1*627f7eb2Smrg /* logll.c
2*627f7eb2Smrg *
3*627f7eb2Smrg * Natural logarithm for 128-bit long double precision.
4*627f7eb2Smrg *
5*627f7eb2Smrg *
6*627f7eb2Smrg *
7*627f7eb2Smrg * SYNOPSIS:
8*627f7eb2Smrg *
9*627f7eb2Smrg * long double x, y, logq();
10*627f7eb2Smrg *
11*627f7eb2Smrg * y = logq( x );
12*627f7eb2Smrg *
13*627f7eb2Smrg *
14*627f7eb2Smrg *
15*627f7eb2Smrg * DESCRIPTION:
16*627f7eb2Smrg *
17*627f7eb2Smrg * Returns the base e (2.718...) logarithm of x.
18*627f7eb2Smrg *
19*627f7eb2Smrg * The argument is separated into its exponent and fractional
20*627f7eb2Smrg * parts. Use of a lookup table increases the speed of the routine.
21*627f7eb2Smrg * The program uses logarithms tabulated at intervals of 1/128 to
22*627f7eb2Smrg * cover the domain from approximately 0.7 to 1.4.
23*627f7eb2Smrg *
24*627f7eb2Smrg * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
25*627f7eb2Smrg * log(1+x) = x - 0.5 x^2 + x^3 P(x) .
26*627f7eb2Smrg *
27*627f7eb2Smrg *
28*627f7eb2Smrg *
29*627f7eb2Smrg * ACCURACY:
30*627f7eb2Smrg *
31*627f7eb2Smrg * Relative error:
32*627f7eb2Smrg * arithmetic domain # trials peak rms
33*627f7eb2Smrg * IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35
34*627f7eb2Smrg * IEEE 0.125, 8 100000 1.2e-34 4.1e-35
35*627f7eb2Smrg *
36*627f7eb2Smrg *
37*627f7eb2Smrg * WARNING:
38*627f7eb2Smrg *
39*627f7eb2Smrg * This program uses integer operations on bit fields of floating-point
40*627f7eb2Smrg * numbers. It does not work with data structures other than the
41*627f7eb2Smrg * structure assumed.
42*627f7eb2Smrg *
43*627f7eb2Smrg */
44*627f7eb2Smrg
45*627f7eb2Smrg /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
46*627f7eb2Smrg
47*627f7eb2Smrg This library is free software; you can redistribute it and/or
48*627f7eb2Smrg modify it under the terms of the GNU Lesser General Public
49*627f7eb2Smrg License as published by the Free Software Foundation; either
50*627f7eb2Smrg version 2.1 of the License, or (at your option) any later version.
51*627f7eb2Smrg
52*627f7eb2Smrg This library is distributed in the hope that it will be useful,
53*627f7eb2Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
54*627f7eb2Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
55*627f7eb2Smrg Lesser General Public License for more details.
56*627f7eb2Smrg
57*627f7eb2Smrg You should have received a copy of the GNU Lesser General Public
58*627f7eb2Smrg License along with this library; if not, see
59*627f7eb2Smrg <http://www.gnu.org/licenses/>. */
60*627f7eb2Smrg
61*627f7eb2Smrg #include "quadmath-imp.h"
62*627f7eb2Smrg
63*627f7eb2Smrg /* log(1+x) = x - .5 x^2 + x^3 l(x)
64*627f7eb2Smrg -.0078125 <= x <= +.0078125
65*627f7eb2Smrg peak relative error 1.2e-37 */
66*627f7eb2Smrg static const __float128
67*627f7eb2Smrg l3 = 3.333333333333333333333333333333336096926E-1Q,
68*627f7eb2Smrg l4 = -2.499999999999999999999999999486853077002E-1Q,
69*627f7eb2Smrg l5 = 1.999999999999999999999999998515277861905E-1Q,
70*627f7eb2Smrg l6 = -1.666666666666666666666798448356171665678E-1Q,
71*627f7eb2Smrg l7 = 1.428571428571428571428808945895490721564E-1Q,
72*627f7eb2Smrg l8 = -1.249999999999999987884655626377588149000E-1Q,
73*627f7eb2Smrg l9 = 1.111111111111111093947834982832456459186E-1Q,
74*627f7eb2Smrg l10 = -1.000000000000532974938900317952530453248E-1Q,
75*627f7eb2Smrg l11 = 9.090909090915566247008015301349979892689E-2Q,
76*627f7eb2Smrg l12 = -8.333333211818065121250921925397567745734E-2Q,
77*627f7eb2Smrg l13 = 7.692307559897661630807048686258659316091E-2Q,
78*627f7eb2Smrg l14 = -7.144242754190814657241902218399056829264E-2Q,
79*627f7eb2Smrg l15 = 6.668057591071739754844678883223432347481E-2Q;
80*627f7eb2Smrg
81*627f7eb2Smrg /* Lookup table of ln(t) - (t-1)
82*627f7eb2Smrg t = 0.5 + (k+26)/128)
83*627f7eb2Smrg k = 0, ..., 91 */
84*627f7eb2Smrg static const __float128 logtbl[92] = {
85*627f7eb2Smrg -5.5345593589352099112142921677820359632418E-2Q,
86*627f7eb2Smrg -5.2108257402767124761784665198737642086148E-2Q,
87*627f7eb2Smrg -4.8991686870576856279407775480686721935120E-2Q,
88*627f7eb2Smrg -4.5993270766361228596215288742353061431071E-2Q,
89*627f7eb2Smrg -4.3110481649613269682442058976885699556950E-2Q,
90*627f7eb2Smrg -4.0340872319076331310838085093194799765520E-2Q,
91*627f7eb2Smrg -3.7682072451780927439219005993827431503510E-2Q,
92*627f7eb2Smrg -3.5131785416234343803903228503274262719586E-2Q,
93*627f7eb2Smrg -3.2687785249045246292687241862699949178831E-2Q,
94*627f7eb2Smrg -3.0347913785027239068190798397055267411813E-2Q,
95*627f7eb2Smrg -2.8110077931525797884641940838507561326298E-2Q,
96*627f7eb2Smrg -2.5972247078357715036426583294246819637618E-2Q,
97*627f7eb2Smrg -2.3932450635346084858612873953407168217307E-2Q,
98*627f7eb2Smrg -2.1988775689981395152022535153795155900240E-2Q,
99*627f7eb2Smrg -2.0139364778244501615441044267387667496733E-2Q,
100*627f7eb2Smrg -1.8382413762093794819267536615342902718324E-2Q,
101*627f7eb2Smrg -1.6716169807550022358923589720001638093023E-2Q,
102*627f7eb2Smrg -1.5138929457710992616226033183958974965355E-2Q,
103*627f7eb2Smrg -1.3649036795397472900424896523305726435029E-2Q,
104*627f7eb2Smrg -1.2244881690473465543308397998034325468152E-2Q,
105*627f7eb2Smrg -1.0924898127200937840689817557742469105693E-2Q,
106*627f7eb2Smrg -9.6875626072830301572839422532631079809328E-3Q,
107*627f7eb2Smrg -8.5313926245226231463436209313499745894157E-3Q,
108*627f7eb2Smrg -7.4549452072765973384933565912143044991706E-3Q,
109*627f7eb2Smrg -6.4568155251217050991200599386801665681310E-3Q,
110*627f7eb2Smrg -5.5356355563671005131126851708522185605193E-3Q,
111*627f7eb2Smrg -4.6900728132525199028885749289712348829878E-3Q,
112*627f7eb2Smrg -3.9188291218610470766469347968659624282519E-3Q,
113*627f7eb2Smrg -3.2206394539524058873423550293617843896540E-3Q,
114*627f7eb2Smrg -2.5942708080877805657374888909297113032132E-3Q,
115*627f7eb2Smrg -2.0385211375711716729239156839929281289086E-3Q,
116*627f7eb2Smrg -1.5522183228760777967376942769773768850872E-3Q,
117*627f7eb2Smrg -1.1342191863606077520036253234446621373191E-3Q,
118*627f7eb2Smrg -7.8340854719967065861624024730268350459991E-4Q,
119*627f7eb2Smrg -4.9869831458030115699628274852562992756174E-4Q,
120*627f7eb2Smrg -2.7902661731604211834685052867305795169688E-4Q,
121*627f7eb2Smrg -1.2335696813916860754951146082826952093496E-4Q,
122*627f7eb2Smrg -3.0677461025892873184042490943581654591817E-5Q,
123*627f7eb2Smrg #define ZERO logtbl[38]
124*627f7eb2Smrg 0.0000000000000000000000000000000000000000E0Q,
125*627f7eb2Smrg -3.0359557945051052537099938863236321874198E-5Q,
126*627f7eb2Smrg -1.2081346403474584914595395755316412213151E-4Q,
127*627f7eb2Smrg -2.7044071846562177120083903771008342059094E-4Q,
128*627f7eb2Smrg -4.7834133324631162897179240322783590830326E-4Q,
129*627f7eb2Smrg -7.4363569786340080624467487620270965403695E-4Q,
130*627f7eb2Smrg -1.0654639687057968333207323853366578860679E-3Q,
131*627f7eb2Smrg -1.4429854811877171341298062134712230604279E-3Q,
132*627f7eb2Smrg -1.8753781835651574193938679595797367137975E-3Q,
133*627f7eb2Smrg -2.3618380914922506054347222273705859653658E-3Q,
134*627f7eb2Smrg -2.9015787624124743013946600163375853631299E-3Q,
135*627f7eb2Smrg -3.4938307889254087318399313316921940859043E-3Q,
136*627f7eb2Smrg -4.1378413103128673800485306215154712148146E-3Q,
137*627f7eb2Smrg -4.8328735414488877044289435125365629849599E-3Q,
138*627f7eb2Smrg -5.5782063183564351739381962360253116934243E-3Q,
139*627f7eb2Smrg -6.3731336597098858051938306767880719015261E-3Q,
140*627f7eb2Smrg -7.2169643436165454612058905294782949315193E-3Q,
141*627f7eb2Smrg -8.1090214990427641365934846191367315083867E-3Q,
142*627f7eb2Smrg -9.0486422112807274112838713105168375482480E-3Q,
143*627f7eb2Smrg -1.0035177140880864314674126398350812606841E-2Q,
144*627f7eb2Smrg -1.1067990155502102718064936259435676477423E-2Q,
145*627f7eb2Smrg -1.2146457974158024928196575103115488672416E-2Q,
146*627f7eb2Smrg -1.3269969823361415906628825374158424754308E-2Q,
147*627f7eb2Smrg -1.4437927104692837124388550722759686270765E-2Q,
148*627f7eb2Smrg -1.5649743073340777659901053944852735064621E-2Q,
149*627f7eb2Smrg -1.6904842527181702880599758489058031645317E-2Q,
150*627f7eb2Smrg -1.8202661505988007336096407340750378994209E-2Q,
151*627f7eb2Smrg -1.9542647000370545390701192438691126552961E-2Q,
152*627f7eb2Smrg -2.0924256670080119637427928803038530924742E-2Q,
153*627f7eb2Smrg -2.2346958571309108496179613803760727786257E-2Q,
154*627f7eb2Smrg -2.3810230892650362330447187267648486279460E-2Q,
155*627f7eb2Smrg -2.5313561699385640380910474255652501521033E-2Q,
156*627f7eb2Smrg -2.6856448685790244233704909690165496625399E-2Q,
157*627f7eb2Smrg -2.8438398935154170008519274953860128449036E-2Q,
158*627f7eb2Smrg -3.0058928687233090922411781058956589863039E-2Q,
159*627f7eb2Smrg -3.1717563112854831855692484086486099896614E-2Q,
160*627f7eb2Smrg -3.3413836095418743219397234253475252001090E-2Q,
161*627f7eb2Smrg -3.5147290019036555862676702093393332533702E-2Q,
162*627f7eb2Smrg -3.6917475563073933027920505457688955423688E-2Q,
163*627f7eb2Smrg -3.8723951502862058660874073462456610731178E-2Q,
164*627f7eb2Smrg -4.0566284516358241168330505467000838017425E-2Q,
165*627f7eb2Smrg -4.2444048996543693813649967076598766917965E-2Q,
166*627f7eb2Smrg -4.4356826869355401653098777649745233339196E-2Q,
167*627f7eb2Smrg -4.6304207416957323121106944474331029996141E-2Q,
168*627f7eb2Smrg -4.8285787106164123613318093945035804818364E-2Q,
169*627f7eb2Smrg -5.0301169421838218987124461766244507342648E-2Q,
170*627f7eb2Smrg -5.2349964705088137924875459464622098310997E-2Q,
171*627f7eb2Smrg -5.4431789996103111613753440311680967840214E-2Q,
172*627f7eb2Smrg -5.6546268881465384189752786409400404404794E-2Q,
173*627f7eb2Smrg -5.8693031345788023909329239565012647817664E-2Q,
174*627f7eb2Smrg -6.0871713627532018185577188079210189048340E-2Q,
175*627f7eb2Smrg -6.3081958078862169742820420185833800925568E-2Q,
176*627f7eb2Smrg -6.5323413029406789694910800219643791556918E-2Q,
177*627f7eb2Smrg -6.7595732653791419081537811574227049288168E-2Q
178*627f7eb2Smrg };
179*627f7eb2Smrg
180*627f7eb2Smrg /* ln(2) = ln2a + ln2b with extended precision. */
181*627f7eb2Smrg static const __float128
182*627f7eb2Smrg ln2a = 6.93145751953125e-1Q,
183*627f7eb2Smrg ln2b = 1.4286068203094172321214581765680755001344E-6Q;
184*627f7eb2Smrg
185*627f7eb2Smrg __float128
logq(__float128 x)186*627f7eb2Smrg logq(__float128 x)
187*627f7eb2Smrg {
188*627f7eb2Smrg __float128 z, y, w;
189*627f7eb2Smrg ieee854_float128 u, t;
190*627f7eb2Smrg unsigned int m;
191*627f7eb2Smrg int k, e;
192*627f7eb2Smrg
193*627f7eb2Smrg u.value = x;
194*627f7eb2Smrg m = u.words32.w0;
195*627f7eb2Smrg
196*627f7eb2Smrg /* Check for IEEE special cases. */
197*627f7eb2Smrg k = m & 0x7fffffff;
198*627f7eb2Smrg /* log(0) = -infinity. */
199*627f7eb2Smrg if ((k | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
200*627f7eb2Smrg {
201*627f7eb2Smrg return -0.5Q / ZERO;
202*627f7eb2Smrg }
203*627f7eb2Smrg /* log ( x < 0 ) = NaN */
204*627f7eb2Smrg if (m & 0x80000000)
205*627f7eb2Smrg {
206*627f7eb2Smrg return (x - x) / ZERO;
207*627f7eb2Smrg }
208*627f7eb2Smrg /* log (infinity or NaN) */
209*627f7eb2Smrg if (k >= 0x7fff0000)
210*627f7eb2Smrg {
211*627f7eb2Smrg return x + x;
212*627f7eb2Smrg }
213*627f7eb2Smrg
214*627f7eb2Smrg /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */
215*627f7eb2Smrg u.value = frexpq (x, &e);
216*627f7eb2Smrg m = u.words32.w0 & 0xffff;
217*627f7eb2Smrg m |= 0x10000;
218*627f7eb2Smrg /* Find lookup table index k from high order bits of the significand. */
219*627f7eb2Smrg if (m < 0x16800)
220*627f7eb2Smrg {
221*627f7eb2Smrg k = (m - 0xff00) >> 9;
222*627f7eb2Smrg /* t is the argument 0.5 + (k+26)/128
223*627f7eb2Smrg of the nearest item to u in the lookup table. */
224*627f7eb2Smrg t.words32.w0 = 0x3fff0000 + (k << 9);
225*627f7eb2Smrg t.words32.w1 = 0;
226*627f7eb2Smrg t.words32.w2 = 0;
227*627f7eb2Smrg t.words32.w3 = 0;
228*627f7eb2Smrg u.words32.w0 += 0x10000;
229*627f7eb2Smrg e -= 1;
230*627f7eb2Smrg k += 64;
231*627f7eb2Smrg }
232*627f7eb2Smrg else
233*627f7eb2Smrg {
234*627f7eb2Smrg k = (m - 0xfe00) >> 10;
235*627f7eb2Smrg t.words32.w0 = 0x3ffe0000 + (k << 10);
236*627f7eb2Smrg t.words32.w1 = 0;
237*627f7eb2Smrg t.words32.w2 = 0;
238*627f7eb2Smrg t.words32.w3 = 0;
239*627f7eb2Smrg }
240*627f7eb2Smrg /* On this interval the table is not used due to cancellation error. */
241*627f7eb2Smrg if ((x <= 1.0078125Q) && (x >= 0.9921875Q))
242*627f7eb2Smrg {
243*627f7eb2Smrg if (x == 1)
244*627f7eb2Smrg return 0;
245*627f7eb2Smrg z = x - 1;
246*627f7eb2Smrg k = 64;
247*627f7eb2Smrg t.value = 1;
248*627f7eb2Smrg e = 0;
249*627f7eb2Smrg }
250*627f7eb2Smrg else
251*627f7eb2Smrg {
252*627f7eb2Smrg /* log(u) = log( t u/t ) = log(t) + log(u/t)
253*627f7eb2Smrg log(t) is tabulated in the lookup table.
254*627f7eb2Smrg Express log(u/t) = log(1+z), where z = u/t - 1 = (u-t)/t.
255*627f7eb2Smrg cf. Cody & Waite. */
256*627f7eb2Smrg z = (u.value - t.value) / t.value;
257*627f7eb2Smrg }
258*627f7eb2Smrg /* Series expansion of log(1+z). */
259*627f7eb2Smrg w = z * z;
260*627f7eb2Smrg y = ((((((((((((l15 * z
261*627f7eb2Smrg + l14) * z
262*627f7eb2Smrg + l13) * z
263*627f7eb2Smrg + l12) * z
264*627f7eb2Smrg + l11) * z
265*627f7eb2Smrg + l10) * z
266*627f7eb2Smrg + l9) * z
267*627f7eb2Smrg + l8) * z
268*627f7eb2Smrg + l7) * z
269*627f7eb2Smrg + l6) * z
270*627f7eb2Smrg + l5) * z
271*627f7eb2Smrg + l4) * z
272*627f7eb2Smrg + l3) * z * w;
273*627f7eb2Smrg y -= 0.5 * w;
274*627f7eb2Smrg y += e * ln2b; /* Base 2 exponent offset times ln(2). */
275*627f7eb2Smrg y += z;
276*627f7eb2Smrg y += logtbl[k-26]; /* log(t) - (t-1) */
277*627f7eb2Smrg y += (t.value - 1);
278*627f7eb2Smrg y += e * ln2a;
279*627f7eb2Smrg return y;
280*627f7eb2Smrg }
281