xref: /netbsd-src/external/gpl3/gcc.old/dist/libquadmath/math/tgammaq.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1*627f7eb2Smrg /* Implementation of gamma function according to ISO C.
2*627f7eb2Smrg    Copyright (C) 1997-2018 Free Software Foundation, Inc.
3*627f7eb2Smrg    This file is part of the GNU C Library.
4*627f7eb2Smrg    Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
5*627f7eb2Smrg 		  Jakub Jelinek <jj@ultra.linux.cz, 1999.
6*627f7eb2Smrg 
7*627f7eb2Smrg    The GNU C Library is free software; you can redistribute it and/or
8*627f7eb2Smrg    modify it under the terms of the GNU Lesser General Public
9*627f7eb2Smrg    License as published by the Free Software Foundation; either
10*627f7eb2Smrg    version 2.1 of the License, or (at your option) any later version.
11*627f7eb2Smrg 
12*627f7eb2Smrg    The GNU C Library is distributed in the hope that it will be useful,
13*627f7eb2Smrg    but WITHOUT ANY WARRANTY; without even the implied warranty of
14*627f7eb2Smrg    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15*627f7eb2Smrg    Lesser General Public License for more details.
16*627f7eb2Smrg 
17*627f7eb2Smrg    You should have received a copy of the GNU Lesser General Public
18*627f7eb2Smrg    License along with the GNU C Library; if not, see
19*627f7eb2Smrg    <http://www.gnu.org/licenses/>.  */
20*627f7eb2Smrg 
21*627f7eb2Smrg #include "quadmath-imp.h"
22*627f7eb2Smrg __float128
tgammaq(__float128 x)23*627f7eb2Smrg tgammaq (__float128 x)
24*627f7eb2Smrg {
25*627f7eb2Smrg   int sign;
26*627f7eb2Smrg   __float128 ret;
27*627f7eb2Smrg   ret = __quadmath_gammaq_r (x, &sign);
28*627f7eb2Smrg   return sign < 0 ? -ret : ret;
29*627f7eb2Smrg }
30*627f7eb2Smrg 
31*627f7eb2Smrg /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
32*627f7eb2Smrg    approximation to gamma function.  */
33*627f7eb2Smrg 
34*627f7eb2Smrg static const __float128 gamma_coeff[] =
35*627f7eb2Smrg   {
36*627f7eb2Smrg     0x1.5555555555555555555555555555p-4Q,
37*627f7eb2Smrg     -0xb.60b60b60b60b60b60b60b60b60b8p-12Q,
38*627f7eb2Smrg     0x3.4034034034034034034034034034p-12Q,
39*627f7eb2Smrg     -0x2.7027027027027027027027027028p-12Q,
40*627f7eb2Smrg     0x3.72a3c5631fe46ae1d4e700dca8f2p-12Q,
41*627f7eb2Smrg     -0x7.daac36664f1f207daac36664f1f4p-12Q,
42*627f7eb2Smrg     0x1.a41a41a41a41a41a41a41a41a41ap-8Q,
43*627f7eb2Smrg     -0x7.90a1b2c3d4e5f708192a3b4c5d7p-8Q,
44*627f7eb2Smrg     0x2.dfd2c703c0cfff430edfd2c703cp-4Q,
45*627f7eb2Smrg     -0x1.6476701181f39edbdb9ce625987dp+0Q,
46*627f7eb2Smrg     0xd.672219167002d3a7a9c886459cp+0Q,
47*627f7eb2Smrg     -0x9.cd9292e6660d55b3f712eb9e07c8p+4Q,
48*627f7eb2Smrg     0x8.911a740da740da740da740da741p+8Q,
49*627f7eb2Smrg     -0x8.d0cc570e255bf59ff6eec24b49p+12Q,
50*627f7eb2Smrg   };
51*627f7eb2Smrg 
52*627f7eb2Smrg #define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
53*627f7eb2Smrg 
54*627f7eb2Smrg /* Return gamma (X), for positive X less than 1775, in the form R *
55*627f7eb2Smrg    2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
56*627f7eb2Smrg    avoid overflow or underflow in intermediate calculations.  */
57*627f7eb2Smrg 
58*627f7eb2Smrg static __float128
gammal_positive(__float128 x,int * exp2_adj)59*627f7eb2Smrg gammal_positive (__float128 x, int *exp2_adj)
60*627f7eb2Smrg {
61*627f7eb2Smrg   int local_signgam;
62*627f7eb2Smrg   if (x < 0.5Q)
63*627f7eb2Smrg     {
64*627f7eb2Smrg       *exp2_adj = 0;
65*627f7eb2Smrg       return expq (__quadmath_lgammaq_r (x + 1, &local_signgam)) / x;
66*627f7eb2Smrg     }
67*627f7eb2Smrg   else if (x <= 1.5Q)
68*627f7eb2Smrg     {
69*627f7eb2Smrg       *exp2_adj = 0;
70*627f7eb2Smrg       return expq (__quadmath_lgammaq_r (x, &local_signgam));
71*627f7eb2Smrg     }
72*627f7eb2Smrg   else if (x < 12.5Q)
73*627f7eb2Smrg     {
74*627f7eb2Smrg       /* Adjust into the range for using exp (lgamma).  */
75*627f7eb2Smrg       *exp2_adj = 0;
76*627f7eb2Smrg       __float128 n = ceilq (x - 1.5Q);
77*627f7eb2Smrg       __float128 x_adj = x - n;
78*627f7eb2Smrg       __float128 eps;
79*627f7eb2Smrg       __float128 prod = __quadmath_gamma_productq (x_adj, 0, n, &eps);
80*627f7eb2Smrg       return (expq (__quadmath_lgammaq_r (x_adj, &local_signgam))
81*627f7eb2Smrg 	      * prod * (1 + eps));
82*627f7eb2Smrg     }
83*627f7eb2Smrg   else
84*627f7eb2Smrg     {
85*627f7eb2Smrg       __float128 eps = 0;
86*627f7eb2Smrg       __float128 x_eps = 0;
87*627f7eb2Smrg       __float128 x_adj = x;
88*627f7eb2Smrg       __float128 prod = 1;
89*627f7eb2Smrg       if (x < 24)
90*627f7eb2Smrg 	{
91*627f7eb2Smrg 	  /* Adjust into the range for applying Stirling's
92*627f7eb2Smrg 	     approximation.  */
93*627f7eb2Smrg 	  __float128 n = ceilq (24 - x);
94*627f7eb2Smrg 	  x_adj = x + n;
95*627f7eb2Smrg 	  x_eps = (x - (x_adj - n));
96*627f7eb2Smrg 	  prod = __quadmath_gamma_productq (x_adj - n, x_eps, n, &eps);
97*627f7eb2Smrg 	}
98*627f7eb2Smrg       /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
99*627f7eb2Smrg 	 Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
100*627f7eb2Smrg 	 starting by computing pow (X_ADJ, X_ADJ) with a power of 2
101*627f7eb2Smrg 	 factored out.  */
102*627f7eb2Smrg       __float128 exp_adj = -eps;
103*627f7eb2Smrg       __float128 x_adj_int = roundq (x_adj);
104*627f7eb2Smrg       __float128 x_adj_frac = x_adj - x_adj_int;
105*627f7eb2Smrg       int x_adj_log2;
106*627f7eb2Smrg       __float128 x_adj_mant = frexpq (x_adj, &x_adj_log2);
107*627f7eb2Smrg       if (x_adj_mant < M_SQRT1_2q)
108*627f7eb2Smrg 	{
109*627f7eb2Smrg 	  x_adj_log2--;
110*627f7eb2Smrg 	  x_adj_mant *= 2;
111*627f7eb2Smrg 	}
112*627f7eb2Smrg       *exp2_adj = x_adj_log2 * (int) x_adj_int;
113*627f7eb2Smrg       __float128 ret = (powq (x_adj_mant, x_adj)
114*627f7eb2Smrg 		       * exp2q (x_adj_log2 * x_adj_frac)
115*627f7eb2Smrg 		       * expq (-x_adj)
116*627f7eb2Smrg 		       * sqrtq (2 * M_PIq / x_adj)
117*627f7eb2Smrg 		       / prod);
118*627f7eb2Smrg       exp_adj += x_eps * logq (x_adj);
119*627f7eb2Smrg       __float128 bsum = gamma_coeff[NCOEFF - 1];
120*627f7eb2Smrg       __float128 x_adj2 = x_adj * x_adj;
121*627f7eb2Smrg       for (size_t i = 1; i <= NCOEFF - 1; i++)
122*627f7eb2Smrg 	bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
123*627f7eb2Smrg       exp_adj += bsum / x_adj;
124*627f7eb2Smrg       return ret + ret * expm1q (exp_adj);
125*627f7eb2Smrg     }
126*627f7eb2Smrg }
127*627f7eb2Smrg 
128*627f7eb2Smrg __float128
__quadmath_gammaq_r(__float128 x,int * signgamp)129*627f7eb2Smrg __quadmath_gammaq_r (__float128 x, int *signgamp)
130*627f7eb2Smrg {
131*627f7eb2Smrg   int64_t hx;
132*627f7eb2Smrg   uint64_t lx;
133*627f7eb2Smrg   __float128 ret;
134*627f7eb2Smrg 
135*627f7eb2Smrg   GET_FLT128_WORDS64 (hx, lx, x);
136*627f7eb2Smrg 
137*627f7eb2Smrg   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
138*627f7eb2Smrg     {
139*627f7eb2Smrg       /* Return value for x == 0 is Inf with divide by zero exception.  */
140*627f7eb2Smrg       *signgamp = 0;
141*627f7eb2Smrg       return 1.0 / x;
142*627f7eb2Smrg     }
143*627f7eb2Smrg   if (hx < 0 && (uint64_t) hx < 0xffff000000000000ULL && rintq (x) == x)
144*627f7eb2Smrg     {
145*627f7eb2Smrg       /* Return value for integer x < 0 is NaN with invalid exception.  */
146*627f7eb2Smrg       *signgamp = 0;
147*627f7eb2Smrg       return (x - x) / (x - x);
148*627f7eb2Smrg     }
149*627f7eb2Smrg   if (hx == 0xffff000000000000ULL && lx == 0)
150*627f7eb2Smrg     {
151*627f7eb2Smrg       /* x == -Inf.  According to ISO this is NaN.  */
152*627f7eb2Smrg       *signgamp = 0;
153*627f7eb2Smrg       return x - x;
154*627f7eb2Smrg     }
155*627f7eb2Smrg   if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL)
156*627f7eb2Smrg     {
157*627f7eb2Smrg       /* Positive infinity (return positive infinity) or NaN (return
158*627f7eb2Smrg 	 NaN).  */
159*627f7eb2Smrg       *signgamp = 0;
160*627f7eb2Smrg       return x + x;
161*627f7eb2Smrg     }
162*627f7eb2Smrg 
163*627f7eb2Smrg   if (x >= 1756)
164*627f7eb2Smrg     {
165*627f7eb2Smrg       /* Overflow.  */
166*627f7eb2Smrg       *signgamp = 0;
167*627f7eb2Smrg       return FLT128_MAX * FLT128_MAX;
168*627f7eb2Smrg     }
169*627f7eb2Smrg   else
170*627f7eb2Smrg     {
171*627f7eb2Smrg       SET_RESTORE_ROUNDF128 (FE_TONEAREST);
172*627f7eb2Smrg       if (x > 0)
173*627f7eb2Smrg 	{
174*627f7eb2Smrg 	  *signgamp = 0;
175*627f7eb2Smrg 	  int exp2_adj;
176*627f7eb2Smrg 	  ret = gammal_positive (x, &exp2_adj);
177*627f7eb2Smrg 	  ret = scalbnq (ret, exp2_adj);
178*627f7eb2Smrg 	}
179*627f7eb2Smrg       else if (x >= -FLT128_EPSILON / 4)
180*627f7eb2Smrg 	{
181*627f7eb2Smrg 	  *signgamp = 0;
182*627f7eb2Smrg 	  ret = 1 / x;
183*627f7eb2Smrg 	}
184*627f7eb2Smrg       else
185*627f7eb2Smrg 	{
186*627f7eb2Smrg 	  __float128 tx = truncq (x);
187*627f7eb2Smrg 	  *signgamp = (tx == 2 * truncq (tx / 2)) ? -1 : 1;
188*627f7eb2Smrg 	  if (x <= -1775)
189*627f7eb2Smrg 	    /* Underflow.  */
190*627f7eb2Smrg 	    ret = FLT128_MIN * FLT128_MIN;
191*627f7eb2Smrg 	  else
192*627f7eb2Smrg 	    {
193*627f7eb2Smrg 	      __float128 frac = tx - x;
194*627f7eb2Smrg 	      if (frac > 0.5Q)
195*627f7eb2Smrg 		frac = 1 - frac;
196*627f7eb2Smrg 	      __float128 sinpix = (frac <= 0.25Q
197*627f7eb2Smrg 				  ? sinq (M_PIq * frac)
198*627f7eb2Smrg 				  : cosq (M_PIq * (0.5Q - frac)));
199*627f7eb2Smrg 	      int exp2_adj;
200*627f7eb2Smrg 	      ret = M_PIq / (-x * sinpix
201*627f7eb2Smrg 			     * gammal_positive (-x, &exp2_adj));
202*627f7eb2Smrg 	      ret = scalbnq (ret, -exp2_adj);
203*627f7eb2Smrg 	      math_check_force_underflow_nonneg (ret);
204*627f7eb2Smrg 	    }
205*627f7eb2Smrg 	}
206*627f7eb2Smrg     }
207*627f7eb2Smrg   if (isinfq (ret) && x != 0)
208*627f7eb2Smrg     {
209*627f7eb2Smrg       if (*signgamp < 0)
210*627f7eb2Smrg 	return -(-copysignq (FLT128_MAX, ret) * FLT128_MAX);
211*627f7eb2Smrg       else
212*627f7eb2Smrg 	return copysignq (FLT128_MAX, ret) * FLT128_MAX;
213*627f7eb2Smrg     }
214*627f7eb2Smrg   else if (ret == 0)
215*627f7eb2Smrg     {
216*627f7eb2Smrg       if (*signgamp < 0)
217*627f7eb2Smrg 	return -(-copysignq (FLT128_MIN, ret) * FLT128_MIN);
218*627f7eb2Smrg       else
219*627f7eb2Smrg 	return copysignq (FLT128_MIN, ret) * FLT128_MIN;
220*627f7eb2Smrg     }
221*627f7eb2Smrg   else
222*627f7eb2Smrg     return ret;
223*627f7eb2Smrg }
224