1*181254a7Smrg /*
2*181254a7Smrg * ====================================================
3*181254a7Smrg * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4*181254a7Smrg *
5*181254a7Smrg * Developed at SunPro, a Sun Microsystems, Inc. business.
6*181254a7Smrg * Permission to use, copy, modify, and distribute this
7*181254a7Smrg * software is freely granted, provided that this notice
8*181254a7Smrg * is preserved.
9*181254a7Smrg * ====================================================
10*181254a7Smrg */
11*181254a7Smrg
12*181254a7Smrg /*
13*181254a7Smrg Long double expansions are
14*181254a7Smrg Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15*181254a7Smrg and are incorporated herein by permission of the author. The author
16*181254a7Smrg reserves the right to distribute this material elsewhere under different
17*181254a7Smrg copying permissions. These modifications are distributed here under
18*181254a7Smrg the following terms:
19*181254a7Smrg
20*181254a7Smrg This library is free software; you can redistribute it and/or
21*181254a7Smrg modify it under the terms of the GNU Lesser General Public
22*181254a7Smrg License as published by the Free Software Foundation; either
23*181254a7Smrg version 2.1 of the License, or (at your option) any later version.
24*181254a7Smrg
25*181254a7Smrg This library is distributed in the hope that it will be useful,
26*181254a7Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
27*181254a7Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
28*181254a7Smrg Lesser General Public License for more details.
29*181254a7Smrg
30*181254a7Smrg You should have received a copy of the GNU Lesser General Public
31*181254a7Smrg License along with this library; if not, see
32*181254a7Smrg <http://www.gnu.org/licenses/>. */
33*181254a7Smrg
34*181254a7Smrg /* __quadmath_kernel_tanq( x, y, k )
35*181254a7Smrg * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36*181254a7Smrg * Input x is assumed to be bounded by ~pi/4 in magnitude.
37*181254a7Smrg * Input y is the tail of x.
38*181254a7Smrg * Input k indicates whether tan (if k=1) or
39*181254a7Smrg * -1/tan (if k= -1) is returned.
40*181254a7Smrg *
41*181254a7Smrg * Algorithm
42*181254a7Smrg * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
43*181254a7Smrg * 2. if x < 2^-57, return x with inexact if x!=0.
44*181254a7Smrg * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45*181254a7Smrg * on [0,0.67433].
46*181254a7Smrg *
47*181254a7Smrg * Note: tan(x+y) = tan(x) + tan'(x)*y
48*181254a7Smrg * ~ tan(x) + (1+x*x)*y
49*181254a7Smrg * Therefore, for better accuracy in computing tan(x+y), let
50*181254a7Smrg * r = x^3 * R(x^2)
51*181254a7Smrg * then
52*181254a7Smrg * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
53*181254a7Smrg *
54*181254a7Smrg * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
55*181254a7Smrg * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56*181254a7Smrg * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
57*181254a7Smrg */
58*181254a7Smrg
59*181254a7Smrg #include "quadmath-imp.h"
60*181254a7Smrg
61*181254a7Smrg static const __float128
62*181254a7Smrg one = 1,
63*181254a7Smrg pio4hi = 7.8539816339744830961566084581987569936977E-1Q,
64*181254a7Smrg pio4lo = 2.1679525325309452561992610065108379921906E-35Q,
65*181254a7Smrg
66*181254a7Smrg /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
67*181254a7Smrg 0 <= x <= 0.6743316650390625
68*181254a7Smrg Peak relative error 8.0e-36 */
69*181254a7Smrg TH = 3.333333333333333333333333333333333333333E-1Q,
70*181254a7Smrg T0 = -1.813014711743583437742363284336855889393E7Q,
71*181254a7Smrg T1 = 1.320767960008972224312740075083259247618E6Q,
72*181254a7Smrg T2 = -2.626775478255838182468651821863299023956E4Q,
73*181254a7Smrg T3 = 1.764573356488504935415411383687150199315E2Q,
74*181254a7Smrg T4 = -3.333267763822178690794678978979803526092E-1Q,
75*181254a7Smrg
76*181254a7Smrg U0 = -1.359761033807687578306772463253710042010E8Q,
77*181254a7Smrg U1 = 6.494370630656893175666729313065113194784E7Q,
78*181254a7Smrg U2 = -4.180787672237927475505536849168729386782E6Q,
79*181254a7Smrg U3 = 8.031643765106170040139966622980914621521E4Q,
80*181254a7Smrg U4 = -5.323131271912475695157127875560667378597E2Q;
81*181254a7Smrg /* 1.000000000000000000000000000000000000000E0 */
82*181254a7Smrg
83*181254a7Smrg
84*181254a7Smrg __float128
__quadmath_kernel_tanq(__float128 x,__float128 y,int iy)85*181254a7Smrg __quadmath_kernel_tanq (__float128 x, __float128 y, int iy)
86*181254a7Smrg {
87*181254a7Smrg __float128 z, r, v, w, s;
88*181254a7Smrg int32_t ix, sign;
89*181254a7Smrg ieee854_float128 u, u1;
90*181254a7Smrg
91*181254a7Smrg u.value = x;
92*181254a7Smrg ix = u.words32.w0 & 0x7fffffff;
93*181254a7Smrg if (ix < 0x3fc60000) /* x < 2**-57 */
94*181254a7Smrg {
95*181254a7Smrg if ((int) x == 0)
96*181254a7Smrg { /* generate inexact */
97*181254a7Smrg if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3
98*181254a7Smrg | (iy + 1)) == 0)
99*181254a7Smrg return one / fabsq (x);
100*181254a7Smrg else if (iy == 1)
101*181254a7Smrg {
102*181254a7Smrg math_check_force_underflow (x);
103*181254a7Smrg return x;
104*181254a7Smrg }
105*181254a7Smrg else
106*181254a7Smrg return -one / x;
107*181254a7Smrg }
108*181254a7Smrg }
109*181254a7Smrg if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
110*181254a7Smrg {
111*181254a7Smrg if ((u.words32.w0 & 0x80000000) != 0)
112*181254a7Smrg {
113*181254a7Smrg x = -x;
114*181254a7Smrg y = -y;
115*181254a7Smrg sign = -1;
116*181254a7Smrg }
117*181254a7Smrg else
118*181254a7Smrg sign = 1;
119*181254a7Smrg z = pio4hi - x;
120*181254a7Smrg w = pio4lo - y;
121*181254a7Smrg x = z + w;
122*181254a7Smrg y = 0.0;
123*181254a7Smrg }
124*181254a7Smrg z = x * x;
125*181254a7Smrg r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
126*181254a7Smrg v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
127*181254a7Smrg r = r / v;
128*181254a7Smrg
129*181254a7Smrg s = z * x;
130*181254a7Smrg r = y + z * (s * r + y);
131*181254a7Smrg r += TH * s;
132*181254a7Smrg w = x + r;
133*181254a7Smrg if (ix >= 0x3ffe5942)
134*181254a7Smrg {
135*181254a7Smrg v = (__float128) iy;
136*181254a7Smrg w = (v - 2.0 * (x - (w * w / (w + v) - r)));
137*181254a7Smrg /* SIGN is set for arguments that reach this code, but not
138*181254a7Smrg otherwise, resulting in warnings that it may be used
139*181254a7Smrg uninitialized although in the cases where it is used it has
140*181254a7Smrg always been set. */
141*181254a7Smrg
142*181254a7Smrg
143*181254a7Smrg if (sign < 0)
144*181254a7Smrg w = -w;
145*181254a7Smrg
146*181254a7Smrg return w;
147*181254a7Smrg }
148*181254a7Smrg if (iy == 1)
149*181254a7Smrg return w;
150*181254a7Smrg else
151*181254a7Smrg { /* if allow error up to 2 ulp,
152*181254a7Smrg simply return -1.0/(x+r) here */
153*181254a7Smrg /* compute -1.0/(x+r) accurately */
154*181254a7Smrg u1.value = w;
155*181254a7Smrg u1.words32.w2 = 0;
156*181254a7Smrg u1.words32.w3 = 0;
157*181254a7Smrg v = r - (u1.value - x); /* u1+v = r+x */
158*181254a7Smrg z = -1.0 / w;
159*181254a7Smrg u.value = z;
160*181254a7Smrg u.words32.w2 = 0;
161*181254a7Smrg u.words32.w3 = 0;
162*181254a7Smrg s = 1.0 + u.value * u1.value;
163*181254a7Smrg return u.value + z * (s + u.value * v);
164*181254a7Smrg }
165*181254a7Smrg }
166