1*181254a7Smrg /* s_atanl.c
2*181254a7Smrg *
3*181254a7Smrg * Inverse circular tangent for 128-bit long double precision
4*181254a7Smrg * (arctangent)
5*181254a7Smrg *
6*181254a7Smrg *
7*181254a7Smrg *
8*181254a7Smrg * SYNOPSIS:
9*181254a7Smrg *
10*181254a7Smrg * long double x, y, atanq();
11*181254a7Smrg *
12*181254a7Smrg * y = atanq( x );
13*181254a7Smrg *
14*181254a7Smrg *
15*181254a7Smrg *
16*181254a7Smrg * DESCRIPTION:
17*181254a7Smrg *
18*181254a7Smrg * Returns radian angle between -pi/2 and +pi/2 whose tangent is x.
19*181254a7Smrg *
20*181254a7Smrg * The function uses a rational approximation of the form
21*181254a7Smrg * t + t^3 P(t^2)/Q(t^2), optimized for |t| < 0.09375.
22*181254a7Smrg *
23*181254a7Smrg * The argument is reduced using the identity
24*181254a7Smrg * arctan x - arctan u = arctan ((x-u)/(1 + ux))
25*181254a7Smrg * and an 83-entry lookup table for arctan u, with u = 0, 1/8, ..., 10.25.
26*181254a7Smrg * Use of the table improves the execution speed of the routine.
27*181254a7Smrg *
28*181254a7Smrg *
29*181254a7Smrg *
30*181254a7Smrg * ACCURACY:
31*181254a7Smrg *
32*181254a7Smrg * Relative error:
33*181254a7Smrg * arithmetic domain # trials peak rms
34*181254a7Smrg * IEEE -19, 19 4e5 1.7e-34 5.4e-35
35*181254a7Smrg *
36*181254a7Smrg *
37*181254a7Smrg * WARNING:
38*181254a7Smrg *
39*181254a7Smrg * This program uses integer operations on bit fields of floating-point
40*181254a7Smrg * numbers. It does not work with data structures other than the
41*181254a7Smrg * structure assumed.
42*181254a7Smrg *
43*181254a7Smrg */
44*181254a7Smrg
45*181254a7Smrg /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
46*181254a7Smrg
47*181254a7Smrg This library is free software; you can redistribute it and/or
48*181254a7Smrg modify it under the terms of the GNU Lesser General Public
49*181254a7Smrg License as published by the Free Software Foundation; either
50*181254a7Smrg version 2.1 of the License, or (at your option) any later version.
51*181254a7Smrg
52*181254a7Smrg This library is distributed in the hope that it will be useful,
53*181254a7Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
54*181254a7Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
55*181254a7Smrg Lesser General Public License for more details.
56*181254a7Smrg
57*181254a7Smrg You should have received a copy of the GNU Lesser General Public
58*181254a7Smrg License along with this library; if not, see
59*181254a7Smrg <http://www.gnu.org/licenses/>. */
60*181254a7Smrg
61*181254a7Smrg #include "quadmath-imp.h"
62*181254a7Smrg
63*181254a7Smrg /* arctan(k/8), k = 0, ..., 82 */
64*181254a7Smrg static const __float128 atantbl[84] = {
65*181254a7Smrg 0.0000000000000000000000000000000000000000E0Q,
66*181254a7Smrg 1.2435499454676143503135484916387102557317E-1Q, /* arctan(0.125) */
67*181254a7Smrg 2.4497866312686415417208248121127581091414E-1Q,
68*181254a7Smrg 3.5877067027057222039592006392646049977698E-1Q,
69*181254a7Smrg 4.6364760900080611621425623146121440202854E-1Q,
70*181254a7Smrg 5.5859931534356243597150821640166127034645E-1Q,
71*181254a7Smrg 6.4350110879328438680280922871732263804151E-1Q,
72*181254a7Smrg 7.1882999962162450541701415152590465395142E-1Q,
73*181254a7Smrg 7.8539816339744830961566084581987572104929E-1Q,
74*181254a7Smrg 8.4415398611317100251784414827164750652594E-1Q,
75*181254a7Smrg 8.9605538457134395617480071802993782702458E-1Q,
76*181254a7Smrg 9.4200004037946366473793717053459358607166E-1Q,
77*181254a7Smrg 9.8279372324732906798571061101466601449688E-1Q,
78*181254a7Smrg 1.0191413442663497346383429170230636487744E0Q,
79*181254a7Smrg 1.0516502125483736674598673120862998296302E0Q,
80*181254a7Smrg 1.0808390005411683108871567292171998202703E0Q,
81*181254a7Smrg 1.1071487177940905030170654601785370400700E0Q,
82*181254a7Smrg 1.1309537439791604464709335155363278047493E0Q,
83*181254a7Smrg 1.1525719972156675180401498626127513797495E0Q,
84*181254a7Smrg 1.1722738811284763866005949441337046149712E0Q,
85*181254a7Smrg 1.1902899496825317329277337748293183376012E0Q,
86*181254a7Smrg 1.2068173702852525303955115800565576303133E0Q,
87*181254a7Smrg 1.2220253232109896370417417439225704908830E0Q,
88*181254a7Smrg 1.2360594894780819419094519711090786987027E0Q,
89*181254a7Smrg 1.2490457723982544258299170772810901230778E0Q,
90*181254a7Smrg 1.2610933822524404193139408812473357720101E0Q,
91*181254a7Smrg 1.2722973952087173412961937498224804940684E0Q,
92*181254a7Smrg 1.2827408797442707473628852511364955306249E0Q,
93*181254a7Smrg 1.2924966677897852679030914214070816845853E0Q,
94*181254a7Smrg 1.3016288340091961438047858503666855921414E0Q,
95*181254a7Smrg 1.3101939350475556342564376891719053122733E0Q,
96*181254a7Smrg 1.3182420510168370498593302023271362531155E0Q,
97*181254a7Smrg 1.3258176636680324650592392104284756311844E0Q,
98*181254a7Smrg 1.3329603993374458675538498697331558093700E0Q,
99*181254a7Smrg 1.3397056595989995393283037525895557411039E0Q,
100*181254a7Smrg 1.3460851583802539310489409282517796256512E0Q,
101*181254a7Smrg 1.3521273809209546571891479413898128509842E0Q,
102*181254a7Smrg 1.3578579772154994751124898859640585287459E0Q,
103*181254a7Smrg 1.3633001003596939542892985278250991189943E0Q,
104*181254a7Smrg 1.3684746984165928776366381936948529556191E0Q,
105*181254a7Smrg 1.3734007669450158608612719264449611486510E0Q,
106*181254a7Smrg 1.3780955681325110444536609641291551522494E0Q,
107*181254a7Smrg 1.3825748214901258580599674177685685125566E0Q,
108*181254a7Smrg 1.3868528702577214543289381097042486034883E0Q,
109*181254a7Smrg 1.3909428270024183486427686943836432060856E0Q,
110*181254a7Smrg 1.3948567013423687823948122092044222644895E0Q,
111*181254a7Smrg 1.3986055122719575950126700816114282335732E0Q,
112*181254a7Smrg 1.4021993871854670105330304794336492676944E0Q,
113*181254a7Smrg 1.4056476493802697809521934019958079881002E0Q,
114*181254a7Smrg 1.4089588955564736949699075250792569287156E0Q,
115*181254a7Smrg 1.4121410646084952153676136718584891599630E0Q,
116*181254a7Smrg 1.4152014988178669079462550975833894394929E0Q,
117*181254a7Smrg 1.4181469983996314594038603039700989523716E0Q,
118*181254a7Smrg 1.4209838702219992566633046424614466661176E0Q,
119*181254a7Smrg 1.4237179714064941189018190466107297503086E0Q,
120*181254a7Smrg 1.4263547484202526397918060597281265695725E0Q,
121*181254a7Smrg 1.4288992721907326964184700745371983590908E0Q,
122*181254a7Smrg 1.4313562697035588982240194668401779312122E0Q,
123*181254a7Smrg 1.4337301524847089866404719096698873648610E0Q,
124*181254a7Smrg 1.4360250423171655234964275337155008780675E0Q,
125*181254a7Smrg 1.4382447944982225979614042479354815855386E0Q,
126*181254a7Smrg 1.4403930189057632173997301031392126865694E0Q,
127*181254a7Smrg 1.4424730991091018200252920599377292525125E0Q,
128*181254a7Smrg 1.4444882097316563655148453598508037025938E0Q,
129*181254a7Smrg 1.4464413322481351841999668424758804165254E0Q,
130*181254a7Smrg 1.4483352693775551917970437843145232637695E0Q,
131*181254a7Smrg 1.4501726582147939000905940595923466567576E0Q,
132*181254a7Smrg 1.4519559822271314199339700039142990228105E0Q,
133*181254a7Smrg 1.4536875822280323362423034480994649820285E0Q,
134*181254a7Smrg 1.4553696664279718992423082296859928222270E0Q,
135*181254a7Smrg 1.4570043196511885530074841089245667532358E0Q,
136*181254a7Smrg 1.4585935117976422128825857356750737658039E0Q,
137*181254a7Smrg 1.4601391056210009726721818194296893361233E0Q,
138*181254a7Smrg 1.4616428638860188872060496086383008594310E0Q,
139*181254a7Smrg 1.4631064559620759326975975316301202111560E0Q,
140*181254a7Smrg 1.4645314639038178118428450961503371619177E0Q,
141*181254a7Smrg 1.4659193880646627234129855241049975398470E0Q,
142*181254a7Smrg 1.4672716522843522691530527207287398276197E0Q,
143*181254a7Smrg 1.4685896086876430842559640450619880951144E0Q,
144*181254a7Smrg 1.4698745421276027686510391411132998919794E0Q,
145*181254a7Smrg 1.4711276743037345918528755717617308518553E0Q,
146*181254a7Smrg 1.4723501675822635384916444186631899205983E0Q,
147*181254a7Smrg 1.4735431285433308455179928682541563973416E0Q, /* arctan(10.25) */
148*181254a7Smrg 1.5707963267948966192313216916397514420986E0Q /* pi/2 */
149*181254a7Smrg };
150*181254a7Smrg
151*181254a7Smrg
152*181254a7Smrg /* arctan t = t + t^3 p(t^2) / q(t^2)
153*181254a7Smrg |t| <= 0.09375
154*181254a7Smrg peak relative error 5.3e-37 */
155*181254a7Smrg
156*181254a7Smrg static const __float128
157*181254a7Smrg p0 = -4.283708356338736809269381409828726405572E1Q,
158*181254a7Smrg p1 = -8.636132499244548540964557273544599863825E1Q,
159*181254a7Smrg p2 = -5.713554848244551350855604111031839613216E1Q,
160*181254a7Smrg p3 = -1.371405711877433266573835355036413750118E1Q,
161*181254a7Smrg p4 = -8.638214309119210906997318946650189640184E-1Q,
162*181254a7Smrg q0 = 1.285112506901621042780814422948906537959E2Q,
163*181254a7Smrg q1 = 3.361907253914337187957855834229672347089E2Q,
164*181254a7Smrg q2 = 3.180448303864130128268191635189365331680E2Q,
165*181254a7Smrg q3 = 1.307244136980865800160844625025280344686E2Q,
166*181254a7Smrg q4 = 2.173623741810414221251136181221172551416E1Q;
167*181254a7Smrg /* q5 = 1.000000000000000000000000000000000000000E0 */
168*181254a7Smrg
169*181254a7Smrg static const __float128 huge = 1.0e4930Q;
170*181254a7Smrg
171*181254a7Smrg __float128
atanq(__float128 x)172*181254a7Smrg atanq (__float128 x)
173*181254a7Smrg {
174*181254a7Smrg int k, sign;
175*181254a7Smrg __float128 t, u, p, q;
176*181254a7Smrg ieee854_float128 s;
177*181254a7Smrg
178*181254a7Smrg s.value = x;
179*181254a7Smrg k = s.words32.w0;
180*181254a7Smrg if (k & 0x80000000)
181*181254a7Smrg sign = 1;
182*181254a7Smrg else
183*181254a7Smrg sign = 0;
184*181254a7Smrg
185*181254a7Smrg /* Check for IEEE special cases. */
186*181254a7Smrg k &= 0x7fffffff;
187*181254a7Smrg if (k >= 0x7fff0000)
188*181254a7Smrg {
189*181254a7Smrg /* NaN. */
190*181254a7Smrg if ((k & 0xffff) | s.words32.w1 | s.words32.w2 | s.words32.w3)
191*181254a7Smrg return (x + x);
192*181254a7Smrg
193*181254a7Smrg /* Infinity. */
194*181254a7Smrg if (sign)
195*181254a7Smrg return -atantbl[83];
196*181254a7Smrg else
197*181254a7Smrg return atantbl[83];
198*181254a7Smrg }
199*181254a7Smrg
200*181254a7Smrg if (k <= 0x3fc50000) /* |x| < 2**-58 */
201*181254a7Smrg {
202*181254a7Smrg math_check_force_underflow (x);
203*181254a7Smrg /* Raise inexact. */
204*181254a7Smrg if (huge + x > 0.0)
205*181254a7Smrg return x;
206*181254a7Smrg }
207*181254a7Smrg
208*181254a7Smrg if (k >= 0x40720000) /* |x| > 2**115 */
209*181254a7Smrg {
210*181254a7Smrg /* Saturate result to {-,+}pi/2 */
211*181254a7Smrg if (sign)
212*181254a7Smrg return -atantbl[83];
213*181254a7Smrg else
214*181254a7Smrg return atantbl[83];
215*181254a7Smrg }
216*181254a7Smrg
217*181254a7Smrg if (sign)
218*181254a7Smrg x = -x;
219*181254a7Smrg
220*181254a7Smrg if (k >= 0x40024800) /* 10.25 */
221*181254a7Smrg {
222*181254a7Smrg k = 83;
223*181254a7Smrg t = -1.0/x;
224*181254a7Smrg }
225*181254a7Smrg else
226*181254a7Smrg {
227*181254a7Smrg /* Index of nearest table element.
228*181254a7Smrg Roundoff to integer is asymmetrical to avoid cancellation when t < 0
229*181254a7Smrg (cf. fdlibm). */
230*181254a7Smrg k = 8.0 * x + 0.25;
231*181254a7Smrg u = 0.125Q * k;
232*181254a7Smrg /* Small arctan argument. */
233*181254a7Smrg t = (x - u) / (1.0 + x * u);
234*181254a7Smrg }
235*181254a7Smrg
236*181254a7Smrg /* Arctan of small argument t. */
237*181254a7Smrg u = t * t;
238*181254a7Smrg p = ((((p4 * u) + p3) * u + p2) * u + p1) * u + p0;
239*181254a7Smrg q = ((((u + q4) * u + q3) * u + q2) * u + q1) * u + q0;
240*181254a7Smrg u = t * u * p / q + t;
241*181254a7Smrg
242*181254a7Smrg /* arctan x = arctan u + arctan t */
243*181254a7Smrg u = atantbl[k] + u;
244*181254a7Smrg if (sign)
245*181254a7Smrg return (-u);
246*181254a7Smrg else
247*181254a7Smrg return u;
248*181254a7Smrg }
249