 1219 kvm_getenvv2(kd, kp, nchr) 1220 kvm_t *kd; 1221 const struct kinfo_proc2 *kp; 1222 int nchr; 1223 { 1224 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1225 } 1226 1227 /* 1228 * Read from user space. The user context is given by p. 1229 */ 1230 static ssize_t 1231 kvm_ureadm(kd, p, uva, buf, len) 1232 kvm_t *kd; 1233 const struct miniproc *p; 1234 u_long uva; 1235 char *buf; 1236 size_t len; 1237 { 1238 char *cp; 1239 1240 cp = buf; 1241 while (len > 0) { 1242 size_t cc; 1243 char *dp; 1244 u_long cnt; 1245 1246 dp = _kvm_ureadm(kd, p, uva, &cnt); 1247 if (dp == NULL) { 1248 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1249 return 0; 1250 } 1251 cc = (size_t)MIN(cnt, len); 1252 memcpy(cp, dp, cc); 1253 cp += cc; 1254 uva += cc; 1255 len -= cc; 1256 } 1257 return (ssize_t)(cp - buf); 1258 } 1259 1260 ssize_t 1261 kvm_uread(kd, p, uva, buf, len) 1262 kvm_t *kd; 1263 const struct proc *p; 1264 u_long uva; 1265 char *buf; 1266 size_t len; 1267 { 1268 struct miniproc mp; 1269 1270 PTOMINI(p, &mp); 1271 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1272 } 1273