xref: /netbsd-src/external/gpl3/gcc.old/dist/libquadmath/math/tanq.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1*627f7eb2Smrg /* s_tanl.c -- long double version of s_tan.c.
2*627f7eb2Smrg  * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
3*627f7eb2Smrg  */
4*627f7eb2Smrg 
5*627f7eb2Smrg /* @(#)s_tan.c 5.1 93/09/24 */
6*627f7eb2Smrg /*
7*627f7eb2Smrg  * ====================================================
8*627f7eb2Smrg  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9*627f7eb2Smrg  *
10*627f7eb2Smrg  * Developed at SunPro, a Sun Microsystems, Inc. business.
11*627f7eb2Smrg  * Permission to use, copy, modify, and distribute this
12*627f7eb2Smrg  * software is freely granted, provided that this notice
13*627f7eb2Smrg  * is preserved.
14*627f7eb2Smrg  * ====================================================
15*627f7eb2Smrg  */
16*627f7eb2Smrg 
17*627f7eb2Smrg /* tanq(x)
18*627f7eb2Smrg  * Return tangent function of x.
19*627f7eb2Smrg  *
20*627f7eb2Smrg  * kernel function:
21*627f7eb2Smrg  *	__quadmath_kernel_tanq		... tangent function on [-pi/4,pi/4]
22*627f7eb2Smrg  *	__quadmath_rem_pio2q	... argument reduction routine
23*627f7eb2Smrg  *
24*627f7eb2Smrg  * Method.
25*627f7eb2Smrg  *      Let S,C and T denote the sin, cos and tan respectively on
26*627f7eb2Smrg  *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
27*627f7eb2Smrg  *	in [-pi/4 , +pi/4], and let n = k mod 4.
28*627f7eb2Smrg  *	We have
29*627f7eb2Smrg  *
30*627f7eb2Smrg  *          n        sin(x)      cos(x)        tan(x)
31*627f7eb2Smrg  *     ----------------------------------------------------------
32*627f7eb2Smrg  *	    0	       S	   C		 T
33*627f7eb2Smrg  *	    1	       C	  -S		-1/T
34*627f7eb2Smrg  *	    2	      -S	  -C		 T
35*627f7eb2Smrg  *	    3	      -C	   S		-1/T
36*627f7eb2Smrg  *     ----------------------------------------------------------
37*627f7eb2Smrg  *
38*627f7eb2Smrg  * Special cases:
39*627f7eb2Smrg  *      Let trig be any of sin, cos, or tan.
40*627f7eb2Smrg  *      trig(+-INF)  is NaN, with signals;
41*627f7eb2Smrg  *      trig(NaN)    is that NaN;
42*627f7eb2Smrg  *
43*627f7eb2Smrg  * Accuracy:
44*627f7eb2Smrg  *	TRIG(x) returns trig(x) nearly rounded
45*627f7eb2Smrg  */
46*627f7eb2Smrg 
47*627f7eb2Smrg #include "quadmath-imp.h"
48*627f7eb2Smrg 
tanq(__float128 x)49*627f7eb2Smrg __float128 tanq(__float128 x)
50*627f7eb2Smrg {
51*627f7eb2Smrg 	__float128 y[2],z=0;
52*627f7eb2Smrg 	int64_t n, ix;
53*627f7eb2Smrg 
54*627f7eb2Smrg     /* High word of x. */
55*627f7eb2Smrg 	GET_FLT128_MSW64(ix,x);
56*627f7eb2Smrg 
57*627f7eb2Smrg     /* |x| ~< pi/4 */
58*627f7eb2Smrg 	ix &= 0x7fffffffffffffffLL;
59*627f7eb2Smrg 	if(ix <= 0x3ffe921fb54442d1LL) return __quadmath_kernel_tanq(x,z,1);
60*627f7eb2Smrg 
61*627f7eb2Smrg     /* tanq(Inf or NaN) is NaN */
62*627f7eb2Smrg 	else if (ix>=0x7fff000000000000LL) {
63*627f7eb2Smrg 	    if (ix == 0x7fff000000000000LL) {
64*627f7eb2Smrg 		GET_FLT128_LSW64(n,x);
65*627f7eb2Smrg 		if (n == 0)
66*627f7eb2Smrg 		    errno = EDOM;
67*627f7eb2Smrg 	    }
68*627f7eb2Smrg 	    return x-x;		/* NaN */
69*627f7eb2Smrg 	}
70*627f7eb2Smrg 
71*627f7eb2Smrg     /* argument reduction needed */
72*627f7eb2Smrg 	else {
73*627f7eb2Smrg 	    n = __quadmath_rem_pio2q(x,y);
74*627f7eb2Smrg 	    return __quadmath_kernel_tanq(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
75*627f7eb2Smrg 							-1 -- n odd */
76*627f7eb2Smrg 	}
77*627f7eb2Smrg }
78