xref: /netbsd-src/external/gpl3/gcc/dist/libquadmath/math/tanq.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1*181254a7Smrg /* s_tanl.c -- long double version of s_tan.c.
2*181254a7Smrg  * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
3*181254a7Smrg  */
4*181254a7Smrg 
5*181254a7Smrg /* @(#)s_tan.c 5.1 93/09/24 */
6*181254a7Smrg /*
7*181254a7Smrg  * ====================================================
8*181254a7Smrg  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9*181254a7Smrg  *
10*181254a7Smrg  * Developed at SunPro, a Sun Microsystems, Inc. business.
11*181254a7Smrg  * Permission to use, copy, modify, and distribute this
12*181254a7Smrg  * software is freely granted, provided that this notice
13*181254a7Smrg  * is preserved.
14*181254a7Smrg  * ====================================================
15*181254a7Smrg  */
16*181254a7Smrg 
17*181254a7Smrg /* tanq(x)
18*181254a7Smrg  * Return tangent function of x.
19*181254a7Smrg  *
20*181254a7Smrg  * kernel function:
21*181254a7Smrg  *	__quadmath_kernel_tanq		... tangent function on [-pi/4,pi/4]
22*181254a7Smrg  *	__quadmath_rem_pio2q	... argument reduction routine
23*181254a7Smrg  *
24*181254a7Smrg  * Method.
25*181254a7Smrg  *      Let S,C and T denote the sin, cos and tan respectively on
26*181254a7Smrg  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27*181254a7Smrg  *	in [-pi/4 , +pi/4], and let n = k mod 4.
28*181254a7Smrg  *	We have
29*181254a7Smrg  *
30*181254a7Smrg  *          n        sin(x)      cos(x)        tan(x)
31*181254a7Smrg  *     ----------------------------------------------------------
32*181254a7Smrg  *	    0	       S	   C		 T
33*181254a7Smrg  *	    1	       C	  -S		-1/T
34*181254a7Smrg  *	    2	      -S	  -C		 T
35*181254a7Smrg  *	    3	      -C	   S		-1/T
36*181254a7Smrg  *     ----------------------------------------------------------
37*181254a7Smrg  *
38*181254a7Smrg  * Special cases:
39*181254a7Smrg  *      Let trig be any of sin, cos, or tan.
40*181254a7Smrg  *      trig(+-INF)  is NaN, with signals;
41*181254a7Smrg  *      trig(NaN)    is that NaN;
42*181254a7Smrg  *
43*181254a7Smrg  * Accuracy:
44*181254a7Smrg  *	TRIG(x) returns trig(x) nearly rounded
45*181254a7Smrg  */
46*181254a7Smrg 
47*181254a7Smrg #include "quadmath-imp.h"
48*181254a7Smrg 
tanq(__float128 x)49*181254a7Smrg __float128 tanq(__float128 x)
50*181254a7Smrg {
51*181254a7Smrg 	__float128 y[2],z=0;
52*181254a7Smrg 	int64_t n, ix;
53*181254a7Smrg 
54*181254a7Smrg     /* High word of x. */
55*181254a7Smrg 	GET_FLT128_MSW64(ix,x);
56*181254a7Smrg 
57*181254a7Smrg     /* |x| ~< pi/4 */
58*181254a7Smrg 	ix &= 0x7fffffffffffffffLL;
59*181254a7Smrg 	if(ix <= 0x3ffe921fb54442d1LL) return __quadmath_kernel_tanq(x,z,1);
60*181254a7Smrg 
61*181254a7Smrg     /* tanq(Inf or NaN) is NaN */
62*181254a7Smrg 	else if (ix>=0x7fff000000000000LL) {
63*181254a7Smrg 	    if (ix == 0x7fff000000000000LL) {
64*181254a7Smrg 		GET_FLT128_LSW64(n,x);
65*181254a7Smrg 		if (n == 0)
66*181254a7Smrg 		    errno = EDOM;
67*181254a7Smrg 	    }
68*181254a7Smrg 	    return x-x;		/* NaN */
69*181254a7Smrg 	}
70*181254a7Smrg 
71*181254a7Smrg     /* argument reduction needed */
72*181254a7Smrg 	else {
73*181254a7Smrg 	    n = __quadmath_rem_pio2q(x,y);
74*181254a7Smrg 	    return __quadmath_kernel_tanq(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
75*181254a7Smrg 							-1 -- n odd */
76*181254a7Smrg 	}
77*181254a7Smrg }
78