1*181254a7Smrg /* logll.c
2*181254a7Smrg *
3*181254a7Smrg * Natural logarithm for 128-bit long double precision.
4*181254a7Smrg *
5*181254a7Smrg *
6*181254a7Smrg *
7*181254a7Smrg * SYNOPSIS:
8*181254a7Smrg *
9*181254a7Smrg * long double x, y, logq();
10*181254a7Smrg *
11*181254a7Smrg * y = logq( x );
12*181254a7Smrg *
13*181254a7Smrg *
14*181254a7Smrg *
15*181254a7Smrg * DESCRIPTION:
16*181254a7Smrg *
17*181254a7Smrg * Returns the base e (2.718...) logarithm of x.
18*181254a7Smrg *
19*181254a7Smrg * The argument is separated into its exponent and fractional
20*181254a7Smrg * parts. Use of a lookup table increases the speed of the routine.
21*181254a7Smrg * The program uses logarithms tabulated at intervals of 1/128 to
22*181254a7Smrg * cover the domain from approximately 0.7 to 1.4.
23*181254a7Smrg *
24*181254a7Smrg * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
25*181254a7Smrg * log(1+x) = x - 0.5 x^2 + x^3 P(x) .
26*181254a7Smrg *
27*181254a7Smrg *
28*181254a7Smrg *
29*181254a7Smrg * ACCURACY:
30*181254a7Smrg *
31*181254a7Smrg * Relative error:
32*181254a7Smrg * arithmetic domain # trials peak rms
33*181254a7Smrg * IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35
34*181254a7Smrg * IEEE 0.125, 8 100000 1.2e-34 4.1e-35
35*181254a7Smrg *
36*181254a7Smrg *
37*181254a7Smrg * WARNING:
38*181254a7Smrg *
39*181254a7Smrg * This program uses integer operations on bit fields of floating-point
40*181254a7Smrg * numbers. It does not work with data structures other than the
41*181254a7Smrg * structure assumed.
42*181254a7Smrg *
43*181254a7Smrg */
44*181254a7Smrg
45*181254a7Smrg /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
46*181254a7Smrg
47*181254a7Smrg This library is free software; you can redistribute it and/or
48*181254a7Smrg modify it under the terms of the GNU Lesser General Public
49*181254a7Smrg License as published by the Free Software Foundation; either
50*181254a7Smrg version 2.1 of the License, or (at your option) any later version.
51*181254a7Smrg
52*181254a7Smrg This library is distributed in the hope that it will be useful,
53*181254a7Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
54*181254a7Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
55*181254a7Smrg Lesser General Public License for more details.
56*181254a7Smrg
57*181254a7Smrg You should have received a copy of the GNU Lesser General Public
58*181254a7Smrg License along with this library; if not, see
59*181254a7Smrg <http://www.gnu.org/licenses/>. */
60*181254a7Smrg
61*181254a7Smrg #include "quadmath-imp.h"
62*181254a7Smrg
63*181254a7Smrg /* log(1+x) = x - .5 x^2 + x^3 l(x)
64*181254a7Smrg -.0078125 <= x <= +.0078125
65*181254a7Smrg peak relative error 1.2e-37 */
66*181254a7Smrg static const __float128
67*181254a7Smrg l3 = 3.333333333333333333333333333333336096926E-1Q,
68*181254a7Smrg l4 = -2.499999999999999999999999999486853077002E-1Q,
69*181254a7Smrg l5 = 1.999999999999999999999999998515277861905E-1Q,
70*181254a7Smrg l6 = -1.666666666666666666666798448356171665678E-1Q,
71*181254a7Smrg l7 = 1.428571428571428571428808945895490721564E-1Q,
72*181254a7Smrg l8 = -1.249999999999999987884655626377588149000E-1Q,
73*181254a7Smrg l9 = 1.111111111111111093947834982832456459186E-1Q,
74*181254a7Smrg l10 = -1.000000000000532974938900317952530453248E-1Q,
75*181254a7Smrg l11 = 9.090909090915566247008015301349979892689E-2Q,
76*181254a7Smrg l12 = -8.333333211818065121250921925397567745734E-2Q,
77*181254a7Smrg l13 = 7.692307559897661630807048686258659316091E-2Q,
78*181254a7Smrg l14 = -7.144242754190814657241902218399056829264E-2Q,
79*181254a7Smrg l15 = 6.668057591071739754844678883223432347481E-2Q;
80*181254a7Smrg
81*181254a7Smrg /* Lookup table of ln(t) - (t-1)
82*181254a7Smrg t = 0.5 + (k+26)/128)
83*181254a7Smrg k = 0, ..., 91 */
84*181254a7Smrg static const __float128 logtbl[92] = {
85*181254a7Smrg -5.5345593589352099112142921677820359632418E-2Q,
86*181254a7Smrg -5.2108257402767124761784665198737642086148E-2Q,
87*181254a7Smrg -4.8991686870576856279407775480686721935120E-2Q,
88*181254a7Smrg -4.5993270766361228596215288742353061431071E-2Q,
89*181254a7Smrg -4.3110481649613269682442058976885699556950E-2Q,
90*181254a7Smrg -4.0340872319076331310838085093194799765520E-2Q,
91*181254a7Smrg -3.7682072451780927439219005993827431503510E-2Q,
92*181254a7Smrg -3.5131785416234343803903228503274262719586E-2Q,
93*181254a7Smrg -3.2687785249045246292687241862699949178831E-2Q,
94*181254a7Smrg -3.0347913785027239068190798397055267411813E-2Q,
95*181254a7Smrg -2.8110077931525797884641940838507561326298E-2Q,
96*181254a7Smrg -2.5972247078357715036426583294246819637618E-2Q,
97*181254a7Smrg -2.3932450635346084858612873953407168217307E-2Q,
98*181254a7Smrg -2.1988775689981395152022535153795155900240E-2Q,
99*181254a7Smrg -2.0139364778244501615441044267387667496733E-2Q,
100*181254a7Smrg -1.8382413762093794819267536615342902718324E-2Q,
101*181254a7Smrg -1.6716169807550022358923589720001638093023E-2Q,
102*181254a7Smrg -1.5138929457710992616226033183958974965355E-2Q,
103*181254a7Smrg -1.3649036795397472900424896523305726435029E-2Q,
104*181254a7Smrg -1.2244881690473465543308397998034325468152E-2Q,
105*181254a7Smrg -1.0924898127200937840689817557742469105693E-2Q,
106*181254a7Smrg -9.6875626072830301572839422532631079809328E-3Q,
107*181254a7Smrg -8.5313926245226231463436209313499745894157E-3Q,
108*181254a7Smrg -7.4549452072765973384933565912143044991706E-3Q,
109*181254a7Smrg -6.4568155251217050991200599386801665681310E-3Q,
110*181254a7Smrg -5.5356355563671005131126851708522185605193E-3Q,
111*181254a7Smrg -4.6900728132525199028885749289712348829878E-3Q,
112*181254a7Smrg -3.9188291218610470766469347968659624282519E-3Q,
113*181254a7Smrg -3.2206394539524058873423550293617843896540E-3Q,
114*181254a7Smrg -2.5942708080877805657374888909297113032132E-3Q,
115*181254a7Smrg -2.0385211375711716729239156839929281289086E-3Q,
116*181254a7Smrg -1.5522183228760777967376942769773768850872E-3Q,
117*181254a7Smrg -1.1342191863606077520036253234446621373191E-3Q,
118*181254a7Smrg -7.8340854719967065861624024730268350459991E-4Q,
119*181254a7Smrg -4.9869831458030115699628274852562992756174E-4Q,
120*181254a7Smrg -2.7902661731604211834685052867305795169688E-4Q,
121*181254a7Smrg -1.2335696813916860754951146082826952093496E-4Q,
122*181254a7Smrg -3.0677461025892873184042490943581654591817E-5Q,
123*181254a7Smrg #define ZERO logtbl[38]
124*181254a7Smrg 0.0000000000000000000000000000000000000000E0Q,
125*181254a7Smrg -3.0359557945051052537099938863236321874198E-5Q,
126*181254a7Smrg -1.2081346403474584914595395755316412213151E-4Q,
127*181254a7Smrg -2.7044071846562177120083903771008342059094E-4Q,
128*181254a7Smrg -4.7834133324631162897179240322783590830326E-4Q,
129*181254a7Smrg -7.4363569786340080624467487620270965403695E-4Q,
130*181254a7Smrg -1.0654639687057968333207323853366578860679E-3Q,
131*181254a7Smrg -1.4429854811877171341298062134712230604279E-3Q,
132*181254a7Smrg -1.8753781835651574193938679595797367137975E-3Q,
133*181254a7Smrg -2.3618380914922506054347222273705859653658E-3Q,
134*181254a7Smrg -2.9015787624124743013946600163375853631299E-3Q,
135*181254a7Smrg -3.4938307889254087318399313316921940859043E-3Q,
136*181254a7Smrg -4.1378413103128673800485306215154712148146E-3Q,
137*181254a7Smrg -4.8328735414488877044289435125365629849599E-3Q,
138*181254a7Smrg -5.5782063183564351739381962360253116934243E-3Q,
139*181254a7Smrg -6.3731336597098858051938306767880719015261E-3Q,
140*181254a7Smrg -7.2169643436165454612058905294782949315193E-3Q,
141*181254a7Smrg -8.1090214990427641365934846191367315083867E-3Q,
142*181254a7Smrg -9.0486422112807274112838713105168375482480E-3Q,
143*181254a7Smrg -1.0035177140880864314674126398350812606841E-2Q,
144*181254a7Smrg -1.1067990155502102718064936259435676477423E-2Q,
145*181254a7Smrg -1.2146457974158024928196575103115488672416E-2Q,
146*181254a7Smrg -1.3269969823361415906628825374158424754308E-2Q,
147*181254a7Smrg -1.4437927104692837124388550722759686270765E-2Q,
148*181254a7Smrg -1.5649743073340777659901053944852735064621E-2Q,
149*181254a7Smrg -1.6904842527181702880599758489058031645317E-2Q,
150*181254a7Smrg -1.8202661505988007336096407340750378994209E-2Q,
151*181254a7Smrg -1.9542647000370545390701192438691126552961E-2Q,
152*181254a7Smrg -2.0924256670080119637427928803038530924742E-2Q,
153*181254a7Smrg -2.2346958571309108496179613803760727786257E-2Q,
154*181254a7Smrg -2.3810230892650362330447187267648486279460E-2Q,
155*181254a7Smrg -2.5313561699385640380910474255652501521033E-2Q,
156*181254a7Smrg -2.6856448685790244233704909690165496625399E-2Q,
157*181254a7Smrg -2.8438398935154170008519274953860128449036E-2Q,
158*181254a7Smrg -3.0058928687233090922411781058956589863039E-2Q,
159*181254a7Smrg -3.1717563112854831855692484086486099896614E-2Q,
160*181254a7Smrg -3.3413836095418743219397234253475252001090E-2Q,
161*181254a7Smrg -3.5147290019036555862676702093393332533702E-2Q,
162*181254a7Smrg -3.6917475563073933027920505457688955423688E-2Q,
163*181254a7Smrg -3.8723951502862058660874073462456610731178E-2Q,
164*181254a7Smrg -4.0566284516358241168330505467000838017425E-2Q,
165*181254a7Smrg -4.2444048996543693813649967076598766917965E-2Q,
166*181254a7Smrg -4.4356826869355401653098777649745233339196E-2Q,
167*181254a7Smrg -4.6304207416957323121106944474331029996141E-2Q,
168*181254a7Smrg -4.8285787106164123613318093945035804818364E-2Q,
169*181254a7Smrg -5.0301169421838218987124461766244507342648E-2Q,
170*181254a7Smrg -5.2349964705088137924875459464622098310997E-2Q,
171*181254a7Smrg -5.4431789996103111613753440311680967840214E-2Q,
172*181254a7Smrg -5.6546268881465384189752786409400404404794E-2Q,
173*181254a7Smrg -5.8693031345788023909329239565012647817664E-2Q,
174*181254a7Smrg -6.0871713627532018185577188079210189048340E-2Q,
175*181254a7Smrg -6.3081958078862169742820420185833800925568E-2Q,
176*181254a7Smrg -6.5323413029406789694910800219643791556918E-2Q,
177*181254a7Smrg -6.7595732653791419081537811574227049288168E-2Q
178*181254a7Smrg };
179*181254a7Smrg
180*181254a7Smrg /* ln(2) = ln2a + ln2b with extended precision. */
181*181254a7Smrg static const __float128
182*181254a7Smrg ln2a = 6.93145751953125e-1Q,
183*181254a7Smrg ln2b = 1.4286068203094172321214581765680755001344E-6Q;
184*181254a7Smrg
185*181254a7Smrg __float128
logq(__float128 x)186*181254a7Smrg logq(__float128 x)
187*181254a7Smrg {
188*181254a7Smrg __float128 z, y, w;
189*181254a7Smrg ieee854_float128 u, t;
190*181254a7Smrg unsigned int m;
191*181254a7Smrg int k, e;
192*181254a7Smrg
193*181254a7Smrg u.value = x;
194*181254a7Smrg m = u.words32.w0;
195*181254a7Smrg
196*181254a7Smrg /* Check for IEEE special cases. */
197*181254a7Smrg k = m & 0x7fffffff;
198*181254a7Smrg /* log(0) = -infinity. */
199*181254a7Smrg if ((k | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
200*181254a7Smrg {
201*181254a7Smrg return -0.5Q / ZERO;
202*181254a7Smrg }
203*181254a7Smrg /* log ( x < 0 ) = NaN */
204*181254a7Smrg if (m & 0x80000000)
205*181254a7Smrg {
206*181254a7Smrg return (x - x) / ZERO;
207*181254a7Smrg }
208*181254a7Smrg /* log (infinity or NaN) */
209*181254a7Smrg if (k >= 0x7fff0000)
210*181254a7Smrg {
211*181254a7Smrg return x + x;
212*181254a7Smrg }
213*181254a7Smrg
214*181254a7Smrg /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */
215*181254a7Smrg u.value = frexpq (x, &e);
216*181254a7Smrg m = u.words32.w0 & 0xffff;
217*181254a7Smrg m |= 0x10000;
218*181254a7Smrg /* Find lookup table index k from high order bits of the significand. */
219*181254a7Smrg if (m < 0x16800)
220*181254a7Smrg {
221*181254a7Smrg k = (m - 0xff00) >> 9;
222*181254a7Smrg /* t is the argument 0.5 + (k+26)/128
223*181254a7Smrg of the nearest item to u in the lookup table. */
224*181254a7Smrg t.words32.w0 = 0x3fff0000 + (k << 9);
225*181254a7Smrg t.words32.w1 = 0;
226*181254a7Smrg t.words32.w2 = 0;
227*181254a7Smrg t.words32.w3 = 0;
228*181254a7Smrg u.words32.w0 += 0x10000;
229*181254a7Smrg e -= 1;
230*181254a7Smrg k += 64;
231*181254a7Smrg }
232*181254a7Smrg else
233*181254a7Smrg {
234*181254a7Smrg k = (m - 0xfe00) >> 10;
235*181254a7Smrg t.words32.w0 = 0x3ffe0000 + (k << 10);
236*181254a7Smrg t.words32.w1 = 0;
237*181254a7Smrg t.words32.w2 = 0;
238*181254a7Smrg t.words32.w3 = 0;
239*181254a7Smrg }
240*181254a7Smrg /* On this interval the table is not used due to cancellation error. */
241*181254a7Smrg if ((x <= 1.0078125Q) && (x >= 0.9921875Q))
242*181254a7Smrg {
243*181254a7Smrg if (x == 1)
244*181254a7Smrg return 0;
245*181254a7Smrg z = x - 1;
246*181254a7Smrg k = 64;
247*181254a7Smrg t.value = 1;
248*181254a7Smrg e = 0;
249*181254a7Smrg }
250*181254a7Smrg else
251*181254a7Smrg {
252*181254a7Smrg /* log(u) = log( t u/t ) = log(t) + log(u/t)
253*181254a7Smrg log(t) is tabulated in the lookup table.
254*181254a7Smrg Express log(u/t) = log(1+z), where z = u/t - 1 = (u-t)/t.
255*181254a7Smrg cf. Cody & Waite. */
256*181254a7Smrg z = (u.value - t.value) / t.value;
257*181254a7Smrg }
258*181254a7Smrg /* Series expansion of log(1+z). */
259*181254a7Smrg w = z * z;
260*181254a7Smrg y = ((((((((((((l15 * z
261*181254a7Smrg + l14) * z
262*181254a7Smrg + l13) * z
263*181254a7Smrg + l12) * z
264*181254a7Smrg + l11) * z
265*181254a7Smrg + l10) * z
266*181254a7Smrg + l9) * z
267*181254a7Smrg + l8) * z
268*181254a7Smrg + l7) * z
269*181254a7Smrg + l6) * z
270*181254a7Smrg + l5) * z
271*181254a7Smrg + l4) * z
272*181254a7Smrg + l3) * z * w;
273*181254a7Smrg y -= 0.5 * w;
274*181254a7Smrg y += e * ln2b; /* Base 2 exponent offset times ln(2). */
275*181254a7Smrg y += z;
276*181254a7Smrg y += logtbl[k-26]; /* log(t) - (t-1) */
277*181254a7Smrg y += (t.value - 1);
278*181254a7Smrg y += e * ln2a;
279*181254a7Smrg return y;
280*181254a7Smrg }
281