xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: kvm_proc.c,v 1.94 2019/12/11 20:19:27 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1989, 1992, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  *
36  * This code is derived from software developed by the Computer Systems
37  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
38  * BG 91-66 and contributed to Berkeley.
39  *
40  * Redistribution and use in source and binary forms, with or without
41  * modification, are permitted provided that the following conditions
42  * are met:
43  * 1. Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  * 2. Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in the
47  *    documentation and/or other materials provided with the distribution.
48  * 3. Neither the name of the University nor the names of its contributors
49  *    may be used to endorse or promote products derived from this software
50  *    without specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 #include <sys/cdefs.h>
66 #if defined(LIBC_SCCS) && !defined(lint)
67 #if 0
68 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
69 #else
70 __RCSID("$NetBSD: kvm_proc.c,v 1.94 2019/12/11 20:19:27 ad Exp $");
71 #endif
72 #endif /* LIBC_SCCS and not lint */
73 
74 /*
75  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
76  * users of this code, so we've factored it out into a separate module.
77  * Thus, we keep this grunge out of the other kvm applications (i.e.,
78  * most other applications are interested only in open/close/read/nlist).
79  */
80 
81 #include <sys/param.h>
82 #include <sys/lwp.h>
83 #include <sys/wait.h>
84 #include <sys/proc.h>
85 #include <sys/exec.h>
86 #include <sys/stat.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/resourcevar.h>
90 #include <sys/mutex.h>
91 #include <sys/specificdata.h>
92 #include <sys/types.h>
93 
94 #include <errno.h>
95 #include <stdlib.h>
96 #include <stddef.h>
97 #include <string.h>
98 #include <unistd.h>
99 #include <nlist.h>
100 #include <kvm.h>
101 
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_param.h>
104 #include <uvm/uvm_amap.h>
105 #include <uvm/uvm_page.h>
106 
107 #include <sys/sysctl.h>
108 
109 #include <limits.h>
110 #include <db.h>
111 #include <paths.h>
112 
113 #include "kvm_private.h"
114 
115 /*
116  * Common info from kinfo_proc and kinfo_proc2 used by helper routines.
117  */
118 struct miniproc {
119 	struct	vmspace *p_vmspace;
120 	char	p_stat;
121 	struct	proc *p_paddr;
122 	pid_t	p_pid;
123 };
124 
125 /*
126  * Convert from struct proc and kinfo_proc{,2} to miniproc.
127  */
128 #define PTOMINI(kp, p) \
129 	do { \
130 		(p)->p_stat = (kp)->p_stat; \
131 		(p)->p_pid = (kp)->p_pid; \
132 		(p)->p_paddr = NULL; \
133 		(p)->p_vmspace = (kp)->p_vmspace; \
134 	} while (/*CONSTCOND*/0);
135 
136 #define KPTOMINI(kp, p) \
137 	do { \
138 		(p)->p_stat = (kp)->kp_proc.p_stat; \
139 		(p)->p_pid = (kp)->kp_proc.p_pid; \
140 		(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
141 		(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
142 	} while (/*CONSTCOND*/0);
143 
144 #define KP2TOMINI(kp, p) \
145 	do { \
146 		(p)->p_stat = (kp)->p_stat; \
147 		(p)->p_pid = (kp)->p_pid; \
148 		(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
149 		(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
150 	} while (/*CONSTCOND*/0);
151 
152 /*
153  * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t,
154  * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to
155  * kvm(3) so dumps can be read properly.
156  *
157  * Whenever NetBSD starts exporting credentials to userland consistently (using
158  * 'struct uucred', or something) this will have to be updated again.
159  */
160 struct kvm_kauth_cred {
161 	u_int cr_refcnt;		/* reference count */
162 	uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)];
163 	uid_t cr_uid;			/* user id */
164 	uid_t cr_euid;			/* effective user id */
165 	uid_t cr_svuid;			/* saved effective user id */
166 	gid_t cr_gid;			/* group id */
167 	gid_t cr_egid;			/* effective group id */
168 	gid_t cr_svgid;			/* saved effective group id */
169 	u_int cr_ngroups;		/* number of groups */
170 	gid_t cr_groups[NGROUPS];	/* group memberships */
171 	specificdata_reference cr_sd;	/* specific data */
172 };
173 
174 /* XXX: What uses these two functions? */
175 char		*_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *);
176 ssize_t		kvm_uread(kvm_t *, const struct proc *, u_long, char *,
177 		    size_t);
178 
179 static char	*_kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
180 		    u_long *);
181 static ssize_t	kvm_ureadm(kvm_t *, const struct miniproc *, u_long,
182 		    char *, size_t);
183 
184 static char	**kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int);
185 static int	kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int);
186 static char	**kvm_doargv(kvm_t *, const struct miniproc *, int,
187 		    void (*)(struct ps_strings *, u_long *, int *));
188 static char	**kvm_doargv2(kvm_t *, pid_t, int, int);
189 static int	kvm_proclist(kvm_t *, int, int, struct proc *,
190 		    struct kinfo_proc *, int);
191 static int	proc_verify(kvm_t *, u_long, const struct miniproc *);
192 static void	ps_str_a(struct ps_strings *, u_long *, int *);
193 static void	ps_str_e(struct ps_strings *, u_long *, int *);
194 
195 
196 static char *
197 _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt)
198 {
199 	u_long addr, head;
200 	u_long offset;
201 	struct vm_map_entry vme;
202 	struct vm_amap amap;
203 	struct vm_anon *anonp, anon;
204 	struct vm_page pg;
205 	u_long slot;
206 
207 	if (kd->swapspc == NULL) {
208 		kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg);
209 		if (kd->swapspc == NULL)
210 			return (NULL);
211 	}
212 
213 	/*
214 	 * Look through the address map for the memory object
215 	 * that corresponds to the given virtual address.
216 	 * The header just has the entire valid range.
217 	 */
218 	head = (u_long)&p->p_vmspace->vm_map.header;
219 	addr = head;
220 	for (;;) {
221 		if (KREAD(kd, addr, &vme))
222 			return (NULL);
223 
224 		if (va >= vme.start && va < vme.end &&
225 		    vme.aref.ar_amap != NULL)
226 			break;
227 
228 		addr = (u_long)vme.next;
229 		if (addr == head)
230 			return (NULL);
231 	}
232 
233 	/*
234 	 * we found the map entry, now to find the object...
235 	 */
236 	if (vme.aref.ar_amap == NULL)
237 		return (NULL);
238 
239 	addr = (u_long)vme.aref.ar_amap;
240 	if (KREAD(kd, addr, &amap))
241 		return (NULL);
242 
243 	offset = va - vme.start;
244 	slot = offset / kd->nbpg + vme.aref.ar_pageoff;
245 	/* sanity-check slot number */
246 	if (slot > amap.am_nslot)
247 		return (NULL);
248 
249 	addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
250 	if (KREAD(kd, addr, &anonp))
251 		return (NULL);
252 
253 	addr = (u_long)anonp;
254 	if (KREAD(kd, addr, &anon))
255 		return (NULL);
256 
257 	addr = (u_long)anon.an_page;
258 	if (addr) {
259 		if (KREAD(kd, addr, &pg))
260 			return (NULL);
261 
262 		if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
263 		    (off_t)pg.phys_addr & ~(kd->nbpg - 1)) != kd->nbpg)
264 			return (NULL);
265 	} else {
266 		if (kd->swfd < 0 ||
267 		    _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg,
268 		    (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
269 			return (NULL);
270 	}
271 
272 	/* Found the page. */
273 	offset %= kd->nbpg;
274 	*cnt = kd->nbpg - offset;
275 	return (&kd->swapspc[(size_t)offset]);
276 }
277 
278 char *
279 _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
280 {
281 	struct miniproc mp;
282 
283 	PTOMINI(p, &mp);
284 	return (_kvm_ureadm(kd, &mp, va, cnt));
285 }
286 
287 /*
288  * Convert credentials located in kernel space address 'cred' and store
289  * them in the appropriate members of 'eproc'.
290  */
291 static int
292 _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc)
293 {
294 	struct kvm_kauth_cred kauthcred;
295 	struct ki_pcred *pc = &eproc->e_pcred;
296 	struct ki_ucred *uc = &eproc->e_ucred;
297 
298 	if (KREAD(kd, cred, &kauthcred) != 0)
299 		return (-1);
300 
301 	/* inlined version of kauth_cred_to_pcred, see kauth(9). */
302 	pc->p_ruid = kauthcred.cr_uid;
303 	pc->p_svuid = kauthcred.cr_svuid;
304 	pc->p_rgid = kauthcred.cr_gid;
305 	pc->p_svgid = kauthcred.cr_svgid;
306 	pc->p_refcnt = kauthcred.cr_refcnt;
307 	pc->p_pad = NULL;
308 
309 	/* inlined version of kauth_cred_to_ucred(), see kauth(9). */
310 	uc->cr_ref = kauthcred.cr_refcnt;
311 	uc->cr_uid = kauthcred.cr_euid;
312 	uc->cr_gid = kauthcred.cr_egid;
313 	uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups,
314 	    sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0]));
315 	memcpy(uc->cr_groups, kauthcred.cr_groups,
316 	    uc->cr_ngroups * sizeof(uc->cr_groups[0]));
317 
318 	return (0);
319 }
320 
321 /*
322  * Read proc's from memory file into buffer bp, which has space to hold
323  * at most maxcnt procs.
324  */
325 static int
326 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
327 	     struct kinfo_proc *bp, int maxcnt)
328 {
329 	int cnt = 0;
330 	int nlwps;
331 	struct kinfo_lwp *kl;
332 	struct eproc eproc;
333 	struct pgrp pgrp;
334 	struct session sess;
335 	struct tty tty;
336 	struct proc proc;
337 
338 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
339 		if (KREAD(kd, (u_long)p, &proc)) {
340 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
341 			return (-1);
342 		}
343 		if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) {
344 			_kvm_err(kd, kd->program,
345 			    "can't read proc credentials at %p", p);
346 			return (-1);
347 		}
348 
349 		switch (what) {
350 
351 		case KERN_PROC_PID:
352 			if (proc.p_pid != (pid_t)arg)
353 				continue;
354 			break;
355 
356 		case KERN_PROC_UID:
357 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
358 				continue;
359 			break;
360 
361 		case KERN_PROC_RUID:
362 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
363 				continue;
364 			break;
365 		}
366 		/*
367 		 * We're going to add another proc to the set.  If this
368 		 * will overflow the buffer, assume the reason is because
369 		 * nprocs (or the proc list) is corrupt and declare an error.
370 		 */
371 		if (cnt >= maxcnt) {
372 			_kvm_err(kd, kd->program, "nprocs corrupt");
373 			return (-1);
374 		}
375 		/*
376 		 * gather eproc
377 		 */
378 		eproc.e_paddr = p;
379 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
380 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
381 			    proc.p_pgrp);
382 			return (-1);
383 		}
384 		eproc.e_sess = pgrp.pg_session;
385 		eproc.e_pgid = pgrp.pg_id;
386 		eproc.e_jobc = pgrp.pg_jobc;
387 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
388 			_kvm_err(kd, kd->program, "can't read session at %p",
389 			    pgrp.pg_session);
390 			return (-1);
391 		}
392 		if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) {
393 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
394 				_kvm_err(kd, kd->program,
395 				    "can't read tty at %p", sess.s_ttyp);
396 				return (-1);
397 			}
398 			eproc.e_tdev = (uint32_t)tty.t_dev;
399 			eproc.e_tsess = tty.t_session;
400 			if (tty.t_pgrp != NULL) {
401 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
402 					_kvm_err(kd, kd->program,
403 					    "can't read tpgrp at %p",
404 					    tty.t_pgrp);
405 					return (-1);
406 				}
407 				eproc.e_tpgid = pgrp.pg_id;
408 			} else
409 				eproc.e_tpgid = -1;
410 		} else
411 			eproc.e_tdev = (uint32_t)NODEV;
412 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
413 		eproc.e_sid = sess.s_sid;
414 		if (sess.s_leader == p)
415 			eproc.e_flag |= EPROC_SLEADER;
416 		/*
417 		 * Fill in the old-style proc.p_wmesg by copying the wmesg
418 		 * from the first available LWP.
419 		 */
420 		kl = kvm_getlwps(kd, proc.p_pid,
421 		    (u_long)PTRTOUINT64(eproc.e_paddr),
422 		    sizeof(struct kinfo_lwp), &nlwps);
423 		if (kl) {
424 			if (nlwps > 0) {
425 				strcpy(eproc.e_wmesg, kl[0].l_wmesg);
426 			}
427 		}
428 		(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
429 		    sizeof(eproc.e_vm));
430 
431 		eproc.e_xsize = eproc.e_xrssize = 0;
432 		eproc.e_xccount = eproc.e_xswrss = 0;
433 
434 		switch (what) {
435 
436 		case KERN_PROC_PGRP:
437 			if (eproc.e_pgid != (pid_t)arg)
438 				continue;
439 			break;
440 
441 		case KERN_PROC_TTY:
442 			if ((proc.p_lflag & PL_CONTROLT) == 0 ||
443 			    eproc.e_tdev != (dev_t)arg)
444 				continue;
445 			break;
446 		}
447 		memcpy(&bp->kp_proc, &proc, sizeof(proc));
448 		memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
449 		++bp;
450 		++cnt;
451 	}
452 	return (cnt);
453 }
454 
455 /*
456  * Build proc info array by reading in proc list from a crash dump.
457  * Return number of procs read.  maxcnt is the max we will read.
458  */
459 static int
460 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
461 	      u_long a_zombproc, int maxcnt)
462 {
463 	struct kinfo_proc *bp = kd->procbase;
464 	int acnt, zcnt;
465 	struct proc *p;
466 
467 	if (KREAD(kd, a_allproc, &p)) {
468 		_kvm_err(kd, kd->program, "cannot read allproc");
469 		return (-1);
470 	}
471 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
472 	if (acnt < 0)
473 		return (acnt);
474 
475 	if (KREAD(kd, a_zombproc, &p)) {
476 		_kvm_err(kd, kd->program, "cannot read zombproc");
477 		return (-1);
478 	}
479 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
480 	    maxcnt - acnt);
481 	if (zcnt < 0)
482 		zcnt = 0;
483 
484 	return (acnt + zcnt);
485 }
486 
487 struct kinfo_proc2 *
488 kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt)
489 {
490 	size_t size;
491 	int mib[6], st, nprocs;
492 	struct pstats pstats;
493 
494 	if (ISSYSCTL(kd)) {
495 		size = 0;
496 		mib[0] = CTL_KERN;
497 		mib[1] = KERN_PROC2;
498 		mib[2] = op;
499 		mib[3] = arg;
500 		mib[4] = (int)esize;
501 again:
502 		mib[5] = 0;
503 		st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0);
504 		if (st == -1) {
505 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
506 			return (NULL);
507 		}
508 
509 		mib[5] = (int) (size / esize);
510 		KVM_ALLOC(kd, procbase2, size);
511 		st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0);
512 		if (st == -1) {
513 			if (errno == ENOMEM) {
514 				goto again;
515 			}
516 			_kvm_syserr(kd, kd->program, "kvm_getproc2");
517 			return (NULL);
518 		}
519 		nprocs = (int) (size / esize);
520 	} else {
521 		char *kp2c;
522 		struct kinfo_proc *kp;
523 		struct kinfo_proc2 kp2, *kp2p;
524 		struct kinfo_lwp *kl;
525 		int i, nlwps;
526 
527 		kp = kvm_getprocs(kd, op, arg, &nprocs);
528 		if (kp == NULL)
529 			return (NULL);
530 
531 		size = nprocs * esize;
532 		KVM_ALLOC(kd, procbase2, size);
533 		kp2c = (char *)(void *)kd->procbase2;
534 		kp2p = &kp2;
535 		for (i = 0; i < nprocs; i++, kp++) {
536 			struct timeval tv;
537 
538 			kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
539 			    (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr),
540 			    sizeof(struct kinfo_lwp), &nlwps);
541 
542 			if (kl == NULL) {
543 				_kvm_syserr(kd, NULL,
544 					"kvm_getlwps() failed on process %u\n",
545 					kp->kp_proc.p_pid);
546 				if (nlwps == 0)
547 					return NULL;
548 				else
549 					continue;
550 			}
551 
552 			/* We use kl[0] as the "representative" LWP */
553 			memset(kp2p, 0, sizeof(kp2));
554 			kp2p->p_forw = kl[0].l_forw;
555 			kp2p->p_back = kl[0].l_back;
556 			kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr);
557 			kp2p->p_addr = kl[0].l_addr;
558 			kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd);
559 			kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi);
560 			kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats);
561 			kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit);
562 			kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace);
563 			kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts);
564 			kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess);
565 			kp2p->p_tsess = 0;
566 #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */
567 			kp2p->p_ru = 0;
568 #else
569 			kp2p->p_ru = PTRTOUINT64(pstats.p_ru);
570 #endif
571 
572 			kp2p->p_eflag = 0;
573 			kp2p->p_exitsig = kp->kp_proc.p_exitsig;
574 			kp2p->p_flag = kp->kp_proc.p_flag;
575 
576 			kp2p->p_pid = kp->kp_proc.p_pid;
577 
578 			kp2p->p_ppid = kp->kp_eproc.e_ppid;
579 			kp2p->p_sid = kp->kp_eproc.e_sid;
580 			kp2p->p__pgid = kp->kp_eproc.e_pgid;
581 
582 			kp2p->p_tpgid = -1 /* XXX NO_PGID! */;
583 
584 			kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
585 			kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
586 			kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
587 			kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
588 			kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
589 			kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
590 
591 			/*CONSTCOND*/
592 			memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
593 			    MIN(sizeof(kp2p->p_groups),
594 			    sizeof(kp->kp_eproc.e_ucred.cr_groups)));
595 			kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
596 
597 			kp2p->p_jobc = kp->kp_eproc.e_jobc;
598 			kp2p->p_tdev = kp->kp_eproc.e_tdev;
599 			kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
600 			kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess);
601 
602 			kp2p->p_estcpu = 0;
603 			bintime2timeval(&kp->kp_proc.p_rtime, &tv);
604 			kp2p->p_rtime_sec = (uint32_t)tv.tv_sec;
605 			kp2p->p_rtime_usec = (uint32_t)tv.tv_usec;
606 			kp2p->p_cpticks = kl[0].l_cpticks;
607 			kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
608 			kp2p->p_swtime = kl[0].l_swtime;
609 			kp2p->p_slptime = kl[0].l_slptime;
610 #if 0 /* XXX thorpej */
611 			kp2p->p_schedflags = kp->kp_proc.p_schedflags;
612 #else
613 			kp2p->p_schedflags = 0;
614 #endif
615 
616 			kp2p->p_uticks = kp->kp_proc.p_uticks;
617 			kp2p->p_sticks = kp->kp_proc.p_sticks;
618 			kp2p->p_iticks = kp->kp_proc.p_iticks;
619 
620 			kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep);
621 			kp2p->p_traceflag = kp->kp_proc.p_traceflag;
622 
623 			kp2p->p_holdcnt = kl[0].l_holdcnt;
624 
625 			memcpy(&kp2p->p_siglist,
626 			    &kp->kp_proc.p_sigpend.sp_set,
627 			    sizeof(ki_sigset_t));
628 			memset(&kp2p->p_sigmask, 0,
629 			    sizeof(ki_sigset_t));
630 			memcpy(&kp2p->p_sigignore,
631 			    &kp->kp_proc.p_sigctx.ps_sigignore,
632 			    sizeof(ki_sigset_t));
633 			memcpy(&kp2p->p_sigcatch,
634 			    &kp->kp_proc.p_sigctx.ps_sigcatch,
635 			    sizeof(ki_sigset_t));
636 
637 			kp2p->p_stat = kl[0].l_stat;
638 			kp2p->p_priority = kl[0].l_priority;
639 			kp2p->p_usrpri = kl[0].l_priority;
640 			kp2p->p_nice = kp->kp_proc.p_nice;
641 
642 			kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc);
643 			kp2p->p_acflag = kp->kp_proc.p_acflag;
644 
645 			/*CONSTCOND*/
646 			strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
647 			    MIN(sizeof(kp2p->p_comm),
648 			    sizeof(kp->kp_proc.p_comm)));
649 
650 			strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
651 			    sizeof(kp2p->p_wmesg));
652 			kp2p->p_wchan = kl[0].l_wchan;
653 			strncpy(kp2p->p_login, kp->kp_eproc.e_login,
654 			    sizeof(kp2p->p_login));
655 
656 			kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
657 			kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
658 			kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
659 			kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
660 			kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size
661 			    / kd->nbpg;
662 			/* Adjust mapped size */
663 			kp2p->p_vm_msize =
664 			    (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) -
665 			    kp->kp_eproc.e_vm.vm_issize +
666 			    kp->kp_eproc.e_vm.vm_ssize;
667 
668 			kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
669 
670 			kp2p->p_realflag = kp->kp_proc.p_flag;
671 			kp2p->p_nlwps = kp->kp_proc.p_nlwps;
672 			kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
673 			kp2p->p_realstat = kp->kp_proc.p_stat;
674 
675 			if (P_ZOMBIE(&kp->kp_proc) ||
676 			    kp->kp_proc.p_stats == NULL ||
677 			    KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
678 				kp2p->p_uvalid = 0;
679 			} else {
680 				kp2p->p_uvalid = 1;
681 
682 				kp2p->p_ustart_sec = (u_int32_t)
683 				    pstats.p_start.tv_sec;
684 				kp2p->p_ustart_usec = (u_int32_t)
685 				    pstats.p_start.tv_usec;
686 
687 				kp2p->p_uutime_sec = (u_int32_t)
688 				    pstats.p_ru.ru_utime.tv_sec;
689 				kp2p->p_uutime_usec = (u_int32_t)
690 				    pstats.p_ru.ru_utime.tv_usec;
691 				kp2p->p_ustime_sec = (u_int32_t)
692 				    pstats.p_ru.ru_stime.tv_sec;
693 				kp2p->p_ustime_usec = (u_int32_t)
694 				    pstats.p_ru.ru_stime.tv_usec;
695 
696 				kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
697 				kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
698 				kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
699 				kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
700 				kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
701 				kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
702 				kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
703 				kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
704 				kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
705 				kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
706 				kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
707 				kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
708 				kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
709 				kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
710 
711 				kp2p->p_uctime_sec = (u_int32_t)
712 				    (pstats.p_cru.ru_utime.tv_sec +
713 				    pstats.p_cru.ru_stime.tv_sec);
714 				kp2p->p_uctime_usec = (u_int32_t)
715 				    (pstats.p_cru.ru_utime.tv_usec +
716 				    pstats.p_cru.ru_stime.tv_usec);
717 			}
718 
719 			memcpy(kp2c, &kp2, esize);
720 			kp2c += esize;
721 		}
722 	}
723 	*cnt = nprocs;
724 	return (kd->procbase2);
725 }
726 
727 struct kinfo_lwp *
728 kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt)
729 {
730 	size_t size;
731 	int mib[5], nlwps;
732 	ssize_t st;
733 	struct kinfo_lwp *kl;
734 
735 	if (ISSYSCTL(kd)) {
736 		size = 0;
737 		mib[0] = CTL_KERN;
738 		mib[1] = KERN_LWP;
739 		mib[2] = pid;
740 		mib[3] = (int)esize;
741 		mib[4] = 0;
742 again:
743 		st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0);
744 		if (st == -1) {
745 			switch (errno) {
746 			case ESRCH: /* Treat this as a soft error; see kvm.c */
747 				_kvm_syserr(kd, NULL, "kvm_getlwps");
748 				return NULL;
749 			default:
750 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
751 				return NULL;
752 			}
753 		}
754 		mib[4] = (int) (size / esize);
755 		KVM_ALLOC(kd, lwpbase, size);
756 		st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0);
757 		if (st == -1) {
758 			switch (errno) {
759 			case ESRCH: /* Treat this as a soft error; see kvm.c */
760 				_kvm_syserr(kd, NULL, "kvm_getlwps");
761 				return NULL;
762 			case ENOMEM:
763 				goto again;
764 			default:
765 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
766 				return NULL;
767 			}
768 		}
769 		nlwps = (int) (size / esize);
770 	} else {
771 		/* grovel through the memory image */
772 		struct proc p;
773 		struct lwp l;
774 		u_long laddr;
775 		void *back;
776 		int i;
777 
778 		st = kvm_read(kd, paddr, &p, sizeof(p));
779 		if (st == -1) {
780 			_kvm_syserr(kd, kd->program, "kvm_getlwps");
781 			return (NULL);
782 		}
783 
784 		nlwps = p.p_nlwps;
785 		size = nlwps * sizeof(*kd->lwpbase);
786 		KVM_ALLOC(kd, lwpbase, size);
787 		laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first);
788 		for (i = 0; (i < nlwps) && (laddr != 0); i++) {
789 			st = kvm_read(kd, laddr, &l, sizeof(l));
790 			if (st == -1) {
791 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
792 				return (NULL);
793 			}
794 			kl = &kd->lwpbase[i];
795 			kl->l_laddr = laddr;
796 			kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next);
797 			laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev);
798 			st = kvm_read(kd, laddr, &back, sizeof(back));
799 			if (st == -1) {
800 				_kvm_syserr(kd, kd->program, "kvm_getlwps");
801 				return (NULL);
802 			}
803 			kl->l_back = PTRTOUINT64(back);
804 			kl->l_addr = PTRTOUINT64(l.l_addr);
805 			kl->l_lid = l.l_lid;
806 			kl->l_flag = l.l_flag;
807 			kl->l_swtime = l.l_swtime;
808 			kl->l_slptime = l.l_slptime;
809 			kl->l_schedflags = 0; /* XXX */
810 			kl->l_holdcnt = 0;
811 			kl->l_priority = l.l_priority;
812 			kl->l_usrpri = l.l_priority;
813 			kl->l_stat = l.l_stat;
814 			kl->l_wchan = PTRTOUINT64(l.l_wchan);
815 			if (l.l_wmesg)
816 				(void)kvm_read(kd, (u_long)l.l_wmesg,
817 				    kl->l_wmesg, (size_t)WMESGLEN);
818 			kl->l_cpuid = KI_NOCPU;
819 			laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next);
820 		}
821 	}
822 
823 	*cnt = nlwps;
824 	return (kd->lwpbase);
825 }
826 
827 struct kinfo_proc *
828 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
829 {
830 	size_t size;
831 	int mib[4], st, nprocs;
832 
833 	if (ISALIVE(kd)) {
834 		size = 0;
835 		mib[0] = CTL_KERN;
836 		mib[1] = KERN_PROC;
837 		mib[2] = op;
838 		mib[3] = arg;
839 		st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0);
840 		if (st == -1) {
841 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
842 			return (NULL);
843 		}
844 		KVM_ALLOC(kd, procbase, size);
845 		st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0);
846 		if (st == -1) {
847 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
848 			return (NULL);
849 		}
850 		if (size % sizeof(struct kinfo_proc) != 0) {
851 			_kvm_err(kd, kd->program,
852 			    "proc size mismatch (%lu total, %lu chunks)",
853 			    (u_long)size, (u_long)sizeof(struct kinfo_proc));
854 			return (NULL);
855 		}
856 		nprocs = (int) (size / sizeof(struct kinfo_proc));
857 	} else {
858 		struct nlist nl[4], *p;
859 
860 		(void)memset(nl, 0, sizeof(nl));
861 		nl[0].n_name = "_nprocs";
862 		nl[1].n_name = "_allproc";
863 		nl[2].n_name = "_zombproc";
864 		nl[3].n_name = NULL;
865 
866 		if (kvm_nlist(kd, nl) != 0) {
867 			for (p = nl; p->n_type != 0; ++p)
868 				continue;
869 			_kvm_err(kd, kd->program,
870 			    "%s: no such symbol", p->n_name);
871 			return (NULL);
872 		}
873 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
874 			_kvm_err(kd, kd->program, "can't read nprocs");
875 			return (NULL);
876 		}
877 		size = nprocs * sizeof(*kd->procbase);
878 		KVM_ALLOC(kd, procbase, size);
879 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
880 		    nl[2].n_value, nprocs);
881 		if (nprocs < 0)
882 			return (NULL);
883 #ifdef notdef
884 		size = nprocs * sizeof(struct kinfo_proc);
885 		(void)realloc(kd->procbase, size);
886 #endif
887 	}
888 	*cnt = nprocs;
889 	return (kd->procbase);
890 }
891 
892 void *
893 _kvm_realloc(kvm_t *kd, void *p, size_t n)
894 {
895 	void *np = realloc(p, n);
896 
897 	if (np == NULL)
898 		_kvm_err(kd, kd->program, "out of memory");
899 	return (np);
900 }
901 
902 /*
903  * Read in an argument vector from the user address space of process p.
904  * addr if the user-space base address of narg null-terminated contiguous
905  * strings.  This is used to read in both the command arguments and
906  * environment strings.  Read at most maxcnt characters of strings.
907  */
908 static char **
909 kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg,
910 	 int maxcnt)
911 {
912 	char *np, *cp, *ep, *ap;
913 	u_long oaddr = (u_long)~0L;
914 	u_long len;
915 	size_t cc;
916 	char **argv;
917 
918 	/*
919 	 * Check that there aren't an unreasonable number of arguments,
920 	 * and that the address is in user space.
921 	 */
922 	if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
923 		return (NULL);
924 
925 	if (kd->argv == NULL) {
926 		/*
927 		 * Try to avoid reallocs.
928 		 */
929 		kd->argc = MAX(narg + 1, 32);
930 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
931 		if (kd->argv == NULL)
932 			return (NULL);
933 	} else if (narg + 1 > kd->argc) {
934 		kd->argc = MAX(2 * kd->argc, narg + 1);
935 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
936 		    sizeof(*kd->argv));
937 		if (kd->argv == NULL)
938 			return (NULL);
939 	}
940 	if (kd->argspc == NULL) {
941 		kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg);
942 		if (kd->argspc == NULL)
943 			return (NULL);
944 		kd->argspc_len = kd->nbpg;
945 	}
946 	if (kd->argbuf == NULL) {
947 		kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg);
948 		if (kd->argbuf == NULL)
949 			return (NULL);
950 	}
951 	cc = sizeof(char *) * narg;
952 	if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
953 		return (NULL);
954 	ap = np = kd->argspc;
955 	argv = kd->argv;
956 	len = 0;
957 	/*
958 	 * Loop over pages, filling in the argument vector.
959 	 */
960 	while (argv < kd->argv + narg && *argv != NULL) {
961 		addr = (u_long)*argv & ~(kd->nbpg - 1);
962 		if (addr != oaddr) {
963 			if (kvm_ureadm(kd, p, addr, kd->argbuf,
964 			    (size_t)kd->nbpg) != kd->nbpg)
965 				return (NULL);
966 			oaddr = addr;
967 		}
968 		addr = (u_long)*argv & (kd->nbpg - 1);
969 		cp = kd->argbuf + (size_t)addr;
970 		cc = kd->nbpg - (size_t)addr;
971 		if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
972 			cc = (size_t)(maxcnt - len);
973 		ep = memchr(cp, '\0', cc);
974 		if (ep != NULL)
975 			cc = ep - cp + 1;
976 		if (len + cc > kd->argspc_len) {
977 			ptrdiff_t off;
978 			char **pp;
979 			char *op = kd->argspc;
980 
981 			kd->argspc_len *= 2;
982 			kd->argspc = _kvm_realloc(kd, kd->argspc,
983 			    kd->argspc_len);
984 			if (kd->argspc == NULL)
985 				return (NULL);
986 			/*
987 			 * Adjust argv pointers in case realloc moved
988 			 * the string space.
989 			 */
990 			off = kd->argspc - op;
991 			for (pp = kd->argv; pp < argv; pp++)
992 				*pp += off;
993 			ap += off;
994 			np += off;
995 		}
996 		memcpy(np, cp, cc);
997 		np += cc;
998 		len += cc;
999 		if (ep != NULL) {
1000 			*argv++ = ap;
1001 			ap = np;
1002 		} else
1003 			*argv += cc;
1004 		if (maxcnt > 0 && len >= maxcnt) {
1005 			/*
1006 			 * We're stopping prematurely.  Terminate the
1007 			 * current string.
1008 			 */
1009 			if (ep == NULL) {
1010 				*np = '\0';
1011 				*argv++ = ap;
1012 			}
1013 			break;
1014 		}
1015 	}
1016 	/* Make sure argv is terminated. */
1017 	*argv = NULL;
1018 	return (kd->argv);
1019 }
1020 
1021 static void
1022 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
1023 {
1024 
1025 	*addr = (u_long)p->ps_argvstr;
1026 	*n = p->ps_nargvstr;
1027 }
1028 
1029 static void
1030 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
1031 {
1032 
1033 	*addr = (u_long)p->ps_envstr;
1034 	*n = p->ps_nenvstr;
1035 }
1036 
1037 /*
1038  * Determine if the proc indicated by p is still active.
1039  * This test is not 100% foolproof in theory, but chances of
1040  * being wrong are very low.
1041  */
1042 static int
1043 proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p)
1044 {
1045 	struct proc kernproc;
1046 
1047 	/*
1048 	 * Just read in the whole proc.  It's not that big relative
1049 	 * to the cost of the read system call.
1050 	 */
1051 	if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
1052 	    sizeof(kernproc))
1053 		return (0);
1054 	return (p->p_pid == kernproc.p_pid &&
1055 	    (kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
1056 }
1057 
1058 static char **
1059 kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr,
1060 	   void (*info)(struct ps_strings *, u_long *, int *))
1061 {
1062 	char **ap;
1063 	u_long addr;
1064 	int cnt;
1065 	struct ps_strings arginfo;
1066 
1067 	/*
1068 	 * Pointers are stored at the top of the user stack.
1069 	 */
1070 	if (p->p_stat == SZOMB)
1071 		return (NULL);
1072 	cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
1073 	    (void *)&arginfo, sizeof(arginfo));
1074 	if (cnt != sizeof(arginfo))
1075 		return (NULL);
1076 
1077 	(*info)(&arginfo, &addr, &cnt);
1078 	if (cnt == 0)
1079 		return (NULL);
1080 	ap = kvm_argv(kd, p, addr, cnt, nchr);
1081 	/*
1082 	 * For live kernels, make sure this process didn't go away.
1083 	 */
1084 	if (ap != NULL && ISALIVE(kd) &&
1085 	    !proc_verify(kd, (u_long)p->p_paddr, p))
1086 		ap = NULL;
1087 	return (ap);
1088 }
1089 
1090 /*
1091  * Get the command args.  This code is now machine independent.
1092  */
1093 char **
1094 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1095 {
1096 	struct miniproc p;
1097 
1098 	KPTOMINI(kp, &p);
1099 	return (kvm_doargv(kd, &p, nchr, ps_str_a));
1100 }
1101 
1102 char **
1103 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
1104 {
1105 	struct miniproc p;
1106 
1107 	KPTOMINI(kp, &p);
1108 	return (kvm_doargv(kd, &p, nchr, ps_str_e));
1109 }
1110 
1111 static char **
1112 kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr)
1113 {
1114 	size_t bufs;
1115 	int narg, mib[4];
1116 	size_t newargspc_len;
1117 	char **ap, *bp, *endp;
1118 
1119 	/*
1120 	 * Check that there aren't an unreasonable number of arguments.
1121 	 */
1122 	if (nchr > ARG_MAX)
1123 		return (NULL);
1124 
1125 	if (nchr == 0)
1126 		nchr = ARG_MAX;
1127 
1128 	/* Get number of strings in argv */
1129 	mib[0] = CTL_KERN;
1130 	mib[1] = KERN_PROC_ARGS;
1131 	mib[2] = pid;
1132 	mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
1133 	bufs = sizeof(narg);
1134 	if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1)
1135 		return (NULL);
1136 
1137 	if (kd->argv == NULL) {
1138 		/*
1139 		 * Try to avoid reallocs.
1140 		 */
1141 		kd->argc = MAX(narg + 1, 32);
1142 		kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv));
1143 		if (kd->argv == NULL)
1144 			return (NULL);
1145 	} else if (narg + 1 > kd->argc) {
1146 		kd->argc = MAX(2 * kd->argc, narg + 1);
1147 		kd->argv = _kvm_realloc(kd, kd->argv, kd->argc *
1148 		    sizeof(*kd->argv));
1149 		if (kd->argv == NULL)
1150 			return (NULL);
1151 	}
1152 
1153 	newargspc_len = MIN(nchr, ARG_MAX);
1154 	KVM_ALLOC(kd, argspc, newargspc_len);
1155 	memset(kd->argspc, 0, (size_t)kd->argspc_len);	/* XXX necessary? */
1156 
1157 	mib[0] = CTL_KERN;
1158 	mib[1] = KERN_PROC_ARGS;
1159 	mib[2] = pid;
1160 	mib[3] = type;
1161 	bufs = kd->argspc_len;
1162 	if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1)
1163 		return (NULL);
1164 
1165 	bp = kd->argspc;
1166 	bp[kd->argspc_len-1] = '\0';	/* make sure the string ends with nul */
1167 	ap = kd->argv;
1168 	endp = bp + MIN(nchr, bufs);
1169 
1170 	while (bp < endp) {
1171 		*ap++ = bp;
1172 		/*
1173 		 * XXX: don't need following anymore, or stick check
1174 		 * for max argc in above while loop?
1175 		 */
1176 		if (ap >= kd->argv + kd->argc) {
1177 			kd->argc *= 2;
1178 			kd->argv = _kvm_realloc(kd, kd->argv,
1179 			    kd->argc * sizeof(*kd->argv));
1180 			ap = kd->argv;
1181 		}
1182 		bp += strlen(bp) + 1;
1183 	}
1184 	*ap = NULL;
1185 
1186 	return (kd->argv);
1187 }
1188 
1189 char **
1190 kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1191 {
1192 
1193 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
1194 }
1195 
1196 char **
1197 kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr)
1198 {
1199 
1200 	return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
1201 }
1202 
1203 /*
1204  * Read from user space.  The user context is given by p.
1205  */
1206 static ssize_t
1207 kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva,
1208 	   char *buf, size_t len)
1209 {
1210 	char *cp;
1211 
1212 	cp = buf;
1213 	while (len > 0) {
1214 		size_t cc;
1215 		char *dp;
1216 		u_long cnt;
1217 
1218 		dp = _kvm_ureadm(kd, p, uva, &cnt);
1219 		if (dp == NULL) {
1220 			_kvm_err(kd, 0, "invalid address (%lx)", uva);
1221 			return (0);
1222 		}
1223 		cc = (size_t)MIN(cnt, len);
1224 		memcpy(cp, dp, cc);
1225 		cp += cc;
1226 		uva += cc;
1227 		len -= cc;
1228 	}
1229 	return (ssize_t)(cp - buf);
1230 }
1231 
1232 ssize_t
1233 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
1234 {
1235 	struct miniproc mp;
1236 
1237 	PTOMINI(p, &mp);
1238 	return (kvm_ureadm(kd, &mp, uva, buf, len));
1239 }
1240