xref: /netbsd-src/external/gpl3/gcc/dist/libquadmath/math/clog10q.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1*181254a7Smrg /* Compute complex base 10 logarithm.
2*181254a7Smrg    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3*181254a7Smrg    This file is part of the GNU C Library.
4*181254a7Smrg    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5*181254a7Smrg 
6*181254a7Smrg    The GNU C Library is free software; you can redistribute it and/or
7*181254a7Smrg    modify it under the terms of the GNU Lesser General Public
8*181254a7Smrg    License as published by the Free Software Foundation; either
9*181254a7Smrg    version 2.1 of the License, or (at your option) any later version.
10*181254a7Smrg 
11*181254a7Smrg    The GNU C Library is distributed in the hope that it will be useful,
12*181254a7Smrg    but WITHOUT ANY WARRANTY; without even the implied warranty of
13*181254a7Smrg    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14*181254a7Smrg    Lesser General Public License for more details.
15*181254a7Smrg 
16*181254a7Smrg    You should have received a copy of the GNU Lesser General Public
17*181254a7Smrg    License along with the GNU C Library; if not, see
18*181254a7Smrg    <http://www.gnu.org/licenses/>.  */
19*181254a7Smrg 
20*181254a7Smrg #include "quadmath-imp.h"
21*181254a7Smrg 
22*181254a7Smrg /* log_10 (2).  */
23*181254a7Smrg #define LOG10_2 0.3010299956639811952137388947244930267682Q
24*181254a7Smrg 
25*181254a7Smrg /* pi * log10 (e).  */
26*181254a7Smrg #define PI_LOG10E 1.364376353841841347485783625431355770210Q
27*181254a7Smrg 
28*181254a7Smrg __complex128
clog10q(__complex128 x)29*181254a7Smrg clog10q (__complex128 x)
30*181254a7Smrg {
31*181254a7Smrg   __complex128 result;
32*181254a7Smrg   int rcls = fpclassifyq (__real__ x);
33*181254a7Smrg   int icls = fpclassifyq (__imag__ x);
34*181254a7Smrg 
35*181254a7Smrg   if (__glibc_unlikely (rcls == QUADFP_ZERO && icls == QUADFP_ZERO))
36*181254a7Smrg     {
37*181254a7Smrg       /* Real and imaginary part are 0.0.  */
38*181254a7Smrg       __imag__ result = signbitq (__real__ x) ? PI_LOG10E : 0;
39*181254a7Smrg       __imag__ result = copysignq (__imag__ result, __imag__ x);
40*181254a7Smrg       /* Yes, the following line raises an exception.  */
41*181254a7Smrg       __real__ result = -1 / fabsq (__real__ x);
42*181254a7Smrg     }
43*181254a7Smrg   else if (__glibc_likely (rcls != QUADFP_NAN && icls != QUADFP_NAN))
44*181254a7Smrg     {
45*181254a7Smrg       /* Neither real nor imaginary part is NaN.  */
46*181254a7Smrg       __float128 absx = fabsq (__real__ x), absy = fabsq (__imag__ x);
47*181254a7Smrg       int scale = 0;
48*181254a7Smrg 
49*181254a7Smrg       if (absx < absy)
50*181254a7Smrg 	{
51*181254a7Smrg 	  __float128 t = absx;
52*181254a7Smrg 	  absx = absy;
53*181254a7Smrg 	  absy = t;
54*181254a7Smrg 	}
55*181254a7Smrg 
56*181254a7Smrg       if (absx > FLT128_MAX / 2)
57*181254a7Smrg 	{
58*181254a7Smrg 	  scale = -1;
59*181254a7Smrg 	  absx = scalbnq (absx, scale);
60*181254a7Smrg 	  absy = (absy >= FLT128_MIN * 2 ? scalbnq (absy, scale) : 0);
61*181254a7Smrg 	}
62*181254a7Smrg       else if (absx < FLT128_MIN && absy < FLT128_MIN)
63*181254a7Smrg 	{
64*181254a7Smrg 	  scale = FLT128_MANT_DIG;
65*181254a7Smrg 	  absx = scalbnq (absx, scale);
66*181254a7Smrg 	  absy = scalbnq (absy, scale);
67*181254a7Smrg 	}
68*181254a7Smrg 
69*181254a7Smrg       if (absx == 1 && scale == 0)
70*181254a7Smrg 	{
71*181254a7Smrg 	  __real__ result = (log1pq (absy * absy)
72*181254a7Smrg 			     * ((__float128) M_LOG10Eq / 2));
73*181254a7Smrg 	  math_check_force_underflow_nonneg (__real__ result);
74*181254a7Smrg 	}
75*181254a7Smrg       else if (absx > 1 && absx < 2 && absy < 1 && scale == 0)
76*181254a7Smrg 	{
77*181254a7Smrg 	  __float128 d2m1 = (absx - 1) * (absx + 1);
78*181254a7Smrg 	  if (absy >= FLT128_EPSILON)
79*181254a7Smrg 	    d2m1 += absy * absy;
80*181254a7Smrg 	  __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
81*181254a7Smrg 	}
82*181254a7Smrg       else if (absx < 1
83*181254a7Smrg 	       && absx >= 0.5Q
84*181254a7Smrg 	       && absy < FLT128_EPSILON / 2
85*181254a7Smrg 	       && scale == 0)
86*181254a7Smrg 	{
87*181254a7Smrg 	  __float128 d2m1 = (absx - 1) * (absx + 1);
88*181254a7Smrg 	  __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
89*181254a7Smrg 	}
90*181254a7Smrg       else if (absx < 1
91*181254a7Smrg 	       && absx >= 0.5Q
92*181254a7Smrg 	       && scale == 0
93*181254a7Smrg 	       && absx * absx + absy * absy >= 0.5Q)
94*181254a7Smrg 	{
95*181254a7Smrg 	  __float128 d2m1 = __quadmath_x2y2m1q (absx, absy);
96*181254a7Smrg 	  __real__ result = log1pq (d2m1) * ((__float128) M_LOG10Eq / 2);
97*181254a7Smrg 	}
98*181254a7Smrg       else
99*181254a7Smrg 	{
100*181254a7Smrg 	  __float128 d = hypotq (absx, absy);
101*181254a7Smrg 	  __real__ result = log10q (d) - scale * LOG10_2;
102*181254a7Smrg 	}
103*181254a7Smrg 
104*181254a7Smrg       __imag__ result = M_LOG10Eq * atan2q (__imag__ x, __real__ x);
105*181254a7Smrg     }
106*181254a7Smrg   else
107*181254a7Smrg     {
108*181254a7Smrg       __imag__ result = nanq ("");
109*181254a7Smrg       if (rcls == QUADFP_INFINITE || icls == QUADFP_INFINITE)
110*181254a7Smrg 	/* Real or imaginary part is infinite.  */
111*181254a7Smrg 	__real__ result = HUGE_VALQ;
112*181254a7Smrg       else
113*181254a7Smrg 	__real__ result = nanq ("");
114*181254a7Smrg     }
115*181254a7Smrg 
116*181254a7Smrg   return result;
117*181254a7Smrg }
118