xref: /netbsd-src/external/mit/lua/dist/src/lcode.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: lcode.c,v 1.11 2018/08/04 17:30:01 alnsn Exp $	*/
2 
3 /*
4 ** Id: lcode.c,v 2.112.1.1 2017/04/19 17:20:42 roberto Exp
5 ** Code generator for Lua
6 ** See Copyright Notice in lua.h
7 */
8 
9 #define lcode_c
10 #define LUA_CORE
11 
12 #include "lprefix.h"
13 
14 
15 #ifndef _KERNEL
16 #include <math.h>
17 #include <stdlib.h>
18 #endif /* _KERNEL */
19 
20 #include "lua.h"
21 
22 #include "lcode.h"
23 #include "ldebug.h"
24 #include "ldo.h"
25 #include "lgc.h"
26 #include "llex.h"
27 #include "lmem.h"
28 #include "lobject.h"
29 #include "lopcodes.h"
30 #include "lparser.h"
31 #include "lstring.h"
32 #include "ltable.h"
33 #include "lvm.h"
34 
35 
36 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
37 #define MAXREGS		255
38 
39 
40 #define hasjumps(e)	((e)->t != (e)->f)
41 
42 
43 /*
44 ** If expression is a numeric constant, fills 'v' with its value
45 ** and returns 1. Otherwise, returns 0.
46 */
47 static int tonumeral(const expdesc *e, TValue *v) {
48   if (hasjumps(e))
49     return 0;  /* not a numeral */
50   switch (e->k) {
51     case VKINT:
52       if (v) setivalue(v, e->u.ival);
53       return 1;
54 #ifndef _KERNEL
55     case VKFLT:
56       if (v) setfltvalue(v, e->u.nval);
57       return 1;
58 #endif /* _KERNEL */
59     default: return 0;
60   }
61 }
62 
63 
64 /*
65 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
66 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
67 ** range of previous instruction instead of emitting a new one. (For
68 ** instance, 'local a; local b' will generate a single opcode.)
69 */
70 void luaK_nil (FuncState *fs, int from, int n) {
71   Instruction *previous;
72   int l = from + n - 1;  /* last register to set nil */
73   if (fs->pc > fs->lasttarget) {  /* no jumps to current position? */
74     previous = &fs->f->code[fs->pc-1];
75     if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
76       int pfrom = GETARG_A(*previous);  /* get previous range */
77       int pl = pfrom + GETARG_B(*previous);
78       if ((pfrom <= from && from <= pl + 1) ||
79           (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
80         if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
81         if (pl > l) l = pl;  /* l = max(l, pl) */
82         SETARG_A(*previous, from);
83         SETARG_B(*previous, l - from);
84         return;
85       }
86     }  /* else go through */
87   }
88   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
89 }
90 
91 
92 /*
93 ** Gets the destination address of a jump instruction. Used to traverse
94 ** a list of jumps.
95 */
96 static int getjump (FuncState *fs, int pc) {
97   int offset = GETARG_sBx(fs->f->code[pc]);
98   if (offset == NO_JUMP)  /* point to itself represents end of list */
99     return NO_JUMP;  /* end of list */
100   else
101     return (pc+1)+offset;  /* turn offset into absolute position */
102 }
103 
104 
105 /*
106 ** Fix jump instruction at position 'pc' to jump to 'dest'.
107 ** (Jump addresses are relative in Lua)
108 */
109 static void fixjump (FuncState *fs, int pc, int dest) {
110   Instruction *jmp = &fs->f->code[pc];
111   int offset = dest - (pc + 1);
112   lua_assert(dest != NO_JUMP);
113   if (abs(offset) > MAXARG_sBx)
114     luaX_syntaxerror(fs->ls, "control structure too long");
115   SETARG_sBx(*jmp, offset);
116 }
117 
118 
119 /*
120 ** Concatenate jump-list 'l2' into jump-list 'l1'
121 */
122 void luaK_concat (FuncState *fs, int *l1, int l2) {
123   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
124   else if (*l1 == NO_JUMP)  /* no original list? */
125     *l1 = l2;  /* 'l1' points to 'l2' */
126   else {
127     int list = *l1;
128     int next;
129     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
130       list = next;
131     fixjump(fs, list, l2);  /* last element links to 'l2' */
132   }
133 }
134 
135 
136 /*
137 ** Create a jump instruction and return its position, so its destination
138 ** can be fixed later (with 'fixjump'). If there are jumps to
139 ** this position (kept in 'jpc'), link them all together so that
140 ** 'patchlistaux' will fix all them directly to the final destination.
141 */
142 int luaK_jump (FuncState *fs) {
143   int jpc = fs->jpc;  /* save list of jumps to here */
144   int j;
145   fs->jpc = NO_JUMP;  /* no more jumps to here */
146   j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
147   luaK_concat(fs, &j, jpc);  /* keep them on hold */
148   return j;
149 }
150 
151 
152 /*
153 ** Code a 'return' instruction
154 */
155 void luaK_ret (FuncState *fs, int first, int nret) {
156   luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
157 }
158 
159 
160 /*
161 ** Code a "conditional jump", that is, a test or comparison opcode
162 ** followed by a jump. Return jump position.
163 */
164 static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
165   luaK_codeABC(fs, op, A, B, C);
166   return luaK_jump(fs);
167 }
168 
169 
170 /*
171 ** returns current 'pc' and marks it as a jump target (to avoid wrong
172 ** optimizations with consecutive instructions not in the same basic block).
173 */
174 int luaK_getlabel (FuncState *fs) {
175   fs->lasttarget = fs->pc;
176   return fs->pc;
177 }
178 
179 
180 /*
181 ** Returns the position of the instruction "controlling" a given
182 ** jump (that is, its condition), or the jump itself if it is
183 ** unconditional.
184 */
185 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
186   Instruction *pi = &fs->f->code[pc];
187   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
188     return pi-1;
189   else
190     return pi;
191 }
192 
193 
194 /*
195 ** Patch destination register for a TESTSET instruction.
196 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
197 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
198 ** register. Otherwise, change instruction to a simple 'TEST' (produces
199 ** no register value)
200 */
201 static int patchtestreg (FuncState *fs, int node, int reg) {
202   Instruction *i = getjumpcontrol(fs, node);
203   if (GET_OPCODE(*i) != OP_TESTSET)
204     return 0;  /* cannot patch other instructions */
205   if (reg != NO_REG && reg != GETARG_B(*i))
206     SETARG_A(*i, reg);
207   else {
208      /* no register to put value or register already has the value;
209         change instruction to simple test */
210     *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
211   }
212   return 1;
213 }
214 
215 
216 /*
217 ** Traverse a list of tests ensuring no one produces a value
218 */
219 static void removevalues (FuncState *fs, int list) {
220   for (; list != NO_JUMP; list = getjump(fs, list))
221       patchtestreg(fs, list, NO_REG);
222 }
223 
224 
225 /*
226 ** Traverse a list of tests, patching their destination address and
227 ** registers: tests producing values jump to 'vtarget' (and put their
228 ** values in 'reg'), other tests jump to 'dtarget'.
229 */
230 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
231                           int dtarget) {
232   while (list != NO_JUMP) {
233     int next = getjump(fs, list);
234     if (patchtestreg(fs, list, reg))
235       fixjump(fs, list, vtarget);
236     else
237       fixjump(fs, list, dtarget);  /* jump to default target */
238     list = next;
239   }
240 }
241 
242 
243 /*
244 ** Ensure all pending jumps to current position are fixed (jumping
245 ** to current position with no values) and reset list of pending
246 ** jumps
247 */
248 static void dischargejpc (FuncState *fs) {
249   patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
250   fs->jpc = NO_JUMP;
251 }
252 
253 
254 /*
255 ** Add elements in 'list' to list of pending jumps to "here"
256 ** (current position)
257 */
258 void luaK_patchtohere (FuncState *fs, int list) {
259   luaK_getlabel(fs);  /* mark "here" as a jump target */
260   luaK_concat(fs, &fs->jpc, list);
261 }
262 
263 
264 /*
265 ** Path all jumps in 'list' to jump to 'target'.
266 ** (The assert means that we cannot fix a jump to a forward address
267 ** because we only know addresses once code is generated.)
268 */
269 void luaK_patchlist (FuncState *fs, int list, int target) {
270   if (target == fs->pc)  /* 'target' is current position? */
271     luaK_patchtohere(fs, list);  /* add list to pending jumps */
272   else {
273     lua_assert(target < fs->pc);
274     patchlistaux(fs, list, target, NO_REG, target);
275   }
276 }
277 
278 
279 /*
280 ** Path all jumps in 'list' to close upvalues up to given 'level'
281 ** (The assertion checks that jumps either were closing nothing
282 ** or were closing higher levels, from inner blocks.)
283 */
284 void luaK_patchclose (FuncState *fs, int list, int level) {
285   level++;  /* argument is +1 to reserve 0 as non-op */
286   for (; list != NO_JUMP; list = getjump(fs, list)) {
287     lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP &&
288                 (GETARG_A(fs->f->code[list]) == 0 ||
289                  GETARG_A(fs->f->code[list]) >= level));
290     SETARG_A(fs->f->code[list], level);
291   }
292 }
293 
294 
295 /*
296 ** Emit instruction 'i', checking for array sizes and saving also its
297 ** line information. Return 'i' position.
298 */
299 static int luaK_code (FuncState *fs, Instruction i) {
300   Proto *f = fs->f;
301   dischargejpc(fs);  /* 'pc' will change */
302   /* put new instruction in code array */
303   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
304                   MAX_INT, "opcodes");
305   f->code[fs->pc] = i;
306   /* save corresponding line information */
307   luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
308                   MAX_INT, "opcodes");
309   f->lineinfo[fs->pc] = fs->ls->lastline;
310   return fs->pc++;
311 }
312 
313 
314 /*
315 ** Format and emit an 'iABC' instruction. (Assertions check consistency
316 ** of parameters versus opcode.)
317 */
318 int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
319   lua_assert(getOpMode(o) == iABC);
320   lua_assert(getBMode(o) != OpArgN || b == 0);
321   lua_assert(getCMode(o) != OpArgN || c == 0);
322   lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
323   return luaK_code(fs, CREATE_ABC(o, a, b, c));
324 }
325 
326 
327 /*
328 ** Format and emit an 'iABx' instruction.
329 */
330 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
331   lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
332   lua_assert(getCMode(o) == OpArgN);
333   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
334   return luaK_code(fs, CREATE_ABx(o, a, bc));
335 }
336 
337 
338 /*
339 ** Emit an "extra argument" instruction (format 'iAx')
340 */
341 static int codeextraarg (FuncState *fs, int a) {
342   lua_assert(a <= MAXARG_Ax);
343   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
344 }
345 
346 
347 /*
348 ** Emit a "load constant" instruction, using either 'OP_LOADK'
349 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
350 ** instruction with "extra argument".
351 */
352 int luaK_codek (FuncState *fs, int reg, int k) {
353   if (k <= MAXARG_Bx)
354     return luaK_codeABx(fs, OP_LOADK, reg, k);
355   else {
356     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
357     codeextraarg(fs, k);
358     return p;
359   }
360 }
361 
362 
363 /*
364 ** Check register-stack level, keeping track of its maximum size
365 ** in field 'maxstacksize'
366 */
367 void luaK_checkstack (FuncState *fs, int n) {
368   int newstack = fs->freereg + n;
369   if (newstack > fs->f->maxstacksize) {
370     if (newstack >= MAXREGS)
371       luaX_syntaxerror(fs->ls,
372         "function or expression needs too many registers");
373     fs->f->maxstacksize = cast_byte(newstack);
374   }
375 }
376 
377 
378 /*
379 ** Reserve 'n' registers in register stack
380 */
381 void luaK_reserveregs (FuncState *fs, int n) {
382   luaK_checkstack(fs, n);
383   fs->freereg += n;
384 }
385 
386 
387 /*
388 ** Free register 'reg', if it is neither a constant index nor
389 ** a local variable.
390 )
391 */
392 static void freereg (FuncState *fs, int reg) {
393   if (!ISK(reg) && reg >= fs->nactvar) {
394     fs->freereg--;
395     lua_assert(reg == fs->freereg);
396   }
397 }
398 
399 
400 /*
401 ** Free register used by expression 'e' (if any)
402 */
403 static void freeexp (FuncState *fs, expdesc *e) {
404   if (e->k == VNONRELOC)
405     freereg(fs, e->u.info);
406 }
407 
408 
409 /*
410 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
411 ** order.
412 */
413 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
414   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
415   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
416   if (r1 > r2) {
417     freereg(fs, r1);
418     freereg(fs, r2);
419   }
420   else {
421     freereg(fs, r2);
422     freereg(fs, r1);
423   }
424 }
425 
426 
427 /*
428 ** Add constant 'v' to prototype's list of constants (field 'k').
429 ** Use scanner's table to cache position of constants in constant list
430 ** and try to reuse constants. Because some values should not be used
431 ** as keys (nil cannot be a key, integer keys can collapse with float
432 ** keys), the caller must provide a useful 'key' for indexing the cache.
433 */
434 static int addk (FuncState *fs, TValue *key, TValue *v) {
435   lua_State *L = fs->ls->L;
436   Proto *f = fs->f;
437   TValue *idx = luaH_set(L, fs->ls->h, key);  /* index scanner table */
438   int k, oldsize;
439   if (ttisinteger(idx)) {  /* is there an index there? */
440     k = cast_int(ivalue(idx));
441     /* correct value? (warning: must distinguish floats from integers!) */
442     if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
443                       luaV_rawequalobj(&f->k[k], v))
444       return k;  /* reuse index */
445   }
446   /* constant not found; create a new entry */
447   oldsize = f->sizek;
448   k = fs->nk;
449   /* numerical value does not need GC barrier;
450      table has no metatable, so it does not need to invalidate cache */
451   setivalue(idx, k);
452   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
453   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
454   setobj(L, &f->k[k], v);
455   fs->nk++;
456   luaC_barrier(L, f, v);
457   return k;
458 }
459 
460 
461 /*
462 ** Add a string to list of constants and return its index.
463 */
464 int luaK_stringK (FuncState *fs, TString *s) {
465   TValue o;
466   setsvalue(fs->ls->L, &o, s);
467   return addk(fs, &o, &o);  /* use string itself as key */
468 }
469 
470 
471 /*
472 ** Add an integer to list of constants and return its index.
473 ** Integers use userdata as keys to avoid collision with floats with
474 ** same value; conversion to 'void*' is used only for hashing, so there
475 ** are no "precision" problems.
476 */
477 int luaK_intK (FuncState *fs, lua_Integer n) {
478   TValue k, o;
479   setpvalue(&k, cast(void*, cast(size_t, n)));
480   setivalue(&o, n);
481   return addk(fs, &k, &o);
482 }
483 
484 
485 #ifndef _KERNEL
486 /*
487 ** Add a float to list of constants and return its index.
488 */
489 static int luaK_numberK (FuncState *fs, lua_Number r) {
490   TValue o;
491   setfltvalue(&o, r);
492   return addk(fs, &o, &o);  /* use number itself as key */
493 }
494 #endif /* _KERNEL */
495 
496 
497 /*
498 ** Add a boolean to list of constants and return its index.
499 */
500 static int boolK (FuncState *fs, int b) {
501   TValue o;
502   setbvalue(&o, b);
503   return addk(fs, &o, &o);  /* use boolean itself as key */
504 }
505 
506 
507 /*
508 ** Add nil to list of constants and return its index.
509 */
510 static int nilK (FuncState *fs) {
511   TValue k, v;
512   setnilvalue(&v);
513   /* cannot use nil as key; instead use table itself to represent nil */
514   sethvalue(fs->ls->L, &k, fs->ls->h);
515   return addk(fs, &k, &v);
516 }
517 
518 
519 /*
520 ** Fix an expression to return the number of results 'nresults'.
521 ** Either 'e' is a multi-ret expression (function call or vararg)
522 ** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
523 */
524 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
525   if (e->k == VCALL) {  /* expression is an open function call? */
526     SETARG_C(getinstruction(fs, e), nresults + 1);
527   }
528   else if (e->k == VVARARG) {
529     Instruction *pc = &getinstruction(fs, e);
530     SETARG_B(*pc, nresults + 1);
531     SETARG_A(*pc, fs->freereg);
532     luaK_reserveregs(fs, 1);
533   }
534   else lua_assert(nresults == LUA_MULTRET);
535 }
536 
537 
538 /*
539 ** Fix an expression to return one result.
540 ** If expression is not a multi-ret expression (function call or
541 ** vararg), it already returns one result, so nothing needs to be done.
542 ** Function calls become VNONRELOC expressions (as its result comes
543 ** fixed in the base register of the call), while vararg expressions
544 ** become VRELOCABLE (as OP_VARARG puts its results where it wants).
545 ** (Calls are created returning one result, so that does not need
546 ** to be fixed.)
547 */
548 void luaK_setoneret (FuncState *fs, expdesc *e) {
549   if (e->k == VCALL) {  /* expression is an open function call? */
550     /* already returns 1 value */
551     lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
552     e->k = VNONRELOC;  /* result has fixed position */
553     e->u.info = GETARG_A(getinstruction(fs, e));
554   }
555   else if (e->k == VVARARG) {
556     SETARG_B(getinstruction(fs, e), 2);
557     e->k = VRELOCABLE;  /* can relocate its simple result */
558   }
559 }
560 
561 
562 /*
563 ** Ensure that expression 'e' is not a variable.
564 */
565 void luaK_dischargevars (FuncState *fs, expdesc *e) {
566   switch (e->k) {
567     case VLOCAL: {  /* already in a register */
568       e->k = VNONRELOC;  /* becomes a non-relocatable value */
569       break;
570     }
571     case VUPVAL: {  /* move value to some (pending) register */
572       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
573       e->k = VRELOCABLE;
574       break;
575     }
576     case VINDEXED: {
577       OpCode op;
578       freereg(fs, e->u.ind.idx);
579       if (e->u.ind.vt == VLOCAL) {  /* is 't' in a register? */
580         freereg(fs, e->u.ind.t);
581         op = OP_GETTABLE;
582       }
583       else {
584         lua_assert(e->u.ind.vt == VUPVAL);
585         op = OP_GETTABUP;  /* 't' is in an upvalue */
586       }
587       e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx);
588       e->k = VRELOCABLE;
589       break;
590     }
591     case VVARARG: case VCALL: {
592       luaK_setoneret(fs, e);
593       break;
594     }
595     default: break;  /* there is one value available (somewhere) */
596   }
597 }
598 
599 
600 /*
601 ** Ensures expression value is in register 'reg' (and therefore
602 ** 'e' will become a non-relocatable expression).
603 */
604 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
605   luaK_dischargevars(fs, e);
606   switch (e->k) {
607     case VNIL: {
608       luaK_nil(fs, reg, 1);
609       break;
610     }
611     case VFALSE: case VTRUE: {
612       luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
613       break;
614     }
615     case VK: {
616       luaK_codek(fs, reg, e->u.info);
617       break;
618     }
619 #ifndef _KERNEL
620     case VKFLT: {
621       luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
622       break;
623     }
624 #endif /* _KERNEL */
625     case VKINT: {
626       luaK_codek(fs, reg, luaK_intK(fs, e->u.ival));
627       break;
628     }
629     case VRELOCABLE: {
630       Instruction *pc = &getinstruction(fs, e);
631       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
632       break;
633     }
634     case VNONRELOC: {
635       if (reg != e->u.info)
636         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
637       break;
638     }
639     default: {
640       lua_assert(e->k == VJMP);
641       return;  /* nothing to do... */
642     }
643   }
644   e->u.info = reg;
645   e->k = VNONRELOC;
646 }
647 
648 
649 /*
650 ** Ensures expression value is in any register.
651 */
652 static void discharge2anyreg (FuncState *fs, expdesc *e) {
653   if (e->k != VNONRELOC) {  /* no fixed register yet? */
654     luaK_reserveregs(fs, 1);  /* get a register */
655     discharge2reg(fs, e, fs->freereg-1);  /* put value there */
656   }
657 }
658 
659 
660 static int code_loadbool (FuncState *fs, int A, int b, int jump) {
661   luaK_getlabel(fs);  /* those instructions may be jump targets */
662   return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
663 }
664 
665 
666 /*
667 ** check whether list has any jump that do not produce a value
668 ** or produce an inverted value
669 */
670 static int need_value (FuncState *fs, int list) {
671   for (; list != NO_JUMP; list = getjump(fs, list)) {
672     Instruction i = *getjumpcontrol(fs, list);
673     if (GET_OPCODE(i) != OP_TESTSET) return 1;
674   }
675   return 0;  /* not found */
676 }
677 
678 
679 /*
680 ** Ensures final expression result (including results from its jump
681 ** lists) is in register 'reg'.
682 ** If expression has jumps, need to patch these jumps either to
683 ** its final position or to "load" instructions (for those tests
684 ** that do not produce values).
685 */
686 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
687   discharge2reg(fs, e, reg);
688   if (e->k == VJMP)  /* expression itself is a test? */
689     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
690   if (hasjumps(e)) {
691     int final;  /* position after whole expression */
692     int p_f = NO_JUMP;  /* position of an eventual LOAD false */
693     int p_t = NO_JUMP;  /* position of an eventual LOAD true */
694     if (need_value(fs, e->t) || need_value(fs, e->f)) {
695       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
696       p_f = code_loadbool(fs, reg, 0, 1);
697       p_t = code_loadbool(fs, reg, 1, 0);
698       luaK_patchtohere(fs, fj);
699     }
700     final = luaK_getlabel(fs);
701     patchlistaux(fs, e->f, final, reg, p_f);
702     patchlistaux(fs, e->t, final, reg, p_t);
703   }
704   e->f = e->t = NO_JUMP;
705   e->u.info = reg;
706   e->k = VNONRELOC;
707 }
708 
709 
710 /*
711 ** Ensures final expression result (including results from its jump
712 ** lists) is in next available register.
713 */
714 void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
715   luaK_dischargevars(fs, e);
716   freeexp(fs, e);
717   luaK_reserveregs(fs, 1);
718   exp2reg(fs, e, fs->freereg - 1);
719 }
720 
721 
722 /*
723 ** Ensures final expression result (including results from its jump
724 ** lists) is in some (any) register and return that register.
725 */
726 int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
727   luaK_dischargevars(fs, e);
728   if (e->k == VNONRELOC) {  /* expression already has a register? */
729     if (!hasjumps(e))  /* no jumps? */
730       return e->u.info;  /* result is already in a register */
731     if (e->u.info >= fs->nactvar) {  /* reg. is not a local? */
732       exp2reg(fs, e, e->u.info);  /* put final result in it */
733       return e->u.info;
734     }
735   }
736   luaK_exp2nextreg(fs, e);  /* otherwise, use next available register */
737   return e->u.info;
738 }
739 
740 
741 /*
742 ** Ensures final expression result is either in a register or in an
743 ** upvalue.
744 */
745 void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
746   if (e->k != VUPVAL || hasjumps(e))
747     luaK_exp2anyreg(fs, e);
748 }
749 
750 
751 /*
752 ** Ensures final expression result is either in a register or it is
753 ** a constant.
754 */
755 void luaK_exp2val (FuncState *fs, expdesc *e) {
756   if (hasjumps(e))
757     luaK_exp2anyreg(fs, e);
758   else
759     luaK_dischargevars(fs, e);
760 }
761 
762 
763 /*
764 ** Ensures final expression result is in a valid R/K index
765 ** (that is, it is either in a register or in 'k' with an index
766 ** in the range of R/K indices).
767 ** Returns R/K index.
768 */
769 int luaK_exp2RK (FuncState *fs, expdesc *e) {
770   luaK_exp2val(fs, e);
771   switch (e->k) {  /* move constants to 'k' */
772     case VTRUE: e->u.info = boolK(fs, 1); goto vk;
773     case VFALSE: e->u.info = boolK(fs, 0); goto vk;
774     case VNIL: e->u.info = nilK(fs); goto vk;
775     case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
776 #ifndef _KERNEL
777     case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
778 #endif /* _KERNEL */
779     case VK:
780      vk:
781       e->k = VK;
782       if (e->u.info <= MAXINDEXRK)  /* constant fits in 'argC'? */
783         return RKASK(e->u.info);
784       else break;
785     default: break;
786   }
787   /* not a constant in the right range: put it in a register */
788   return luaK_exp2anyreg(fs, e);
789 }
790 
791 
792 /*
793 ** Generate code to store result of expression 'ex' into variable 'var'.
794 */
795 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
796   switch (var->k) {
797     case VLOCAL: {
798       freeexp(fs, ex);
799       exp2reg(fs, ex, var->u.info);  /* compute 'ex' into proper place */
800       return;
801     }
802     case VUPVAL: {
803       int e = luaK_exp2anyreg(fs, ex);
804       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
805       break;
806     }
807     case VINDEXED: {
808       OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP;
809       int e = luaK_exp2RK(fs, ex);
810       luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e);
811       break;
812     }
813     default: lua_assert(0);  /* invalid var kind to store */
814   }
815   freeexp(fs, ex);
816 }
817 
818 
819 /*
820 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
821 */
822 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
823   int ereg;
824   luaK_exp2anyreg(fs, e);
825   ereg = e->u.info;  /* register where 'e' was placed */
826   freeexp(fs, e);
827   e->u.info = fs->freereg;  /* base register for op_self */
828   e->k = VNONRELOC;  /* self expression has a fixed register */
829   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
830   luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
831   freeexp(fs, key);
832 }
833 
834 
835 /*
836 ** Negate condition 'e' (where 'e' is a comparison).
837 */
838 static void negatecondition (FuncState *fs, expdesc *e) {
839   Instruction *pc = getjumpcontrol(fs, e->u.info);
840   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
841                                            GET_OPCODE(*pc) != OP_TEST);
842   SETARG_A(*pc, !(GETARG_A(*pc)));
843 }
844 
845 
846 /*
847 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
848 ** is true, code will jump if 'e' is true.) Return jump position.
849 ** Optimize when 'e' is 'not' something, inverting the condition
850 ** and removing the 'not'.
851 */
852 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
853   if (e->k == VRELOCABLE) {
854     Instruction ie = getinstruction(fs, e);
855     if (GET_OPCODE(ie) == OP_NOT) {
856       fs->pc--;  /* remove previous OP_NOT */
857       return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
858     }
859     /* else go through */
860   }
861   discharge2anyreg(fs, e);
862   freeexp(fs, e);
863   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
864 }
865 
866 
867 /*
868 ** Emit code to go through if 'e' is true, jump otherwise.
869 */
870 void luaK_goiftrue (FuncState *fs, expdesc *e) {
871   int pc;  /* pc of new jump */
872   luaK_dischargevars(fs, e);
873   switch (e->k) {
874     case VJMP: {  /* condition? */
875       negatecondition(fs, e);  /* jump when it is false */
876       pc = e->u.info;  /* save jump position */
877       break;
878     }
879 #ifndef _KERNEL
880     case VK: case VKFLT: case VKINT: case VTRUE: {
881 #else /* _KERNEL */
882     case VK: case VKINT: case VTRUE: {
883 #endif /* _KERNEL */
884       pc = NO_JUMP;  /* always true; do nothing */
885       break;
886     }
887     default: {
888       pc = jumponcond(fs, e, 0);  /* jump when false */
889       break;
890     }
891   }
892   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
893   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
894   e->t = NO_JUMP;
895 }
896 
897 
898 /*
899 ** Emit code to go through if 'e' is false, jump otherwise.
900 */
901 void luaK_goiffalse (FuncState *fs, expdesc *e) {
902   int pc;  /* pc of new jump */
903   luaK_dischargevars(fs, e);
904   switch (e->k) {
905     case VJMP: {
906       pc = e->u.info;  /* already jump if true */
907       break;
908     }
909     case VNIL: case VFALSE: {
910       pc = NO_JUMP;  /* always false; do nothing */
911       break;
912     }
913     default: {
914       pc = jumponcond(fs, e, 1);  /* jump if true */
915       break;
916     }
917   }
918   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
919   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
920   e->f = NO_JUMP;
921 }
922 
923 
924 /*
925 ** Code 'not e', doing constant folding.
926 */
927 static void codenot (FuncState *fs, expdesc *e) {
928   luaK_dischargevars(fs, e);
929   switch (e->k) {
930     case VNIL: case VFALSE: {
931       e->k = VTRUE;  /* true == not nil == not false */
932       break;
933     }
934 #ifndef _KERNEL
935     case VK: case VKFLT: case VKINT: case VTRUE: {
936 #else /* _KERNEL */
937     case VK: case VKINT: case VTRUE: {
938 #endif /* _KERNEL */
939       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
940       break;
941     }
942     case VJMP: {
943       negatecondition(fs, e);
944       break;
945     }
946     case VRELOCABLE:
947     case VNONRELOC: {
948       discharge2anyreg(fs, e);
949       freeexp(fs, e);
950       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
951       e->k = VRELOCABLE;
952       break;
953     }
954     default: lua_assert(0);  /* cannot happen */
955   }
956   /* interchange true and false lists */
957   { int temp = e->f; e->f = e->t; e->t = temp; }
958   removevalues(fs, e->f);  /* values are useless when negated */
959   removevalues(fs, e->t);
960 }
961 
962 
963 /*
964 ** Create expression 't[k]'. 't' must have its final result already in a
965 ** register or upvalue.
966 */
967 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
968   lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
969   t->u.ind.t = t->u.info;  /* register or upvalue index */
970   t->u.ind.idx = luaK_exp2RK(fs, k);  /* R/K index for key */
971   t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL;
972   t->k = VINDEXED;
973 }
974 
975 
976 /*
977 ** Return false if folding can raise an error.
978 ** Bitwise operations need operands convertible to integers; division
979 ** operations cannot have 0 as divisor.
980 */
981 static int validop (int op, TValue *v1, TValue *v2) {
982   switch (op) {
983     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
984     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
985       lua_Integer i;
986       return (tointeger(v1, &i) && tointeger(v2, &i));
987     }
988 #ifndef _KERNEL
989     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
990 #else /* _KERNEL */
991     case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
992 #endif /* _KERNEL */
993       return (nvalue(v2) != 0);
994     default: return 1;  /* everything else is valid */
995   }
996 }
997 
998 
999 /*
1000 ** Try to "constant-fold" an operation; return 1 iff successful.
1001 ** (In this case, 'e1' has the final result.)
1002 */
1003 static int constfolding (FuncState *fs, int op, expdesc *e1,
1004                                                 const expdesc *e2) {
1005   TValue v1, v2, res;
1006   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1007     return 0;  /* non-numeric operands or not safe to fold */
1008   luaO_arith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
1009   if (ttisinteger(&res)) {
1010     e1->k = VKINT;
1011     e1->u.ival = ivalue(&res);
1012   }
1013   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1014 #ifndef _KERNEL
1015     lua_Number n = fltvalue(&res);
1016     if (luai_numisnan(n) || n == 0)
1017       return 0;
1018     e1->k = VKFLT;
1019     e1->u.nval = n;
1020 #else /* _KERNEL */
1021     return 0;  /* if it is not integer, we must fail */
1022 #endif /* _KERNEL */
1023   }
1024   return 1;
1025 }
1026 
1027 
1028 /*
1029 ** Emit code for unary expressions that "produce values"
1030 ** (everything but 'not').
1031 ** Expression to produce final result will be encoded in 'e'.
1032 */
1033 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1034   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1035   freeexp(fs, e);
1036   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1037   e->k = VRELOCABLE;  /* all those operations are relocatable */
1038   luaK_fixline(fs, line);
1039 }
1040 
1041 
1042 /*
1043 ** Emit code for binary expressions that "produce values"
1044 ** (everything but logical operators 'and'/'or' and comparison
1045 ** operators).
1046 ** Expression to produce final result will be encoded in 'e1'.
1047 ** Because 'luaK_exp2RK' can free registers, its calls must be
1048 ** in "stack order" (that is, first on 'e2', which may have more
1049 ** recent registers to be released).
1050 */
1051 static void codebinexpval (FuncState *fs, OpCode op,
1052                            expdesc *e1, expdesc *e2, int line) {
1053   int rk2 = luaK_exp2RK(fs, e2);  /* both operands are "RK" */
1054   int rk1 = luaK_exp2RK(fs, e1);
1055   freeexps(fs, e1, e2);
1056   e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2);  /* generate opcode */
1057   e1->k = VRELOCABLE;  /* all those operations are relocatable */
1058   luaK_fixline(fs, line);
1059 }
1060 
1061 
1062 /*
1063 ** Emit code for comparisons.
1064 ** 'e1' was already put in R/K form by 'luaK_infix'.
1065 */
1066 static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1067   int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
1068                           : check_exp(e1->k == VNONRELOC, e1->u.info);
1069   int rk2 = luaK_exp2RK(fs, e2);
1070   freeexps(fs, e1, e2);
1071   switch (opr) {
1072     case OPR_NE: {  /* '(a ~= b)' ==> 'not (a == b)' */
1073       e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
1074       break;
1075     }
1076     case OPR_GT: case OPR_GE: {
1077       /* '(a > b)' ==> '(b < a)';  '(a >= b)' ==> '(b <= a)' */
1078       OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
1079       e1->u.info = condjump(fs, op, 1, rk2, rk1);  /* invert operands */
1080       break;
1081     }
1082     default: {  /* '==', '<', '<=' use their own opcodes */
1083       OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
1084       e1->u.info = condjump(fs, op, 1, rk1, rk2);
1085       break;
1086     }
1087   }
1088   e1->k = VJMP;
1089 }
1090 
1091 
1092 /*
1093 ** Aplly prefix operation 'op' to expression 'e'.
1094 */
1095 void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
1096   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1097   switch (op) {
1098     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1099       if (constfolding(fs, op + LUA_OPUNM, e, &ef))
1100         break;
1101       /* FALLTHROUGH */
1102     case OPR_LEN:
1103       codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
1104       break;
1105     case OPR_NOT: codenot(fs, e); break;
1106     default: lua_assert(0);
1107   }
1108 }
1109 
1110 
1111 /*
1112 ** Process 1st operand 'v' of binary operation 'op' before reading
1113 ** 2nd operand.
1114 */
1115 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1116   switch (op) {
1117     case OPR_AND: {
1118       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1119       break;
1120     }
1121     case OPR_OR: {
1122       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1123       break;
1124     }
1125     case OPR_CONCAT: {
1126       luaK_exp2nextreg(fs, v);  /* operand must be on the 'stack' */
1127       break;
1128     }
1129     case OPR_ADD: case OPR_SUB:
1130 #ifndef _KERNEL
1131     case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1132     case OPR_MOD: case OPR_POW:
1133 #else /* _KERNEL */
1134     case OPR_MUL: case OPR_IDIV:
1135     case OPR_MOD:
1136 #endif /* _KERNEL */
1137     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1138     case OPR_SHL: case OPR_SHR: {
1139       if (!tonumeral(v, NULL))
1140         luaK_exp2RK(fs, v);
1141       /* else keep numeral, which may be folded with 2nd operand */
1142       break;
1143     }
1144     default: {
1145       luaK_exp2RK(fs, v);
1146       break;
1147     }
1148   }
1149 }
1150 
1151 
1152 /*
1153 ** Finalize code for binary operation, after reading 2nd operand.
1154 ** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
1155 ** concatenation is right associative), merge second CONCAT into first
1156 ** one.
1157 */
1158 void luaK_posfix (FuncState *fs, BinOpr op,
1159                   expdesc *e1, expdesc *e2, int line) {
1160   switch (op) {
1161     case OPR_AND: {
1162       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luK_infix' */
1163       luaK_dischargevars(fs, e2);
1164       luaK_concat(fs, &e2->f, e1->f);
1165       *e1 = *e2;
1166       break;
1167     }
1168     case OPR_OR: {
1169       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luK_infix' */
1170       luaK_dischargevars(fs, e2);
1171       luaK_concat(fs, &e2->t, e1->t);
1172       *e1 = *e2;
1173       break;
1174     }
1175     case OPR_CONCAT: {
1176       luaK_exp2val(fs, e2);
1177       if (e2->k == VRELOCABLE &&
1178           GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
1179         lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
1180         freeexp(fs, e1);
1181         SETARG_B(getinstruction(fs, e2), e1->u.info);
1182         e1->k = VRELOCABLE; e1->u.info = e2->u.info;
1183       }
1184       else {
1185         luaK_exp2nextreg(fs, e2);  /* operand must be on the 'stack' */
1186         codebinexpval(fs, OP_CONCAT, e1, e2, line);
1187       }
1188       break;
1189     }
1190 #ifndef _KERNEL
1191     case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
1192     case OPR_IDIV: case OPR_MOD: case OPR_POW:
1193 #else /* _KERNEL */
1194     case OPR_ADD: case OPR_SUB: case OPR_MUL:
1195     case OPR_IDIV: case OPR_MOD:
1196 #endif /* _KERNEL */
1197     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1198     case OPR_SHL: case OPR_SHR: {
1199       if (!constfolding(fs, op + LUA_OPADD, e1, e2))
1200         codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
1201       break;
1202     }
1203     case OPR_EQ: case OPR_LT: case OPR_LE:
1204     case OPR_NE: case OPR_GT: case OPR_GE: {
1205       codecomp(fs, op, e1, e2);
1206       break;
1207     }
1208     default: lua_assert(0);
1209   }
1210 }
1211 
1212 
1213 /*
1214 ** Change line information associated with current position.
1215 */
1216 void luaK_fixline (FuncState *fs, int line) {
1217   fs->f->lineinfo[fs->pc - 1] = line;
1218 }
1219 
1220 
1221 /*
1222 ** Emit a SETLIST instruction.
1223 ** 'base' is register that keeps table;
1224 ** 'nelems' is #table plus those to be stored now;
1225 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1226 ** table (or LUA_MULTRET to add up to stack top).
1227 */
1228 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1229   int c =  (nelems - 1)/LFIELDS_PER_FLUSH + 1;
1230   int b = (tostore == LUA_MULTRET) ? 0 : tostore;
1231   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1232   if (c <= MAXARG_C)
1233     luaK_codeABC(fs, OP_SETLIST, base, b, c);
1234   else if (c <= MAXARG_Ax) {
1235     luaK_codeABC(fs, OP_SETLIST, base, b, 0);
1236     codeextraarg(fs, c);
1237   }
1238   else
1239     luaX_syntaxerror(fs->ls, "constructor too long");
1240   fs->freereg = base + 1;  /* free registers with list values */
1241 }
1242 
1243