1 /* $NetBSD: kvm_proc.c,v 1.99 2023/08/10 20:38:00 mrg Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1989, 1992, 1993 34 * The Regents of the University of California. All rights reserved. 35 * 36 * This code is derived from software developed by the Computer Systems 37 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 38 * BG 91-66 and contributed to Berkeley. 39 * 40 * Redistribution and use in source and binary forms, with or without 41 * modification, are permitted provided that the following conditions 42 * are met: 43 * 1. Redistributions of source code must retain the above copyright 44 * notice, this list of conditions and the following disclaimer. 45 * 2. Redistributions in binary form must reproduce the above copyright 46 * notice, this list of conditions and the following disclaimer in the 47 * documentation and/or other materials provided with the distribution. 48 * 3. Neither the name of the University nor the names of its contributors 49 * may be used to endorse or promote products derived from this software 50 * without specific prior written permission. 51 * 52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 62 * SUCH DAMAGE. 63 */ 64 65 #include <sys/cdefs.h> 66 #if defined(LIBC_SCCS) && !defined(lint) 67 #if 0 68 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 69 #else 70 __RCSID("$NetBSD: kvm_proc.c,v 1.99 2023/08/10 20:38:00 mrg Exp $"); 71 #endif 72 #endif /* LIBC_SCCS and not lint */ 73 74 /* 75 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 76 * users of this code, so we've factored it out into a separate module. 77 * Thus, we keep this grunge out of the other kvm applications (i.e., 78 * most other applications are interested only in open/close/read/nlist). 79 */ 80 81 #include <sys/param.h> 82 #include <sys/lwp.h> 83 #include <sys/wait.h> 84 #include <sys/proc.h> 85 #include <sys/exec.h> 86 #include <sys/stat.h> 87 #include <sys/ioctl.h> 88 #include <sys/tty.h> 89 #include <sys/resourcevar.h> 90 #include <sys/mutex.h> 91 #include <sys/specificdata.h> 92 #include <sys/types.h> 93 94 #include <errno.h> 95 #include <stdlib.h> 96 #include <stddef.h> 97 #include <string.h> 98 #include <unistd.h> 99 #include <nlist.h> 100 #include <kvm.h> 101 102 #include <uvm/uvm_extern.h> 103 #include <uvm/uvm_param.h> 104 #include <uvm/uvm_amap.h> 105 #include <uvm/uvm_page.h> 106 107 #include <sys/sysctl.h> 108 109 #include <limits.h> 110 #include <db.h> 111 #include <paths.h> 112 113 #include "kvm_private.h" 114 115 /* 116 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 117 */ 118 struct miniproc { 119 struct vmspace *p_vmspace; 120 char p_stat; 121 vaddr_t p_psstrp; 122 struct proc *p_paddr; 123 pid_t p_pid; 124 }; 125 126 /* 127 * Convert from struct proc and kinfo_proc{,2} to miniproc. 128 */ 129 #define PTOMINI(kp, p) \ 130 do { \ 131 (p)->p_stat = (kp)->p_stat; \ 132 (p)->p_pid = (kp)->p_pid; \ 133 (p)->p_paddr = NULL; \ 134 (p)->p_vmspace = (kp)->p_vmspace; \ 135 (p)->p_psstrp = (kp)->p_psstrp; \ 136 } while (0); 137 138 #define KPTOMINI(kp, p) \ 139 do { \ 140 (p)->p_stat = (kp)->kp_proc.p_stat; \ 141 (p)->p_pid = (kp)->kp_proc.p_pid; \ 142 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 143 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 144 } while (0); 145 146 #define KP2TOMINI(kp, p) \ 147 do { \ 148 (p)->p_stat = (kp)->p_stat; \ 149 (p)->p_pid = (kp)->p_pid; \ 150 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 151 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 152 } while (0); 153 154 /* 155 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 156 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 157 * kvm(3) so dumps can be read properly. 158 * 159 * Whenever NetBSD starts exporting credentials to userland consistently (using 160 * 'struct uucred', or something) this will have to be updated again. 161 */ 162 struct kvm_kauth_cred { 163 u_int cr_refcnt; /* reference count */ 164 #if COHERENCY_UNIT > 4 165 uint8_t cr_pad[COHERENCY_UNIT - 4]; 166 #endif 167 uid_t cr_uid; /* user id */ 168 uid_t cr_euid; /* effective user id */ 169 uid_t cr_svuid; /* saved effective user id */ 170 gid_t cr_gid; /* group id */ 171 gid_t cr_egid; /* effective group id */ 172 gid_t cr_svgid; /* saved effective group id */ 173 u_int cr_ngroups; /* number of groups */ 174 gid_t cr_groups[NGROUPS]; /* group memberships */ 175 specificdata_reference cr_sd; /* specific data */ 176 }; 177 178 /* XXX: What uses these two functions? */ 179 char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *); 180 ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *, 181 size_t); 182 183 static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 184 u_long *); 185 static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, 186 char *, size_t); 187 188 static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int); 189 static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int); 190 static char **kvm_doargv(kvm_t *, const struct miniproc *, int, 191 void (*)(struct ps_strings *, u_long *, int *)); 192 static char **kvm_doargv2(kvm_t *, pid_t, int, int); 193 static int kvm_proclist(kvm_t *, int, int, struct proc *, 194 struct kinfo_proc *, int); 195 static int proc_verify(kvm_t *, u_long, const struct miniproc *); 196 static void ps_str_a(struct ps_strings *, u_long *, int *); 197 static void ps_str_e(struct ps_strings *, u_long *, int *); 198 199 200 static char * 201 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt) 202 { 203 u_long addr, head; 204 u_long offset; 205 struct vm_map_entry vme; 206 struct vm_amap amap; 207 struct vm_anon *anonp, anon; 208 struct vm_page pg; 209 u_long slot; 210 211 if (kd->swapspc == NULL) { 212 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 213 if (kd->swapspc == NULL) 214 return (NULL); 215 } 216 217 /* 218 * Look through the address map for the memory object 219 * that corresponds to the given virtual address. 220 * The header just has the entire valid range. 221 */ 222 head = (u_long)&p->p_vmspace->vm_map.header; 223 addr = head; 224 for (;;) { 225 if (KREAD(kd, addr, &vme)) 226 return (NULL); 227 228 if (va >= vme.start && va < vme.end && 229 vme.aref.ar_amap != NULL) 230 break; 231 232 addr = (u_long)vme.next; 233 if (addr == head) 234 return (NULL); 235 } 236 237 /* 238 * we found the map entry, now to find the object... 239 */ 240 if (vme.aref.ar_amap == NULL) 241 return (NULL); 242 243 addr = (u_long)vme.aref.ar_amap; 244 if (KREAD(kd, addr, &amap)) 245 return (NULL); 246 247 offset = va - vme.start; 248 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 249 /* sanity-check slot number */ 250 if (slot > amap.am_nslot) 251 return (NULL); 252 253 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 254 if (KREAD(kd, addr, &anonp)) 255 return (NULL); 256 257 addr = (u_long)anonp; 258 if (KREAD(kd, addr, &anon)) 259 return (NULL); 260 261 addr = (u_long)anon.an_page; 262 if (addr) { 263 if (KREAD(kd, addr, &pg)) 264 return (NULL); 265 266 if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 267 (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg) 268 return (NULL); 269 } else { 270 if (kd->swfd < 0 || 271 _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg, 272 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 273 return (NULL); 274 } 275 276 /* Found the page. */ 277 offset %= kd->nbpg; 278 *cnt = kd->nbpg - offset; 279 return (&kd->swapspc[(size_t)offset]); 280 } 281 282 char * 283 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt) 284 { 285 struct miniproc mp; 286 287 PTOMINI(p, &mp); 288 return (_kvm_ureadm(kd, &mp, va, cnt)); 289 } 290 291 /* 292 * Convert credentials located in kernel space address 'cred' and store 293 * them in the appropriate members of 'eproc'. 294 */ 295 static int 296 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 297 { 298 struct kvm_kauth_cred kauthcred; 299 struct ki_pcred *pc = &eproc->e_pcred; 300 struct ki_ucred *uc = &eproc->e_ucred; 301 302 if (KREAD(kd, cred, &kauthcred) != 0) 303 return (-1); 304 305 /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 306 pc->p_ruid = kauthcred.cr_uid; 307 pc->p_svuid = kauthcred.cr_svuid; 308 pc->p_rgid = kauthcred.cr_gid; 309 pc->p_svgid = kauthcred.cr_svgid; 310 pc->p_refcnt = kauthcred.cr_refcnt; 311 pc->p_pad = NULL; 312 313 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 314 uc->cr_ref = kauthcred.cr_refcnt; 315 uc->cr_uid = kauthcred.cr_euid; 316 uc->cr_gid = kauthcred.cr_egid; 317 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, 318 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 319 memcpy(uc->cr_groups, kauthcred.cr_groups, 320 uc->cr_ngroups * sizeof(uc->cr_groups[0])); 321 322 return (0); 323 } 324 325 /* 326 * Read proc's from memory file into buffer bp, which has space to hold 327 * at most maxcnt procs. 328 */ 329 static int 330 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 331 struct kinfo_proc *bp, int maxcnt) 332 { 333 int cnt = 0; 334 int nlwps; 335 struct kinfo_lwp *kl; 336 struct eproc eproc; 337 struct pgrp pgrp; 338 struct session sess; 339 struct tty tty; 340 struct proc proc; 341 342 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 343 if (KREAD(kd, (u_long)p, &proc)) { 344 _kvm_err(kd, kd->program, "can't read proc at %p", p); 345 return (-1); 346 } 347 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 348 _kvm_err(kd, kd->program, 349 "can't read proc credentials at %p", p); 350 return (-1); 351 } 352 353 switch (what) { 354 355 case KERN_PROC_PID: 356 if (proc.p_pid != (pid_t)arg) 357 continue; 358 break; 359 360 case KERN_PROC_UID: 361 if (eproc.e_ucred.cr_uid != (uid_t)arg) 362 continue; 363 break; 364 365 case KERN_PROC_RUID: 366 if (eproc.e_pcred.p_ruid != (uid_t)arg) 367 continue; 368 break; 369 } 370 /* 371 * We're going to add another proc to the set. If this 372 * will overflow the buffer, assume the reason is because 373 * nprocs (or the proc list) is corrupt and declare an error. 374 */ 375 if (cnt >= maxcnt) { 376 _kvm_err(kd, kd->program, "nprocs corrupt"); 377 return (-1); 378 } 379 /* 380 * gather eproc 381 */ 382 eproc.e_paddr = p; 383 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 384 _kvm_err(kd, kd->program, "can't read pgrp at %p", 385 proc.p_pgrp); 386 return (-1); 387 } 388 eproc.e_sess = pgrp.pg_session; 389 eproc.e_pgid = pgrp.pg_id; 390 eproc.e_jobc = pgrp.pg_jobc; 391 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 392 _kvm_err(kd, kd->program, "can't read session at %p", 393 pgrp.pg_session); 394 return (-1); 395 } 396 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 397 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 398 _kvm_err(kd, kd->program, 399 "can't read tty at %p", sess.s_ttyp); 400 return (-1); 401 } 402 eproc.e_tdev = (uint32_t)tty.t_dev; 403 eproc.e_tsess = tty.t_session; 404 if (tty.t_pgrp != NULL) { 405 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 406 _kvm_err(kd, kd->program, 407 "can't read tpgrp at %p", 408 tty.t_pgrp); 409 return (-1); 410 } 411 eproc.e_tpgid = pgrp.pg_id; 412 } else 413 eproc.e_tpgid = -1; 414 } else 415 eproc.e_tdev = (uint32_t)NODEV; 416 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 417 eproc.e_sid = sess.s_sid; 418 if (sess.s_leader == p) 419 eproc.e_flag |= EPROC_SLEADER; 420 /* 421 * Fill in the old-style proc.p_wmesg by copying the wmesg 422 * from the first available LWP. 423 */ 424 kl = kvm_getlwps(kd, proc.p_pid, 425 (u_long)PTRTOUINT64(eproc.e_paddr), 426 sizeof(struct kinfo_lwp), &nlwps); 427 if (kl) { 428 if (nlwps > 0) { 429 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 430 } 431 } 432 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 433 sizeof(eproc.e_vm)); 434 435 eproc.e_xsize = eproc.e_xrssize = 0; 436 eproc.e_xccount = eproc.e_xswrss = 0; 437 438 switch (what) { 439 440 case KERN_PROC_PGRP: 441 if (eproc.e_pgid != (pid_t)arg) 442 continue; 443 break; 444 445 case KERN_PROC_TTY: 446 if ((proc.p_lflag & PL_CONTROLT) == 0 || 447 eproc.e_tdev != (dev_t)arg) 448 continue; 449 break; 450 } 451 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 452 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 453 ++bp; 454 ++cnt; 455 } 456 return (cnt); 457 } 458 459 /* 460 * Build proc info array by reading in proc list from a crash dump. 461 * Return number of procs read. maxcnt is the max we will read. 462 */ 463 static int 464 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 465 u_long a_zombproc, int maxcnt) 466 { 467 struct kinfo_proc *bp = kd->procbase; 468 int acnt, zcnt; 469 struct proc *p; 470 471 if (KREAD(kd, a_allproc, &p)) { 472 _kvm_err(kd, kd->program, "cannot read allproc"); 473 return (-1); 474 } 475 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 476 if (acnt < 0) 477 return (acnt); 478 479 if (KREAD(kd, a_zombproc, &p)) { 480 _kvm_err(kd, kd->program, "cannot read zombproc"); 481 return (-1); 482 } 483 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 484 maxcnt - acnt); 485 if (zcnt < 0) 486 zcnt = 0; 487 488 return (acnt + zcnt); 489 } 490 491 struct kinfo_proc2 * 492 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt) 493 { 494 size_t size; 495 int mib[6], st, nprocs; 496 struct pstats pstats; 497 498 if (ISSYSCTL(kd)) { 499 size = 0; 500 mib[0] = CTL_KERN; 501 mib[1] = KERN_PROC2; 502 mib[2] = op; 503 mib[3] = arg; 504 mib[4] = (int)esize; 505 again: 506 mib[5] = 0; 507 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 508 if (st == -1) { 509 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 510 return (NULL); 511 } 512 513 mib[5] = (int) (size / esize); 514 KVM_ALLOC(kd, procbase2, size); 515 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 516 if (st == -1) { 517 if (errno == ENOMEM) { 518 goto again; 519 } 520 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 521 return (NULL); 522 } 523 nprocs = (int) (size / esize); 524 } else { 525 char *kp2c; 526 struct kinfo_proc *kp; 527 struct kinfo_proc2 kp2, *kp2p; 528 struct kinfo_lwp *kl; 529 int i, nlwps; 530 531 kp = kvm_getprocs(kd, op, arg, &nprocs); 532 if (kp == NULL) 533 return (NULL); 534 535 size = nprocs * esize; 536 KVM_ALLOC(kd, procbase2, size); 537 kp2c = (char *)(void *)kd->procbase2; 538 kp2p = &kp2; 539 for (i = 0; i < nprocs; i++, kp++) { 540 struct timeval tv; 541 542 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 543 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 544 sizeof(struct kinfo_lwp), &nlwps); 545 546 if (kl == NULL) { 547 _kvm_syserr(kd, NULL, 548 "kvm_getlwps() failed on process %u\n", 549 kp->kp_proc.p_pid); 550 if (nlwps == 0) 551 return NULL; 552 else 553 continue; 554 } 555 556 /* We use kl[0] as the "representative" LWP */ 557 memset(kp2p, 0, sizeof(kp2)); 558 kp2p->p_forw = kl[0].l_forw; 559 kp2p->p_back = kl[0].l_back; 560 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 561 kp2p->p_addr = kl[0].l_addr; 562 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 563 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 564 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 565 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 566 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 567 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 568 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 569 kp2p->p_tsess = 0; 570 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ 571 kp2p->p_ru = 0; 572 #else 573 kp2p->p_ru = PTRTOUINT64(pstats.p_ru); 574 #endif 575 576 kp2p->p_eflag = 0; 577 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 578 kp2p->p_flag = kp->kp_proc.p_flag; 579 580 kp2p->p_pid = kp->kp_proc.p_pid; 581 582 kp2p->p_ppid = kp->kp_eproc.e_ppid; 583 kp2p->p_sid = kp->kp_eproc.e_sid; 584 kp2p->p__pgid = kp->kp_eproc.e_pgid; 585 586 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 587 588 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 589 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 590 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 591 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 592 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 593 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 594 595 /*CONSTCOND*/ 596 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 597 MIN(sizeof(kp2p->p_groups), 598 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 599 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 600 601 kp2p->p_jobc = kp->kp_eproc.e_jobc; 602 kp2p->p_tdev = kp->kp_eproc.e_tdev; 603 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 604 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 605 606 kp2p->p_estcpu = 0; 607 bintime2timeval(&kp->kp_proc.p_rtime, &tv); 608 kp2p->p_rtime_sec = (uint32_t)tv.tv_sec; 609 kp2p->p_rtime_usec = (uint32_t)tv.tv_usec; 610 kp2p->p_cpticks = kl[0].l_cpticks; 611 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 612 kp2p->p_swtime = kl[0].l_swtime; 613 kp2p->p_slptime = kl[0].l_slptime; 614 #if 0 /* XXX thorpej */ 615 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 616 #else 617 kp2p->p_schedflags = 0; 618 #endif 619 620 kp2p->p_uticks = kp->kp_proc.p_uticks; 621 kp2p->p_sticks = kp->kp_proc.p_sticks; 622 kp2p->p_iticks = kp->kp_proc.p_iticks; 623 624 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 625 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 626 627 kp2p->p_holdcnt = kl[0].l_holdcnt; 628 629 memcpy(&kp2p->p_siglist, 630 &kp->kp_proc.p_sigpend.sp_set, 631 sizeof(ki_sigset_t)); 632 memset(&kp2p->p_sigmask, 0, 633 sizeof(ki_sigset_t)); 634 memcpy(&kp2p->p_sigignore, 635 &kp->kp_proc.p_sigctx.ps_sigignore, 636 sizeof(ki_sigset_t)); 637 memcpy(&kp2p->p_sigcatch, 638 &kp->kp_proc.p_sigctx.ps_sigcatch, 639 sizeof(ki_sigset_t)); 640 641 kp2p->p_stat = kl[0].l_stat; 642 kp2p->p_priority = kl[0].l_priority; 643 kp2p->p_usrpri = kl[0].l_priority; 644 kp2p->p_nice = kp->kp_proc.p_nice; 645 646 kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc); 647 kp2p->p_acflag = kp->kp_proc.p_acflag; 648 649 /*CONSTCOND*/ 650 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 651 MIN(sizeof(kp2p->p_comm), 652 sizeof(kp->kp_proc.p_comm))); 653 654 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 655 sizeof(kp2p->p_wmesg)); 656 kp2p->p_wchan = kl[0].l_wchan; 657 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 658 sizeof(kp2p->p_login)); 659 660 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 661 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 662 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 663 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 664 kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size 665 / kd->nbpg; 666 /* Adjust mapped size */ 667 kp2p->p_vm_msize = 668 (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) - 669 kp->kp_eproc.e_vm.vm_issize + 670 kp->kp_eproc.e_vm.vm_ssize; 671 672 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 673 674 kp2p->p_realflag = kp->kp_proc.p_flag; 675 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 676 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 677 kp2p->p_realstat = kp->kp_proc.p_stat; 678 679 if (P_ZOMBIE(&kp->kp_proc) || 680 kp->kp_proc.p_stats == NULL || 681 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 682 kp2p->p_uvalid = 0; 683 } else { 684 kp2p->p_uvalid = 1; 685 686 kp2p->p_ustart_sec = (u_int32_t) 687 pstats.p_start.tv_sec; 688 kp2p->p_ustart_usec = (u_int32_t) 689 pstats.p_start.tv_usec; 690 691 kp2p->p_uutime_sec = (u_int32_t) 692 pstats.p_ru.ru_utime.tv_sec; 693 kp2p->p_uutime_usec = (u_int32_t) 694 pstats.p_ru.ru_utime.tv_usec; 695 kp2p->p_ustime_sec = (u_int32_t) 696 pstats.p_ru.ru_stime.tv_sec; 697 kp2p->p_ustime_usec = (u_int32_t) 698 pstats.p_ru.ru_stime.tv_usec; 699 700 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 701 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 702 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 703 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 704 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 705 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 706 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 707 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 708 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 709 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 710 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 711 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 712 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 713 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 714 715 kp2p->p_uctime_sec = (u_int32_t) 716 (pstats.p_cru.ru_utime.tv_sec + 717 pstats.p_cru.ru_stime.tv_sec); 718 kp2p->p_uctime_usec = (u_int32_t) 719 (pstats.p_cru.ru_utime.tv_usec + 720 pstats.p_cru.ru_stime.tv_usec); 721 } 722 723 memcpy(kp2c, &kp2, esize); 724 kp2c += esize; 725 } 726 } 727 *cnt = nprocs; 728 return (kd->procbase2); 729 } 730 731 struct kinfo_lwp * 732 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt) 733 { 734 size_t size; 735 int mib[5], nlwps; 736 ssize_t st; 737 struct kinfo_lwp *kl; 738 739 if (ISSYSCTL(kd)) { 740 size = 0; 741 mib[0] = CTL_KERN; 742 mib[1] = KERN_LWP; 743 mib[2] = pid; 744 mib[3] = (int)esize; 745 mib[4] = 0; 746 again: 747 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 748 if (st == -1) { 749 switch (errno) { 750 case ESRCH: /* Treat this as a soft error; see kvm.c */ 751 _kvm_syserr(kd, NULL, "kvm_getlwps"); 752 return NULL; 753 default: 754 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 755 return NULL; 756 } 757 } 758 mib[4] = (int) (size / esize); 759 KVM_ALLOC(kd, lwpbase, size); 760 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 761 if (st == -1) { 762 switch (errno) { 763 case ESRCH: /* Treat this as a soft error; see kvm.c */ 764 _kvm_syserr(kd, NULL, "kvm_getlwps"); 765 return NULL; 766 case ENOMEM: 767 goto again; 768 default: 769 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 770 return NULL; 771 } 772 } 773 nlwps = (int) (size / esize); 774 } else { 775 /* grovel through the memory image */ 776 struct proc p; 777 struct lwp l; 778 u_long laddr; 779 void *back; 780 int i; 781 782 st = kvm_read(kd, paddr, &p, sizeof(p)); 783 if (st == -1) { 784 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 785 return (NULL); 786 } 787 788 nlwps = p.p_nlwps; 789 size = nlwps * sizeof(*kd->lwpbase); 790 KVM_ALLOC(kd, lwpbase, size); 791 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 792 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 793 st = kvm_read(kd, laddr, &l, sizeof(l)); 794 if (st == -1) { 795 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 796 return (NULL); 797 } 798 kl = &kd->lwpbase[i]; 799 kl->l_laddr = laddr; 800 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); 801 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); 802 st = kvm_read(kd, laddr, &back, sizeof(back)); 803 if (st == -1) { 804 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 805 return (NULL); 806 } 807 kl->l_back = PTRTOUINT64(back); 808 kl->l_addr = PTRTOUINT64(l.l_addr); 809 kl->l_lid = l.l_lid; 810 kl->l_flag = l.l_flag; 811 kl->l_swtime = l.l_swtime; 812 kl->l_slptime = l.l_slptime; 813 kl->l_schedflags = 0; /* XXX */ 814 kl->l_holdcnt = 0; 815 kl->l_priority = l.l_priority; 816 kl->l_usrpri = l.l_priority; 817 kl->l_stat = l.l_stat; 818 kl->l_wchan = PTRTOUINT64(l.l_wchan); 819 if (l.l_wmesg) 820 (void)kvm_read(kd, (u_long)l.l_wmesg, 821 kl->l_wmesg, (size_t)WMESGLEN); 822 kl->l_cpuid = KI_NOCPU; 823 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 824 } 825 } 826 827 *cnt = nlwps; 828 return (kd->lwpbase); 829 } 830 831 struct kinfo_proc * 832 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 833 { 834 size_t size; 835 int mib[4], st, nprocs; 836 837 if (ISALIVE(kd)) { 838 size = 0; 839 mib[0] = CTL_KERN; 840 mib[1] = KERN_PROC; 841 mib[2] = op; 842 mib[3] = arg; 843 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 844 if (st == -1) { 845 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 846 return (NULL); 847 } 848 KVM_ALLOC(kd, procbase, size); 849 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 850 if (st == -1) { 851 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 852 return (NULL); 853 } 854 if (size % sizeof(struct kinfo_proc) != 0) { 855 _kvm_err(kd, kd->program, 856 "proc size mismatch (%lu total, %lu chunks)", 857 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 858 return (NULL); 859 } 860 nprocs = (int) (size / sizeof(struct kinfo_proc)); 861 } else { 862 struct nlist nl[4], *p; 863 864 (void)memset(nl, 0, sizeof(nl)); 865 nl[0].n_name = "_nprocs"; 866 nl[1].n_name = "_allproc"; 867 nl[2].n_name = "_zombproc"; 868 nl[3].n_name = NULL; 869 870 if (kvm_nlist(kd, nl) != 0) { 871 for (p = nl; p->n_type != 0; ++p) 872 continue; 873 _kvm_err(kd, kd->program, 874 "%s: no such symbol", p->n_name); 875 return (NULL); 876 } 877 if (KREAD(kd, nl[0].n_value, &nprocs)) { 878 _kvm_err(kd, kd->program, "can't read nprocs"); 879 return (NULL); 880 } 881 size = nprocs * sizeof(*kd->procbase); 882 KVM_ALLOC(kd, procbase, size); 883 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 884 nl[2].n_value, nprocs); 885 if (nprocs < 0) 886 return (NULL); 887 #ifdef notdef 888 size = nprocs * sizeof(struct kinfo_proc); 889 (void)realloc(kd->procbase, size); 890 #endif 891 } 892 *cnt = nprocs; 893 return (kd->procbase); 894 } 895 896 void * 897 _kvm_realloc(kvm_t *kd, void *p, size_t n) 898 { 899 void *np = realloc(p, n); 900 901 if (np == NULL) 902 _kvm_err(kd, kd->program, "out of memory"); 903 return (np); 904 } 905 906 /* 907 * Read in an argument vector from the user address space of process p. 908 * addr if the user-space base address of narg null-terminated contiguous 909 * strings. This is used to read in both the command arguments and 910 * environment strings. Read at most maxcnt characters of strings. 911 */ 912 static char ** 913 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg, 914 int maxcnt) 915 { 916 char *np, *cp, *ep, *ap; 917 u_long oaddr = (u_long)~0L; 918 u_long len; 919 size_t cc; 920 char **argv; 921 922 /* 923 * Check that there aren't an unreasonable number of arguments, 924 * and that the address is in user space. 925 */ 926 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 927 return (NULL); 928 929 if (kd->argv == NULL) { 930 /* 931 * Try to avoid reallocs. 932 */ 933 kd->argc = MAX(narg + 1, 32); 934 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 935 if (kd->argv == NULL) 936 return (NULL); 937 } else if (narg + 1 > kd->argc) { 938 kd->argc = MAX(2 * kd->argc, narg + 1); 939 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 940 sizeof(*kd->argv)); 941 if (kd->argv == NULL) 942 return (NULL); 943 } 944 if (kd->argspc == NULL) { 945 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 946 if (kd->argspc == NULL) 947 return (NULL); 948 kd->argspc_len = kd->nbpg; 949 } 950 if (kd->argbuf == NULL) { 951 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 952 if (kd->argbuf == NULL) 953 return (NULL); 954 } 955 cc = sizeof(char *) * narg; 956 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 957 return (NULL); 958 ap = np = kd->argspc; 959 argv = kd->argv; 960 len = 0; 961 /* 962 * Loop over pages, filling in the argument vector. 963 */ 964 while (argv < kd->argv + narg && *argv != NULL) { 965 addr = (u_long)*argv & ~(kd->nbpg - 1); 966 if (addr != oaddr) { 967 if (kvm_ureadm(kd, p, addr, kd->argbuf, 968 (size_t)kd->nbpg) != kd->nbpg) 969 return (NULL); 970 oaddr = addr; 971 } 972 addr = (u_long)*argv & (kd->nbpg - 1); 973 cp = kd->argbuf + (size_t)addr; 974 cc = kd->nbpg - (size_t)addr; 975 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 976 cc = (size_t)(maxcnt - len); 977 ep = memchr(cp, '\0', cc); 978 if (ep != NULL) 979 cc = ep - cp + 1; 980 if (len + cc > kd->argspc_len) { 981 ptrdiff_t off; 982 char **pp; 983 uintptr_t op = (uintptr_t)kd->argspc; 984 985 kd->argspc_len *= 2; 986 kd->argspc = _kvm_realloc(kd, kd->argspc, 987 kd->argspc_len); 988 if (kd->argspc == NULL) 989 return (NULL); 990 /* 991 * Adjust argv pointers in case realloc moved 992 * the string space. 993 */ 994 off = (uintptr_t)kd->argspc - op; 995 for (pp = kd->argv; pp < argv; pp++) 996 *pp += off; 997 ap += off; 998 np += off; 999 } 1000 memcpy(np, cp, cc); 1001 np += cc; 1002 len += cc; 1003 if (ep != NULL) { 1004 *argv++ = ap; 1005 ap = np; 1006 } else 1007 *argv += cc; 1008 if (maxcnt > 0 && len >= maxcnt) { 1009 /* 1010 * We're stopping prematurely. Terminate the 1011 * current string. 1012 */ 1013 if (ep == NULL) { 1014 *np = '\0'; 1015 *argv++ = ap; 1016 } 1017 break; 1018 } 1019 } 1020 /* Make sure argv is terminated. */ 1021 *argv = NULL; 1022 return (kd->argv); 1023 } 1024 1025 static void 1026 ps_str_a(struct ps_strings *p, u_long *addr, int *n) 1027 { 1028 1029 *addr = (u_long)p->ps_argvstr; 1030 *n = p->ps_nargvstr; 1031 } 1032 1033 static void 1034 ps_str_e(struct ps_strings *p, u_long *addr, int *n) 1035 { 1036 1037 *addr = (u_long)p->ps_envstr; 1038 *n = p->ps_nenvstr; 1039 } 1040 1041 /* 1042 * Determine if the proc indicated by p is still active. 1043 * This test is not 100% foolproof in theory, but chances of 1044 * being wrong are very low. 1045 */ 1046 static int 1047 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p) 1048 { 1049 struct proc kernproc; 1050 1051 /* 1052 * Just read in the whole proc. It's not that big relative 1053 * to the cost of the read system call. 1054 */ 1055 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1056 sizeof(kernproc)) 1057 return (0); 1058 return (p->p_pid == kernproc.p_pid && 1059 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1060 } 1061 1062 static char ** 1063 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr, 1064 void (*info)(struct ps_strings *, u_long *, int *)) 1065 { 1066 char **ap; 1067 u_long addr; 1068 int cnt; 1069 struct ps_strings arginfo; 1070 1071 /* 1072 * Pointers are stored at the top of the user stack. 1073 */ 1074 if (p->p_stat == SZOMB) 1075 return (NULL); 1076 cnt = (int)kvm_ureadm(kd, p, p->p_psstrp, 1077 (void *)&arginfo, sizeof(arginfo)); 1078 if (cnt != sizeof(arginfo)) 1079 return (NULL); 1080 1081 (*info)(&arginfo, &addr, &cnt); 1082 if (cnt == 0) 1083 return (NULL); 1084 ap = kvm_argv(kd, p, addr, cnt, nchr); 1085 /* 1086 * For live kernels, make sure this process didn't go away. 1087 */ 1088 if (ap != NULL && ISALIVE(kd) && 1089 !proc_verify(kd, (u_long)p->p_paddr, p)) 1090 ap = NULL; 1091 return (ap); 1092 } 1093 1094 /* 1095 * Get the command args. This code is now machine independent. 1096 */ 1097 char ** 1098 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1099 { 1100 struct miniproc p; 1101 1102 KPTOMINI(kp, &p); 1103 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1104 } 1105 1106 char ** 1107 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 1108 { 1109 struct miniproc p; 1110 1111 KPTOMINI(kp, &p); 1112 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1113 } 1114 1115 static char ** 1116 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr) 1117 { 1118 size_t bufs; 1119 int narg, mib[4]; 1120 size_t newargspc_len; 1121 char **ap, *bp, *endp; 1122 1123 /* 1124 * Check that there aren't an unreasonable number of arguments. 1125 */ 1126 if (nchr > ARG_MAX) 1127 return (NULL); 1128 1129 if (nchr == 0) 1130 nchr = ARG_MAX; 1131 1132 /* Get number of strings in argv */ 1133 mib[0] = CTL_KERN; 1134 mib[1] = KERN_PROC_ARGS; 1135 mib[2] = pid; 1136 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1137 bufs = sizeof(narg); 1138 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1139 return (NULL); 1140 1141 if (kd->argv == NULL) { 1142 /* 1143 * Try to avoid reallocs. 1144 */ 1145 kd->argc = MAX(narg + 1, 32); 1146 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1147 if (kd->argv == NULL) 1148 return (NULL); 1149 } else if (narg + 1 > kd->argc) { 1150 kd->argc = MAX(2 * kd->argc, narg + 1); 1151 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1152 sizeof(*kd->argv)); 1153 if (kd->argv == NULL) 1154 return (NULL); 1155 } 1156 1157 newargspc_len = MIN(nchr, ARG_MAX); 1158 KVM_ALLOC(kd, argspc, newargspc_len); 1159 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1160 1161 mib[0] = CTL_KERN; 1162 mib[1] = KERN_PROC_ARGS; 1163 mib[2] = pid; 1164 mib[3] = type; 1165 bufs = kd->argspc_len; 1166 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1167 return (NULL); 1168 1169 bp = kd->argspc; 1170 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1171 ap = kd->argv; 1172 endp = bp + MIN(nchr, bufs); 1173 1174 while (bp < endp) { 1175 *ap++ = bp; 1176 /* 1177 * XXX: don't need following anymore, or stick check 1178 * for max argc in above while loop? 1179 */ 1180 if (ap >= kd->argv + kd->argc) { 1181 kd->argc *= 2; 1182 kd->argv = _kvm_realloc(kd, kd->argv, 1183 kd->argc * sizeof(*kd->argv)); 1184 ap = kd->argv; 1185 } 1186 bp += strlen(bp) + 1; 1187 } 1188 *ap = NULL; 1189 1190 return (kd->argv); 1191 } 1192 1193 char ** 1194 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1195 { 1196 1197 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1198 } 1199 1200 char ** 1201 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) 1202 { 1203 1204 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1205 } 1206 1207 /* 1208 * Read from user space. The user context is given by p. 1209 */ 1210 static ssize_t 1211 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, 1212 char *buf, size_t len) 1213 { 1214 char *cp; 1215 1216 cp = buf; 1217 while (len > 0) { 1218 size_t cc; 1219 char *dp; 1220 u_long cnt; 1221 1222 dp = _kvm_ureadm(kd, p, uva, &cnt); 1223 if (dp == NULL) { 1224 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1225 return (0); 1226 } 1227 cc = (size_t)MIN(cnt, len); 1228 memcpy(cp, dp, cc); 1229 cp += cc; 1230 uva += cc; 1231 len -= cc; 1232 } 1233 return (ssize_t)(cp - buf); 1234 } 1235 1236 ssize_t 1237 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len) 1238 { 1239 struct miniproc mp; 1240 1241 PTOMINI(p, &mp); 1242 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1243 } 1244