xref: /netbsd-src/lib/libc/gen/arc4random.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: arc4random.c,v 1.31 2016/03/25 22:13:23 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Taylor R. Campbell.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Legacy arc4random(3) API from OpenBSD reimplemented using the
34  * ChaCha20 PRF, with per-thread state.
35  *
36  * Security model:
37  * - An attacker who sees some outputs cannot predict past or future
38  *   outputs.
39  * - An attacker who sees the PRNG state cannot predict past outputs.
40  * - An attacker who sees a child's PRNG state cannot predict past or
41  *   future outputs in the parent, or in other children.
42  *
43  * The arc4random(3) API may abort the process if:
44  *
45  * (a) the crypto self-test fails,
46  * (b) pthread_atfork or thr_keycreate fail, or
47  * (c) sysctl(KERN_ARND) fails when reseeding the PRNG.
48  *
49  * The crypto self-test, pthread_atfork, and thr_keycreate occur only
50  * once, on the first use of any of the arc4random(3) API.  KERN_ARND
51  * is unlikely to fail later unless the kernel is seriously broken.
52  */
53 
54 #include <sys/cdefs.h>
55 __RCSID("$NetBSD: arc4random.c,v 1.31 2016/03/25 22:13:23 riastradh Exp $");
56 
57 #include "namespace.h"
58 #include "reentrant.h"
59 
60 #include <sys/bitops.h>
61 #include <sys/endian.h>
62 #include <sys/errno.h>
63 #include <sys/mman.h>
64 #include <sys/sysctl.h>
65 
66 #include <assert.h>
67 #include <sha2.h>
68 #include <stdbool.h>
69 #include <stdint.h>
70 #include <stdlib.h>
71 #include <string.h>
72 #include <unistd.h>
73 
74 #ifdef __weak_alias
75 __weak_alias(arc4random,_arc4random)
76 __weak_alias(arc4random_addrandom,_arc4random_addrandom)
77 __weak_alias(arc4random_buf,_arc4random_buf)
78 __weak_alias(arc4random_stir,_arc4random_stir)
79 __weak_alias(arc4random_uniform,_arc4random_uniform)
80 #endif
81 
82 /*
83  * For standard ChaCha, use le32dec/le32enc.  We don't need that for
84  * the purposes of a nondeterministic random number generator -- we
85  * don't need to be bit-for-bit compatible over any wire.
86  */
87 
88 static inline uint32_t
89 crypto_le32dec(const void *p)
90 {
91 	uint32_t v;
92 
93 	(void)memcpy(&v, p, sizeof v);
94 
95 	return v;
96 }
97 
98 static inline void
99 crypto_le32enc(void *p, uint32_t v)
100 {
101 
102 	(void)memcpy(p, &v, sizeof v);
103 }
104 
105 /* ChaCha core */
106 
107 #define	crypto_core_OUTPUTBYTES	64
108 #define	crypto_core_INPUTBYTES	16
109 #define	crypto_core_KEYBYTES	32
110 #define	crypto_core_CONSTBYTES	16
111 
112 #define	crypto_core_ROUNDS	20
113 
114 static uint32_t
115 rotate(uint32_t u, unsigned c)
116 {
117 
118 	return (u << c) | (u >> (32 - c));
119 }
120 
121 #define	QUARTERROUND(a, b, c, d) do {					      \
122 	(a) += (b); (d) ^= (a); (d) = rotate((d), 16);			      \
123 	(c) += (d); (b) ^= (c); (b) = rotate((b), 12);			      \
124 	(a) += (b); (d) ^= (a); (d) = rotate((d),  8);			      \
125 	(c) += (d); (b) ^= (c); (b) = rotate((b),  7);			      \
126 } while (/*CONSTCOND*/0)
127 
128 const uint8_t crypto_core_constant32[16] = "expand 32-byte k";
129 
130 static void
131 crypto_core(uint8_t *out, const uint8_t *in, const uint8_t *k,
132     const uint8_t *c)
133 {
134 	uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
135 	uint32_t j0,j1,j2,j3,j4,j5,j6,j7,j8,j9,j10,j11,j12,j13,j14,j15;
136 	int i;
137 
138 	j0 = x0 = crypto_le32dec(c + 0);
139 	j1 = x1 = crypto_le32dec(c + 4);
140 	j2 = x2 = crypto_le32dec(c + 8);
141 	j3 = x3 = crypto_le32dec(c + 12);
142 	j4 = x4 = crypto_le32dec(k + 0);
143 	j5 = x5 = crypto_le32dec(k + 4);
144 	j6 = x6 = crypto_le32dec(k + 8);
145 	j7 = x7 = crypto_le32dec(k + 12);
146 	j8 = x8 = crypto_le32dec(k + 16);
147 	j9 = x9 = crypto_le32dec(k + 20);
148 	j10 = x10 = crypto_le32dec(k + 24);
149 	j11 = x11 = crypto_le32dec(k + 28);
150 	j12 = x12 = crypto_le32dec(in + 0);
151 	j13 = x13 = crypto_le32dec(in + 4);
152 	j14 = x14 = crypto_le32dec(in + 8);
153 	j15 = x15 = crypto_le32dec(in + 12);
154 
155 	for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
156 		QUARTERROUND( x0, x4, x8,x12);
157 		QUARTERROUND( x1, x5, x9,x13);
158 		QUARTERROUND( x2, x6,x10,x14);
159 		QUARTERROUND( x3, x7,x11,x15);
160 		QUARTERROUND( x0, x5,x10,x15);
161 		QUARTERROUND( x1, x6,x11,x12);
162 		QUARTERROUND( x2, x7, x8,x13);
163 		QUARTERROUND( x3, x4, x9,x14);
164 	}
165 
166 	crypto_le32enc(out + 0, x0 + j0);
167 	crypto_le32enc(out + 4, x1 + j1);
168 	crypto_le32enc(out + 8, x2 + j2);
169 	crypto_le32enc(out + 12, x3 + j3);
170 	crypto_le32enc(out + 16, x4 + j4);
171 	crypto_le32enc(out + 20, x5 + j5);
172 	crypto_le32enc(out + 24, x6 + j6);
173 	crypto_le32enc(out + 28, x7 + j7);
174 	crypto_le32enc(out + 32, x8 + j8);
175 	crypto_le32enc(out + 36, x9 + j9);
176 	crypto_le32enc(out + 40, x10 + j10);
177 	crypto_le32enc(out + 44, x11 + j11);
178 	crypto_le32enc(out + 48, x12 + j12);
179 	crypto_le32enc(out + 52, x13 + j13);
180 	crypto_le32enc(out + 56, x14 + j14);
181 	crypto_le32enc(out + 60, x15 + j15);
182 }
183 
184 /* ChaCha self-test */
185 
186 #ifdef _DIAGNOSTIC
187 
188 /*
189  * Test vector for ChaCha20 from
190  * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
191  * test vectors for ChaCha12 and ChaCha8 and for big-endian machines
192  * generated by the same crypto_core code with crypto_core_ROUNDS and
193  * crypto_le32enc/dec varied.
194  */
195 
196 static const uint8_t crypto_core_selftest_vector[64] = {
197 #if _BYTE_ORDER == _LITTLE_ENDIAN
198 #  if crypto_core_ROUNDS == 8
199 	0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
200 	0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
201 	0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
202 	0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
203 	0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
204 	0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
205 	0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
206 	0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
207 #  elif crypto_core_ROUNDS == 12
208 	0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
209 	0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
210 	0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
211 	0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
212 	0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
213 	0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
214 	0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
215 	0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
216 #  elif crypto_core_ROUNDS == 20
217 	0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
218 	0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
219 	0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
220 	0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
221 	0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
222 	0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
223 	0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
224 	0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
225 #  else
226 #    error crypto_core_ROUNDS must be 8, 12, or 20.
227 #  endif
228 #elif _BYTE_ORDER == _BIG_ENDIAN
229 #  if crypto_core_ROUNDS == 8
230 	0x9a,0x13,0x07,0xe3,0x38,0x18,0x9e,0x99,
231 	0x15,0x37,0x16,0x4d,0x04,0xe6,0x48,0x9a,
232 	0x07,0xd6,0xe8,0x7a,0x02,0xf9,0xf5,0xc7,
233 	0x3f,0xa9,0xc2,0x0a,0xe1,0xc6,0x62,0xea,
234 	0x80,0xaf,0xb6,0x51,0xca,0x52,0x43,0x87,
235 	0xe3,0xa6,0xa6,0x61,0x11,0xf5,0xe6,0xcf,
236 	0x09,0x0f,0xdc,0x9d,0xc3,0xc3,0xbb,0x43,
237 	0xd7,0xfa,0x70,0x42,0xbf,0xa5,0xee,0xa2,
238 #  elif crypto_core_ROUNDS == 12
239 	0xcf,0x6c,0x16,0x48,0xbf,0xf4,0xba,0x85,
240 	0x32,0x69,0xd3,0x98,0xc8,0x7d,0xcd,0x3f,
241 	0xdc,0x76,0x6b,0xa2,0x7b,0xcb,0x17,0x4d,
242 	0x05,0xda,0xdd,0xd8,0x62,0x54,0xbf,0xe0,
243 	0x65,0xed,0x0e,0xf4,0x01,0x7e,0x3c,0x05,
244 	0x35,0xb2,0x7a,0x60,0xf3,0x8f,0x12,0x33,
245 	0x24,0x60,0xcd,0x85,0xfe,0x4c,0xf3,0x39,
246 	0xb1,0x0e,0x3e,0xe0,0xba,0xa6,0x2f,0xa9,
247 #  elif crypto_core_ROUNDS == 20
248 	0x83,0x8b,0xf8,0x75,0xf7,0xde,0x9d,0x8c,
249 	0x33,0x14,0x72,0x28,0xd1,0xbe,0x88,0xe5,
250 	0x94,0xb5,0xed,0xb8,0x56,0xb5,0x9e,0x0c,
251 	0x64,0x6a,0xaf,0xd9,0xa7,0x49,0x10,0x59,
252 	0xba,0x3a,0x82,0xf8,0x4a,0x70,0x9c,0x00,
253 	0x82,0x2c,0xae,0xc6,0xd7,0x1c,0x2e,0xda,
254 	0x2a,0xfb,0x61,0x70,0x2b,0xd1,0xbf,0x8b,
255 	0x95,0xbc,0x23,0xb6,0x4b,0x60,0x02,0xec,
256 #  else
257 #    error crypto_core_ROUNDS must be 8, 12, or 20.
258 #  endif
259 #else
260 #  error Byte order must be little-endian or big-endian.
261 #endif
262 };
263 
264 static int
265 crypto_core_selftest(void)
266 {
267 	const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
268 	const uint8_t key[crypto_core_KEYBYTES] = {0};
269 	uint8_t block[64];
270 	unsigned i;
271 
272 	crypto_core(block, nonce, key, crypto_core_constant32);
273 	for (i = 0; i < 64; i++) {
274 		if (block[i] != crypto_core_selftest_vector[i])
275 			return EIO;
276 	}
277 
278 	return 0;
279 }
280 
281 #else  /* !_DIAGNOSTIC */
282 
283 static int
284 crypto_core_selftest(void)
285 {
286 
287 	return 0;
288 }
289 
290 #endif
291 
292 /* PRNG */
293 
294 /*
295  * For a state s, rather than use ChaCha20 as a stream cipher to
296  * generate the concatenation ChaCha20_s(0) || ChaCha20_s(1) || ..., we
297  * split ChaCha20_s(0) into s' || x and yield x for the first request,
298  * split ChaCha20_s'(0) into s'' || y and yield y for the second
299  * request, &c.  This provides backtracking resistance: an attacker who
300  * finds s'' can't recover s' or x.
301  */
302 
303 #define	crypto_prng_SEEDBYTES		crypto_core_KEYBYTES
304 #define	crypto_prng_MAXOUTPUTBYTES	\
305 	(crypto_core_OUTPUTBYTES - crypto_prng_SEEDBYTES)
306 
307 struct crypto_prng {
308 	uint8_t		state[crypto_prng_SEEDBYTES];
309 };
310 
311 static void
312 crypto_prng_seed(struct crypto_prng *prng, const void *seed)
313 {
314 
315 	(void)memcpy(prng->state, seed, crypto_prng_SEEDBYTES);
316 }
317 
318 static void
319 crypto_prng_buf(struct crypto_prng *prng, void *buf, size_t n)
320 {
321 	const uint8_t nonce[crypto_core_INPUTBYTES] = {0};
322 	uint8_t output[crypto_core_OUTPUTBYTES];
323 
324 	_DIAGASSERT(n <= crypto_prng_MAXOUTPUTBYTES);
325 	__CTASSERT(sizeof prng->state + crypto_prng_MAXOUTPUTBYTES
326 	    <= sizeof output);
327 
328 	crypto_core(output, nonce, prng->state, crypto_core_constant32);
329 	(void)memcpy(prng->state, output, sizeof prng->state);
330 	(void)memcpy(buf, output + sizeof prng->state, n);
331 	(void)explicit_memset(output, 0, sizeof output);
332 }
333 
334 /* One-time stream: expand short single-use secret into long secret */
335 
336 #define	crypto_onetimestream_SEEDBYTES	crypto_core_KEYBYTES
337 
338 static void
339 crypto_onetimestream(const void *seed, void *buf, size_t n)
340 {
341 	uint32_t nonce[crypto_core_INPUTBYTES / sizeof(uint32_t)] = {0};
342 	uint8_t block[crypto_core_OUTPUTBYTES];
343 	uint8_t *p8, *p32;
344 	const uint8_t *nonce8 = (const uint8_t *)(void *)nonce;
345 	size_t ni, nb, nf;
346 
347 	/*
348 	 * Guarantee we can generate up to n bytes.  We have
349 	 * 2^(8*INPUTBYTES) possible inputs yielding output of
350 	 * OUTPUTBYTES*2^(8*INPUTBYTES) bytes.  It suffices to require
351 	 * that sizeof n > (1/CHAR_BIT) log_2 n be less than
352 	 * (1/CHAR_BIT) log_2 of the total output stream length.  We
353 	 * have
354 	 *
355 	 *	log_2 (o 2^(8 i)) = log_2 o + log_2 2^(8 i)
356 	 *	  = log_2 o + 8 i.
357 	 */
358 	__CTASSERT(CHAR_BIT * sizeof n <=
359 	    (/*LINTED*/ilog2(crypto_core_OUTPUTBYTES) +
360 		8*crypto_core_INPUTBYTES));
361 
362 	p8 = buf;
363 	p32 = (uint8_t *)roundup2((uintptr_t)p8, 4);
364 	ni = p32 - p8;
365 	if (n < ni)
366 		ni = n;
367 	nb = (n - ni) / sizeof block;
368 	nf = (n - ni) % sizeof block;
369 
370 	_DIAGASSERT(((uintptr_t)p32 & 3) == 0);
371 	_DIAGASSERT(ni <= n);
372 	_DIAGASSERT(nb <= (n / sizeof block));
373 	_DIAGASSERT(nf <= n);
374 	_DIAGASSERT(n == (ni + (nb * sizeof block) + nf));
375 	_DIAGASSERT(ni < 4);
376 	_DIAGASSERT(nf < sizeof block);
377 
378 	if (ni) {
379 		crypto_core(block, nonce8, seed, crypto_core_constant32);
380 		nonce[0]++;
381 		(void)memcpy(p8, block, ni);
382 	}
383 	while (nb--) {
384 		crypto_core(p32, nonce8, seed, crypto_core_constant32);
385 		if (++nonce[0] == 0)
386 			nonce[1]++;
387 		p32 += crypto_core_OUTPUTBYTES;
388 	}
389 	if (nf) {
390 		crypto_core(block, nonce8, seed, crypto_core_constant32);
391 		if (++nonce[0] == 0)
392 			nonce[1]++;
393 		(void)memcpy(p32, block, nf);
394 	}
395 
396 	if (ni | nf)
397 		(void)explicit_memset(block, 0, sizeof block);
398 }
399 
400 /* arc4random state: per-thread, per-process (zeroed in child on fork) */
401 
402 struct arc4random_prng {
403 	struct crypto_prng	arc4_prng;
404 	bool			arc4_seeded;
405 };
406 
407 static void
408 arc4random_prng_addrandom(struct arc4random_prng *prng, const void *data,
409     size_t datalen)
410 {
411 	const int mib[] = { CTL_KERN, KERN_ARND };
412 	SHA256_CTX ctx;
413 	uint8_t buf[crypto_prng_SEEDBYTES];
414 	size_t buflen = sizeof buf;
415 
416 	__CTASSERT(sizeof buf == SHA256_DIGEST_LENGTH);
417 
418 	SHA256_Init(&ctx);
419 
420 	crypto_prng_buf(&prng->arc4_prng, buf, sizeof buf);
421 	SHA256_Update(&ctx, buf, sizeof buf);
422 
423 	if (sysctl(mib, (u_int)__arraycount(mib), buf, &buflen, NULL, 0) == -1)
424 		abort();
425 	if (buflen != sizeof buf)
426 		abort();
427 	SHA256_Update(&ctx, buf, sizeof buf);
428 
429 	if (data != NULL)
430 		SHA256_Update(&ctx, data, datalen);
431 
432 	SHA256_Final(buf, &ctx);
433 	(void)explicit_memset(&ctx, 0, sizeof ctx);
434 
435 	/* reseed(SHA256(prng() || sysctl(KERN_ARND) || data)) */
436 	crypto_prng_seed(&prng->arc4_prng, buf);
437 	(void)explicit_memset(buf, 0, sizeof buf);
438 	prng->arc4_seeded = true;
439 }
440 
441 #ifdef _REENTRANT
442 static struct arc4random_prng *
443 arc4random_prng_create(void)
444 {
445 	struct arc4random_prng *prng;
446 	const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
447 
448 	prng = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1,
449 	    0);
450 	if (prng == MAP_FAILED)
451 		goto fail0;
452 	if (minherit(prng, size, MAP_INHERIT_ZERO) == -1)
453 		goto fail1;
454 
455 	return prng;
456 
457 fail1:	(void)munmap(prng, size);
458 fail0:	return NULL;
459 }
460 #endif
461 
462 #ifdef _REENTRANT
463 static void
464 arc4random_prng_destroy(struct arc4random_prng *prng)
465 {
466 	const size_t size = roundup(sizeof(*prng), sysconf(_SC_PAGESIZE));
467 
468 	(void)explicit_memset(prng, 0, sizeof(*prng));
469 	(void)munmap(prng, size);
470 }
471 #endif
472 
473 /* Library state */
474 
475 static struct arc4random_global {
476 #ifdef _REENTRANT
477 	mutex_t			lock;
478 	thread_key_t		thread_key;
479 #endif
480 	struct arc4random_prng	prng;
481 	bool			initialized;
482 } arc4random_global = {
483 #ifdef _REENTRANT
484 	.lock		= MUTEX_INITIALIZER,
485 #endif
486 	.initialized	= false,
487 };
488 
489 static void
490 arc4random_atfork_prepare(void)
491 {
492 
493 	mutex_lock(&arc4random_global.lock);
494 	(void)explicit_memset(&arc4random_global.prng, 0,
495 	    sizeof arc4random_global.prng);
496 }
497 
498 static void
499 arc4random_atfork_parent(void)
500 {
501 
502 	mutex_unlock(&arc4random_global.lock);
503 }
504 
505 static void
506 arc4random_atfork_child(void)
507 {
508 
509 	mutex_unlock(&arc4random_global.lock);
510 }
511 
512 #ifdef _REENTRANT
513 static void
514 arc4random_tsd_destructor(void *p)
515 {
516 	struct arc4random_prng *const prng = p;
517 
518 	arc4random_prng_destroy(prng);
519 }
520 #endif
521 
522 static void
523 arc4random_initialize(void)
524 {
525 
526 	mutex_lock(&arc4random_global.lock);
527 	if (!arc4random_global.initialized) {
528 		if (crypto_core_selftest() != 0)
529 			abort();
530 		if (pthread_atfork(&arc4random_atfork_prepare,
531 			&arc4random_atfork_parent, &arc4random_atfork_child)
532 		    != 0)
533 			abort();
534 #ifdef _REENTRANT
535 		if (thr_keycreate(&arc4random_global.thread_key,
536 			&arc4random_tsd_destructor) != 0)
537 			abort();
538 #endif
539 		arc4random_global.initialized = true;
540 	}
541 	mutex_unlock(&arc4random_global.lock);
542 }
543 
544 static struct arc4random_prng *
545 arc4random_prng_get(void)
546 {
547 	struct arc4random_prng *prng = NULL;
548 
549 	/* Make sure the library is initialized.  */
550 	if (__predict_false(!arc4random_global.initialized))
551 		arc4random_initialize();
552 
553 #ifdef _REENTRANT
554 	/* Get or create the per-thread PRNG state.  */
555 	prng = thr_getspecific(arc4random_global.thread_key);
556 	if (__predict_false(prng == NULL)) {
557 		prng = arc4random_prng_create();
558 		thr_setspecific(arc4random_global.thread_key, prng);
559 	}
560 #endif
561 
562 	/* If we can't create it, fall back to the global PRNG.  */
563 	if (__predict_false(prng == NULL)) {
564 		mutex_lock(&arc4random_global.lock);
565 		prng = &arc4random_global.prng;
566 	}
567 
568 	/* Guarantee the PRNG is seeded.  */
569 	if (__predict_false(!prng->arc4_seeded))
570 		arc4random_prng_addrandom(prng, NULL, 0);
571 
572 	return prng;
573 }
574 
575 static void
576 arc4random_prng_put(struct arc4random_prng *prng)
577 {
578 
579 	/* If we had fallen back to the global PRNG, unlock it.  */
580 	if (__predict_false(prng == &arc4random_global.prng))
581 		mutex_unlock(&arc4random_global.lock);
582 }
583 
584 /* Public API */
585 
586 uint32_t
587 arc4random(void)
588 {
589 	struct arc4random_prng *prng;
590 	uint32_t v;
591 
592 	prng = arc4random_prng_get();
593 	crypto_prng_buf(&prng->arc4_prng, &v, sizeof v);
594 	arc4random_prng_put(prng);
595 
596 	return v;
597 }
598 
599 void
600 arc4random_buf(void *buf, size_t len)
601 {
602 	struct arc4random_prng *prng;
603 
604 	if (len <= crypto_prng_MAXOUTPUTBYTES) {
605 		prng = arc4random_prng_get();
606 		crypto_prng_buf(&prng->arc4_prng, buf, len);
607 		arc4random_prng_put(prng);
608 	} else {
609 		uint8_t seed[crypto_onetimestream_SEEDBYTES];
610 
611 		prng = arc4random_prng_get();
612 		crypto_prng_buf(&prng->arc4_prng, seed, sizeof seed);
613 		arc4random_prng_put(prng);
614 
615 		crypto_onetimestream(seed, buf, len);
616 		(void)explicit_memset(seed, 0, sizeof seed);
617 	}
618 }
619 
620 uint32_t
621 arc4random_uniform(uint32_t bound)
622 {
623 	struct arc4random_prng *prng;
624 	uint32_t minimum, r;
625 
626 	/*
627 	 * We want a uniform random choice in [0, n), and arc4random()
628 	 * makes a uniform random choice in [0, 2^32).  If we reduce
629 	 * that modulo n, values in [0, 2^32 mod n) will be represented
630 	 * slightly more than values in [2^32 mod n, n).  Instead we
631 	 * choose only from [2^32 mod n, 2^32) by rejecting samples in
632 	 * [0, 2^32 mod n), to avoid counting the extra representative
633 	 * of [0, 2^32 mod n).  To compute 2^32 mod n, note that
634 	 *
635 	 *	2^32 mod n = 2^32 mod n - 0
636 	 *	  = 2^32 mod n - n mod n
637 	 *	  = (2^32 - n) mod n,
638 	 *
639 	 * the last of which is what we compute in 32-bit arithmetic.
640 	 */
641 	minimum = (-bound % bound);
642 
643 	prng = arc4random_prng_get();
644 	do crypto_prng_buf(&prng->arc4_prng, &r, sizeof r);
645 	while (__predict_false(r < minimum));
646 	arc4random_prng_put(prng);
647 
648 	return (r % bound);
649 }
650 
651 void
652 arc4random_stir(void)
653 {
654 	struct arc4random_prng *prng;
655 
656 	prng = arc4random_prng_get();
657 	arc4random_prng_addrandom(prng, NULL, 0);
658 	arc4random_prng_put(prng);
659 }
660 
661 /*
662  * Silly signature here is for hysterical raisins.  Should instead be
663  * const void *data and size_t datalen.
664  */
665 void
666 arc4random_addrandom(u_char *data, int datalen)
667 {
668 	struct arc4random_prng *prng;
669 
670 	_DIAGASSERT(0 <= datalen);
671 
672 	prng = arc4random_prng_get();
673 	arc4random_prng_addrandom(prng, data, datalen);
674 	arc4random_prng_put(prng);
675 }
676 
677 #ifdef _ARC4RANDOM_TEST
678 
679 #include <sys/wait.h>
680 
681 #include <err.h>
682 #include <stdio.h>
683 
684 int
685 main(int argc __unused, char **argv __unused)
686 {
687 	unsigned char gubbish[] = "random gubbish";
688 	const uint8_t zero64[64] = {0};
689 	uint8_t buf[2048];
690 	unsigned i, a, n;
691 
692 	/* Test arc4random: should not be deterministic.  */
693 	if (printf("arc4random: %08"PRIx32"\n", arc4random()) < 0)
694 		err(1, "printf");
695 
696 	/* Test stirring: should definitely not be deterministic.  */
697 	arc4random_stir();
698 
699 	/* Test small buffer.  */
700 	arc4random_buf(buf, 8);
701 	if (printf("arc4randombuf small:") < 0)
702 		err(1, "printf");
703 	for (i = 0; i < 8; i++)
704 		if (printf(" %02x", buf[i]) < 0)
705 			err(1, "printf");
706 	if (printf("\n") < 0)
707 		err(1, "printf");
708 
709 	/* Test addrandom: should not make the rest deterministic.  */
710 	arc4random_addrandom(gubbish, sizeof gubbish);
711 
712 	/* Test large buffer.  */
713 	arc4random_buf(buf, sizeof buf);
714 	if (printf("arc4randombuf_large:") < 0)
715 		err(1, "printf");
716 	for (i = 0; i < sizeof buf; i++)
717 		if (printf(" %02x", buf[i]) < 0)
718 			err(1, "printf");
719 	if (printf("\n") < 0)
720 		err(1, "printf");
721 
722 	/* Test misaligned small and large.  */
723 	for (a = 0; a < 64; a++) {
724 		for (n = a; n < sizeof buf; n++) {
725 			(void)memset(buf, 0, sizeof buf);
726 			arc4random_buf(buf, n - a);
727 			if (memcmp(buf + n - a, zero64, a) != 0)
728 				errx(1, "arc4random buffer overflow 0");
729 
730 			(void)memset(buf, 0, sizeof buf);
731 			arc4random_buf(buf + a, n - a);
732 			if (memcmp(buf, zero64, a) != 0)
733 				errx(1, "arc4random buffer overflow 1");
734 
735 			if ((2*a) <= n) {
736 				(void)memset(buf, 0, sizeof buf);
737 				arc4random_buf(buf + a, n - a - a);
738 				if (memcmp(buf + n - a, zero64, a) != 0)
739 					errx(1,
740 					    "arc4random buffer overflow 2");
741 			}
742 		}
743 	}
744 
745 	/* Test fork-safety.  */
746     {
747 	pid_t pid, rpid;
748 	int status;
749 
750 	pid = fork();
751 	switch (pid) {
752 	case -1:
753 		err(1, "fork");
754 	case 0:
755 		_exit(arc4random_prng_get()->arc4_seeded);
756 	default:
757 		rpid = waitpid(pid, &status, 0);
758 		if (rpid == -1)
759 			err(1, "waitpid");
760 		if (rpid != pid)
761 			errx(1, "waitpid returned wrong pid"
762 			    ": %"PRIdMAX" != %"PRIdMAX,
763 			    (intmax_t)rpid,
764 			    (intmax_t)pid);
765 		if (WIFEXITED(status)) {
766 			if (WEXITSTATUS(status) != 0)
767 				errx(1, "child exited with %d",
768 				    WEXITSTATUS(status));
769 		} else if (WIFSIGNALED(status)) {
770 			errx(1, "child terminated on signal %d",
771 			    WTERMSIG(status));
772 		} else {
773 			errx(1, "child died mysteriously: %d", status);
774 		}
775 	}
776     }
777 
778 	/* XXX Test multithreaded fork safety...?  */
779 
780 	return 0;
781 }
782 #endif
783