xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: kvm_proc.c,v 1.74 2007/11/06 01:46:08 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*-
40  * Copyright (c) 1989, 1992, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * This code is derived from software developed by the Computer Systems
44  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
45  * BG 91-66 and contributed to Berkeley.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  */
71 
72 #include <sys/cdefs.h>
73 #if defined(LIBC_SCCS) && !defined(lint)
74 #if 0
75 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
76 #else
77 __RCSID("$NetBSD: kvm_proc.c,v 1.74 2007/11/06 01:46:08 ad Exp $");
78 #endif
79 #endif /* LIBC_SCCS and not lint */
80 
81 /*
82  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
83  * users of this code, so we've factored it out into a separate module.
84  * Thus, we keep this grunge out of the other kvm applications (i.e.,
85  * most other applications are interested only in open/close/read/nlist).
86  */
87 
88 #include <sys/param.h>
89 #include <sys/user.h>
90 #include <sys/lwp.h>
91 #include <sys/proc.h>
92 #include <sys/exec.h>
93 #include <sys/stat.h>
94 #include <sys/ioctl.h>
95 #include <sys/tty.h>
96 #include <sys/resourcevar.h>
97 #include <sys/mutex.h>
98 #include <sys/specificdata.h>
99 
100 #include <errno.h>
101 #include <stdlib.h>
102 #include <stddef.h>
103 #include <string.h>
104 #include <unistd.h>
105 #include <nlist.h>
106 #include <kvm.h>
107 
108 #include <uvm/uvm_extern.h>
109 #include <uvm/uvm_amap.h>
110 
111 #include <sys/sysctl.h>
112 
113 #include <limits.h>
114 #include <db.h>
115 #include <paths.h>
116 
117 #include "kvm_private.h"
118 
119 /*
120  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
121  */
122 struct miniproc {
123 	struct	vmspace *p_vmspace;
124 	char	p_stat;
125 	struct	proc *p_paddr;
126 	pid_t	p_pid;
127 };
128 
129 /*
130  * Convert from struct proc and kinfo_proc{,2} to miniproc.
131  */
132 #define PTOMINI(kp, p) \
133 	do { \
134 		(p)->p_stat = (kp)->p_stat; \
135 		(p)->p_pid = (kp)->p_pid; \
136 		(p)->p_paddr = NULL; \
137 		(p)->p_vmspace = (kp)->p_vmspace; \
138 	} while (/*CONSTCOND*/0);
139 
140 #define KPTOMINI(kp, p) \
141 	do { \
142 		(p)->p_stat = (kp)->kp_proc.p_stat; \
143 		(p)->p_pid = (kp)->kp_proc.p_pid; \
144 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
145 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
146 	} while (/*CONSTCOND*/0);
147 
148 #define KP2TOMINI(kp, p) \
149 	do { \
150 		(p)->p_stat = (kp)->p_stat; \
151 		(p)->p_pid = (kp)->p_pid; \
152 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
153 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
154 	} while (/*CONSTCOND*/0);
155 
156 /*
157  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
158  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
159  * kvm(3) so dumps can be read properly.
160  *
161  * Whenever NetBSD starts exporting credentials to userland consistently (using
162  * 'struct uucred', or something) this will have to be updated again.
163  */
164 struct kvm_kauth_cred {
165 	kmutex_t cr_lock;		/* lock on cr_refcnt */
166 	u_int cr_refcnt;		/* reference count */
167 	uid_t cr_uid;			/* user id */
168 	uid_t cr_euid;			/* effective user id */
169 	uid_t cr_svuid;			/* saved effective user id */
170 	gid_t cr_gid;			/* group id */
171 	gid_t cr_egid;			/* effective group id */
172 	gid_t cr_svgid;			/* saved effective group id */
173 	u_int cr_ngroups;		/* number of groups */
174 	gid_t cr_groups[NGROUPS];	/* group memberships */
175 	specificdata_reference cr_sd;	/* specific data */
176 };
177 
178 #define KREAD(kd, addr, obj) \
179 	(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
180 
181 /* XXX: What uses these two functions? */
182 char		*_kvm_uread __P((kvm_t *, const struct proc *, u_long,
183 		    u_long *));
184 ssize_t		kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
185 		    size_t));
186 
187 static char	*_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
188 		    u_long *));
189 static ssize_t	kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
190 		    char *, size_t));
191 
192 static char	**kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
193 		    int));
194 static int	kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int));
195 static char	**kvm_doargv __P((kvm_t *, const struct miniproc *, int,
196 		    void (*)(struct ps_strings *, u_long *, int *)));
197 static char	**kvm_doargv2 __P((kvm_t *, pid_t, int, int));
198 static int	kvm_proclist __P((kvm_t *, int, int, struct proc *,
199 		    struct kinfo_proc *, int));
200 static int	proc_verify __P((kvm_t *, u_long, const struct miniproc *));
201 static void	ps_str_a __P((struct ps_strings *, u_long *, int *));
202 static void	ps_str_e __P((struct ps_strings *, u_long *, int *));
203 
204 
205 static char *
206 _kvm_ureadm(kd, p, va, cnt)
207 	kvm_t *kd;
208 	const struct miniproc *p;
209 	u_long va;
210 	u_long *cnt;
211 {
212 	u_long addr, head;
213 	u_long offset;
214 	struct vm_map_entry vme;
215 	struct vm_amap amap;
216 	struct vm_anon *anonp, anon;
217 	struct vm_page pg;
218 	u_long slot;
219 
220 	if (kd->swapspc == NULL) {
221 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
222 		if (kd->swapspc == NULL)
223 			return (NULL);
224 	}
225 
226 	/*
227 	 * Look through the address map for the memory object
228 	 * that corresponds to the given virtual address.
229 	 * The header just has the entire valid range.
230 	 */
231 	head = (u_long)&p->p_vmspace->vm_map.header;
232 	addr = head;
233 	for (;;) {
234 		if (KREAD(kd, addr, &vme))
235 			return (NULL);
236 
237 		if (va >= vme.start && va < vme.end &&
238 		    vme.aref.ar_amap != NULL)
239 			break;
240 
241 		addr = (u_long)vme.next;
242 		if (addr == head)
243 			return (NULL);
244 	}
245 
246 	/*
247 	 * we found the map entry, now to find the object...
248 	 */
249 	if (vme.aref.ar_amap == NULL)
250 		return (NULL);
251 
252 	addr = (u_long)vme.aref.ar_amap;
253 	if (KREAD(kd, addr, &amap))
254 		return (NULL);
255 
256 	offset = va - vme.start;
257 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
258 	/* sanity-check slot number */
259 	if (slot > amap.am_nslot)
260 		return (NULL);
261 
262 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
263 	if (KREAD(kd, addr, &anonp))
264 		return (NULL);
265 
266 	addr = (u_long)anonp;
267 	if (KREAD(kd, addr, &anon))
268 		return (NULL);
269 
270 	addr = (u_long)anon.an_page;
271 	if (addr) {
272 		if (KREAD(kd, addr, &pg))
273 			return (NULL);
274 
275 		if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
276 		    (off_t)pg.phys_addr) != kd->nbpg)
277 			return (NULL);
278 	} else {
279 		if (kd->swfd < 0 ||
280 		    pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
281 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
282 			return (NULL);
283 	}
284 
285 	/* Found the page. */
286 	offset %= kd->nbpg;
287 	*cnt = kd->nbpg - offset;
288 	return (&kd->swapspc[(size_t)offset]);
289 }
290 
291 char *
292 _kvm_uread(kd, p, va, cnt)
293 	kvm_t *kd;
294 	const struct proc *p;
295 	u_long va;
296 	u_long *cnt;
297 {
298 	struct miniproc mp;
299 
300 	PTOMINI(p, &mp);
301 	return (_kvm_ureadm(kd, &mp, va, cnt));
302 }
303 
304 /*
305  * Convert credentials located in kernel space address 'cred' and store
306  * them in the appropriate members of 'eproc'.
307  */
308 static int
309 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
310 {
311 	struct kvm_kauth_cred kauthcred;
312 	struct ki_pcred *pc = &eproc->e_pcred;
313 	struct ki_ucred *uc = &eproc->e_ucred;
314 
315 	if (KREAD(kd, cred, &kauthcred) != 0)
316 		return (-1);
317 
318 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
319 	pc->p_ruid = kauthcred.cr_uid;
320 	pc->p_svuid = kauthcred.cr_svuid;
321 	pc->p_rgid = kauthcred.cr_gid;
322 	pc->p_svgid = kauthcred.cr_svgid;
323 	pc->p_refcnt = kauthcred.cr_refcnt;
324 	pc->p_pad = NULL;
325 
326 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
327 	uc->cr_ref = kauthcred.cr_refcnt;
328 	uc->cr_uid = kauthcred.cr_euid;
329 	uc->cr_gid = kauthcred.cr_egid;
330 	uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
331 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
332 	memcpy(uc->cr_groups, kauthcred.cr_groups,
333 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
334 
335 	return (0);
336 }
337 
338 /*
339  * Read proc's from memory file into buffer bp, which has space to hold
340  * at most maxcnt procs.
341  */
342 static int
343 kvm_proclist(kd, what, arg, p, bp, maxcnt)
344 	kvm_t *kd;
345 	int what, arg;
346 	struct proc *p;
347 	struct kinfo_proc *bp;
348 	int maxcnt;
349 {
350 	int cnt = 0;
351 	int nlwps;
352 	struct kinfo_lwp *kl;
353 	struct eproc eproc;
354 	struct pgrp pgrp;
355 	struct session sess;
356 	struct tty tty;
357 	struct proc proc;
358 
359 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
360 		if (KREAD(kd, (u_long)p, &proc)) {
361 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
362 			return (-1);
363 		}
364 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
365 			_kvm_err(kd, kd->program,
366 			    "can't read proc credentials at %p", p);
367 			return (-1);
368 		}
369 
370 		switch (what) {
371 
372 		case KERN_PROC_PID:
373 			if (proc.p_pid != (pid_t)arg)
374 				continue;
375 			break;
376 
377 		case KERN_PROC_UID:
378 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
379 				continue;
380 			break;
381 
382 		case KERN_PROC_RUID:
383 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
384 				continue;
385 			break;
386 		}
387 		/*
388 		 * We're going to add another proc to the set.  If this
389 		 * will overflow the buffer, assume the reason is because
390 		 * nprocs (or the proc list) is corrupt and declare an error.
391 		 */
392 		if (cnt >= maxcnt) {
393 			_kvm_err(kd, kd->program, "nprocs corrupt");
394 			return (-1);
395 		}
396 		/*
397 		 * gather eproc
398 		 */
399 		eproc.e_paddr = p;
400 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
401 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
402 			    proc.p_pgrp);
403 			return (-1);
404 		}
405 		eproc.e_sess = pgrp.pg_session;
406 		eproc.e_pgid = pgrp.pg_id;
407 		eproc.e_jobc = pgrp.pg_jobc;
408 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
409 			_kvm_err(kd, kd->program, "can't read session at %p",
410 			    pgrp.pg_session);
411 			return (-1);
412 		}
413 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
414 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
415 				_kvm_err(kd, kd->program,
416 				    "can't read tty at %p", sess.s_ttyp);
417 				return (-1);
418 			}
419 			eproc.e_tdev = tty.t_dev;
420 			eproc.e_tsess = tty.t_session;
421 			if (tty.t_pgrp != NULL) {
422 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
423 					_kvm_err(kd, kd->program,
424 					    "can't read tpgrp at %p",
425 					    tty.t_pgrp);
426 					return (-1);
427 				}
428 				eproc.e_tpgid = pgrp.pg_id;
429 			} else
430 				eproc.e_tpgid = -1;
431 		} else
432 			eproc.e_tdev = NODEV;
433 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
434 		eproc.e_sid = sess.s_sid;
435 		if (sess.s_leader == p)
436 			eproc.e_flag |= EPROC_SLEADER;
437 		/*
438 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
439 		 * from the first available LWP.
440 		 */
441 		kl = kvm_getlwps(kd, proc.p_pid,
442 		    (u_long)PTRTOUINT64(eproc.e_paddr),
443 		    sizeof(struct kinfo_lwp), &nlwps);
444 		if (kl) {
445 			if (nlwps > 0) {
446 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
447 			}
448 		}
449 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
450 		    sizeof(eproc.e_vm));
451 
452 		eproc.e_xsize = eproc.e_xrssize = 0;
453 		eproc.e_xccount = eproc.e_xswrss = 0;
454 
455 		switch (what) {
456 
457 		case KERN_PROC_PGRP:
458 			if (eproc.e_pgid != (pid_t)arg)
459 				continue;
460 			break;
461 
462 		case KERN_PROC_TTY:
463 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
464 			    eproc.e_tdev != (dev_t)arg)
465 				continue;
466 			break;
467 		}
468 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
469 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
470 		++bp;
471 		++cnt;
472 	}
473 	return (cnt);
474 }
475 
476 /*
477  * Build proc info array by reading in proc list from a crash dump.
478  * Return number of procs read.  maxcnt is the max we will read.
479  */
480 static int
481 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
482 	kvm_t *kd;
483 	int what, arg;
484 	u_long a_allproc;
485 	u_long a_zombproc;
486 	int maxcnt;
487 {
488 	struct kinfo_proc *bp = kd->procbase;
489 	int acnt, zcnt;
490 	struct proc *p;
491 
492 	if (KREAD(kd, a_allproc, &p)) {
493 		_kvm_err(kd, kd->program, "cannot read allproc");
494 		return (-1);
495 	}
496 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
497 	if (acnt < 0)
498 		return (acnt);
499 
500 	if (KREAD(kd, a_zombproc, &p)) {
501 		_kvm_err(kd, kd->program, "cannot read zombproc");
502 		return (-1);
503 	}
504 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
505 	    maxcnt - acnt);
506 	if (zcnt < 0)
507 		zcnt = 0;
508 
509 	return (acnt + zcnt);
510 }
511 
512 struct kinfo_proc2 *
513 kvm_getproc2(kd, op, arg, esize, cnt)
514 	kvm_t *kd;
515 	int op, arg;
516 	size_t esize;
517 	int *cnt;
518 {
519 	size_t size;
520 	int mib[6], st, nprocs;
521 	struct pstats pstats;
522 
523 	if (ISSYSCTL(kd)) {
524 		size = 0;
525 		mib[0] = CTL_KERN;
526 		mib[1] = KERN_PROC2;
527 		mib[2] = op;
528 		mib[3] = arg;
529 		mib[4] = (int)esize;
530 again:
531 		mib[5] = 0;
532 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
533 		if (st == -1) {
534 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
535 			return (NULL);
536 		}
537 
538 		mib[5] = (int) (size / esize);
539 		KVM_ALLOC(kd, procbase2, size);
540 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
541 		if (st == -1) {
542 			if (errno == ENOMEM) {
543 				goto again;
544 			}
545 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
546 			return (NULL);
547 		}
548 		nprocs = (int) (size / esize);
549 	} else {
550 		char *kp2c;
551 		struct kinfo_proc *kp;
552 		struct kinfo_proc2 kp2, *kp2p;
553 		struct kinfo_lwp *kl;
554 		int i, nlwps;
555 
556 		kp = kvm_getprocs(kd, op, arg, &nprocs);
557 		if (kp == NULL)
558 			return (NULL);
559 
560 		size = nprocs * esize;
561 		KVM_ALLOC(kd, procbase2, size);
562 		kp2c = (char *)(void *)kd->procbase2;
563 		kp2p = &kp2;
564 		for (i = 0; i < nprocs; i++, kp++) {
565 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
566 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
567 			    sizeof(struct kinfo_lwp), &nlwps);
568 
569 			/* We use kl[0] as the "representative" LWP */
570 			memset(kp2p, 0, sizeof(kp2));
571 			kp2p->p_forw = kl[0].l_forw;
572 			kp2p->p_back = kl[0].l_back;
573 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
574 			kp2p->p_addr = kl[0].l_addr;
575 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
576 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
577 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
578 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
579 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
580 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
581 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
582 			kp2p->p_tsess = 0;
583 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
584 			kp2p->p_ru = 0;
585 #else
586 			kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
587 #endif
588 
589 			kp2p->p_eflag = 0;
590 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
591 			kp2p->p_flag = kp->kp_proc.p_flag;
592 
593 			kp2p->p_pid = kp->kp_proc.p_pid;
594 
595 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
596 			kp2p->p_sid = kp->kp_eproc.e_sid;
597 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
598 
599 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
600 
601 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
602 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
603 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
604 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
605 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
606 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
607 
608 			/*CONSTCOND*/
609 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
610 			    MIN(sizeof(kp2p->p_groups),
611 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
612 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
613 
614 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
615 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
616 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
617 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
618 
619 			kp2p->p_estcpu = 0;
620 			kp2p->p_rtime_sec =
621 			    (uint32_t)kp->kp_proc.p_rtime.tv_sec;
622 			kp2p->p_rtime_usec =
623 			    (uint32_t)kp->kp_proc.p_rtime.tv_usec;
624 			kp2p->p_cpticks = kl[0].l_cpticks;
625 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
626 			kp2p->p_swtime = kl[0].l_swtime;
627 			kp2p->p_slptime = kl[0].l_slptime;
628 #if 0 /* XXX thorpej */
629 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
630 #else
631 			kp2p->p_schedflags = 0;
632 #endif
633 
634 			kp2p->p_uticks = kp->kp_proc.p_uticks;
635 			kp2p->p_sticks = kp->kp_proc.p_sticks;
636 			kp2p->p_iticks = kp->kp_proc.p_iticks;
637 
638 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
639 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
640 
641 			kp2p->p_holdcnt = kl[0].l_holdcnt;
642 
643 			memcpy(&kp2p->p_siglist,
644 			    &kp->kp_proc.p_sigpend.sp_set,
645 			    sizeof(ki_sigset_t));
646 			memset(&kp2p->p_sigmask, 0,
647 			    sizeof(ki_sigset_t));
648 			memcpy(&kp2p->p_sigignore,
649 			    &kp->kp_proc.p_sigctx.ps_sigignore,
650 			    sizeof(ki_sigset_t));
651 			memcpy(&kp2p->p_sigcatch,
652 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
653 			    sizeof(ki_sigset_t));
654 
655 			kp2p->p_stat = kl[0].l_stat;
656 			kp2p->p_priority = kl[0].l_priority;
657 			kp2p->p_usrpri = kl[0].l_priority;
658 			kp2p->p_nice = kp->kp_proc.p_nice;
659 
660 			kp2p->p_xstat = kp->kp_proc.p_xstat;
661 			kp2p->p_acflag = kp->kp_proc.p_acflag;
662 
663 			/*CONSTCOND*/
664 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
665 			    MIN(sizeof(kp2p->p_comm),
666 			    sizeof(kp->kp_proc.p_comm)));
667 
668 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
669 			    sizeof(kp2p->p_wmesg));
670 			kp2p->p_wchan = kl[0].l_wchan;
671 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
672 			    sizeof(kp2p->p_login));
673 
674 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
675 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
676 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
677 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
678 
679 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
680 
681 			kp2p->p_realflag = kp->kp_proc.p_flag;
682 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
683 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
684 			kp2p->p_realstat = kp->kp_proc.p_stat;
685 
686 			if (P_ZOMBIE(&kp->kp_proc) ||
687 			    kp->kp_proc.p_stats == NULL ||
688 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
689 				kp2p->p_uvalid = 0;
690 			} else {
691 				kp2p->p_uvalid = 1;
692 
693 				kp2p->p_ustart_sec = (u_int32_t)
694 				    pstats.p_start.tv_sec;
695 				kp2p->p_ustart_usec = (u_int32_t)
696 				    pstats.p_start.tv_usec;
697 
698 				kp2p->p_uutime_sec = (u_int32_t)
699 				    pstats.p_ru.ru_utime.tv_sec;
700 				kp2p->p_uutime_usec = (u_int32_t)
701 				    pstats.p_ru.ru_utime.tv_usec;
702 				kp2p->p_ustime_sec = (u_int32_t)
703 				    pstats.p_ru.ru_stime.tv_sec;
704 				kp2p->p_ustime_usec = (u_int32_t)
705 				    pstats.p_ru.ru_stime.tv_usec;
706 
707 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
708 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
709 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
710 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
711 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
712 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
713 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
714 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
715 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
716 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
717 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
718 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
719 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
720 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
721 
722 				kp2p->p_uctime_sec = (u_int32_t)
723 				    (pstats.p_cru.ru_utime.tv_sec +
724 				    pstats.p_cru.ru_stime.tv_sec);
725 				kp2p->p_uctime_usec = (u_int32_t)
726 				    (pstats.p_cru.ru_utime.tv_usec +
727 				    pstats.p_cru.ru_stime.tv_usec);
728 			}
729 
730 			memcpy(kp2c, &kp2, esize);
731 			kp2c += esize;
732 		}
733 	}
734 	*cnt = nprocs;
735 	return (kd->procbase2);
736 }
737 
738 struct kinfo_lwp *
739 kvm_getlwps(kd, pid, paddr, esize, cnt)
740 	kvm_t *kd;
741 	int pid;
742 	u_long paddr;
743 	size_t esize;
744 	int *cnt;
745 {
746 	size_t size;
747 	int mib[5], nlwps;
748 	ssize_t st;
749 	struct kinfo_lwp *kl;
750 
751 	if (ISSYSCTL(kd)) {
752 		size = 0;
753 		mib[0] = CTL_KERN;
754 		mib[1] = KERN_LWP;
755 		mib[2] = pid;
756 		mib[3] = (int)esize;
757 		mib[4] = 0;
758 again:
759 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
760 		if (st == -1) {
761 			switch (errno) {
762 			case ESRCH: /* Treat this as a soft error; see kvm.c */
763 				_kvm_syserr(kd, NULL, "kvm_getlwps");
764 				return NULL;
765 			default:
766 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
767 				return NULL;
768 			}
769 		}
770 		mib[4] = (int) (size / esize);
771 		KVM_ALLOC(kd, lwpbase, size);
772 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
773 		if (st == -1) {
774 			switch (errno) {
775 			case ESRCH: /* Treat this as a soft error; see kvm.c */
776 				_kvm_syserr(kd, NULL, "kvm_getlwps");
777 				return NULL;
778 			case ENOMEM:
779 				goto again;
780 			default:
781 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
782 				return NULL;
783 			}
784 		}
785 		nlwps = (int) (size / esize);
786 	} else {
787 		/* grovel through the memory image */
788 		struct proc p;
789 		struct lwp l;
790 		u_long laddr;
791 		void *back;
792 		int i;
793 
794 		st = kvm_read(kd, paddr, &p, sizeof(p));
795 		if (st == -1) {
796 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
797 			return (NULL);
798 		}
799 
800 		nlwps = p.p_nlwps;
801 		size = nlwps * sizeof(*kd->lwpbase);
802 		KVM_ALLOC(kd, lwpbase, size);
803 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
804 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
805 			st = kvm_read(kd, laddr, &l, sizeof(l));
806 			if (st == -1) {
807 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
808 				return (NULL);
809 			}
810 			kl = &kd->lwpbase[i];
811 			kl->l_laddr = laddr;
812 			kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
813 			laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
814 			st = kvm_read(kd, laddr, &back, sizeof(back));
815 			if (st == -1) {
816 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
817 				return (NULL);
818 			}
819 			kl->l_back = PTRTOUINT64(back);
820 			kl->l_addr = PTRTOUINT64(l.l_addr);
821 			kl->l_lid = l.l_lid;
822 			kl->l_flag = l.l_flag;
823 			kl->l_swtime = l.l_swtime;
824 			kl->l_slptime = l.l_slptime;
825 			kl->l_schedflags = 0; /* XXX */
826 			kl->l_holdcnt = l.l_holdcnt;
827 			kl->l_priority = l.l_priority;
828 			kl->l_usrpri = l.l_priority;
829 			kl->l_stat = l.l_stat;
830 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
831 			if (l.l_wmesg)
832 				(void)kvm_read(kd, (u_long)l.l_wmesg,
833 				    kl->l_wmesg, (size_t)WMESGLEN);
834 			kl->l_cpuid = KI_NOCPU;
835 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
836 		}
837 	}
838 
839 	*cnt = nlwps;
840 	return (kd->lwpbase);
841 }
842 
843 struct kinfo_proc *
844 kvm_getprocs(kd, op, arg, cnt)
845 	kvm_t *kd;
846 	int op, arg;
847 	int *cnt;
848 {
849 	size_t size;
850 	int mib[4], st, nprocs;
851 
852 	if (ISKMEM(kd)) {
853 		size = 0;
854 		mib[0] = CTL_KERN;
855 		mib[1] = KERN_PROC;
856 		mib[2] = op;
857 		mib[3] = arg;
858 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
859 		if (st == -1) {
860 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
861 			return (NULL);
862 		}
863 		KVM_ALLOC(kd, procbase, size);
864 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
865 		if (st == -1) {
866 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
867 			return (NULL);
868 		}
869 		if (size % sizeof(struct kinfo_proc) != 0) {
870 			_kvm_err(kd, kd->program,
871 			    "proc size mismatch (%lu total, %lu chunks)",
872 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
873 			return (NULL);
874 		}
875 		nprocs = (int) (size / sizeof(struct kinfo_proc));
876 	} else if (ISSYSCTL(kd)) {
877 		_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
878 		    "can't use kvm_getprocs");
879 		return (NULL);
880 	} else {
881 		struct nlist nl[4], *p;
882 
883 		(void)memset(nl, 0, sizeof(nl));
884 		nl[0].n_name = "_nprocs";
885 		nl[1].n_name = "_allproc";
886 		nl[2].n_name = "_zombproc";
887 		nl[3].n_name = NULL;
888 
889 		if (kvm_nlist(kd, nl) != 0) {
890 			for (p = nl; p->n_type != 0; ++p)
891 				continue;
892 			_kvm_err(kd, kd->program,
893 			    "%s: no such symbol", p->n_name);
894 			return (NULL);
895 		}
896 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
897 			_kvm_err(kd, kd->program, "can't read nprocs");
898 			return (NULL);
899 		}
900 		size = nprocs * sizeof(*kd->procbase);
901 		KVM_ALLOC(kd, procbase, size);
902 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
903 		    nl[2].n_value, nprocs);
904 		if (nprocs < 0)
905 			return (NULL);
906 #ifdef notdef
907 		size = nprocs * sizeof(struct kinfo_proc);
908 		(void)realloc(kd->procbase, size);
909 #endif
910 	}
911 	*cnt = nprocs;
912 	return (kd->procbase);
913 }
914 
915 void *
916 _kvm_realloc(kd, p, n)
917 	kvm_t *kd;
918 	void *p;
919 	size_t n;
920 {
921 	void *np = realloc(p, n);
922 
923 	if (np == NULL)
924 		_kvm_err(kd, kd->program, "out of memory");
925 	return (np);
926 }
927 
928 /*
929  * Read in an argument vector from the user address space of process p.
930  * addr if the user-space base address of narg null-terminated contiguous
931  * strings.  This is used to read in both the command arguments and
932  * environment strings.  Read at most maxcnt characters of strings.
933  */
934 static char **
935 kvm_argv(kd, p, addr, narg, maxcnt)
936 	kvm_t *kd;
937 	const struct miniproc *p;
938 	u_long addr;
939 	int narg;
940 	int maxcnt;
941 {
942 	char *np, *cp, *ep, *ap;
943 	u_long oaddr = (u_long)~0L;
944 	u_long len;
945 	size_t cc;
946 	char **argv;
947 
948 	/*
949 	 * Check that there aren't an unreasonable number of arguments,
950 	 * and that the address is in user space.
951 	 */
952 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
953 		return (NULL);
954 
955 	if (kd->argv == NULL) {
956 		/*
957 		 * Try to avoid reallocs.
958 		 */
959 		kd->argc = MAX(narg + 1, 32);
960 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
961 		if (kd->argv == NULL)
962 			return (NULL);
963 	} else if (narg + 1 > kd->argc) {
964 		kd->argc = MAX(2 * kd->argc, narg + 1);
965 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
966 		    sizeof(*kd->argv));
967 		if (kd->argv == NULL)
968 			return (NULL);
969 	}
970 	if (kd->argspc == NULL) {
971 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
972 		if (kd->argspc == NULL)
973 			return (NULL);
974 		kd->argspc_len = kd->nbpg;
975 	}
976 	if (kd->argbuf == NULL) {
977 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
978 		if (kd->argbuf == NULL)
979 			return (NULL);
980 	}
981 	cc = sizeof(char *) * narg;
982 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
983 		return (NULL);
984 	ap = np = kd->argspc;
985 	argv = kd->argv;
986 	len = 0;
987 	/*
988 	 * Loop over pages, filling in the argument vector.
989 	 */
990 	while (argv < kd->argv + narg && *argv != NULL) {
991 		addr = (u_long)*argv & ~(kd->nbpg - 1);
992 		if (addr != oaddr) {
993 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
994 			    (size_t)kd->nbpg) != kd->nbpg)
995 				return (NULL);
996 			oaddr = addr;
997 		}
998 		addr = (u_long)*argv & (kd->nbpg - 1);
999 		cp = kd->argbuf + (size_t)addr;
1000 		cc = kd->nbpg - (size_t)addr;
1001 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
1002 			cc = (size_t)(maxcnt - len);
1003 		ep = memchr(cp, '\0', cc);
1004 		if (ep != NULL)
1005 			cc = ep - cp + 1;
1006 		if (len + cc > kd->argspc_len) {
1007 			ptrdiff_t off;
1008 			char **pp;
1009 			char *op = kd->argspc;
1010 
1011 			kd->argspc_len *= 2;
1012 			kd->argspc = _kvm_realloc(kd, kd->argspc,
1013 			    kd->argspc_len);
1014 			if (kd->argspc == NULL)
1015 				return (NULL);
1016 			/*
1017 			 * Adjust argv pointers in case realloc moved
1018 			 * the string space.
1019 			 */
1020 			off = kd->argspc - op;
1021 			for (pp = kd->argv; pp < argv; pp++)
1022 				*pp += off;
1023 			ap += off;
1024 			np += off;
1025 		}
1026 		memcpy(np, cp, cc);
1027 		np += cc;
1028 		len += cc;
1029 		if (ep != NULL) {
1030 			*argv++ = ap;
1031 			ap = np;
1032 		} else
1033 			*argv += cc;
1034 		if (maxcnt > 0 && len >= maxcnt) {
1035 			/*
1036 			 * We're stopping prematurely.  Terminate the
1037 			 * current string.
1038 			 */
1039 			if (ep == NULL) {
1040 				*np = '\0';
1041 				*argv++ = ap;
1042 			}
1043 			break;
1044 		}
1045 	}
1046 	/* Make sure argv is terminated. */
1047 	*argv = NULL;
1048 	return (kd->argv);
1049 }
1050 
1051 static void
1052 ps_str_a(p, addr, n)
1053 	struct ps_strings *p;
1054 	u_long *addr;
1055 	int *n;
1056 {
1057 
1058 	*addr = (u_long)p->ps_argvstr;
1059 	*n = p->ps_nargvstr;
1060 }
1061 
1062 static void
1063 ps_str_e(p, addr, n)
1064 	struct ps_strings *p;
1065 	u_long *addr;
1066 	int *n;
1067 {
1068 
1069 	*addr = (u_long)p->ps_envstr;
1070 	*n = p->ps_nenvstr;
1071 }
1072 
1073 /*
1074  * Determine if the proc indicated by p is still active.
1075  * This test is not 100% foolproof in theory, but chances of
1076  * being wrong are very low.
1077  */
1078 static int
1079 proc_verify(kd, kernp, p)
1080 	kvm_t *kd;
1081 	u_long kernp;
1082 	const struct miniproc *p;
1083 {
1084 	struct proc kernproc;
1085 
1086 	/*
1087 	 * Just read in the whole proc.  It's not that big relative
1088 	 * to the cost of the read system call.
1089 	 */
1090 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1091 	    sizeof(kernproc))
1092 		return (0);
1093 	return (p->p_pid == kernproc.p_pid &&
1094 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1095 }
1096 
1097 static char **
1098 kvm_doargv(kd, p, nchr, info)
1099 	kvm_t *kd;
1100 	const struct miniproc *p;
1101 	int nchr;
1102 	void (*info)(struct ps_strings *, u_long *, int *);
1103 {
1104 	char **ap;
1105 	u_long addr;
1106 	int cnt;
1107 	struct ps_strings arginfo;
1108 
1109 	/*
1110 	 * Pointers are stored at the top of the user stack.
1111 	 */
1112 	if (p->p_stat == SZOMB)
1113 		return (NULL);
1114 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1115 	    (void *)&arginfo, sizeof(arginfo));
1116 	if (cnt != sizeof(arginfo))
1117 		return (NULL);
1118 
1119 	(*info)(&arginfo, &addr, &cnt);
1120 	if (cnt == 0)
1121 		return (NULL);
1122 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1123 	/*
1124 	 * For live kernels, make sure this process didn't go away.
1125 	 */
1126 	if (ap != NULL && ISALIVE(kd) &&
1127 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1128 		ap = NULL;
1129 	return (ap);
1130 }
1131 
1132 /*
1133  * Get the command args.  This code is now machine independent.
1134  */
1135 char **
1136 kvm_getargv(kd, kp, nchr)
1137 	kvm_t *kd;
1138 	const struct kinfo_proc *kp;
1139 	int nchr;
1140 {
1141 	struct miniproc p;
1142 
1143 	KPTOMINI(kp, &p);
1144 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1145 }
1146 
1147 char **
1148 kvm_getenvv(kd, kp, nchr)
1149 	kvm_t *kd;
1150 	const struct kinfo_proc *kp;
1151 	int nchr;
1152 {
1153 	struct miniproc p;
1154 
1155 	KPTOMINI(kp, &p);
1156 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1157 }
1158 
1159 static char **
1160 kvm_doargv2(kd, pid, type, nchr)
1161 	kvm_t *kd;
1162 	pid_t pid;
1163 	int type;
1164 	int nchr;
1165 {
1166 	size_t bufs;
1167 	int narg, mib[4];
1168 	size_t newargspc_len;
1169 	char **ap, *bp, *endp;
1170 
1171 	/*
1172 	 * Check that there aren't an unreasonable number of arguments.
1173 	 */
1174 	if (nchr > ARG_MAX)
1175 		return (NULL);
1176 
1177 	if (nchr == 0)
1178 		nchr = ARG_MAX;
1179 
1180 	/* Get number of strings in argv */
1181 	mib[0] = CTL_KERN;
1182 	mib[1] = KERN_PROC_ARGS;
1183 	mib[2] = pid;
1184 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1185 	bufs = sizeof(narg);
1186 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1187 		return (NULL);
1188 
1189 	if (kd->argv == NULL) {
1190 		/*
1191 		 * Try to avoid reallocs.
1192 		 */
1193 		kd->argc = MAX(narg + 1, 32);
1194 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1195 		if (kd->argv == NULL)
1196 			return (NULL);
1197 	} else if (narg + 1 > kd->argc) {
1198 		kd->argc = MAX(2 * kd->argc, narg + 1);
1199 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1200 		    sizeof(*kd->argv));
1201 		if (kd->argv == NULL)
1202 			return (NULL);
1203 	}
1204 
1205 	newargspc_len = MIN(nchr, ARG_MAX);
1206 	KVM_ALLOC(kd, argspc, newargspc_len);
1207 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
1208 
1209 	mib[0] = CTL_KERN;
1210 	mib[1] = KERN_PROC_ARGS;
1211 	mib[2] = pid;
1212 	mib[3] = type;
1213 	bufs = kd->argspc_len;
1214 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1215 		return (NULL);
1216 
1217 	bp = kd->argspc;
1218 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
1219 	ap = kd->argv;
1220 	endp = bp + MIN(nchr, bufs);
1221 
1222 	while (bp < endp) {
1223 		*ap++ = bp;
1224 		/*
1225 		 * XXX: don't need following anymore, or stick check
1226 		 * for max argc in above while loop?
1227 		 */
1228 		if (ap >= kd->argv + kd->argc) {
1229 			kd->argc *= 2;
1230 			kd->argv = _kvm_realloc(kd, kd->argv,
1231 			    kd->argc * sizeof(*kd->argv));
1232 			ap = kd->argv;
1233 		}
1234 		bp += strlen(bp) + 1;
1235 	}
1236 	*ap = NULL;
1237 
1238 	return (kd->argv);
1239 }
1240 
1241 char **
1242 kvm_getargv2(kd, kp, nchr)
1243 	kvm_t *kd;
1244 	const struct kinfo_proc2 *kp;
1245 	int nchr;
1246 {
1247 
1248 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1249 }
1250 
1251 char **
1252 kvm_getenvv2(kd, kp, nchr)
1253 	kvm_t *kd;
1254 	const struct kinfo_proc2 *kp;
1255 	int nchr;
1256 {
1257 
1258 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1259 }
1260 
1261 /*
1262  * Read from user space.  The user context is given by p.
1263  */
1264 static ssize_t
1265 kvm_ureadm(kd, p, uva, buf, len)
1266 	kvm_t *kd;
1267 	const struct miniproc *p;
1268 	u_long uva;
1269 	char *buf;
1270 	size_t len;
1271 {
1272 	char *cp;
1273 
1274 	cp = buf;
1275 	while (len > 0) {
1276 		size_t cc;
1277 		char *dp;
1278 		u_long cnt;
1279 
1280 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1281 		if (dp == NULL) {
1282 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1283 			return (0);
1284 		}
1285 		cc = (size_t)MIN(cnt, len);
1286 		memcpy(cp, dp, cc);
1287 		cp += cc;
1288 		uva += cc;
1289 		len -= cc;
1290 	}
1291 	return (ssize_t)(cp - buf);
1292 }
1293 
1294 ssize_t
1295 kvm_uread(kd, p, uva, buf, len)
1296 	kvm_t *kd;
1297 	const struct proc *p;
1298 	u_long uva;
1299 	char *buf;
1300 	size_t len;
1301 {
1302 	struct miniproc mp;
1303 
1304 	PTOMINI(p, &mp);
1305 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1306 }
1307