xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/tr1/beta_function.tcc (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
136ac495dSmrg // Special functions -*- C++ -*-
236ac495dSmrg 
3*8feb0f0bSmrg // Copyright (C) 2006-2020 Free Software Foundation, Inc.
436ac495dSmrg //
536ac495dSmrg // This file is part of the GNU ISO C++ Library.  This library is free
636ac495dSmrg // software; you can redistribute it and/or modify it under the
736ac495dSmrg // terms of the GNU General Public License as published by the
836ac495dSmrg // Free Software Foundation; either version 3, or (at your option)
936ac495dSmrg // any later version.
1036ac495dSmrg //
1136ac495dSmrg // This library is distributed in the hope that it will be useful,
1236ac495dSmrg // but WITHOUT ANY WARRANTY; without even the implied warranty of
1336ac495dSmrg // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
1436ac495dSmrg // GNU General Public License for more details.
1536ac495dSmrg //
1636ac495dSmrg // Under Section 7 of GPL version 3, you are granted additional
1736ac495dSmrg // permissions described in the GCC Runtime Library Exception, version
1836ac495dSmrg // 3.1, as published by the Free Software Foundation.
1936ac495dSmrg 
2036ac495dSmrg // You should have received a copy of the GNU General Public License and
2136ac495dSmrg // a copy of the GCC Runtime Library Exception along with this program;
2236ac495dSmrg // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
2336ac495dSmrg // <http://www.gnu.org/licenses/>.
2436ac495dSmrg 
2536ac495dSmrg /** @file tr1/beta_function.tcc
2636ac495dSmrg  *  This is an internal header file, included by other library headers.
2736ac495dSmrg  *  Do not attempt to use it directly. @headername{tr1/cmath}
2836ac495dSmrg  */
2936ac495dSmrg 
3036ac495dSmrg //
3136ac495dSmrg // ISO C++ 14882 TR1: 5.2  Special functions
3236ac495dSmrg //
3336ac495dSmrg 
3436ac495dSmrg // Written by Edward Smith-Rowland based on:
3536ac495dSmrg //   (1) Handbook of Mathematical Functions,
3636ac495dSmrg //       ed. Milton Abramowitz and Irene A. Stegun,
3736ac495dSmrg //       Dover Publications,
3836ac495dSmrg //       Section 6, pp. 253-266
3936ac495dSmrg //   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
4036ac495dSmrg //   (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
4136ac495dSmrg //       W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
4236ac495dSmrg //       2nd ed, pp. 213-216
4336ac495dSmrg //   (4) Gamma, Exploring Euler's Constant, Julian Havil,
4436ac495dSmrg //       Princeton, 2003.
4536ac495dSmrg 
4636ac495dSmrg #ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC
4736ac495dSmrg #define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1
4836ac495dSmrg 
4936ac495dSmrg namespace std _GLIBCXX_VISIBILITY(default)
5036ac495dSmrg {
51a2dc1f3fSmrg _GLIBCXX_BEGIN_NAMESPACE_VERSION
52a2dc1f3fSmrg 
5336ac495dSmrg #if _GLIBCXX_USE_STD_SPEC_FUNCS
5436ac495dSmrg # define _GLIBCXX_MATH_NS ::std
5536ac495dSmrg #elif defined(_GLIBCXX_TR1_CMATH)
5636ac495dSmrg namespace tr1
5736ac495dSmrg {
5836ac495dSmrg # define _GLIBCXX_MATH_NS ::std::tr1
5936ac495dSmrg #else
6036ac495dSmrg # error do not include this header directly, use <cmath> or <tr1/cmath>
6136ac495dSmrg #endif
6236ac495dSmrg   // [5.2] Special functions
6336ac495dSmrg 
6436ac495dSmrg   // Implementation-space details.
6536ac495dSmrg   namespace __detail
6636ac495dSmrg   {
6736ac495dSmrg     /**
6836ac495dSmrg      *   @brief  Return the beta function: \f$B(x,y)\f$.
6936ac495dSmrg      *
7036ac495dSmrg      *   The beta function is defined by
7136ac495dSmrg      *   @f[
7236ac495dSmrg      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
7336ac495dSmrg      *   @f]
7436ac495dSmrg      *
7536ac495dSmrg      *   @param __x The first argument of the beta function.
7636ac495dSmrg      *   @param __y The second argument of the beta function.
7736ac495dSmrg      *   @return  The beta function.
7836ac495dSmrg      */
7936ac495dSmrg     template<typename _Tp>
8036ac495dSmrg     _Tp
__beta_gamma(_Tp __x,_Tp __y)8136ac495dSmrg     __beta_gamma(_Tp __x, _Tp __y)
8236ac495dSmrg     {
8336ac495dSmrg 
8436ac495dSmrg       _Tp __bet;
8536ac495dSmrg #if _GLIBCXX_USE_C99_MATH_TR1
8636ac495dSmrg       if (__x > __y)
8736ac495dSmrg         {
8836ac495dSmrg           __bet = _GLIBCXX_MATH_NS::tgamma(__x)
8936ac495dSmrg                 / _GLIBCXX_MATH_NS::tgamma(__x + __y);
9036ac495dSmrg           __bet *= _GLIBCXX_MATH_NS::tgamma(__y);
9136ac495dSmrg         }
9236ac495dSmrg       else
9336ac495dSmrg         {
9436ac495dSmrg           __bet = _GLIBCXX_MATH_NS::tgamma(__y)
9536ac495dSmrg                 / _GLIBCXX_MATH_NS::tgamma(__x + __y);
9636ac495dSmrg           __bet *= _GLIBCXX_MATH_NS::tgamma(__x);
9736ac495dSmrg         }
9836ac495dSmrg #else
9936ac495dSmrg       if (__x > __y)
10036ac495dSmrg         {
10136ac495dSmrg           __bet = __gamma(__x) / __gamma(__x + __y);
10236ac495dSmrg           __bet *= __gamma(__y);
10336ac495dSmrg         }
10436ac495dSmrg       else
10536ac495dSmrg         {
10636ac495dSmrg           __bet = __gamma(__y) / __gamma(__x + __y);
10736ac495dSmrg           __bet *= __gamma(__x);
10836ac495dSmrg         }
10936ac495dSmrg #endif
11036ac495dSmrg 
11136ac495dSmrg       return __bet;
11236ac495dSmrg     }
11336ac495dSmrg 
11436ac495dSmrg     /**
11536ac495dSmrg      *   @brief  Return the beta function \f$B(x,y)\f$ using
11636ac495dSmrg      *           the log gamma functions.
11736ac495dSmrg      *
11836ac495dSmrg      *   The beta function is defined by
11936ac495dSmrg      *   @f[
12036ac495dSmrg      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
12136ac495dSmrg      *   @f]
12236ac495dSmrg      *
12336ac495dSmrg      *   @param __x The first argument of the beta function.
12436ac495dSmrg      *   @param __y The second argument of the beta function.
12536ac495dSmrg      *   @return  The beta function.
12636ac495dSmrg      */
12736ac495dSmrg     template<typename _Tp>
12836ac495dSmrg     _Tp
__beta_lgamma(_Tp __x,_Tp __y)12936ac495dSmrg     __beta_lgamma(_Tp __x, _Tp __y)
13036ac495dSmrg     {
13136ac495dSmrg #if _GLIBCXX_USE_C99_MATH_TR1
13236ac495dSmrg       _Tp __bet = _GLIBCXX_MATH_NS::lgamma(__x)
13336ac495dSmrg                 + _GLIBCXX_MATH_NS::lgamma(__y)
13436ac495dSmrg                 - _GLIBCXX_MATH_NS::lgamma(__x + __y);
13536ac495dSmrg #else
13636ac495dSmrg       _Tp __bet = __log_gamma(__x)
13736ac495dSmrg                 + __log_gamma(__y)
13836ac495dSmrg                 - __log_gamma(__x + __y);
13936ac495dSmrg #endif
14036ac495dSmrg       __bet = std::exp(__bet);
14136ac495dSmrg       return __bet;
14236ac495dSmrg     }
14336ac495dSmrg 
14436ac495dSmrg 
14536ac495dSmrg     /**
14636ac495dSmrg      *   @brief  Return the beta function \f$B(x,y)\f$ using
14736ac495dSmrg      *           the product form.
14836ac495dSmrg      *
14936ac495dSmrg      *   The beta function is defined by
15036ac495dSmrg      *   @f[
15136ac495dSmrg      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
15236ac495dSmrg      *   @f]
15336ac495dSmrg      *
15436ac495dSmrg      *   @param __x The first argument of the beta function.
15536ac495dSmrg      *   @param __y The second argument of the beta function.
15636ac495dSmrg      *   @return  The beta function.
15736ac495dSmrg      */
15836ac495dSmrg     template<typename _Tp>
15936ac495dSmrg     _Tp
__beta_product(_Tp __x,_Tp __y)16036ac495dSmrg     __beta_product(_Tp __x, _Tp __y)
16136ac495dSmrg     {
16236ac495dSmrg 
16336ac495dSmrg       _Tp __bet = (__x + __y) / (__x * __y);
16436ac495dSmrg 
16536ac495dSmrg       unsigned int __max_iter = 1000000;
16636ac495dSmrg       for (unsigned int __k = 1; __k < __max_iter; ++__k)
16736ac495dSmrg         {
16836ac495dSmrg           _Tp __term = (_Tp(1) + (__x + __y) / __k)
16936ac495dSmrg                      / ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));
17036ac495dSmrg           __bet *= __term;
17136ac495dSmrg         }
17236ac495dSmrg 
17336ac495dSmrg       return __bet;
17436ac495dSmrg     }
17536ac495dSmrg 
17636ac495dSmrg 
17736ac495dSmrg     /**
17836ac495dSmrg      *   @brief  Return the beta function \f$ B(x,y) \f$.
17936ac495dSmrg      *
18036ac495dSmrg      *   The beta function is defined by
18136ac495dSmrg      *   @f[
18236ac495dSmrg      *     B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
18336ac495dSmrg      *   @f]
18436ac495dSmrg      *
18536ac495dSmrg      *   @param __x The first argument of the beta function.
18636ac495dSmrg      *   @param __y The second argument of the beta function.
18736ac495dSmrg      *   @return  The beta function.
18836ac495dSmrg      */
18936ac495dSmrg     template<typename _Tp>
19036ac495dSmrg     inline _Tp
__beta(_Tp __x,_Tp __y)19136ac495dSmrg     __beta(_Tp __x, _Tp __y)
19236ac495dSmrg     {
19336ac495dSmrg       if (__isnan(__x) || __isnan(__y))
19436ac495dSmrg         return std::numeric_limits<_Tp>::quiet_NaN();
19536ac495dSmrg       else
19636ac495dSmrg         return __beta_lgamma(__x, __y);
19736ac495dSmrg     }
19836ac495dSmrg   } // namespace __detail
19936ac495dSmrg #undef _GLIBCXX_MATH_NS
20036ac495dSmrg #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH)
20136ac495dSmrg } // namespace tr1
20236ac495dSmrg #endif
203a2dc1f3fSmrg 
204a2dc1f3fSmrg _GLIBCXX_END_NAMESPACE_VERSION
20536ac495dSmrg }
20636ac495dSmrg 
20736ac495dSmrg #endif // _GLIBCXX_TR1_BETA_FUNCTION_TCC
208