1 /* $NetBSD: kvm_proc.c,v 1.74 2007/11/06 01:46:08 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1998 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /*- 40 * Copyright (c) 1989, 1992, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * This code is derived from software developed by the Computer Systems 44 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 45 * BG 91-66 and contributed to Berkeley. 46 * 47 * Redistribution and use in source and binary forms, with or without 48 * modification, are permitted provided that the following conditions 49 * are met: 50 * 1. Redistributions of source code must retain the above copyright 51 * notice, this list of conditions and the following disclaimer. 52 * 2. Redistributions in binary form must reproduce the above copyright 53 * notice, this list of conditions and the following disclaimer in the 54 * documentation and/or other materials provided with the distribution. 55 * 3. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 */ 71 72 #include <sys/cdefs.h> 73 #if defined(LIBC_SCCS) && !defined(lint) 74 #if 0 75 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 76 #else 77 __RCSID("$NetBSD: kvm_proc.c,v 1.74 2007/11/06 01:46:08 ad Exp $"); 78 #endif 79 #endif /* LIBC_SCCS and not lint */ 80 81 /* 82 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 83 * users of this code, so we've factored it out into a separate module. 84 * Thus, we keep this grunge out of the other kvm applications (i.e., 85 * most other applications are interested only in open/close/read/nlist). 86 */ 87 88 #include <sys/param.h> 89 #include <sys/user.h> 90 #include <sys/lwp.h> 91 #include <sys/proc.h> 92 #include <sys/exec.h> 93 #include <sys/stat.h> 94 #include <sys/ioctl.h> 95 #include <sys/tty.h> 96 #include <sys/resourcevar.h> 97 #include <sys/mutex.h> 98 #include <sys/specificdata.h> 99 100 #include <errno.h> 101 #include <stdlib.h> 102 #include <stddef.h> 103 #include <string.h> 104 #include <unistd.h> 105 #include <nlist.h> 106 #include <kvm.h> 107 108 #include <uvm/uvm_extern.h> 109 #include <uvm/uvm_amap.h> 110 111 #include <sys/sysctl.h> 112 113 #include <limits.h> 114 #include <db.h> 115 #include <paths.h> 116 117 #include "kvm_private.h" 118 119 /* 120 * Common info from kinfo_proc and kinfo_proc2 used by helper routines. 121 */ 122 struct miniproc { 123 struct vmspace *p_vmspace; 124 char p_stat; 125 struct proc *p_paddr; 126 pid_t p_pid; 127 }; 128 129 /* 130 * Convert from struct proc and kinfo_proc{,2} to miniproc. 131 */ 132 #define PTOMINI(kp, p) \ 133 do { \ 134 (p)->p_stat = (kp)->p_stat; \ 135 (p)->p_pid = (kp)->p_pid; \ 136 (p)->p_paddr = NULL; \ 137 (p)->p_vmspace = (kp)->p_vmspace; \ 138 } while (/*CONSTCOND*/0); 139 140 #define KPTOMINI(kp, p) \ 141 do { \ 142 (p)->p_stat = (kp)->kp_proc.p_stat; \ 143 (p)->p_pid = (kp)->kp_proc.p_pid; \ 144 (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ 145 (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ 146 } while (/*CONSTCOND*/0); 147 148 #define KP2TOMINI(kp, p) \ 149 do { \ 150 (p)->p_stat = (kp)->p_stat; \ 151 (p)->p_pid = (kp)->p_pid; \ 152 (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ 153 (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ 154 } while (/*CONSTCOND*/0); 155 156 /* 157 * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, 158 * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to 159 * kvm(3) so dumps can be read properly. 160 * 161 * Whenever NetBSD starts exporting credentials to userland consistently (using 162 * 'struct uucred', or something) this will have to be updated again. 163 */ 164 struct kvm_kauth_cred { 165 kmutex_t cr_lock; /* lock on cr_refcnt */ 166 u_int cr_refcnt; /* reference count */ 167 uid_t cr_uid; /* user id */ 168 uid_t cr_euid; /* effective user id */ 169 uid_t cr_svuid; /* saved effective user id */ 170 gid_t cr_gid; /* group id */ 171 gid_t cr_egid; /* effective group id */ 172 gid_t cr_svgid; /* saved effective group id */ 173 u_int cr_ngroups; /* number of groups */ 174 gid_t cr_groups[NGROUPS]; /* group memberships */ 175 specificdata_reference cr_sd; /* specific data */ 176 }; 177 178 #define KREAD(kd, addr, obj) \ 179 (kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj)) 180 181 /* XXX: What uses these two functions? */ 182 char *_kvm_uread __P((kvm_t *, const struct proc *, u_long, 183 u_long *)); 184 ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *, 185 size_t)); 186 187 static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 188 u_long *)); 189 static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long, 190 char *, size_t)); 191 192 static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int, 193 int)); 194 static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, int)); 195 static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int, 196 void (*)(struct ps_strings *, u_long *, int *))); 197 static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int)); 198 static int kvm_proclist __P((kvm_t *, int, int, struct proc *, 199 struct kinfo_proc *, int)); 200 static int proc_verify __P((kvm_t *, u_long, const struct miniproc *)); 201 static void ps_str_a __P((struct ps_strings *, u_long *, int *)); 202 static void ps_str_e __P((struct ps_strings *, u_long *, int *)); 203 204 205 static char * 206 _kvm_ureadm(kd, p, va, cnt) 207 kvm_t *kd; 208 const struct miniproc *p; 209 u_long va; 210 u_long *cnt; 211 { 212 u_long addr, head; 213 u_long offset; 214 struct vm_map_entry vme; 215 struct vm_amap amap; 216 struct vm_anon *anonp, anon; 217 struct vm_page pg; 218 u_long slot; 219 220 if (kd->swapspc == NULL) { 221 kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); 222 if (kd->swapspc == NULL) 223 return (NULL); 224 } 225 226 /* 227 * Look through the address map for the memory object 228 * that corresponds to the given virtual address. 229 * The header just has the entire valid range. 230 */ 231 head = (u_long)&p->p_vmspace->vm_map.header; 232 addr = head; 233 for (;;) { 234 if (KREAD(kd, addr, &vme)) 235 return (NULL); 236 237 if (va >= vme.start && va < vme.end && 238 vme.aref.ar_amap != NULL) 239 break; 240 241 addr = (u_long)vme.next; 242 if (addr == head) 243 return (NULL); 244 } 245 246 /* 247 * we found the map entry, now to find the object... 248 */ 249 if (vme.aref.ar_amap == NULL) 250 return (NULL); 251 252 addr = (u_long)vme.aref.ar_amap; 253 if (KREAD(kd, addr, &amap)) 254 return (NULL); 255 256 offset = va - vme.start; 257 slot = offset / kd->nbpg + vme.aref.ar_pageoff; 258 /* sanity-check slot number */ 259 if (slot > amap.am_nslot) 260 return (NULL); 261 262 addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); 263 if (KREAD(kd, addr, &anonp)) 264 return (NULL); 265 266 addr = (u_long)anonp; 267 if (KREAD(kd, addr, &anon)) 268 return (NULL); 269 270 addr = (u_long)anon.an_page; 271 if (addr) { 272 if (KREAD(kd, addr, &pg)) 273 return (NULL); 274 275 if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg, 276 (off_t)pg.phys_addr) != kd->nbpg) 277 return (NULL); 278 } else { 279 if (kd->swfd < 0 || 280 pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg, 281 (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) 282 return (NULL); 283 } 284 285 /* Found the page. */ 286 offset %= kd->nbpg; 287 *cnt = kd->nbpg - offset; 288 return (&kd->swapspc[(size_t)offset]); 289 } 290 291 char * 292 _kvm_uread(kd, p, va, cnt) 293 kvm_t *kd; 294 const struct proc *p; 295 u_long va; 296 u_long *cnt; 297 { 298 struct miniproc mp; 299 300 PTOMINI(p, &mp); 301 return (_kvm_ureadm(kd, &mp, va, cnt)); 302 } 303 304 /* 305 * Convert credentials located in kernel space address 'cred' and store 306 * them in the appropriate members of 'eproc'. 307 */ 308 static int 309 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) 310 { 311 struct kvm_kauth_cred kauthcred; 312 struct ki_pcred *pc = &eproc->e_pcred; 313 struct ki_ucred *uc = &eproc->e_ucred; 314 315 if (KREAD(kd, cred, &kauthcred) != 0) 316 return (-1); 317 318 /* inlined version of kauth_cred_to_pcred, see kauth(9). */ 319 pc->p_ruid = kauthcred.cr_uid; 320 pc->p_svuid = kauthcred.cr_svuid; 321 pc->p_rgid = kauthcred.cr_gid; 322 pc->p_svgid = kauthcred.cr_svgid; 323 pc->p_refcnt = kauthcred.cr_refcnt; 324 pc->p_pad = NULL; 325 326 /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ 327 uc->cr_ref = kauthcred.cr_refcnt; 328 uc->cr_uid = kauthcred.cr_euid; 329 uc->cr_gid = kauthcred.cr_egid; 330 uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, 331 sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); 332 memcpy(uc->cr_groups, kauthcred.cr_groups, 333 uc->cr_ngroups * sizeof(uc->cr_groups[0])); 334 335 return (0); 336 } 337 338 /* 339 * Read proc's from memory file into buffer bp, which has space to hold 340 * at most maxcnt procs. 341 */ 342 static int 343 kvm_proclist(kd, what, arg, p, bp, maxcnt) 344 kvm_t *kd; 345 int what, arg; 346 struct proc *p; 347 struct kinfo_proc *bp; 348 int maxcnt; 349 { 350 int cnt = 0; 351 int nlwps; 352 struct kinfo_lwp *kl; 353 struct eproc eproc; 354 struct pgrp pgrp; 355 struct session sess; 356 struct tty tty; 357 struct proc proc; 358 359 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 360 if (KREAD(kd, (u_long)p, &proc)) { 361 _kvm_err(kd, kd->program, "can't read proc at %p", p); 362 return (-1); 363 } 364 if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { 365 _kvm_err(kd, kd->program, 366 "can't read proc credentials at %p", p); 367 return (-1); 368 } 369 370 switch (what) { 371 372 case KERN_PROC_PID: 373 if (proc.p_pid != (pid_t)arg) 374 continue; 375 break; 376 377 case KERN_PROC_UID: 378 if (eproc.e_ucred.cr_uid != (uid_t)arg) 379 continue; 380 break; 381 382 case KERN_PROC_RUID: 383 if (eproc.e_pcred.p_ruid != (uid_t)arg) 384 continue; 385 break; 386 } 387 /* 388 * We're going to add another proc to the set. If this 389 * will overflow the buffer, assume the reason is because 390 * nprocs (or the proc list) is corrupt and declare an error. 391 */ 392 if (cnt >= maxcnt) { 393 _kvm_err(kd, kd->program, "nprocs corrupt"); 394 return (-1); 395 } 396 /* 397 * gather eproc 398 */ 399 eproc.e_paddr = p; 400 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 401 _kvm_err(kd, kd->program, "can't read pgrp at %p", 402 proc.p_pgrp); 403 return (-1); 404 } 405 eproc.e_sess = pgrp.pg_session; 406 eproc.e_pgid = pgrp.pg_id; 407 eproc.e_jobc = pgrp.pg_jobc; 408 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 409 _kvm_err(kd, kd->program, "can't read session at %p", 410 pgrp.pg_session); 411 return (-1); 412 } 413 if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { 414 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 415 _kvm_err(kd, kd->program, 416 "can't read tty at %p", sess.s_ttyp); 417 return (-1); 418 } 419 eproc.e_tdev = tty.t_dev; 420 eproc.e_tsess = tty.t_session; 421 if (tty.t_pgrp != NULL) { 422 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 423 _kvm_err(kd, kd->program, 424 "can't read tpgrp at %p", 425 tty.t_pgrp); 426 return (-1); 427 } 428 eproc.e_tpgid = pgrp.pg_id; 429 } else 430 eproc.e_tpgid = -1; 431 } else 432 eproc.e_tdev = NODEV; 433 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 434 eproc.e_sid = sess.s_sid; 435 if (sess.s_leader == p) 436 eproc.e_flag |= EPROC_SLEADER; 437 /* 438 * Fill in the old-style proc.p_wmesg by copying the wmesg 439 * from the first available LWP. 440 */ 441 kl = kvm_getlwps(kd, proc.p_pid, 442 (u_long)PTRTOUINT64(eproc.e_paddr), 443 sizeof(struct kinfo_lwp), &nlwps); 444 if (kl) { 445 if (nlwps > 0) { 446 strcpy(eproc.e_wmesg, kl[0].l_wmesg); 447 } 448 } 449 (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, 450 sizeof(eproc.e_vm)); 451 452 eproc.e_xsize = eproc.e_xrssize = 0; 453 eproc.e_xccount = eproc.e_xswrss = 0; 454 455 switch (what) { 456 457 case KERN_PROC_PGRP: 458 if (eproc.e_pgid != (pid_t)arg) 459 continue; 460 break; 461 462 case KERN_PROC_TTY: 463 if ((proc.p_lflag & PL_CONTROLT) == 0 || 464 eproc.e_tdev != (dev_t)arg) 465 continue; 466 break; 467 } 468 memcpy(&bp->kp_proc, &proc, sizeof(proc)); 469 memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); 470 ++bp; 471 ++cnt; 472 } 473 return (cnt); 474 } 475 476 /* 477 * Build proc info array by reading in proc list from a crash dump. 478 * Return number of procs read. maxcnt is the max we will read. 479 */ 480 static int 481 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 482 kvm_t *kd; 483 int what, arg; 484 u_long a_allproc; 485 u_long a_zombproc; 486 int maxcnt; 487 { 488 struct kinfo_proc *bp = kd->procbase; 489 int acnt, zcnt; 490 struct proc *p; 491 492 if (KREAD(kd, a_allproc, &p)) { 493 _kvm_err(kd, kd->program, "cannot read allproc"); 494 return (-1); 495 } 496 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 497 if (acnt < 0) 498 return (acnt); 499 500 if (KREAD(kd, a_zombproc, &p)) { 501 _kvm_err(kd, kd->program, "cannot read zombproc"); 502 return (-1); 503 } 504 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, 505 maxcnt - acnt); 506 if (zcnt < 0) 507 zcnt = 0; 508 509 return (acnt + zcnt); 510 } 511 512 struct kinfo_proc2 * 513 kvm_getproc2(kd, op, arg, esize, cnt) 514 kvm_t *kd; 515 int op, arg; 516 size_t esize; 517 int *cnt; 518 { 519 size_t size; 520 int mib[6], st, nprocs; 521 struct pstats pstats; 522 523 if (ISSYSCTL(kd)) { 524 size = 0; 525 mib[0] = CTL_KERN; 526 mib[1] = KERN_PROC2; 527 mib[2] = op; 528 mib[3] = arg; 529 mib[4] = (int)esize; 530 again: 531 mib[5] = 0; 532 st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); 533 if (st == -1) { 534 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 535 return (NULL); 536 } 537 538 mib[5] = (int) (size / esize); 539 KVM_ALLOC(kd, procbase2, size); 540 st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); 541 if (st == -1) { 542 if (errno == ENOMEM) { 543 goto again; 544 } 545 _kvm_syserr(kd, kd->program, "kvm_getproc2"); 546 return (NULL); 547 } 548 nprocs = (int) (size / esize); 549 } else { 550 char *kp2c; 551 struct kinfo_proc *kp; 552 struct kinfo_proc2 kp2, *kp2p; 553 struct kinfo_lwp *kl; 554 int i, nlwps; 555 556 kp = kvm_getprocs(kd, op, arg, &nprocs); 557 if (kp == NULL) 558 return (NULL); 559 560 size = nprocs * esize; 561 KVM_ALLOC(kd, procbase2, size); 562 kp2c = (char *)(void *)kd->procbase2; 563 kp2p = &kp2; 564 for (i = 0; i < nprocs; i++, kp++) { 565 kl = kvm_getlwps(kd, kp->kp_proc.p_pid, 566 (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), 567 sizeof(struct kinfo_lwp), &nlwps); 568 569 /* We use kl[0] as the "representative" LWP */ 570 memset(kp2p, 0, sizeof(kp2)); 571 kp2p->p_forw = kl[0].l_forw; 572 kp2p->p_back = kl[0].l_back; 573 kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); 574 kp2p->p_addr = kl[0].l_addr; 575 kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); 576 kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); 577 kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); 578 kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); 579 kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); 580 kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); 581 kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); 582 kp2p->p_tsess = 0; 583 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ 584 kp2p->p_ru = 0; 585 #else 586 kp2p->p_ru = PTRTOUINT64(pstats.p_ru); 587 #endif 588 589 kp2p->p_eflag = 0; 590 kp2p->p_exitsig = kp->kp_proc.p_exitsig; 591 kp2p->p_flag = kp->kp_proc.p_flag; 592 593 kp2p->p_pid = kp->kp_proc.p_pid; 594 595 kp2p->p_ppid = kp->kp_eproc.e_ppid; 596 kp2p->p_sid = kp->kp_eproc.e_sid; 597 kp2p->p__pgid = kp->kp_eproc.e_pgid; 598 599 kp2p->p_tpgid = -1 /* XXX NO_PGID! */; 600 601 kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; 602 kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; 603 kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; 604 kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; 605 kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; 606 kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; 607 608 /*CONSTCOND*/ 609 memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, 610 MIN(sizeof(kp2p->p_groups), 611 sizeof(kp->kp_eproc.e_ucred.cr_groups))); 612 kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; 613 614 kp2p->p_jobc = kp->kp_eproc.e_jobc; 615 kp2p->p_tdev = kp->kp_eproc.e_tdev; 616 kp2p->p_tpgid = kp->kp_eproc.e_tpgid; 617 kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); 618 619 kp2p->p_estcpu = 0; 620 kp2p->p_rtime_sec = 621 (uint32_t)kp->kp_proc.p_rtime.tv_sec; 622 kp2p->p_rtime_usec = 623 (uint32_t)kp->kp_proc.p_rtime.tv_usec; 624 kp2p->p_cpticks = kl[0].l_cpticks; 625 kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; 626 kp2p->p_swtime = kl[0].l_swtime; 627 kp2p->p_slptime = kl[0].l_slptime; 628 #if 0 /* XXX thorpej */ 629 kp2p->p_schedflags = kp->kp_proc.p_schedflags; 630 #else 631 kp2p->p_schedflags = 0; 632 #endif 633 634 kp2p->p_uticks = kp->kp_proc.p_uticks; 635 kp2p->p_sticks = kp->kp_proc.p_sticks; 636 kp2p->p_iticks = kp->kp_proc.p_iticks; 637 638 kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); 639 kp2p->p_traceflag = kp->kp_proc.p_traceflag; 640 641 kp2p->p_holdcnt = kl[0].l_holdcnt; 642 643 memcpy(&kp2p->p_siglist, 644 &kp->kp_proc.p_sigpend.sp_set, 645 sizeof(ki_sigset_t)); 646 memset(&kp2p->p_sigmask, 0, 647 sizeof(ki_sigset_t)); 648 memcpy(&kp2p->p_sigignore, 649 &kp->kp_proc.p_sigctx.ps_sigignore, 650 sizeof(ki_sigset_t)); 651 memcpy(&kp2p->p_sigcatch, 652 &kp->kp_proc.p_sigctx.ps_sigcatch, 653 sizeof(ki_sigset_t)); 654 655 kp2p->p_stat = kl[0].l_stat; 656 kp2p->p_priority = kl[0].l_priority; 657 kp2p->p_usrpri = kl[0].l_priority; 658 kp2p->p_nice = kp->kp_proc.p_nice; 659 660 kp2p->p_xstat = kp->kp_proc.p_xstat; 661 kp2p->p_acflag = kp->kp_proc.p_acflag; 662 663 /*CONSTCOND*/ 664 strncpy(kp2p->p_comm, kp->kp_proc.p_comm, 665 MIN(sizeof(kp2p->p_comm), 666 sizeof(kp->kp_proc.p_comm))); 667 668 strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, 669 sizeof(kp2p->p_wmesg)); 670 kp2p->p_wchan = kl[0].l_wchan; 671 strncpy(kp2p->p_login, kp->kp_eproc.e_login, 672 sizeof(kp2p->p_login)); 673 674 kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; 675 kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; 676 kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; 677 kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; 678 679 kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; 680 681 kp2p->p_realflag = kp->kp_proc.p_flag; 682 kp2p->p_nlwps = kp->kp_proc.p_nlwps; 683 kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; 684 kp2p->p_realstat = kp->kp_proc.p_stat; 685 686 if (P_ZOMBIE(&kp->kp_proc) || 687 kp->kp_proc.p_stats == NULL || 688 KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { 689 kp2p->p_uvalid = 0; 690 } else { 691 kp2p->p_uvalid = 1; 692 693 kp2p->p_ustart_sec = (u_int32_t) 694 pstats.p_start.tv_sec; 695 kp2p->p_ustart_usec = (u_int32_t) 696 pstats.p_start.tv_usec; 697 698 kp2p->p_uutime_sec = (u_int32_t) 699 pstats.p_ru.ru_utime.tv_sec; 700 kp2p->p_uutime_usec = (u_int32_t) 701 pstats.p_ru.ru_utime.tv_usec; 702 kp2p->p_ustime_sec = (u_int32_t) 703 pstats.p_ru.ru_stime.tv_sec; 704 kp2p->p_ustime_usec = (u_int32_t) 705 pstats.p_ru.ru_stime.tv_usec; 706 707 kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; 708 kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; 709 kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; 710 kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; 711 kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; 712 kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; 713 kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; 714 kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; 715 kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; 716 kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; 717 kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; 718 kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; 719 kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; 720 kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; 721 722 kp2p->p_uctime_sec = (u_int32_t) 723 (pstats.p_cru.ru_utime.tv_sec + 724 pstats.p_cru.ru_stime.tv_sec); 725 kp2p->p_uctime_usec = (u_int32_t) 726 (pstats.p_cru.ru_utime.tv_usec + 727 pstats.p_cru.ru_stime.tv_usec); 728 } 729 730 memcpy(kp2c, &kp2, esize); 731 kp2c += esize; 732 } 733 } 734 *cnt = nprocs; 735 return (kd->procbase2); 736 } 737 738 struct kinfo_lwp * 739 kvm_getlwps(kd, pid, paddr, esize, cnt) 740 kvm_t *kd; 741 int pid; 742 u_long paddr; 743 size_t esize; 744 int *cnt; 745 { 746 size_t size; 747 int mib[5], nlwps; 748 ssize_t st; 749 struct kinfo_lwp *kl; 750 751 if (ISSYSCTL(kd)) { 752 size = 0; 753 mib[0] = CTL_KERN; 754 mib[1] = KERN_LWP; 755 mib[2] = pid; 756 mib[3] = (int)esize; 757 mib[4] = 0; 758 again: 759 st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); 760 if (st == -1) { 761 switch (errno) { 762 case ESRCH: /* Treat this as a soft error; see kvm.c */ 763 _kvm_syserr(kd, NULL, "kvm_getlwps"); 764 return NULL; 765 default: 766 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 767 return NULL; 768 } 769 } 770 mib[4] = (int) (size / esize); 771 KVM_ALLOC(kd, lwpbase, size); 772 st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); 773 if (st == -1) { 774 switch (errno) { 775 case ESRCH: /* Treat this as a soft error; see kvm.c */ 776 _kvm_syserr(kd, NULL, "kvm_getlwps"); 777 return NULL; 778 case ENOMEM: 779 goto again; 780 default: 781 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 782 return NULL; 783 } 784 } 785 nlwps = (int) (size / esize); 786 } else { 787 /* grovel through the memory image */ 788 struct proc p; 789 struct lwp l; 790 u_long laddr; 791 void *back; 792 int i; 793 794 st = kvm_read(kd, paddr, &p, sizeof(p)); 795 if (st == -1) { 796 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 797 return (NULL); 798 } 799 800 nlwps = p.p_nlwps; 801 size = nlwps * sizeof(*kd->lwpbase); 802 KVM_ALLOC(kd, lwpbase, size); 803 laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); 804 for (i = 0; (i < nlwps) && (laddr != 0); i++) { 805 st = kvm_read(kd, laddr, &l, sizeof(l)); 806 if (st == -1) { 807 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 808 return (NULL); 809 } 810 kl = &kd->lwpbase[i]; 811 kl->l_laddr = laddr; 812 kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); 813 laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); 814 st = kvm_read(kd, laddr, &back, sizeof(back)); 815 if (st == -1) { 816 _kvm_syserr(kd, kd->program, "kvm_getlwps"); 817 return (NULL); 818 } 819 kl->l_back = PTRTOUINT64(back); 820 kl->l_addr = PTRTOUINT64(l.l_addr); 821 kl->l_lid = l.l_lid; 822 kl->l_flag = l.l_flag; 823 kl->l_swtime = l.l_swtime; 824 kl->l_slptime = l.l_slptime; 825 kl->l_schedflags = 0; /* XXX */ 826 kl->l_holdcnt = l.l_holdcnt; 827 kl->l_priority = l.l_priority; 828 kl->l_usrpri = l.l_priority; 829 kl->l_stat = l.l_stat; 830 kl->l_wchan = PTRTOUINT64(l.l_wchan); 831 if (l.l_wmesg) 832 (void)kvm_read(kd, (u_long)l.l_wmesg, 833 kl->l_wmesg, (size_t)WMESGLEN); 834 kl->l_cpuid = KI_NOCPU; 835 laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); 836 } 837 } 838 839 *cnt = nlwps; 840 return (kd->lwpbase); 841 } 842 843 struct kinfo_proc * 844 kvm_getprocs(kd, op, arg, cnt) 845 kvm_t *kd; 846 int op, arg; 847 int *cnt; 848 { 849 size_t size; 850 int mib[4], st, nprocs; 851 852 if (ISKMEM(kd)) { 853 size = 0; 854 mib[0] = CTL_KERN; 855 mib[1] = KERN_PROC; 856 mib[2] = op; 857 mib[3] = arg; 858 st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); 859 if (st == -1) { 860 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 861 return (NULL); 862 } 863 KVM_ALLOC(kd, procbase, size); 864 st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); 865 if (st == -1) { 866 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 867 return (NULL); 868 } 869 if (size % sizeof(struct kinfo_proc) != 0) { 870 _kvm_err(kd, kd->program, 871 "proc size mismatch (%lu total, %lu chunks)", 872 (u_long)size, (u_long)sizeof(struct kinfo_proc)); 873 return (NULL); 874 } 875 nprocs = (int) (size / sizeof(struct kinfo_proc)); 876 } else if (ISSYSCTL(kd)) { 877 _kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, " 878 "can't use kvm_getprocs"); 879 return (NULL); 880 } else { 881 struct nlist nl[4], *p; 882 883 (void)memset(nl, 0, sizeof(nl)); 884 nl[0].n_name = "_nprocs"; 885 nl[1].n_name = "_allproc"; 886 nl[2].n_name = "_zombproc"; 887 nl[3].n_name = NULL; 888 889 if (kvm_nlist(kd, nl) != 0) { 890 for (p = nl; p->n_type != 0; ++p) 891 continue; 892 _kvm_err(kd, kd->program, 893 "%s: no such symbol", p->n_name); 894 return (NULL); 895 } 896 if (KREAD(kd, nl[0].n_value, &nprocs)) { 897 _kvm_err(kd, kd->program, "can't read nprocs"); 898 return (NULL); 899 } 900 size = nprocs * sizeof(*kd->procbase); 901 KVM_ALLOC(kd, procbase, size); 902 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 903 nl[2].n_value, nprocs); 904 if (nprocs < 0) 905 return (NULL); 906 #ifdef notdef 907 size = nprocs * sizeof(struct kinfo_proc); 908 (void)realloc(kd->procbase, size); 909 #endif 910 } 911 *cnt = nprocs; 912 return (kd->procbase); 913 } 914 915 void * 916 _kvm_realloc(kd, p, n) 917 kvm_t *kd; 918 void *p; 919 size_t n; 920 { 921 void *np = realloc(p, n); 922 923 if (np == NULL) 924 _kvm_err(kd, kd->program, "out of memory"); 925 return (np); 926 } 927 928 /* 929 * Read in an argument vector from the user address space of process p. 930 * addr if the user-space base address of narg null-terminated contiguous 931 * strings. This is used to read in both the command arguments and 932 * environment strings. Read at most maxcnt characters of strings. 933 */ 934 static char ** 935 kvm_argv(kd, p, addr, narg, maxcnt) 936 kvm_t *kd; 937 const struct miniproc *p; 938 u_long addr; 939 int narg; 940 int maxcnt; 941 { 942 char *np, *cp, *ep, *ap; 943 u_long oaddr = (u_long)~0L; 944 u_long len; 945 size_t cc; 946 char **argv; 947 948 /* 949 * Check that there aren't an unreasonable number of arguments, 950 * and that the address is in user space. 951 */ 952 if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) 953 return (NULL); 954 955 if (kd->argv == NULL) { 956 /* 957 * Try to avoid reallocs. 958 */ 959 kd->argc = MAX(narg + 1, 32); 960 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 961 if (kd->argv == NULL) 962 return (NULL); 963 } else if (narg + 1 > kd->argc) { 964 kd->argc = MAX(2 * kd->argc, narg + 1); 965 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 966 sizeof(*kd->argv)); 967 if (kd->argv == NULL) 968 return (NULL); 969 } 970 if (kd->argspc == NULL) { 971 kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); 972 if (kd->argspc == NULL) 973 return (NULL); 974 kd->argspc_len = kd->nbpg; 975 } 976 if (kd->argbuf == NULL) { 977 kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); 978 if (kd->argbuf == NULL) 979 return (NULL); 980 } 981 cc = sizeof(char *) * narg; 982 if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) 983 return (NULL); 984 ap = np = kd->argspc; 985 argv = kd->argv; 986 len = 0; 987 /* 988 * Loop over pages, filling in the argument vector. 989 */ 990 while (argv < kd->argv + narg && *argv != NULL) { 991 addr = (u_long)*argv & ~(kd->nbpg - 1); 992 if (addr != oaddr) { 993 if (kvm_ureadm(kd, p, addr, kd->argbuf, 994 (size_t)kd->nbpg) != kd->nbpg) 995 return (NULL); 996 oaddr = addr; 997 } 998 addr = (u_long)*argv & (kd->nbpg - 1); 999 cp = kd->argbuf + (size_t)addr; 1000 cc = kd->nbpg - (size_t)addr; 1001 if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) 1002 cc = (size_t)(maxcnt - len); 1003 ep = memchr(cp, '\0', cc); 1004 if (ep != NULL) 1005 cc = ep - cp + 1; 1006 if (len + cc > kd->argspc_len) { 1007 ptrdiff_t off; 1008 char **pp; 1009 char *op = kd->argspc; 1010 1011 kd->argspc_len *= 2; 1012 kd->argspc = _kvm_realloc(kd, kd->argspc, 1013 kd->argspc_len); 1014 if (kd->argspc == NULL) 1015 return (NULL); 1016 /* 1017 * Adjust argv pointers in case realloc moved 1018 * the string space. 1019 */ 1020 off = kd->argspc - op; 1021 for (pp = kd->argv; pp < argv; pp++) 1022 *pp += off; 1023 ap += off; 1024 np += off; 1025 } 1026 memcpy(np, cp, cc); 1027 np += cc; 1028 len += cc; 1029 if (ep != NULL) { 1030 *argv++ = ap; 1031 ap = np; 1032 } else 1033 *argv += cc; 1034 if (maxcnt > 0 && len >= maxcnt) { 1035 /* 1036 * We're stopping prematurely. Terminate the 1037 * current string. 1038 */ 1039 if (ep == NULL) { 1040 *np = '\0'; 1041 *argv++ = ap; 1042 } 1043 break; 1044 } 1045 } 1046 /* Make sure argv is terminated. */ 1047 *argv = NULL; 1048 return (kd->argv); 1049 } 1050 1051 static void 1052 ps_str_a(p, addr, n) 1053 struct ps_strings *p; 1054 u_long *addr; 1055 int *n; 1056 { 1057 1058 *addr = (u_long)p->ps_argvstr; 1059 *n = p->ps_nargvstr; 1060 } 1061 1062 static void 1063 ps_str_e(p, addr, n) 1064 struct ps_strings *p; 1065 u_long *addr; 1066 int *n; 1067 { 1068 1069 *addr = (u_long)p->ps_envstr; 1070 *n = p->ps_nenvstr; 1071 } 1072 1073 /* 1074 * Determine if the proc indicated by p is still active. 1075 * This test is not 100% foolproof in theory, but chances of 1076 * being wrong are very low. 1077 */ 1078 static int 1079 proc_verify(kd, kernp, p) 1080 kvm_t *kd; 1081 u_long kernp; 1082 const struct miniproc *p; 1083 { 1084 struct proc kernproc; 1085 1086 /* 1087 * Just read in the whole proc. It's not that big relative 1088 * to the cost of the read system call. 1089 */ 1090 if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != 1091 sizeof(kernproc)) 1092 return (0); 1093 return (p->p_pid == kernproc.p_pid && 1094 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 1095 } 1096 1097 static char ** 1098 kvm_doargv(kd, p, nchr, info) 1099 kvm_t *kd; 1100 const struct miniproc *p; 1101 int nchr; 1102 void (*info)(struct ps_strings *, u_long *, int *); 1103 { 1104 char **ap; 1105 u_long addr; 1106 int cnt; 1107 struct ps_strings arginfo; 1108 1109 /* 1110 * Pointers are stored at the top of the user stack. 1111 */ 1112 if (p->p_stat == SZOMB) 1113 return (NULL); 1114 cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), 1115 (void *)&arginfo, sizeof(arginfo)); 1116 if (cnt != sizeof(arginfo)) 1117 return (NULL); 1118 1119 (*info)(&arginfo, &addr, &cnt); 1120 if (cnt == 0) 1121 return (NULL); 1122 ap = kvm_argv(kd, p, addr, cnt, nchr); 1123 /* 1124 * For live kernels, make sure this process didn't go away. 1125 */ 1126 if (ap != NULL && ISALIVE(kd) && 1127 !proc_verify(kd, (u_long)p->p_paddr, p)) 1128 ap = NULL; 1129 return (ap); 1130 } 1131 1132 /* 1133 * Get the command args. This code is now machine independent. 1134 */ 1135 char ** 1136 kvm_getargv(kd, kp, nchr) 1137 kvm_t *kd; 1138 const struct kinfo_proc *kp; 1139 int nchr; 1140 { 1141 struct miniproc p; 1142 1143 KPTOMINI(kp, &p); 1144 return (kvm_doargv(kd, &p, nchr, ps_str_a)); 1145 } 1146 1147 char ** 1148 kvm_getenvv(kd, kp, nchr) 1149 kvm_t *kd; 1150 const struct kinfo_proc *kp; 1151 int nchr; 1152 { 1153 struct miniproc p; 1154 1155 KPTOMINI(kp, &p); 1156 return (kvm_doargv(kd, &p, nchr, ps_str_e)); 1157 } 1158 1159 static char ** 1160 kvm_doargv2(kd, pid, type, nchr) 1161 kvm_t *kd; 1162 pid_t pid; 1163 int type; 1164 int nchr; 1165 { 1166 size_t bufs; 1167 int narg, mib[4]; 1168 size_t newargspc_len; 1169 char **ap, *bp, *endp; 1170 1171 /* 1172 * Check that there aren't an unreasonable number of arguments. 1173 */ 1174 if (nchr > ARG_MAX) 1175 return (NULL); 1176 1177 if (nchr == 0) 1178 nchr = ARG_MAX; 1179 1180 /* Get number of strings in argv */ 1181 mib[0] = CTL_KERN; 1182 mib[1] = KERN_PROC_ARGS; 1183 mib[2] = pid; 1184 mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; 1185 bufs = sizeof(narg); 1186 if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) 1187 return (NULL); 1188 1189 if (kd->argv == NULL) { 1190 /* 1191 * Try to avoid reallocs. 1192 */ 1193 kd->argc = MAX(narg + 1, 32); 1194 kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); 1195 if (kd->argv == NULL) 1196 return (NULL); 1197 } else if (narg + 1 > kd->argc) { 1198 kd->argc = MAX(2 * kd->argc, narg + 1); 1199 kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * 1200 sizeof(*kd->argv)); 1201 if (kd->argv == NULL) 1202 return (NULL); 1203 } 1204 1205 newargspc_len = MIN(nchr, ARG_MAX); 1206 KVM_ALLOC(kd, argspc, newargspc_len); 1207 memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ 1208 1209 mib[0] = CTL_KERN; 1210 mib[1] = KERN_PROC_ARGS; 1211 mib[2] = pid; 1212 mib[3] = type; 1213 bufs = kd->argspc_len; 1214 if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) 1215 return (NULL); 1216 1217 bp = kd->argspc; 1218 bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ 1219 ap = kd->argv; 1220 endp = bp + MIN(nchr, bufs); 1221 1222 while (bp < endp) { 1223 *ap++ = bp; 1224 /* 1225 * XXX: don't need following anymore, or stick check 1226 * for max argc in above while loop? 1227 */ 1228 if (ap >= kd->argv + kd->argc) { 1229 kd->argc *= 2; 1230 kd->argv = _kvm_realloc(kd, kd->argv, 1231 kd->argc * sizeof(*kd->argv)); 1232 ap = kd->argv; 1233 } 1234 bp += strlen(bp) + 1; 1235 } 1236 *ap = NULL; 1237 1238 return (kd->argv); 1239 } 1240 1241 char ** 1242 kvm_getargv2(kd, kp, nchr) 1243 kvm_t *kd; 1244 const struct kinfo_proc2 *kp; 1245 int nchr; 1246 { 1247 1248 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); 1249 } 1250 1251 char ** 1252 kvm_getenvv2(kd, kp, nchr) 1253 kvm_t *kd; 1254 const struct kinfo_proc2 *kp; 1255 int nchr; 1256 { 1257 1258 return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); 1259 } 1260 1261 /* 1262 * Read from user space. The user context is given by p. 1263 */ 1264 static ssize_t 1265 kvm_ureadm(kd, p, uva, buf, len) 1266 kvm_t *kd; 1267 const struct miniproc *p; 1268 u_long uva; 1269 char *buf; 1270 size_t len; 1271 { 1272 char *cp; 1273 1274 cp = buf; 1275 while (len > 0) { 1276 size_t cc; 1277 char *dp; 1278 u_long cnt; 1279 1280 dp = _kvm_ureadm(kd, p, uva, &cnt); 1281 if (dp == NULL) { 1282 _kvm_err(kd, 0, "invalid address (%lx)", uva); 1283 return (0); 1284 } 1285 cc = (size_t)MIN(cnt, len); 1286 memcpy(cp, dp, cc); 1287 cp += cc; 1288 uva += cc; 1289 len -= cc; 1290 } 1291 return (ssize_t)(cp - buf); 1292 } 1293 1294 ssize_t 1295 kvm_uread(kd, p, uva, buf, len) 1296 kvm_t *kd; 1297 const struct proc *p; 1298 u_long uva; 1299 char *buf; 1300 size_t len; 1301 { 1302 struct miniproc mp; 1303 1304 PTOMINI(p, &mp); 1305 return (kvm_ureadm(kd, &mp, uva, buf, len)); 1306 } 1307