1*181254a7Smrg /* log10l.c
2*181254a7Smrg *
3*181254a7Smrg * Common logarithm, 128-bit long double precision
4*181254a7Smrg *
5*181254a7Smrg *
6*181254a7Smrg *
7*181254a7Smrg * SYNOPSIS:
8*181254a7Smrg *
9*181254a7Smrg * long double x, y, log10l();
10*181254a7Smrg *
11*181254a7Smrg * y = log10l( x );
12*181254a7Smrg *
13*181254a7Smrg *
14*181254a7Smrg *
15*181254a7Smrg * DESCRIPTION:
16*181254a7Smrg *
17*181254a7Smrg * Returns the base 10 logarithm of x.
18*181254a7Smrg *
19*181254a7Smrg * The argument is separated into its exponent and fractional
20*181254a7Smrg * parts. If the exponent is between -1 and +1, the logarithm
21*181254a7Smrg * of the fraction is approximated by
22*181254a7Smrg *
23*181254a7Smrg * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
24*181254a7Smrg *
25*181254a7Smrg * Otherwise, setting z = 2(x-1)/x+1),
26*181254a7Smrg *
27*181254a7Smrg * log(x) = z + z^3 P(z)/Q(z).
28*181254a7Smrg *
29*181254a7Smrg *
30*181254a7Smrg *
31*181254a7Smrg * ACCURACY:
32*181254a7Smrg *
33*181254a7Smrg * Relative error:
34*181254a7Smrg * arithmetic domain # trials peak rms
35*181254a7Smrg * IEEE 0.5, 2.0 30000 2.3e-34 4.9e-35
36*181254a7Smrg * IEEE exp(+-10000) 30000 1.0e-34 4.1e-35
37*181254a7Smrg *
38*181254a7Smrg * In the tests over the interval exp(+-10000), the logarithms
39*181254a7Smrg * of the random arguments were uniformly distributed over
40*181254a7Smrg * [-10000, +10000].
41*181254a7Smrg *
42*181254a7Smrg */
43*181254a7Smrg
44*181254a7Smrg /*
45*181254a7Smrg Cephes Math Library Release 2.2: January, 1991
46*181254a7Smrg Copyright 1984, 1991 by Stephen L. Moshier
47*181254a7Smrg Adapted for glibc November, 2001
48*181254a7Smrg
49*181254a7Smrg This library is free software; you can redistribute it and/or
50*181254a7Smrg modify it under the terms of the GNU Lesser General Public
51*181254a7Smrg License as published by the Free Software Foundation; either
52*181254a7Smrg version 2.1 of the License, or (at your option) any later version.
53*181254a7Smrg
54*181254a7Smrg This library is distributed in the hope that it will be useful,
55*181254a7Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
56*181254a7Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
57*181254a7Smrg Lesser General Public License for more details.
58*181254a7Smrg
59*181254a7Smrg You should have received a copy of the GNU Lesser General Public
60*181254a7Smrg License along with this library; if not, see <http://www.gnu.org/licenses/>.
61*181254a7Smrg */
62*181254a7Smrg
63*181254a7Smrg #include "quadmath-imp.h"
64*181254a7Smrg
65*181254a7Smrg /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
66*181254a7Smrg * 1/sqrt(2) <= x < sqrt(2)
67*181254a7Smrg * Theoretical peak relative error = 5.3e-37,
68*181254a7Smrg * relative peak error spread = 2.3e-14
69*181254a7Smrg */
70*181254a7Smrg static const __float128 P[13] =
71*181254a7Smrg {
72*181254a7Smrg 1.313572404063446165910279910527789794488E4Q,
73*181254a7Smrg 7.771154681358524243729929227226708890930E4Q,
74*181254a7Smrg 2.014652742082537582487669938141683759923E5Q,
75*181254a7Smrg 3.007007295140399532324943111654767187848E5Q,
76*181254a7Smrg 2.854829159639697837788887080758954924001E5Q,
77*181254a7Smrg 1.797628303815655343403735250238293741397E5Q,
78*181254a7Smrg 7.594356839258970405033155585486712125861E4Q,
79*181254a7Smrg 2.128857716871515081352991964243375186031E4Q,
80*181254a7Smrg 3.824952356185897735160588078446136783779E3Q,
81*181254a7Smrg 4.114517881637811823002128927449878962058E2Q,
82*181254a7Smrg 2.321125933898420063925789532045674660756E1Q,
83*181254a7Smrg 4.998469661968096229986658302195402690910E-1Q,
84*181254a7Smrg 1.538612243596254322971797716843006400388E-6Q
85*181254a7Smrg };
86*181254a7Smrg static const __float128 Q[12] =
87*181254a7Smrg {
88*181254a7Smrg 3.940717212190338497730839731583397586124E4Q,
89*181254a7Smrg 2.626900195321832660448791748036714883242E5Q,
90*181254a7Smrg 7.777690340007566932935753241556479363645E5Q,
91*181254a7Smrg 1.347518538384329112529391120390701166528E6Q,
92*181254a7Smrg 1.514882452993549494932585972882995548426E6Q,
93*181254a7Smrg 1.158019977462989115839826904108208787040E6Q,
94*181254a7Smrg 6.132189329546557743179177159925690841200E5Q,
95*181254a7Smrg 2.248234257620569139969141618556349415120E5Q,
96*181254a7Smrg 5.605842085972455027590989944010492125825E4Q,
97*181254a7Smrg 9.147150349299596453976674231612674085381E3Q,
98*181254a7Smrg 9.104928120962988414618126155557301584078E2Q,
99*181254a7Smrg 4.839208193348159620282142911143429644326E1Q
100*181254a7Smrg /* 1.000000000000000000000000000000000000000E0L, */
101*181254a7Smrg };
102*181254a7Smrg
103*181254a7Smrg /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
104*181254a7Smrg * where z = 2(x-1)/(x+1)
105*181254a7Smrg * 1/sqrt(2) <= x < sqrt(2)
106*181254a7Smrg * Theoretical peak relative error = 1.1e-35,
107*181254a7Smrg * relative peak error spread 1.1e-9
108*181254a7Smrg */
109*181254a7Smrg static const __float128 R[6] =
110*181254a7Smrg {
111*181254a7Smrg 1.418134209872192732479751274970992665513E5Q,
112*181254a7Smrg -8.977257995689735303686582344659576526998E4Q,
113*181254a7Smrg 2.048819892795278657810231591630928516206E4Q,
114*181254a7Smrg -2.024301798136027039250415126250455056397E3Q,
115*181254a7Smrg 8.057002716646055371965756206836056074715E1Q,
116*181254a7Smrg -8.828896441624934385266096344596648080902E-1Q
117*181254a7Smrg };
118*181254a7Smrg static const __float128 S[6] =
119*181254a7Smrg {
120*181254a7Smrg 1.701761051846631278975701529965589676574E6Q,
121*181254a7Smrg -1.332535117259762928288745111081235577029E6Q,
122*181254a7Smrg 4.001557694070773974936904547424676279307E5Q,
123*181254a7Smrg -5.748542087379434595104154610899551484314E4Q,
124*181254a7Smrg 3.998526750980007367835804959888064681098E3Q,
125*181254a7Smrg -1.186359407982897997337150403816839480438E2Q
126*181254a7Smrg /* 1.000000000000000000000000000000000000000E0L, */
127*181254a7Smrg };
128*181254a7Smrg
129*181254a7Smrg static const __float128
130*181254a7Smrg /* log10(2) */
131*181254a7Smrg L102A = 0.3125Q,
132*181254a7Smrg L102B = -1.14700043360188047862611052755069732318101185E-2Q,
133*181254a7Smrg /* log10(e) */
134*181254a7Smrg L10EA = 0.5Q,
135*181254a7Smrg L10EB = -6.570551809674817234887108108339491770560299E-2Q,
136*181254a7Smrg /* sqrt(2)/2 */
137*181254a7Smrg SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
138*181254a7Smrg
139*181254a7Smrg
140*181254a7Smrg
141*181254a7Smrg /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
142*181254a7Smrg
143*181254a7Smrg static __float128
neval(__float128 x,const __float128 * p,int n)144*181254a7Smrg neval (__float128 x, const __float128 *p, int n)
145*181254a7Smrg {
146*181254a7Smrg __float128 y;
147*181254a7Smrg
148*181254a7Smrg p += n;
149*181254a7Smrg y = *p--;
150*181254a7Smrg do
151*181254a7Smrg {
152*181254a7Smrg y = y * x + *p--;
153*181254a7Smrg }
154*181254a7Smrg while (--n > 0);
155*181254a7Smrg return y;
156*181254a7Smrg }
157*181254a7Smrg
158*181254a7Smrg
159*181254a7Smrg /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
160*181254a7Smrg
161*181254a7Smrg static __float128
deval(__float128 x,const __float128 * p,int n)162*181254a7Smrg deval (__float128 x, const __float128 *p, int n)
163*181254a7Smrg {
164*181254a7Smrg __float128 y;
165*181254a7Smrg
166*181254a7Smrg p += n;
167*181254a7Smrg y = x + *p--;
168*181254a7Smrg do
169*181254a7Smrg {
170*181254a7Smrg y = y * x + *p--;
171*181254a7Smrg }
172*181254a7Smrg while (--n > 0);
173*181254a7Smrg return y;
174*181254a7Smrg }
175*181254a7Smrg
176*181254a7Smrg
177*181254a7Smrg
178*181254a7Smrg __float128
log10q(__float128 x)179*181254a7Smrg log10q (__float128 x)
180*181254a7Smrg {
181*181254a7Smrg __float128 z;
182*181254a7Smrg __float128 y;
183*181254a7Smrg int e;
184*181254a7Smrg int64_t hx, lx;
185*181254a7Smrg
186*181254a7Smrg /* Test for domain */
187*181254a7Smrg GET_FLT128_WORDS64 (hx, lx, x);
188*181254a7Smrg if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
189*181254a7Smrg return (-1 / fabsq (x)); /* log10l(+-0)=-inf */
190*181254a7Smrg if (hx < 0)
191*181254a7Smrg return (x - x) / (x - x);
192*181254a7Smrg if (hx >= 0x7fff000000000000LL)
193*181254a7Smrg return (x + x);
194*181254a7Smrg
195*181254a7Smrg if (x == 1)
196*181254a7Smrg return 0;
197*181254a7Smrg
198*181254a7Smrg /* separate mantissa from exponent */
199*181254a7Smrg
200*181254a7Smrg /* Note, frexp is used so that denormal numbers
201*181254a7Smrg * will be handled properly.
202*181254a7Smrg */
203*181254a7Smrg x = frexpq (x, &e);
204*181254a7Smrg
205*181254a7Smrg
206*181254a7Smrg /* logarithm using log(x) = z + z**3 P(z)/Q(z),
207*181254a7Smrg * where z = 2(x-1)/x+1)
208*181254a7Smrg */
209*181254a7Smrg if ((e > 2) || (e < -2))
210*181254a7Smrg {
211*181254a7Smrg if (x < SQRTH)
212*181254a7Smrg { /* 2( 2x-1 )/( 2x+1 ) */
213*181254a7Smrg e -= 1;
214*181254a7Smrg z = x - 0.5Q;
215*181254a7Smrg y = 0.5Q * z + 0.5Q;
216*181254a7Smrg }
217*181254a7Smrg else
218*181254a7Smrg { /* 2 (x-1)/(x+1) */
219*181254a7Smrg z = x - 0.5Q;
220*181254a7Smrg z -= 0.5Q;
221*181254a7Smrg y = 0.5Q * x + 0.5Q;
222*181254a7Smrg }
223*181254a7Smrg x = z / y;
224*181254a7Smrg z = x * x;
225*181254a7Smrg y = x * (z * neval (z, R, 5) / deval (z, S, 5));
226*181254a7Smrg goto done;
227*181254a7Smrg }
228*181254a7Smrg
229*181254a7Smrg
230*181254a7Smrg /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
231*181254a7Smrg
232*181254a7Smrg if (x < SQRTH)
233*181254a7Smrg {
234*181254a7Smrg e -= 1;
235*181254a7Smrg x = 2.0 * x - 1; /* 2x - 1 */
236*181254a7Smrg }
237*181254a7Smrg else
238*181254a7Smrg {
239*181254a7Smrg x = x - 1;
240*181254a7Smrg }
241*181254a7Smrg z = x * x;
242*181254a7Smrg y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
243*181254a7Smrg y = y - 0.5 * z;
244*181254a7Smrg
245*181254a7Smrg done:
246*181254a7Smrg
247*181254a7Smrg /* Multiply log of fraction by log10(e)
248*181254a7Smrg * and base 2 exponent by log10(2).
249*181254a7Smrg */
250*181254a7Smrg z = y * L10EB;
251*181254a7Smrg z += x * L10EB;
252*181254a7Smrg z += e * L102B;
253*181254a7Smrg z += y * L10EA;
254*181254a7Smrg z += x * L10EA;
255*181254a7Smrg z += e * L102A;
256*181254a7Smrg return (z);
257*181254a7Smrg }
258