xref: /netbsd-src/lib/libkvm/kvm_proc.c (revision 05a9db8e4f5a54955cacec0e01c45d54b958765c)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #if defined(LIBC_SCCS) && !defined(lint)
39 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
40 #endif /* LIBC_SCCS and not lint */
41 
42 /*
43  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44  * users of this code, so we've factored it out into a separate module.
45  * Thus, we keep this grunge out of the other kvm applications (i.e.,
46  * most other applications are interested only in open/close/read/nlist).
47  */
48 
49 #include <sys/param.h>
50 #include <sys/user.h>
51 #include <sys/proc.h>
52 #include <sys/exec.h>
53 #include <sys/stat.h>
54 #include <sys/ioctl.h>
55 #include <sys/tty.h>
56 #include <unistd.h>
57 #include <nlist.h>
58 #include <kvm.h>
59 
60 #include <vm/vm.h>
61 #include <vm/vm_param.h>
62 #include <vm/swap_pager.h>
63 
64 #include <sys/sysctl.h>
65 
66 #include <limits.h>
67 #include <db.h>
68 #include <paths.h>
69 
70 #include "kvm_private.h"
71 
72 static char *
73 kvm_readswap(kd, p, va, cnt)
74 	kvm_t *kd;
75 	const struct proc *p;
76 	u_long va;
77 	u_long *cnt;
78 {
79 	register int ix;
80 	register u_long addr, head;
81 	register u_long offset, pagestart, sbstart, pgoff;
82 	register off_t seekpoint;
83 	struct vm_map_entry vme;
84 	struct vm_object vmo;
85 	struct pager_struct pager;
86 	struct swpager swap;
87 	struct swblock swb;
88 	static char page[NBPG];
89 
90 	head = (u_long)&p->p_vmspace->vm_map.header;
91 	/*
92 	 * Look through the address map for the memory object
93 	 * that corresponds to the given virtual address.
94 	 * The header just has the entire valid range.
95 	 */
96 	addr = head;
97 	while (1) {
98 		if (kvm_read(kd, addr, (char *)&vme, sizeof(vme)) !=
99 		    sizeof(vme))
100 			return (0);
101 
102 		if (va >= vme.start && va <= vme.end &&
103 		    vme.object.vm_object != 0)
104 			break;
105 
106 		addr = (u_long)vme.next;
107 		if (addr == 0 || addr == head)
108 			return (0);
109 	}
110 	/*
111 	 * We found the right object -- follow shadow links.
112 	 */
113 	offset = va - vme.start + vme.offset;
114 	addr = (u_long)vme.object.vm_object;
115 	while (1) {
116 		if (kvm_read(kd, addr, (char *)&vmo, sizeof(vmo)) !=
117 		    sizeof(vmo))
118 			return (0);
119 		addr = (u_long)vmo.shadow;
120 		if (addr == 0)
121 			break;
122 		offset += vmo.shadow_offset;
123 	}
124 	if (vmo.pager == 0)
125 		return (0);
126 
127 	offset += vmo.paging_offset;
128 	/*
129 	 * Read in the pager info and make sure it's a swap device.
130 	 */
131 	addr = (u_long)vmo.pager;
132 	if (kvm_read(kd, addr, (char *)&pager, sizeof(pager)) != sizeof(pager)
133 	    || pager.pg_type != PG_SWAP)
134 		return (0);
135 
136 	/*
137 	 * Read in the swap_pager private data, and compute the
138 	 * swap offset.
139 	 */
140 	addr = (u_long)pager.pg_data;
141 	if (kvm_read(kd, addr, (char *)&swap, sizeof(swap)) != sizeof(swap))
142 		return (0);
143 	ix = offset / dbtob(swap.sw_bsize);
144 	if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks)
145 		return (0);
146 
147 	addr = (u_long)&swap.sw_blocks[ix];
148 	if (kvm_read(kd, addr, (char *)&swb, sizeof(swb)) != sizeof(swb))
149 		return (0);
150 
151 	sbstart = (offset / dbtob(swap.sw_bsize)) * dbtob(swap.sw_bsize);
152 	sbstart /= NBPG;
153 	pagestart = offset / NBPG;
154 	pgoff = pagestart - sbstart;
155 
156 	if (swb.swb_block == 0 || (swb.swb_mask & (1 << pgoff)) == 0)
157 		return (0);
158 
159 	seekpoint = dbtob(swb.swb_block) + ctob(pgoff);
160 	errno = 0;
161 	if (lseek(kd->swfd, seekpoint, 0) == -1 && errno != 0)
162 		return (0);
163 	if (read(kd->swfd, page, sizeof(page)) != sizeof(page))
164 		return (0);
165 
166 	offset %= NBPG;
167 	*cnt = NBPG - offset;
168 	return (&page[offset]);
169 }
170 
171 #define KREAD(kd, addr, obj) \
172 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
173 
174 /*
175  * Read proc's from memory file into buffer bp, which has space to hold
176  * at most maxcnt procs.
177  */
178 static int
179 kvm_proclist(kd, what, arg, p, bp, maxcnt)
180 	kvm_t *kd;
181 	int what, arg;
182 	struct proc *p;
183 	struct kinfo_proc *bp;
184 	int maxcnt;
185 {
186 	register int cnt = 0;
187 	struct eproc eproc;
188 	struct pgrp pgrp;
189 	struct session sess;
190 	struct tty tty;
191 	struct proc proc;
192 
193 	for (; cnt < maxcnt && p != NULL; p = proc.p_next) {
194 		if (KREAD(kd, (u_long)p, &proc)) {
195 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
196 			return (-1);
197 		}
198 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
199 			KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
200 			      &eproc.e_ucred);
201 
202 		switch(what) {
203 
204 		case KERN_PROC_PID:
205 			if (proc.p_pid != (pid_t)arg)
206 				continue;
207 			break;
208 
209 		case KERN_PROC_UID:
210 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
211 				continue;
212 			break;
213 
214 		case KERN_PROC_RUID:
215 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
216 				continue;
217 			break;
218 		}
219 		/*
220 		 * We're going to add another proc to the set.  If this
221 		 * will overflow the buffer, assume the reason is because
222 		 * nprocs (or the proc list) is corrupt and declare an error.
223 		 */
224 		if (cnt >= maxcnt) {
225 			_kvm_err(kd, kd->program, "nprocs corrupt");
226 			return (-1);
227 		}
228 		/*
229 		 * gather eproc
230 		 */
231 		eproc.e_paddr = p;
232 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
233 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
234 				 proc.p_pgrp);
235 			return (-1);
236 		}
237 		eproc.e_sess = pgrp.pg_session;
238 		eproc.e_pgid = pgrp.pg_id;
239 		eproc.e_jobc = pgrp.pg_jobc;
240 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
241 			_kvm_err(kd, kd->program, "can't read session at %x",
242 				pgrp.pg_session);
243 			return (-1);
244 		}
245 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
246 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
247 				_kvm_err(kd, kd->program,
248 					 "can't read tty at %x", sess.s_ttyp);
249 				return (-1);
250 			}
251 			eproc.e_tdev = tty.t_dev;
252 			eproc.e_tsess = tty.t_session;
253 			if (tty.t_pgrp != NULL) {
254 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
255 					_kvm_err(kd, kd->program,
256 						 "can't read tpgrp at &x",
257 						tty.t_pgrp);
258 					return (-1);
259 				}
260 				eproc.e_tpgid = pgrp.pg_id;
261 			} else
262 				eproc.e_tpgid = -1;
263 		} else
264 			eproc.e_tdev = NODEV;
265 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
266 		if (sess.s_leader == p)
267 			eproc.e_flag |= EPROC_SLEADER;
268 		if (proc.p_wmesg)
269 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
270 			    eproc.e_wmesg, WMESGLEN);
271 
272 #ifdef sparc
273 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
274 		    (char *)&eproc.e_vm.vm_rssize,
275 		    sizeof(eproc.e_vm.vm_rssize));
276 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
277 		    (char *)&eproc.e_vm.vm_tsize,
278 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
279 #else
280 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
281 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
282 #endif
283 		eproc.e_xsize = eproc.e_xrssize = 0;
284 		eproc.e_xccount = eproc.e_xswrss = 0;
285 
286 		switch (what) {
287 
288 		case KERN_PROC_PGRP:
289 			if (eproc.e_pgid != (pid_t)arg)
290 				continue;
291 			break;
292 
293 		case KERN_PROC_TTY:
294 			if ((proc.p_flag & P_CONTROLT) == 0 ||
295 			     eproc.e_tdev != (dev_t)arg)
296 				continue;
297 			break;
298 		}
299 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
300 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
301 		++bp;
302 		++cnt;
303 	}
304 	return (cnt);
305 }
306 
307 /*
308  * Build proc info array by reading in proc list from a crash dump.
309  * Return number of procs read.  maxcnt is the max we will read.
310  */
311 static int
312 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
313 	kvm_t *kd;
314 	int what, arg;
315 	u_long a_allproc;
316 	u_long a_zombproc;
317 	int maxcnt;
318 {
319 	register struct kinfo_proc *bp = kd->procbase;
320 	register int acnt, zcnt;
321 	struct proc *p;
322 
323 	if (KREAD(kd, a_allproc, &p)) {
324 		_kvm_err(kd, kd->program, "cannot read allproc");
325 		return (-1);
326 	}
327 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
328 	if (acnt < 0)
329 		return (acnt);
330 
331 	if (KREAD(kd, a_zombproc, &p)) {
332 		_kvm_err(kd, kd->program, "cannot read zombproc");
333 		return (-1);
334 	}
335 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
336 	if (zcnt < 0)
337 		zcnt = 0;
338 
339 	return (acnt + zcnt);
340 }
341 
342 struct kinfo_proc *
343 kvm_getprocs(kd, op, arg, cnt)
344 	kvm_t *kd;
345 	int op, arg;
346 	int *cnt;
347 {
348 	int mib[4], size, st, nprocs;
349 
350 	if (kd->procbase != 0) {
351 		free((void *)kd->procbase);
352 		/*
353 		 * Clear this pointer in case this call fails.  Otherwise,
354 		 * kvm_close() will free it again.
355 		 */
356 		kd->procbase = 0;
357 	}
358 	if (ISALIVE(kd)) {
359 		size = 0;
360 		mib[0] = CTL_KERN;
361 		mib[1] = KERN_PROC;
362 		mib[2] = op;
363 		mib[3] = arg;
364 		st = sysctl(mib, 4, NULL, &size, NULL, 0);
365 		if (st == -1) {
366 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
367 			return (0);
368 		}
369 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
370 		if (kd->procbase == 0)
371 			return (0);
372 		st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
373 		if (st == -1) {
374 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
375 			return (0);
376 		}
377 		if (size % sizeof(struct kinfo_proc) != 0) {
378 			_kvm_err(kd, kd->program,
379 				"proc size mismatch (%d total, %d chunks)",
380 				size, sizeof(struct kinfo_proc));
381 			return (0);
382 		}
383 		nprocs = size / sizeof(struct kinfo_proc);
384 	} else {
385 		struct nlist nl[4], *p;
386 
387 		nl[0].n_name = "_nprocs";
388 		nl[1].n_name = "_allproc";
389 		nl[2].n_name = "_zombproc";
390 		nl[3].n_name = 0;
391 
392 		if (kvm_nlist(kd, nl) != 0) {
393 			for (p = nl; p->n_type != 0; ++p)
394 				;
395 			_kvm_err(kd, kd->program,
396 				 "%s: no such symbol", p->n_name);
397 			return (0);
398 		}
399 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
400 			_kvm_err(kd, kd->program, "can't read nprocs");
401 			return (0);
402 		}
403 		size = nprocs * sizeof(struct kinfo_proc);
404 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
405 		if (kd->procbase == 0)
406 			return (0);
407 
408 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
409 				      nl[2].n_value, nprocs);
410 #ifdef notdef
411 		size = nprocs * sizeof(struct kinfo_proc);
412 		(void)realloc(kd->procbase, size);
413 #endif
414 	}
415 	*cnt = nprocs;
416 	return (kd->procbase);
417 }
418 
419 void
420 _kvm_freeprocs(kd)
421 	kvm_t *kd;
422 {
423 	if (kd->procbase) {
424 		free(kd->procbase);
425 		kd->procbase = 0;
426 	}
427 }
428 
429 void *
430 _kvm_realloc(kd, p, n)
431 	kvm_t *kd;
432 	void *p;
433 	size_t n;
434 {
435 	void *np = (void *)realloc(p, n);
436 
437 	if (np == 0)
438 		_kvm_err(kd, kd->program, "out of memory");
439 	return (np);
440 }
441 
442 #ifndef MAX
443 #define MAX(a, b) ((a) > (b) ? (a) : (b))
444 #endif
445 
446 /*
447  * Read in an argument vector from the user address space of process p.
448  * addr if the user-space base address of narg null-terminated contiguous
449  * strings.  This is used to read in both the command arguments and
450  * environment strings.  Read at most maxcnt characters of strings.
451  */
452 static char **
453 kvm_argv(kd, p, addr, narg, maxcnt)
454 	kvm_t *kd;
455 	struct proc *p;
456 	register u_long addr;
457 	register int narg;
458 	register int maxcnt;
459 {
460 	register char *cp;
461 	register int len, cc;
462 	register char **argv;
463 
464 	/*
465 	 * Check that there aren't an unreasonable number of agruments,
466 	 * and that the address is in user space.
467 	 */
468 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
469 		return (0);
470 
471 	if (kd->argv == 0) {
472 		/*
473 		 * Try to avoid reallocs.
474 		 */
475 		kd->argc = MAX(narg + 1, 32);
476 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
477 						sizeof(*kd->argv));
478 		if (kd->argv == 0)
479 			return (0);
480 	} else if (narg + 1 > kd->argc) {
481 		kd->argc = MAX(2 * kd->argc, narg + 1);
482 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
483 						sizeof(*kd->argv));
484 		if (kd->argv == 0)
485 			return (0);
486 	}
487 	if (kd->argspc == 0) {
488 		kd->argspc = (char *)_kvm_malloc(kd, NBPG);
489 		if (kd->argspc == 0)
490 			return (0);
491 		kd->arglen = NBPG;
492 	}
493 	cp = kd->argspc;
494 	argv = kd->argv;
495 	*argv = cp;
496 	len = 0;
497 	/*
498 	 * Loop over pages, filling in the argument vector.
499 	 */
500 	while (addr < VM_MAXUSER_ADDRESS) {
501 		cc = NBPG - (addr & PGOFSET);
502 		if (maxcnt > 0 && cc > maxcnt - len)
503 			cc = maxcnt - len;;
504 		if (len + cc > kd->arglen) {
505 			register int off;
506 			register char **pp;
507 			register char *op = kd->argspc;
508 
509 			kd->arglen *= 2;
510 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
511 							  kd->arglen);
512 			if (kd->argspc == 0)
513 				return (0);
514 			cp = &kd->argspc[len];
515 			/*
516 			 * Adjust argv pointers in case realloc moved
517 			 * the string space.
518 			 */
519 			off = kd->argspc - op;
520 			for (pp = kd->argv; pp < argv; ++pp)
521 				*pp += off;
522 		}
523 		if (kvm_uread(kd, p, addr, cp, cc) != cc)
524 			/* XXX */
525 			return (0);
526 		len += cc;
527 		addr += cc;
528 
529 		if (maxcnt == 0 && len > 16 * NBPG)
530 			/* sanity */
531 			return (0);
532 
533 		while (--cc >= 0) {
534 			if (*cp++ == 0) {
535 				if (--narg <= 0) {
536 					*++argv = 0;
537 					return (kd->argv);
538 				} else
539 					*++argv = cp;
540 			}
541 		}
542 		if (maxcnt > 0 && len >= maxcnt) {
543 			/*
544 			 * We're stopping prematurely.  Terminate the
545 			 * argv and current string.
546 			 */
547 			*++argv = 0;
548 			*cp = 0;
549 			return (kd->argv);
550 		}
551 	}
552 }
553 
554 static void
555 ps_str_a(p, addr, n)
556 	struct ps_strings *p;
557 	u_long *addr;
558 	int *n;
559 {
560 	*addr = (u_long)p->ps_argvstr;
561 	*n = p->ps_nargvstr;
562 }
563 
564 static void
565 ps_str_e(p, addr, n)
566 	struct ps_strings *p;
567 	u_long *addr;
568 	int *n;
569 {
570 	*addr = (u_long)p->ps_envstr;
571 	*n = p->ps_nenvstr;
572 }
573 
574 /*
575  * Determine if the proc indicated by p is still active.
576  * This test is not 100% foolproof in theory, but chances of
577  * being wrong are very low.
578  */
579 static int
580 proc_verify(kd, kernp, p)
581 	kvm_t *kd;
582 	u_long kernp;
583 	const struct proc *p;
584 {
585 	struct proc kernproc;
586 
587 	/*
588 	 * Just read in the whole proc.  It's not that big relative
589 	 * to the cost of the read system call.
590 	 */
591 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
592 	    sizeof(kernproc))
593 		return (0);
594 	return (p->p_pid == kernproc.p_pid &&
595 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
596 }
597 
598 static char **
599 kvm_doargv(kd, kp, nchr, info)
600 	kvm_t *kd;
601 	const struct kinfo_proc *kp;
602 	int nchr;
603 	int (*info)(struct ps_strings*, u_long *, int *);
604 {
605 	register const struct proc *p = &kp->kp_proc;
606 	register char **ap;
607 	u_long addr;
608 	int cnt;
609 	struct ps_strings arginfo;
610 
611 	/*
612 	 * Pointers are stored at the top of the user stack.
613 	 */
614 	if (p->p_stat == SZOMB ||
615 	    kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo,
616 		      sizeof(arginfo)) != sizeof(arginfo))
617 		return (0);
618 
619 	(*info)(&arginfo, &addr, &cnt);
620 	ap = kvm_argv(kd, p, addr, cnt, nchr);
621 	/*
622 	 * For live kernels, make sure this process didn't go away.
623 	 */
624 	if (ap != 0 && ISALIVE(kd) &&
625 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
626 		ap = 0;
627 	return (ap);
628 }
629 
630 /*
631  * Get the command args.  This code is now machine independent.
632  */
633 char **
634 kvm_getargv(kd, kp, nchr)
635 	kvm_t *kd;
636 	const struct kinfo_proc *kp;
637 	int nchr;
638 {
639 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
640 }
641 
642 char **
643 kvm_getenvv(kd, kp, nchr)
644 	kvm_t *kd;
645 	const struct kinfo_proc *kp;
646 	int nchr;
647 {
648 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
649 }
650 
651 /*
652  * Read from user space.  The user context is given by p.
653  */
654 ssize_t
655 kvm_uread(kd, p, uva, buf, len)
656 	kvm_t *kd;
657 	register struct proc *p;
658 	register u_long uva;
659 	register char *buf;
660 	register size_t len;
661 {
662 	register char *cp;
663 
664 	cp = buf;
665 	while (len > 0) {
666 		u_long pa;
667 		register int cc;
668 
669 		cc = _kvm_uvatop(kd, p, uva, &pa);
670 		if (cc > 0) {
671 			if (cc > len)
672 				cc = len;
673 			errno = 0;
674 			if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) {
675 				_kvm_err(kd, 0, "invalid address (%x)", uva);
676 				break;
677 			}
678 			cc = read(kd->pmfd, cp, cc);
679 			if (cc < 0) {
680 				_kvm_syserr(kd, 0, _PATH_MEM);
681 				break;
682 			} else if (cc < len) {
683 				_kvm_err(kd, kd->program, "short read");
684 				break;
685 			}
686 		} else if (ISALIVE(kd)) {
687 			/* try swap */
688 			register char *dp;
689 			int cnt;
690 
691 			dp = kvm_readswap(kd, p, uva, &cnt);
692 			if (dp == 0) {
693 				_kvm_err(kd, 0, "invalid address (%x)", uva);
694 				return (0);
695 			}
696 			cc = MIN(cnt, len);
697 			bcopy(dp, cp, cc);
698 		} else
699 			break;
700 		cp += cc;
701 		uva += cc;
702 		len -= cc;
703 	}
704 	return (ssize_t)(cp - buf);
705 }
706