1*627f7eb2Smrg /* log2l.c
2*627f7eb2Smrg * Base 2 logarithm, 128-bit long double precision
3*627f7eb2Smrg *
4*627f7eb2Smrg *
5*627f7eb2Smrg *
6*627f7eb2Smrg * SYNOPSIS:
7*627f7eb2Smrg *
8*627f7eb2Smrg * long double x, y, log2l();
9*627f7eb2Smrg *
10*627f7eb2Smrg * y = log2l( x );
11*627f7eb2Smrg *
12*627f7eb2Smrg *
13*627f7eb2Smrg *
14*627f7eb2Smrg * DESCRIPTION:
15*627f7eb2Smrg *
16*627f7eb2Smrg * Returns the base 2 logarithm of x.
17*627f7eb2Smrg *
18*627f7eb2Smrg * The argument is separated into its exponent and fractional
19*627f7eb2Smrg * parts. If the exponent is between -1 and +1, the (natural)
20*627f7eb2Smrg * logarithm of the fraction is approximated by
21*627f7eb2Smrg *
22*627f7eb2Smrg * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
23*627f7eb2Smrg *
24*627f7eb2Smrg * Otherwise, setting z = 2(x-1)/x+1),
25*627f7eb2Smrg *
26*627f7eb2Smrg * log(x) = z + z^3 P(z)/Q(z).
27*627f7eb2Smrg *
28*627f7eb2Smrg *
29*627f7eb2Smrg *
30*627f7eb2Smrg * ACCURACY:
31*627f7eb2Smrg *
32*627f7eb2Smrg * Relative error:
33*627f7eb2Smrg * arithmetic domain # trials peak rms
34*627f7eb2Smrg * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35
35*627f7eb2Smrg * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35
36*627f7eb2Smrg *
37*627f7eb2Smrg * In the tests over the interval exp(+-10000), the logarithms
38*627f7eb2Smrg * of the random arguments were uniformly distributed over
39*627f7eb2Smrg * [-10000, +10000].
40*627f7eb2Smrg *
41*627f7eb2Smrg */
42*627f7eb2Smrg
43*627f7eb2Smrg /*
44*627f7eb2Smrg Cephes Math Library Release 2.2: January, 1991
45*627f7eb2Smrg Copyright 1984, 1991 by Stephen L. Moshier
46*627f7eb2Smrg Adapted for glibc November, 2001
47*627f7eb2Smrg
48*627f7eb2Smrg This library is free software; you can redistribute it and/or
49*627f7eb2Smrg modify it under the terms of the GNU Lesser General Public
50*627f7eb2Smrg License as published by the Free Software Foundation; either
51*627f7eb2Smrg version 2.1 of the License, or (at your option) any later version.
52*627f7eb2Smrg
53*627f7eb2Smrg This library is distributed in the hope that it will be useful,
54*627f7eb2Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
55*627f7eb2Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
56*627f7eb2Smrg Lesser General Public License for more details.
57*627f7eb2Smrg
58*627f7eb2Smrg You should have received a copy of the GNU Lesser General Public
59*627f7eb2Smrg License along with this library; if not, see <http://www.gnu.org/licenses/>.
60*627f7eb2Smrg */
61*627f7eb2Smrg
62*627f7eb2Smrg #include "quadmath-imp.h"
63*627f7eb2Smrg
64*627f7eb2Smrg /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
65*627f7eb2Smrg * 1/sqrt(2) <= x < sqrt(2)
66*627f7eb2Smrg * Theoretical peak relative error = 5.3e-37,
67*627f7eb2Smrg * relative peak error spread = 2.3e-14
68*627f7eb2Smrg */
69*627f7eb2Smrg static const __float128 P[13] =
70*627f7eb2Smrg {
71*627f7eb2Smrg 1.313572404063446165910279910527789794488E4Q,
72*627f7eb2Smrg 7.771154681358524243729929227226708890930E4Q,
73*627f7eb2Smrg 2.014652742082537582487669938141683759923E5Q,
74*627f7eb2Smrg 3.007007295140399532324943111654767187848E5Q,
75*627f7eb2Smrg 2.854829159639697837788887080758954924001E5Q,
76*627f7eb2Smrg 1.797628303815655343403735250238293741397E5Q,
77*627f7eb2Smrg 7.594356839258970405033155585486712125861E4Q,
78*627f7eb2Smrg 2.128857716871515081352991964243375186031E4Q,
79*627f7eb2Smrg 3.824952356185897735160588078446136783779E3Q,
80*627f7eb2Smrg 4.114517881637811823002128927449878962058E2Q,
81*627f7eb2Smrg 2.321125933898420063925789532045674660756E1Q,
82*627f7eb2Smrg 4.998469661968096229986658302195402690910E-1Q,
83*627f7eb2Smrg 1.538612243596254322971797716843006400388E-6Q
84*627f7eb2Smrg };
85*627f7eb2Smrg static const __float128 Q[12] =
86*627f7eb2Smrg {
87*627f7eb2Smrg 3.940717212190338497730839731583397586124E4Q,
88*627f7eb2Smrg 2.626900195321832660448791748036714883242E5Q,
89*627f7eb2Smrg 7.777690340007566932935753241556479363645E5Q,
90*627f7eb2Smrg 1.347518538384329112529391120390701166528E6Q,
91*627f7eb2Smrg 1.514882452993549494932585972882995548426E6Q,
92*627f7eb2Smrg 1.158019977462989115839826904108208787040E6Q,
93*627f7eb2Smrg 6.132189329546557743179177159925690841200E5Q,
94*627f7eb2Smrg 2.248234257620569139969141618556349415120E5Q,
95*627f7eb2Smrg 5.605842085972455027590989944010492125825E4Q,
96*627f7eb2Smrg 9.147150349299596453976674231612674085381E3Q,
97*627f7eb2Smrg 9.104928120962988414618126155557301584078E2Q,
98*627f7eb2Smrg 4.839208193348159620282142911143429644326E1Q
99*627f7eb2Smrg /* 1.000000000000000000000000000000000000000E0L, */
100*627f7eb2Smrg };
101*627f7eb2Smrg
102*627f7eb2Smrg /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
103*627f7eb2Smrg * where z = 2(x-1)/(x+1)
104*627f7eb2Smrg * 1/sqrt(2) <= x < sqrt(2)
105*627f7eb2Smrg * Theoretical peak relative error = 1.1e-35,
106*627f7eb2Smrg * relative peak error spread 1.1e-9
107*627f7eb2Smrg */
108*627f7eb2Smrg static const __float128 R[6] =
109*627f7eb2Smrg {
110*627f7eb2Smrg 1.418134209872192732479751274970992665513E5Q,
111*627f7eb2Smrg -8.977257995689735303686582344659576526998E4Q,
112*627f7eb2Smrg 2.048819892795278657810231591630928516206E4Q,
113*627f7eb2Smrg -2.024301798136027039250415126250455056397E3Q,
114*627f7eb2Smrg 8.057002716646055371965756206836056074715E1Q,
115*627f7eb2Smrg -8.828896441624934385266096344596648080902E-1Q
116*627f7eb2Smrg };
117*627f7eb2Smrg static const __float128 S[6] =
118*627f7eb2Smrg {
119*627f7eb2Smrg 1.701761051846631278975701529965589676574E6Q,
120*627f7eb2Smrg -1.332535117259762928288745111081235577029E6Q,
121*627f7eb2Smrg 4.001557694070773974936904547424676279307E5Q,
122*627f7eb2Smrg -5.748542087379434595104154610899551484314E4Q,
123*627f7eb2Smrg 3.998526750980007367835804959888064681098E3Q,
124*627f7eb2Smrg -1.186359407982897997337150403816839480438E2Q
125*627f7eb2Smrg /* 1.000000000000000000000000000000000000000E0L, */
126*627f7eb2Smrg };
127*627f7eb2Smrg
128*627f7eb2Smrg static const __float128
129*627f7eb2Smrg /* log2(e) - 1 */
130*627f7eb2Smrg LOG2EA = 4.4269504088896340735992468100189213742664595E-1Q,
131*627f7eb2Smrg /* sqrt(2)/2 */
132*627f7eb2Smrg SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
133*627f7eb2Smrg
134*627f7eb2Smrg
135*627f7eb2Smrg /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
136*627f7eb2Smrg
137*627f7eb2Smrg static __float128
neval(__float128 x,const __float128 * p,int n)138*627f7eb2Smrg neval (__float128 x, const __float128 *p, int n)
139*627f7eb2Smrg {
140*627f7eb2Smrg __float128 y;
141*627f7eb2Smrg
142*627f7eb2Smrg p += n;
143*627f7eb2Smrg y = *p--;
144*627f7eb2Smrg do
145*627f7eb2Smrg {
146*627f7eb2Smrg y = y * x + *p--;
147*627f7eb2Smrg }
148*627f7eb2Smrg while (--n > 0);
149*627f7eb2Smrg return y;
150*627f7eb2Smrg }
151*627f7eb2Smrg
152*627f7eb2Smrg
153*627f7eb2Smrg /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
154*627f7eb2Smrg
155*627f7eb2Smrg static __float128
deval(__float128 x,const __float128 * p,int n)156*627f7eb2Smrg deval (__float128 x, const __float128 *p, int n)
157*627f7eb2Smrg {
158*627f7eb2Smrg __float128 y;
159*627f7eb2Smrg
160*627f7eb2Smrg p += n;
161*627f7eb2Smrg y = x + *p--;
162*627f7eb2Smrg do
163*627f7eb2Smrg {
164*627f7eb2Smrg y = y * x + *p--;
165*627f7eb2Smrg }
166*627f7eb2Smrg while (--n > 0);
167*627f7eb2Smrg return y;
168*627f7eb2Smrg }
169*627f7eb2Smrg
170*627f7eb2Smrg
171*627f7eb2Smrg
172*627f7eb2Smrg __float128
log2q(__float128 x)173*627f7eb2Smrg log2q (__float128 x)
174*627f7eb2Smrg {
175*627f7eb2Smrg __float128 z;
176*627f7eb2Smrg __float128 y;
177*627f7eb2Smrg int e;
178*627f7eb2Smrg int64_t hx, lx;
179*627f7eb2Smrg
180*627f7eb2Smrg /* Test for domain */
181*627f7eb2Smrg GET_FLT128_WORDS64 (hx, lx, x);
182*627f7eb2Smrg if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
183*627f7eb2Smrg return (-1 / fabsq (x)); /* log2l(+-0)=-inf */
184*627f7eb2Smrg if (hx < 0)
185*627f7eb2Smrg return (x - x) / (x - x);
186*627f7eb2Smrg if (hx >= 0x7fff000000000000LL)
187*627f7eb2Smrg return (x + x);
188*627f7eb2Smrg
189*627f7eb2Smrg if (x == 1)
190*627f7eb2Smrg return 0;
191*627f7eb2Smrg
192*627f7eb2Smrg /* separate mantissa from exponent */
193*627f7eb2Smrg
194*627f7eb2Smrg /* Note, frexp is used so that denormal numbers
195*627f7eb2Smrg * will be handled properly.
196*627f7eb2Smrg */
197*627f7eb2Smrg x = frexpq (x, &e);
198*627f7eb2Smrg
199*627f7eb2Smrg
200*627f7eb2Smrg /* logarithm using log(x) = z + z**3 P(z)/Q(z),
201*627f7eb2Smrg * where z = 2(x-1)/x+1)
202*627f7eb2Smrg */
203*627f7eb2Smrg if ((e > 2) || (e < -2))
204*627f7eb2Smrg {
205*627f7eb2Smrg if (x < SQRTH)
206*627f7eb2Smrg { /* 2( 2x-1 )/( 2x+1 ) */
207*627f7eb2Smrg e -= 1;
208*627f7eb2Smrg z = x - 0.5Q;
209*627f7eb2Smrg y = 0.5Q * z + 0.5Q;
210*627f7eb2Smrg }
211*627f7eb2Smrg else
212*627f7eb2Smrg { /* 2 (x-1)/(x+1) */
213*627f7eb2Smrg z = x - 0.5Q;
214*627f7eb2Smrg z -= 0.5Q;
215*627f7eb2Smrg y = 0.5Q * x + 0.5Q;
216*627f7eb2Smrg }
217*627f7eb2Smrg x = z / y;
218*627f7eb2Smrg z = x * x;
219*627f7eb2Smrg y = x * (z * neval (z, R, 5) / deval (z, S, 5));
220*627f7eb2Smrg goto done;
221*627f7eb2Smrg }
222*627f7eb2Smrg
223*627f7eb2Smrg
224*627f7eb2Smrg /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
225*627f7eb2Smrg
226*627f7eb2Smrg if (x < SQRTH)
227*627f7eb2Smrg {
228*627f7eb2Smrg e -= 1;
229*627f7eb2Smrg x = 2.0 * x - 1; /* 2x - 1 */
230*627f7eb2Smrg }
231*627f7eb2Smrg else
232*627f7eb2Smrg {
233*627f7eb2Smrg x = x - 1;
234*627f7eb2Smrg }
235*627f7eb2Smrg z = x * x;
236*627f7eb2Smrg y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
237*627f7eb2Smrg y = y - 0.5 * z;
238*627f7eb2Smrg
239*627f7eb2Smrg done:
240*627f7eb2Smrg
241*627f7eb2Smrg /* Multiply log of fraction by log2(e)
242*627f7eb2Smrg * and base 2 exponent by 1
243*627f7eb2Smrg */
244*627f7eb2Smrg z = y * LOG2EA;
245*627f7eb2Smrg z += x * LOG2EA;
246*627f7eb2Smrg z += y;
247*627f7eb2Smrg z += x;
248*627f7eb2Smrg z += e;
249*627f7eb2Smrg return (z);
250*627f7eb2Smrg }
251