1 /* $NetBSD: kvm_proc.c,v 1.60 2005/07/30 16:32:29 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 #if defined(LIBC_SCCS) && !defined(lint) 74 #if 0 75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 76 #else 77 __RCSID("$NetBSD: kvm_proc.c,v 1.60 2005/07/30 16:32:29 yamt Exp $"); 78 #endif 79 #endif /* LIBC_SCCS and not lint */ 80 81 /* 82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 83 * users of this code, so we've factored it out into a separate module. 84 * Thus, we keep this grunge out of the other kvm applications (i.e., 85 * most other applications are interested only in open/close/read/nlist). 86 */ 87 88 #include <sys/param.h> 89 #include <sys/user.h> 90 #include <sys/lwp.h> 91 #include <sys/proc.h> 92 #include <sys/exec.h> 93 #include <sys/stat.h> 94 #include <sys/ioctl.h> 95 #include <sys/tty.h> 96 #include <stdlib.h> 97 #include <stddef.h> 98 #include <string.h> 99 #include <unistd.h> 100 #include <nlist.h> 101 #include <kvm.h> 102 103 #include <uvm/uvm_extern.h> 104 #include <uvm/uvm_amap.h> 105 106 #include <sys/sysctl.h> 107 108 #include <limits.h> 109 #include <db.h> 110 #include <paths.h> 111 112 #include "kvm_private.h" 113 114 /* 115 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 116 */ 117 struct miniproc { 118 struct vmspace *p_vmspace; 119 char p_stat; 120 struct proc *p_paddr; 121 pid_t p_pid; 122 }; 123 124 /* 125 * Convert from struct proc and kinfo_proc{,2} to miniproc. 126 */ 127 #define PTOMINI(kp, p) \ 128 do { \ 129 (p)->p_stat = (kp)->p_stat; \ 130 (p)->p_pid = (kp)->p_pid; \ 131 (p)->p_paddr = NULL; \ 132 (p)->p_vmspace = (kp)->p_vmspace; \ 133 } while (/*CONSTCOND*/0); 134 135 #define KPTOMINI(kp, p) \ 136 do { \ 137 (p)->p_stat = (kp)->kp_proc.p_stat; \ 138 (p)->p_pid = (kp)->kp_proc.p_pid; \ 139 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 140 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 141 } while (/*CONSTCOND*/0); 142 143 #define KP2TOMINI(kp, p) \ 144 do { \ 145 (p)->p_stat = (kp)->p_stat; \ 146 (p)->p_pid = (kp)->p_pid; \ 147 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 148 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 149 } while (/*CONSTCOND*/0); 150 151 152 #define KREAD(kd, addr, obj) \ 153 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 154 155 /* XXX: What uses these two functions? */ 156 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 157 u_long *)); 158 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 159 size_t)); 160 161 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 162 u_long *)); 163 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 164 char *, size_t)); 165 166 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 167 int)); 168 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 169 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 170 void (*)(struct ps_strings *, u_long *, int *))); 171 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 172 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 173 struct kinfo_proc *, int)); 174 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 175 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 176 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 177 178 179 static char * 180 _kvm_ureadm(kd, p, va, cnt) 181 kvm_t *kd; 182 const struct miniproc *p; 183 u_long va; 184 u_long *cnt; 185 { 186 int true = 1; 187 u_long addr, head; 188 u_long offset; 189 struct vm_map_entry vme; 190 struct vm_amap amap; 191 struct vm_anon *anonp, anon; 192 struct vm_page pg; 193 u_long slot; 194 195 if (kd->swapspc == NULL) { 196 kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 197 if (kd->swapspc == NULL) 198 return (NULL); 199 } 200 201 /* 202 * Look through the address map for the memory object 203 * that corresponds to the given virtual address. 204 * The header just has the entire valid range. 205 */ 206 head = (u_long)&p->p_vmspace->vm_map.header; 207 addr = head; 208 while (true) { 209 if (KREAD(kd, addr, &vme)) 210 return (NULL); 211 212 if (va >= vme.start && va < vme.end && 213 vme.aref.ar_amap != NULL) 214 break; 215 216 addr = (u_long)vme.next; 217 if (addr == head) 218 return (NULL); 219 } 220 221 /* 222 * we found the map entry, now to find the object... 223 */ 224 if (vme.aref.ar_amap == NULL) 225 return (NULL); 226 227 addr = (u_long)vme.aref.ar_amap; 228 if (KREAD(kd, addr, &amap)) 229 return (NULL); 230 231 offset = va - vme.start; 232 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 233 /* sanity-check slot number */ 234 if (slot > amap.am_nslot) 235 return (NULL); 236 237 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 238 if (KREAD(kd, addr, &anonp)) 239 return (NULL); 240 241 addr = (u_long)anonp; 242 if (KREAD(kd, addr, &anon)) 243 return (NULL); 244 245 addr = (u_long)anon.an_page; 246 if (addr) { 247 if (KREAD(kd, addr, &pg)) 248 return (NULL); 249 250 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 251 (off_t)pg.phys_addr) != kd->nbpg) 252 return (NULL); 253 } else { 254 if (kd->swfd < 0 || 255 pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 256 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 257 return (NULL); 258 } 259 260 /* Found the page. */ 261 offset %= kd->nbpg; 262 *cnt = kd->nbpg - offset; 263 return (&kd->swapspc[(size_t)offset]); 264 } 265 266 char * 267 _kvm_uread(kd, p, va, cnt) 268 kvm_t *kd; 269 const struct proc *p; 270 u_long va; 271 u_long *cnt; 272 { 273 struct miniproc mp; 274 275 PTOMINI(p, &mp); 276 return (_kvm_ureadm(kd, &mp, va, cnt)); 277 } 278 279 /* 280 * Read proc's from memory file into buffer bp, which has space to hold 281 * at most maxcnt procs. 282 */ 283 static int 284 kvm_proclist(kd, what, arg, p, bp, maxcnt) 285 kvm_t *kd; 286 int what, arg; 287 struct proc *p; 288 struct kinfo_proc *bp; 289 int maxcnt; 290 { 291 int cnt = 0; 292 int nlwps; 293 struct kinfo_lwp *kl; 294 struct eproc eproc; 295 struct pgrp pgrp; 296 struct session sess; 297 struct tty tty; 298 struct proc proc; 299 300 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 301 if (KREAD(kd, (u_long)p, &proc)) { 302 _kvm_err(kd, kd->program, "can't read proc at %p", p); 303 return (-1); 304 } 305 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 306 if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 307 &eproc.e_ucred)) { 308 _kvm_err(kd, kd->program, 309 "can't read proc credentials at %p", p); 310 return (-1); 311 } 312 313 switch (what) { 314 315 case KERN_PROC_PID: 316 if (proc.p_pid != (pid_t)arg) 317 continue; 318 break; 319 320 case KERN_PROC_UID: 321 if (eproc.e_ucred.cr_uid != (uid_t)arg) 322 continue; 323 break; 324 325 case KERN_PROC_RUID: 326 if (eproc.e_pcred.p_ruid != (uid_t)arg) 327 continue; 328 break; 329 } 330 /* 331 * We're going to add another proc to the set. If this 332 * will overflow the buffer, assume the reason is because 333 * nprocs (or the proc list) is corrupt and declare an error. 334 */ 335 if (cnt >= maxcnt) { 336 _kvm_err(kd, kd->program, "nprocs corrupt"); 337 return (-1); 338 } 339 /* 340 * gather eproc 341 */ 342 eproc.e_paddr = p; 343 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 344 _kvm_err(kd, kd->program, "can't read pgrp at %p", 345 proc.p_pgrp); 346 return (-1); 347 } 348 eproc.e_sess = pgrp.pg_session; 349 eproc.e_pgid = pgrp.pg_id; 350 eproc.e_jobc = pgrp.pg_jobc; 351 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 352 _kvm_err(kd, kd->program, "can't read session at %p", 353 pgrp.pg_session); 354 return (-1); 355 } 356 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 357 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 358 _kvm_err(kd, kd->program, 359 "can't read tty at %p", sess.s_ttyp); 360 return (-1); 361 } 362 eproc.e_tdev = tty.t_dev; 363 eproc.e_tsess = tty.t_session; 364 if (tty.t_pgrp != NULL) { 365 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 366 _kvm_err(kd, kd->program, 367 "can't read tpgrp at %p", 368 tty.t_pgrp); 369 return (-1); 370 } 371 eproc.e_tpgid = pgrp.pg_id; 372 } else 373 eproc.e_tpgid = -1; 374 } else 375 eproc.e_tdev = NODEV; 376 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 377 eproc.e_sid = sess.s_sid; 378 if (sess.s_leader == p) 379 eproc.e_flag |= EPROC_SLEADER; 380 /* 381 * Fill in the old-style proc.p_wmesg by copying the wmesg 382 * from the first available LWP. 383 */ 384 kl = kvm_getlwps(kd, proc.p_pid, 385 (u_long)PTRTOUINT64(eproc.e_paddr), 386 sizeof(struct kinfo_lwp), &nlwps); 387 if (kl) { 388 if (nlwps > 0) { 389 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 390 } 391 } 392 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 393 sizeof(eproc.e_vm)); 394 395 eproc.e_xsize = eproc.e_xrssize = 0; 396 eproc.e_xccount = eproc.e_xswrss = 0; 397 398 switch (what) { 399 400 case KERN_PROC_PGRP: 401 if (eproc.e_pgid != (pid_t)arg) 402 continue; 403 break; 404 405 case KERN_PROC_TTY: 406 if ((proc.p_flag & P_CONTROLT) == 0 || 407 eproc.e_tdev != (dev_t)arg) 408 continue; 409 break; 410 } 411 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 412 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 413 ++bp; 414 ++cnt; 415 } 416 return (cnt); 417 } 418 419 /* 420 * Build proc info array by reading in proc list from a crash dump. 421 * Return number of procs read. maxcnt is the max we will read. 422 */ 423 static int 424 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 425 kvm_t *kd; 426 int what, arg; 427 u_long a_allproc; 428 u_long a_zombproc; 429 int maxcnt; 430 { 431 struct kinfo_proc *bp = kd->procbase; 432 int acnt, zcnt; 433 struct proc *p; 434 435 if (KREAD(kd, a_allproc, &p)) { 436 _kvm_err(kd, kd->program, "cannot read allproc"); 437 return (-1); 438 } 439 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 440 if (acnt < 0) 441 return (acnt); 442 443 if (KREAD(kd, a_zombproc, &p)) { 444 _kvm_err(kd, kd->program, "cannot read zombproc"); 445 return (-1); 446 } 447 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 448 maxcnt - acnt); 449 if (zcnt < 0) 450 zcnt = 0; 451 452 return (acnt + zcnt); 453 } 454 455 struct kinfo_proc2 * 456 kvm_getproc2(kd, op, arg, esize, cnt) 457 kvm_t *kd; 458 int op, arg; 459 size_t esize; 460 int *cnt; 461 { 462 size_t size; 463 int mib[6], st, nprocs; 464 struct pstats pstats; 465 466 if (kd->procbase2 != NULL) { 467 free(kd->procbase2); 468 /* 469 * Clear this pointer in case this call fails. Otherwise, 470 * kvm_close() will free it again. 471 */ 472 kd->procbase2 = NULL; 473 } 474 475 if (ISSYSCTL(kd)) { 476 size = 0; 477 mib[0] = CTL_KERN; 478 mib[1] = KERN_PROC2; 479 mib[2] = op; 480 mib[3] = arg; 481 mib[4] = (int)esize; 482 mib[5] = 0; 483 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 484 if (st == -1) { 485 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 486 return (NULL); 487 } 488 489 mib[5] = (int) (size / esize); 490 kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size); 491 if (kd->procbase2 == NULL) 492 return (NULL); 493 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 494 if (st == -1) { 495 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 496 return (NULL); 497 } 498 nprocs = (int) (size / esize); 499 } else { 500 char *kp2c; 501 struct kinfo_proc *kp; 502 struct kinfo_proc2 kp2, *kp2p; 503 struct kinfo_lwp *kl; 504 int i, nlwps; 505 506 kp = kvm_getprocs(kd, op, arg, &nprocs); 507 if (kp == NULL) 508 return (NULL); 509 510 kd->procbase2 = _kvm_malloc(kd, nprocs * esize); 511 kp2c = (char *)(void *)kd->procbase2; 512 kp2p = &kp2; 513 for (i = 0; i < nprocs; i++, kp++) { 514 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 515 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 516 sizeof(struct kinfo_lwp), &nlwps); 517 /* We use kl[0] as the "representative" LWP */ 518 memset(kp2p, 0, sizeof(kp2)); 519 kp2p->p_forw = kl[0].l_forw; 520 kp2p->p_back = kl[0].l_back; 521 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 522 kp2p->p_addr = kl[0].l_addr; 523 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 524 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 525 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 526 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 527 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 528 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 529 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 530 kp2p->p_tsess = 0; 531 kp2p->p_ru = PTRTOUINT64(kp->kp_proc.p_ru); 532 533 kp2p->p_eflag = 0; 534 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 535 kp2p->p_flag = kp->kp_proc.p_flag; 536 537 kp2p->p_pid = kp->kp_proc.p_pid; 538 539 kp2p->p_ppid = kp->kp_eproc.e_ppid; 540 kp2p->p_sid = kp->kp_eproc.e_sid; 541 kp2p->p__pgid = kp->kp_eproc.e_pgid; 542 543 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 544 545 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 546 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 547 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 548 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 549 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 550 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 551 552 /*CONSTCOND*/ 553 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 554 MIN(sizeof(kp2p->p_groups), 555 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 556 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 557 558 kp2p->p_jobc = kp->kp_eproc.e_jobc; 559 kp2p->p_tdev = kp->kp_eproc.e_tdev; 560 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 561 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 562 563 kp2p->p_estcpu = kp->kp_proc.p_estcpu; 564 kp2p->p_rtime_sec = kp->kp_proc.p_estcpu; 565 kp2p->p_rtime_usec = kp->kp_proc.p_estcpu; 566 kp2p->p_cpticks = kp->kp_proc.p_cpticks; 567 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 568 kp2p->p_swtime = kl[0].l_swtime; 569 kp2p->p_slptime = kl[0].l_slptime; 570 #if 0 /* XXX thorpej */ 571 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 572 #else 573 kp2p->p_schedflags = 0; 574 #endif 575 576 kp2p->p_uticks = kp->kp_proc.p_uticks; 577 kp2p->p_sticks = kp->kp_proc.p_sticks; 578 kp2p->p_iticks = kp->kp_proc.p_iticks; 579 580 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 581 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 582 583 kp2p->p_holdcnt = kl[0].l_holdcnt; 584 585 memcpy(&kp2p->p_siglist, 586 &kp->kp_proc.p_sigctx.ps_siglist, 587 sizeof(ki_sigset_t)); 588 memcpy(&kp2p->p_sigmask, 589 &kp->kp_proc.p_sigctx.ps_sigmask, 590 sizeof(ki_sigset_t)); 591 memcpy(&kp2p->p_sigignore, 592 &kp->kp_proc.p_sigctx.ps_sigignore, 593 sizeof(ki_sigset_t)); 594 memcpy(&kp2p->p_sigcatch, 595 &kp->kp_proc.p_sigctx.ps_sigcatch, 596 sizeof(ki_sigset_t)); 597 598 kp2p->p_stat = kp->kp_proc.p_stat; 599 kp2p->p_priority = kl[0].l_priority; 600 kp2p->p_usrpri = kl[0].l_usrpri; 601 kp2p->p_nice = kp->kp_proc.p_nice; 602 603 kp2p->p_xstat = kp->kp_proc.p_xstat; 604 kp2p->p_acflag = kp->kp_proc.p_acflag; 605 606 /*CONSTCOND*/ 607 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 608 MIN(sizeof(kp2p->p_comm), 609 sizeof(kp->kp_proc.p_comm))); 610 611 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 612 sizeof(kp2p->p_wmesg)); 613 kp2p->p_wchan = kl[0].l_wchan; 614 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 615 sizeof(kp2p->p_login)); 616 617 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 618 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 619 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 620 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 621 622 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 623 624 kp2p->p_realflag = kp->kp_proc.p_flag; 625 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 626 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 627 kp2p->p_realstat = kp->kp_proc.p_stat; 628 629 if (P_ZOMBIE(&kp->kp_proc) || 630 kp->kp_proc.p_stats == NULL || 631 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 632 kp2p->p_uvalid = 0; 633 } else { 634 kp2p->p_uvalid = 1; 635 636 kp2p->p_ustart_sec = (u_int32_t) 637 pstats.p_start.tv_sec; 638 kp2p->p_ustart_usec = (u_int32_t) 639 pstats.p_start.tv_usec; 640 641 kp2p->p_uutime_sec = (u_int32_t) 642 pstats.p_ru.ru_utime.tv_sec; 643 kp2p->p_uutime_usec = (u_int32_t) 644 pstats.p_ru.ru_utime.tv_usec; 645 kp2p->p_ustime_sec = (u_int32_t) 646 pstats.p_ru.ru_stime.tv_sec; 647 kp2p->p_ustime_usec = (u_int32_t) 648 pstats.p_ru.ru_stime.tv_usec; 649 650 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 651 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 652 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 653 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 654 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 655 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 656 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 657 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 658 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 659 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 660 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 661 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 662 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 663 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 664 665 kp2p->p_uctime_sec = (u_int32_t) 666 (pstats.p_cru.ru_utime.tv_sec + 667 pstats.p_cru.ru_stime.tv_sec); 668 kp2p->p_uctime_usec = (u_int32_t) 669 (pstats.p_cru.ru_utime.tv_usec + 670 pstats.p_cru.ru_stime.tv_usec); 671 } 672 673 memcpy(kp2c, &kp2, esize); 674 kp2c += esize; 675 } 676 677 _kvm_freeprocs(kd); 678 } 679 *cnt = nprocs; 680 return (kd->procbase2); 681 } 682 683 struct kinfo_lwp * 684 kvm_getlwps(kd, pid, paddr, esize, cnt) 685 kvm_t *kd; 686 int pid; 687 u_long paddr; 688 size_t esize; 689 int *cnt; 690 { 691 size_t size; 692 int mib[5], nlwps; 693 ssize_t st; 694 struct kinfo_lwp *kl; 695 696 if (kd->lwpbase != NULL) { 697 free(kd->lwpbase); 698 /* 699 * Clear this pointer in case this call fails. Otherwise, 700 * kvm_close() will free it again. 701 */ 702 kd->lwpbase = NULL; 703 } 704 705 if (ISSYSCTL(kd)) { 706 size = 0; 707 mib[0] = CTL_KERN; 708 mib[1] = KERN_LWP; 709 mib[2] = pid; 710 mib[3] = (int)esize; 711 mib[4] = 0; 712 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 713 if (st == -1) { 714 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 715 return (NULL); 716 } 717 718 mib[4] = (int) (size / esize); 719 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size); 720 if (kd->lwpbase == NULL) 721 return (NULL); 722 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 723 if (st == -1) { 724 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 725 return (NULL); 726 } 727 nlwps = (int) (size / esize); 728 } else { 729 /* grovel through the memory image */ 730 struct proc p; 731 struct lwp l; 732 u_long laddr; 733 int i; 734 735 st = kvm_read(kd, paddr, &p, sizeof(p)); 736 if (st == -1) { 737 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 738 return (NULL); 739 } 740 741 nlwps = p.p_nlwps; 742 kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, 743 nlwps * sizeof(struct kinfo_lwp)); 744 if (kd->lwpbase == NULL) 745 return (NULL); 746 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 747 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 748 st = kvm_read(kd, laddr, &l, sizeof(l)); 749 if (st == -1) { 750 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 751 return (NULL); 752 } 753 kl = &kd->lwpbase[i]; 754 kl->l_laddr = laddr; 755 kl->l_forw = PTRTOUINT64(l.l_forw); 756 kl->l_back = PTRTOUINT64(l.l_back); 757 kl->l_addr = PTRTOUINT64(l.l_addr); 758 kl->l_lid = l.l_lid; 759 kl->l_flag = l.l_flag; 760 kl->l_swtime = l.l_swtime; 761 kl->l_slptime = l.l_slptime; 762 kl->l_schedflags = 0; /* XXX */ 763 kl->l_holdcnt = l.l_holdcnt; 764 kl->l_priority = l.l_priority; 765 kl->l_usrpri = l.l_usrpri; 766 kl->l_stat = l.l_stat; 767 kl->l_wchan = PTRTOUINT64(l.l_wchan); 768 if (l.l_wmesg) 769 (void)kvm_read(kd, (u_long)l.l_wmesg, 770 kl->l_wmesg, (size_t)WMESGLEN); 771 kl->l_cpuid = KI_NOCPU; 772 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 773 } 774 } 775 776 *cnt = nlwps; 777 return (kd->lwpbase); 778 } 779 780 struct kinfo_proc * 781 kvm_getprocs(kd, op, arg, cnt) 782 kvm_t *kd; 783 int op, arg; 784 int *cnt; 785 { 786 size_t size; 787 int mib[4], st, nprocs; 788 789 if (kd->procbase != NULL) { 790 free(kd->procbase); 791 /* 792 * Clear this pointer in case this call fails. Otherwise, 793 * kvm_close() will free it again. 794 */ 795 kd->procbase = NULL; 796 } 797 if (ISKMEM(kd)) { 798 size = 0; 799 mib[0] = CTL_KERN; 800 mib[1] = KERN_PROC; 801 mib[2] = op; 802 mib[3] = arg; 803 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 804 if (st == -1) { 805 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 806 return (NULL); 807 } 808 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 809 if (kd->procbase == NULL) 810 return (NULL); 811 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 812 if (st == -1) { 813 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 814 return (NULL); 815 } 816 if (size % sizeof(struct kinfo_proc) != 0) { 817 _kvm_err(kd, kd->program, 818 "proc size mismatch (%lu total, %lu chunks)", 819 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 820 return (NULL); 821 } 822 nprocs = (int) (size / sizeof(struct kinfo_proc)); 823 } else if (ISSYSCTL(kd)) { 824 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 825 "can't use kvm_getprocs"); 826 return (NULL); 827 } else { 828 struct nlist nl[4], *p; 829 830 (void)memset(nl, 0, sizeof(nl)); 831 nl[0].n_name = "_nprocs"; 832 nl[1].n_name = "_allproc"; 833 nl[2].n_name = "_zombproc"; 834 nl[3].n_name = NULL; 835 836 if (kvm_nlist(kd, nl) != 0) { 837 for (p = nl; p->n_type != 0; ++p) 838 continue; 839 _kvm_err(kd, kd->program, 840 "%s: no such symbol", p->n_name); 841 return (NULL); 842 } 843 if (KREAD(kd, nl[0].n_value, &nprocs)) { 844 _kvm_err(kd, kd->program, "can't read nprocs"); 845 return (NULL); 846 } 847 size = nprocs * sizeof(struct kinfo_proc); 848 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 849 if (kd->procbase == NULL) 850 return (NULL); 851 852 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 853 nl[2].n_value, nprocs); 854 if (nprocs < 0) 855 return (NULL); 856 #ifdef notdef 857 size = nprocs * sizeof(struct kinfo_proc); 858 (void)realloc(kd->procbase, size); 859 #endif 860 } 861 *cnt = nprocs; 862 return (kd->procbase); 863 } 864 865 void 866 _kvm_freeprocs(kd) 867 kvm_t *kd; 868 { 869 870 if (kd->procbase) { 871 free(kd->procbase); 872 kd->procbase = NULL; 873 } 874 } 875 876 void * 877 _kvm_realloc(kd, p, n) 878 kvm_t *kd; 879 void *p; 880 size_t n; 881 { 882 void *np = realloc(p, n); 883 884 if (np == NULL) 885 _kvm_err(kd, kd->program, "out of memory"); 886 return (np); 887 } 888 889 /* 890 * Read in an argument vector from the user address space of process p. 891 * addr if the user-space base address of narg null-terminated contiguous 892 * strings. This is used to read in both the command arguments and 893 * environment strings. Read at most maxcnt characters of strings. 894 */ 895 static char ** 896 kvm_argv(kd, p, addr, narg, maxcnt) 897 kvm_t *kd; 898 const struct miniproc *p; 899 u_long addr; 900 int narg; 901 int maxcnt; 902 { 903 char *np, *cp, *ep, *ap; 904 u_long oaddr = (u_long)~0L; 905 u_long len; 906 size_t cc; 907 char **argv; 908 909 /* 910 * Check that there aren't an unreasonable number of arguments, 911 * and that the address is in user space. 912 */ 913 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 914 return (NULL); 915 916 if (kd->argv == NULL) { 917 /* 918 * Try to avoid reallocs. 919 */ 920 kd->argc = MAX(narg + 1, 32); 921 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 922 sizeof(*kd->argv)); 923 if (kd->argv == NULL) 924 return (NULL); 925 } else if (narg + 1 > kd->argc) { 926 kd->argc = MAX(2 * kd->argc, narg + 1); 927 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 928 sizeof(*kd->argv)); 929 if (kd->argv == NULL) 930 return (NULL); 931 } 932 if (kd->argspc == NULL) { 933 kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 934 if (kd->argspc == NULL) 935 return (NULL); 936 kd->arglen = kd->nbpg; 937 } 938 if (kd->argbuf == NULL) { 939 kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg); 940 if (kd->argbuf == NULL) 941 return (NULL); 942 } 943 cc = sizeof(char *) * narg; 944 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 945 return (NULL); 946 ap = np = kd->argspc; 947 argv = kd->argv; 948 len = 0; 949 /* 950 * Loop over pages, filling in the argument vector. 951 */ 952 while (argv < kd->argv + narg && *argv != NULL) { 953 addr = (u_long)*argv & ~(kd->nbpg - 1); 954 if (addr != oaddr) { 955 if (kvm_ureadm(kd, p, addr, kd->argbuf, 956 (size_t)kd->nbpg) != kd->nbpg) 957 return (NULL); 958 oaddr = addr; 959 } 960 addr = (u_long)*argv & (kd->nbpg - 1); 961 cp = kd->argbuf + (size_t)addr; 962 cc = kd->nbpg - (size_t)addr; 963 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 964 cc = (size_t)(maxcnt - len); 965 ep = memchr(cp, '\0', cc); 966 if (ep != NULL) 967 cc = ep - cp + 1; 968 if (len + cc > kd->arglen) { 969 ptrdiff_t off; 970 char **pp; 971 char *op = kd->argspc; 972 973 kd->arglen *= 2; 974 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 975 (size_t)kd->arglen); 976 if (kd->argspc == NULL) 977 return (NULL); 978 /* 979 * Adjust argv pointers in case realloc moved 980 * the string space. 981 */ 982 off = kd->argspc - op; 983 for (pp = kd->argv; pp < argv; pp++) 984 *pp += off; 985 ap += off; 986 np += off; 987 } 988 memcpy(np, cp, cc); 989 np += cc; 990 len += cc; 991 if (ep != NULL) { 992 *argv++ = ap; 993 ap = np; 994 } else 995 *argv += cc; 996 if (maxcnt > 0 && len >= maxcnt) { 997 /* 998 * We're stopping prematurely. Terminate the 999 * current string. 1000 */ 1001 if (ep == NULL) { 1002 *np = '\0'; 1003 *argv++ = ap; 1004 } 1005 break; 1006 } 1007 } 1008 /* Make sure argv is terminated. */ 1009 *argv = NULL; 1010 return (kd->argv); 1011 } 1012 1013 static void 1014 ps_str_a(p, addr, n) 1015 struct ps_strings *p; 1016 u_long *addr; 1017 int *n; 1018 { 1019 1020 *addr = (u_long)p->ps_argvstr; 1021 *n = p->ps_nargvstr; 1022 } 1023 1024 static void 1025 ps_str_e(p, addr, n) 1026 struct ps_strings *p; 1027 u_long *addr; 1028 int *n; 1029 { 1030 1031 *addr = (u_long)p->ps_envstr; 1032 *n = p->ps_nenvstr; 1033 } 1034 1035 /* 1036 * Determine if the proc indicated by p is still active. 1037 * This test is not 100% foolproof in theory, but chances of 1038 * being wrong are very low. 1039 */ 1040 static int 1041 proc_verify(kd, kernp, p) 1042 kvm_t *kd; 1043 u_long kernp; 1044 const struct miniproc *p; 1045 { 1046 struct proc kernproc; 1047 1048 /* 1049 * Just read in the whole proc. It's not that big relative 1050 * to the cost of the read system call. 1051 */ 1052 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1053 sizeof(kernproc)) 1054 return (0); 1055 return (p->p_pid == kernproc.p_pid && 1056 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1057 } 1058 1059 static char ** 1060 kvm_doargv(kd, p, nchr, info) 1061 kvm_t *kd; 1062 const struct miniproc *p; 1063 int nchr; 1064 void (*info)(struct ps_strings *, u_long *, int *); 1065 { 1066 char **ap; 1067 u_long addr; 1068 int cnt; 1069 struct ps_strings arginfo; 1070 1071 /* 1072 * Pointers are stored at the top of the user stack. 1073 */ 1074 if (p->p_stat == SZOMB) 1075 return (NULL); 1076 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1077 (void *)&arginfo, sizeof(arginfo)); 1078 if (cnt != sizeof(arginfo)) 1079 return (NULL); 1080 1081 (*info)(&arginfo, &addr, &cnt); 1082 if (cnt == 0) 1083 return (NULL); 1084 ap = kvm_argv(kd, p, addr, cnt, nchr); 1085 /* 1086 * For live kernels, make sure this process didn't go away. 1087 */ 1088 if (ap != NULL && ISALIVE(kd) && 1089 !proc_verify(kd, (u_long)p->p_paddr, p)) 1090 ap = NULL; 1091 return (ap); 1092 } 1093 1094 /* 1095 * Get the command args. This code is now machine independent. 1096 */ 1097 char ** 1098 kvm_getargv(kd, kp, nchr) 1099 kvm_t *kd; 1100 const struct kinfo_proc *kp; 1101 int nchr; 1102 { 1103 struct miniproc p; 1104 1105 KPTOMINI(kp, &p); 1106 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1107 } 1108 1109 char ** 1110 kvm_getenvv(kd, kp, nchr) 1111 kvm_t *kd; 1112 const struct kinfo_proc *kp; 1113 int nchr; 1114 { 1115 struct miniproc p; 1116 1117 KPTOMINI(kp, &p); 1118 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1119 } 1120 1121 static char ** 1122 kvm_doargv2(kd, pid, type, nchr) 1123 kvm_t *kd; 1124 pid_t pid; 1125 int type; 1126 int nchr; 1127 { 1128 size_t bufs; 1129 int narg, mib[4]; 1130 size_t newarglen; 1131 char **ap, *bp, *endp; 1132 1133 /* 1134 * Check that there aren't an unreasonable number of arguments. 1135 */ 1136 if (nchr > ARG_MAX) 1137 return (NULL); 1138 1139 if (nchr == 0) 1140 nchr = ARG_MAX; 1141 1142 /* Get number of strings in argv */ 1143 mib[0] = CTL_KERN; 1144 mib[1] = KERN_PROC_ARGS; 1145 mib[2] = pid; 1146 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1147 bufs = sizeof(narg); 1148 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1149 return (NULL); 1150 1151 if (kd->argv == NULL) { 1152 /* 1153 * Try to avoid reallocs. 1154 */ 1155 kd->argc = MAX(narg + 1, 32); 1156 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 1157 sizeof(*kd->argv)); 1158 if (kd->argv == NULL) 1159 return (NULL); 1160 } else if (narg + 1 > kd->argc) { 1161 kd->argc = MAX(2 * kd->argc, narg + 1); 1162 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 1163 sizeof(*kd->argv)); 1164 if (kd->argv == NULL) 1165 return (NULL); 1166 } 1167 1168 newarglen = MIN(nchr, ARG_MAX); 1169 if (kd->arglen < newarglen) { 1170 if (kd->arglen == 0) 1171 kd->argspc = (char *)_kvm_malloc(kd, newarglen); 1172 else 1173 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 1174 newarglen); 1175 if (kd->argspc == NULL) 1176 return (NULL); 1177 if (newarglen > INT_MAX) 1178 return NULL; 1179 kd->arglen = (int)newarglen; 1180 } 1181 memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */ 1182 1183 mib[0] = CTL_KERN; 1184 mib[1] = KERN_PROC_ARGS; 1185 mib[2] = pid; 1186 mib[3] = type; 1187 bufs = kd->arglen; 1188 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1189 return (NULL); 1190 1191 bp = kd->argspc; 1192 bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */ 1193 ap = kd->argv; 1194 endp = bp + MIN(nchr, bufs); 1195 1196 while (bp < endp) { 1197 *ap++ = bp; 1198 /* 1199 * XXX: don't need following anymore, or stick check 1200 * for max argc in above while loop? 1201 */ 1202 if (ap >= kd->argv + kd->argc) { 1203 kd->argc *= 2; 1204 kd->argv = _kvm_realloc(kd, kd->argv, 1205 kd->argc * sizeof(*kd->argv)); 1206 ap = kd->argv; 1207 } 1208 bp += strlen(bp) + 1; 1209 } 1210 *ap = NULL; 1211 1212 return (kd->argv); 1213 } 1214 1215 char ** 1216 kvm_getargv2(kd, kp, nchr) 1217 kvm_t *kd; 1218 const struct kinfo_proc2 *kp; 1219 int nchr; 1220 { 1221 1222 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1223 } 1224 1225 char ** 1226 kvm_getenvv2(kd, kp, nchr) 1227 kvm_t *kd; 1228 const struct kinfo_proc2 *kp; 1229 int nchr; 1230 { 1231 1232 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1233 } 1234 1235 /* 1236 * Read from user space. The user context is given by p. 1237 */ 1238 static ssize_t 1239 kvm_ureadm(kd, p, uva, buf, len) 1240 kvm_t *kd; 1241 const struct miniproc *p; 1242 u_long uva; 1243 char *buf; 1244 size_t len; 1245 { 1246 char *cp; 1247 1248 cp = buf; 1249 while (len > 0) { 1250 size_t cc; 1251 char *dp; 1252 u_long cnt; 1253 1254 dp = _kvm_ureadm(kd, p, uva, &cnt); 1255 if (dp == NULL) { 1256 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1257 return (0); 1258 } 1259 cc = (size_t)MIN(cnt, len); 1260 memcpy(cp, dp, cc); 1261 cp += cc; 1262 uva += cc; 1263 len -= cc; 1264 } 1265 return (ssize_t)(cp - buf); 1266 } 1267 1268 ssize_t 1269 kvm_uread(kd, p, uva, buf, len) 1270 kvm_t *kd; 1271 const struct proc *p; 1272 u_long uva; 1273 char *buf; 1274 size_t len; 1275 { 1276 struct miniproc mp; 1277 1278 PTOMINI(p, &mp); 1279 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1280 } 1281