136ac495dSmrg // Special functions -*- C++ -*- 236ac495dSmrg 3*8feb0f0bSmrg // Copyright (C) 2006-2020 Free Software Foundation, Inc. 436ac495dSmrg // 536ac495dSmrg // This file is part of the GNU ISO C++ Library. This library is free 636ac495dSmrg // software; you can redistribute it and/or modify it under the 736ac495dSmrg // terms of the GNU General Public License as published by the 836ac495dSmrg // Free Software Foundation; either version 3, or (at your option) 936ac495dSmrg // any later version. 1036ac495dSmrg // 1136ac495dSmrg // This library is distributed in the hope that it will be useful, 1236ac495dSmrg // but WITHOUT ANY WARRANTY; without even the implied warranty of 1336ac495dSmrg // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 1436ac495dSmrg // GNU General Public License for more details. 1536ac495dSmrg // 1636ac495dSmrg // Under Section 7 of GPL version 3, you are granted additional 1736ac495dSmrg // permissions described in the GCC Runtime Library Exception, version 1836ac495dSmrg // 3.1, as published by the Free Software Foundation. 1936ac495dSmrg 2036ac495dSmrg // You should have received a copy of the GNU General Public License and 2136ac495dSmrg // a copy of the GCC Runtime Library Exception along with this program; 2236ac495dSmrg // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 2336ac495dSmrg // <http://www.gnu.org/licenses/>. 2436ac495dSmrg 2536ac495dSmrg /** @file tr1/beta_function.tcc 2636ac495dSmrg * This is an internal header file, included by other library headers. 2736ac495dSmrg * Do not attempt to use it directly. @headername{tr1/cmath} 2836ac495dSmrg */ 2936ac495dSmrg 3036ac495dSmrg // 3136ac495dSmrg // ISO C++ 14882 TR1: 5.2 Special functions 3236ac495dSmrg // 3336ac495dSmrg 3436ac495dSmrg // Written by Edward Smith-Rowland based on: 3536ac495dSmrg // (1) Handbook of Mathematical Functions, 3636ac495dSmrg // ed. Milton Abramowitz and Irene A. Stegun, 3736ac495dSmrg // Dover Publications, 3836ac495dSmrg // Section 6, pp. 253-266 3936ac495dSmrg // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl 4036ac495dSmrg // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, 4136ac495dSmrg // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), 4236ac495dSmrg // 2nd ed, pp. 213-216 4336ac495dSmrg // (4) Gamma, Exploring Euler's Constant, Julian Havil, 4436ac495dSmrg // Princeton, 2003. 4536ac495dSmrg 4636ac495dSmrg #ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC 4736ac495dSmrg #define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1 4836ac495dSmrg 4936ac495dSmrg namespace std _GLIBCXX_VISIBILITY(default) 5036ac495dSmrg { 51a2dc1f3fSmrg _GLIBCXX_BEGIN_NAMESPACE_VERSION 52a2dc1f3fSmrg 5336ac495dSmrg #if _GLIBCXX_USE_STD_SPEC_FUNCS 5436ac495dSmrg # define _GLIBCXX_MATH_NS ::std 5536ac495dSmrg #elif defined(_GLIBCXX_TR1_CMATH) 5636ac495dSmrg namespace tr1 5736ac495dSmrg { 5836ac495dSmrg # define _GLIBCXX_MATH_NS ::std::tr1 5936ac495dSmrg #else 6036ac495dSmrg # error do not include this header directly, use <cmath> or <tr1/cmath> 6136ac495dSmrg #endif 6236ac495dSmrg // [5.2] Special functions 6336ac495dSmrg 6436ac495dSmrg // Implementation-space details. 6536ac495dSmrg namespace __detail 6636ac495dSmrg { 6736ac495dSmrg /** 6836ac495dSmrg * @brief Return the beta function: \f$B(x,y)\f$. 6936ac495dSmrg * 7036ac495dSmrg * The beta function is defined by 7136ac495dSmrg * @f[ 7236ac495dSmrg * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} 7336ac495dSmrg * @f] 7436ac495dSmrg * 7536ac495dSmrg * @param __x The first argument of the beta function. 7636ac495dSmrg * @param __y The second argument of the beta function. 7736ac495dSmrg * @return The beta function. 7836ac495dSmrg */ 7936ac495dSmrg template<typename _Tp> 8036ac495dSmrg _Tp __beta_gamma(_Tp __x,_Tp __y)8136ac495dSmrg __beta_gamma(_Tp __x, _Tp __y) 8236ac495dSmrg { 8336ac495dSmrg 8436ac495dSmrg _Tp __bet; 8536ac495dSmrg #if _GLIBCXX_USE_C99_MATH_TR1 8636ac495dSmrg if (__x > __y) 8736ac495dSmrg { 8836ac495dSmrg __bet = _GLIBCXX_MATH_NS::tgamma(__x) 8936ac495dSmrg / _GLIBCXX_MATH_NS::tgamma(__x + __y); 9036ac495dSmrg __bet *= _GLIBCXX_MATH_NS::tgamma(__y); 9136ac495dSmrg } 9236ac495dSmrg else 9336ac495dSmrg { 9436ac495dSmrg __bet = _GLIBCXX_MATH_NS::tgamma(__y) 9536ac495dSmrg / _GLIBCXX_MATH_NS::tgamma(__x + __y); 9636ac495dSmrg __bet *= _GLIBCXX_MATH_NS::tgamma(__x); 9736ac495dSmrg } 9836ac495dSmrg #else 9936ac495dSmrg if (__x > __y) 10036ac495dSmrg { 10136ac495dSmrg __bet = __gamma(__x) / __gamma(__x + __y); 10236ac495dSmrg __bet *= __gamma(__y); 10336ac495dSmrg } 10436ac495dSmrg else 10536ac495dSmrg { 10636ac495dSmrg __bet = __gamma(__y) / __gamma(__x + __y); 10736ac495dSmrg __bet *= __gamma(__x); 10836ac495dSmrg } 10936ac495dSmrg #endif 11036ac495dSmrg 11136ac495dSmrg return __bet; 11236ac495dSmrg } 11336ac495dSmrg 11436ac495dSmrg /** 11536ac495dSmrg * @brief Return the beta function \f$B(x,y)\f$ using 11636ac495dSmrg * the log gamma functions. 11736ac495dSmrg * 11836ac495dSmrg * The beta function is defined by 11936ac495dSmrg * @f[ 12036ac495dSmrg * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} 12136ac495dSmrg * @f] 12236ac495dSmrg * 12336ac495dSmrg * @param __x The first argument of the beta function. 12436ac495dSmrg * @param __y The second argument of the beta function. 12536ac495dSmrg * @return The beta function. 12636ac495dSmrg */ 12736ac495dSmrg template<typename _Tp> 12836ac495dSmrg _Tp __beta_lgamma(_Tp __x,_Tp __y)12936ac495dSmrg __beta_lgamma(_Tp __x, _Tp __y) 13036ac495dSmrg { 13136ac495dSmrg #if _GLIBCXX_USE_C99_MATH_TR1 13236ac495dSmrg _Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x) 13336ac495dSmrg + _GLIBCXX_MATH_NS::lgamma(__y) 13436ac495dSmrg - _GLIBCXX_MATH_NS::lgamma(__x + __y); 13536ac495dSmrg #else 13636ac495dSmrg _Tp __bet = __log_gamma(__x) 13736ac495dSmrg + __log_gamma(__y) 13836ac495dSmrg - __log_gamma(__x + __y); 13936ac495dSmrg #endif 14036ac495dSmrg __bet = std::exp(__bet); 14136ac495dSmrg return __bet; 14236ac495dSmrg } 14336ac495dSmrg 14436ac495dSmrg 14536ac495dSmrg /** 14636ac495dSmrg * @brief Return the beta function \f$B(x,y)\f$ using 14736ac495dSmrg * the product form. 14836ac495dSmrg * 14936ac495dSmrg * The beta function is defined by 15036ac495dSmrg * @f[ 15136ac495dSmrg * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} 15236ac495dSmrg * @f] 15336ac495dSmrg * 15436ac495dSmrg * @param __x The first argument of the beta function. 15536ac495dSmrg * @param __y The second argument of the beta function. 15636ac495dSmrg * @return The beta function. 15736ac495dSmrg */ 15836ac495dSmrg template<typename _Tp> 15936ac495dSmrg _Tp __beta_product(_Tp __x,_Tp __y)16036ac495dSmrg __beta_product(_Tp __x, _Tp __y) 16136ac495dSmrg { 16236ac495dSmrg 16336ac495dSmrg _Tp __bet = (__x + __y) / (__x * __y); 16436ac495dSmrg 16536ac495dSmrg unsigned int __max_iter = 1000000; 16636ac495dSmrg for (unsigned int __k = 1; __k < __max_iter; ++__k) 16736ac495dSmrg { 16836ac495dSmrg _Tp __term = (_Tp(1) + (__x + __y) / __k) 16936ac495dSmrg / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k)); 17036ac495dSmrg __bet *= __term; 17136ac495dSmrg } 17236ac495dSmrg 17336ac495dSmrg return __bet; 17436ac495dSmrg } 17536ac495dSmrg 17636ac495dSmrg 17736ac495dSmrg /** 17836ac495dSmrg * @brief Return the beta function \f$ B(x,y) \f$. 17936ac495dSmrg * 18036ac495dSmrg * The beta function is defined by 18136ac495dSmrg * @f[ 18236ac495dSmrg * B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} 18336ac495dSmrg * @f] 18436ac495dSmrg * 18536ac495dSmrg * @param __x The first argument of the beta function. 18636ac495dSmrg * @param __y The second argument of the beta function. 18736ac495dSmrg * @return The beta function. 18836ac495dSmrg */ 18936ac495dSmrg template<typename _Tp> 19036ac495dSmrg inline _Tp __beta(_Tp __x,_Tp __y)19136ac495dSmrg __beta(_Tp __x, _Tp __y) 19236ac495dSmrg { 19336ac495dSmrg if (__isnan(__x) || __isnan(__y)) 19436ac495dSmrg return std::numeric_limits<_Tp>::quiet_NaN(); 19536ac495dSmrg else 19636ac495dSmrg return __beta_lgamma(__x, __y); 19736ac495dSmrg } 19836ac495dSmrg } // namespace __detail 19936ac495dSmrg #undef _GLIBCXX_MATH_NS 20036ac495dSmrg #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) 20136ac495dSmrg } // namespace tr1 20236ac495dSmrg #endif 203a2dc1f3fSmrg 204a2dc1f3fSmrg _GLIBCXX_END_NAMESPACE_VERSION 20536ac495dSmrg } 20636ac495dSmrg 20736ac495dSmrg #endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC 208