xref: /netbsd-src/external/gpl3/gcc.old/dist/libquadmath/math/log1pq.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1*627f7eb2Smrg /*							log1pq.c
2*627f7eb2Smrg  *
3*627f7eb2Smrg  *      Relative error logarithm
4*627f7eb2Smrg  *	Natural logarithm of 1+x, 128-bit long double precision
5*627f7eb2Smrg  *
6*627f7eb2Smrg  *
7*627f7eb2Smrg  *
8*627f7eb2Smrg  * SYNOPSIS:
9*627f7eb2Smrg  *
10*627f7eb2Smrg  * long double x, y, log1pq();
11*627f7eb2Smrg  *
12*627f7eb2Smrg  * y = log1pq( x );
13*627f7eb2Smrg  *
14*627f7eb2Smrg  *
15*627f7eb2Smrg  *
16*627f7eb2Smrg  * DESCRIPTION:
17*627f7eb2Smrg  *
18*627f7eb2Smrg  * Returns the base e (2.718...) logarithm of 1+x.
19*627f7eb2Smrg  *
20*627f7eb2Smrg  * The argument 1+x is separated into its exponent and fractional
21*627f7eb2Smrg  * parts.  If the exponent is between -1 and +1, the logarithm
22*627f7eb2Smrg  * of the fraction is approximated by
23*627f7eb2Smrg  *
24*627f7eb2Smrg  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
25*627f7eb2Smrg  *
26*627f7eb2Smrg  * Otherwise, setting  z = 2(w-1)/(w+1),
27*627f7eb2Smrg  *
28*627f7eb2Smrg  *     log(w) = z + z^3 P(z)/Q(z).
29*627f7eb2Smrg  *
30*627f7eb2Smrg  *
31*627f7eb2Smrg  *
32*627f7eb2Smrg  * ACCURACY:
33*627f7eb2Smrg  *
34*627f7eb2Smrg  *                      Relative error:
35*627f7eb2Smrg  * arithmetic   domain     # trials      peak         rms
36*627f7eb2Smrg  *    IEEE      -1, 8       100000      1.9e-34     4.3e-35
37*627f7eb2Smrg  */
38*627f7eb2Smrg 
39*627f7eb2Smrg /* Copyright 2001 by Stephen L. Moshier
40*627f7eb2Smrg 
41*627f7eb2Smrg     This library is free software; you can redistribute it and/or
42*627f7eb2Smrg     modify it under the terms of the GNU Lesser General Public
43*627f7eb2Smrg     License as published by the Free Software Foundation; either
44*627f7eb2Smrg     version 2.1 of the License, or (at your option) any later version.
45*627f7eb2Smrg 
46*627f7eb2Smrg     This library is distributed in the hope that it will be useful,
47*627f7eb2Smrg     but WITHOUT ANY WARRANTY; without even the implied warranty of
48*627f7eb2Smrg     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
49*627f7eb2Smrg     Lesser General Public License for more details.
50*627f7eb2Smrg 
51*627f7eb2Smrg     You should have received a copy of the GNU Lesser General Public
52*627f7eb2Smrg     License along with this library; if not, see
53*627f7eb2Smrg     <http://www.gnu.org/licenses/>.  */
54*627f7eb2Smrg 
55*627f7eb2Smrg #include "quadmath-imp.h"
56*627f7eb2Smrg 
57*627f7eb2Smrg /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
58*627f7eb2Smrg  * 1/sqrt(2) <= 1+x < sqrt(2)
59*627f7eb2Smrg  * Theoretical peak relative error = 5.3e-37,
60*627f7eb2Smrg  * relative peak error spread = 2.3e-14
61*627f7eb2Smrg  */
62*627f7eb2Smrg static const __float128
63*627f7eb2Smrg   P12 = 1.538612243596254322971797716843006400388E-6Q,
64*627f7eb2Smrg   P11 = 4.998469661968096229986658302195402690910E-1Q,
65*627f7eb2Smrg   P10 = 2.321125933898420063925789532045674660756E1Q,
66*627f7eb2Smrg   P9 = 4.114517881637811823002128927449878962058E2Q,
67*627f7eb2Smrg   P8 = 3.824952356185897735160588078446136783779E3Q,
68*627f7eb2Smrg   P7 = 2.128857716871515081352991964243375186031E4Q,
69*627f7eb2Smrg   P6 = 7.594356839258970405033155585486712125861E4Q,
70*627f7eb2Smrg   P5 = 1.797628303815655343403735250238293741397E5Q,
71*627f7eb2Smrg   P4 = 2.854829159639697837788887080758954924001E5Q,
72*627f7eb2Smrg   P3 = 3.007007295140399532324943111654767187848E5Q,
73*627f7eb2Smrg   P2 = 2.014652742082537582487669938141683759923E5Q,
74*627f7eb2Smrg   P1 = 7.771154681358524243729929227226708890930E4Q,
75*627f7eb2Smrg   P0 = 1.313572404063446165910279910527789794488E4Q,
76*627f7eb2Smrg   /* Q12 = 1.000000000000000000000000000000000000000E0L, */
77*627f7eb2Smrg   Q11 = 4.839208193348159620282142911143429644326E1Q,
78*627f7eb2Smrg   Q10 = 9.104928120962988414618126155557301584078E2Q,
79*627f7eb2Smrg   Q9 = 9.147150349299596453976674231612674085381E3Q,
80*627f7eb2Smrg   Q8 = 5.605842085972455027590989944010492125825E4Q,
81*627f7eb2Smrg   Q7 = 2.248234257620569139969141618556349415120E5Q,
82*627f7eb2Smrg   Q6 = 6.132189329546557743179177159925690841200E5Q,
83*627f7eb2Smrg   Q5 = 1.158019977462989115839826904108208787040E6Q,
84*627f7eb2Smrg   Q4 = 1.514882452993549494932585972882995548426E6Q,
85*627f7eb2Smrg   Q3 = 1.347518538384329112529391120390701166528E6Q,
86*627f7eb2Smrg   Q2 = 7.777690340007566932935753241556479363645E5Q,
87*627f7eb2Smrg   Q1 = 2.626900195321832660448791748036714883242E5Q,
88*627f7eb2Smrg   Q0 = 3.940717212190338497730839731583397586124E4Q;
89*627f7eb2Smrg 
90*627f7eb2Smrg /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
91*627f7eb2Smrg  * where z = 2(x-1)/(x+1)
92*627f7eb2Smrg  * 1/sqrt(2) <= x < sqrt(2)
93*627f7eb2Smrg  * Theoretical peak relative error = 1.1e-35,
94*627f7eb2Smrg  * relative peak error spread 1.1e-9
95*627f7eb2Smrg  */
96*627f7eb2Smrg static const __float128
97*627f7eb2Smrg   R5 = -8.828896441624934385266096344596648080902E-1Q,
98*627f7eb2Smrg   R4 = 8.057002716646055371965756206836056074715E1Q,
99*627f7eb2Smrg   R3 = -2.024301798136027039250415126250455056397E3Q,
100*627f7eb2Smrg   R2 = 2.048819892795278657810231591630928516206E4Q,
101*627f7eb2Smrg   R1 = -8.977257995689735303686582344659576526998E4Q,
102*627f7eb2Smrg   R0 = 1.418134209872192732479751274970992665513E5Q,
103*627f7eb2Smrg   /* S6 = 1.000000000000000000000000000000000000000E0L, */
104*627f7eb2Smrg   S5 = -1.186359407982897997337150403816839480438E2Q,
105*627f7eb2Smrg   S4 = 3.998526750980007367835804959888064681098E3Q,
106*627f7eb2Smrg   S3 = -5.748542087379434595104154610899551484314E4Q,
107*627f7eb2Smrg   S2 = 4.001557694070773974936904547424676279307E5Q,
108*627f7eb2Smrg   S1 = -1.332535117259762928288745111081235577029E6Q,
109*627f7eb2Smrg   S0 = 1.701761051846631278975701529965589676574E6Q;
110*627f7eb2Smrg 
111*627f7eb2Smrg /* C1 + C2 = ln 2 */
112*627f7eb2Smrg static const __float128 C1 = 6.93145751953125E-1Q;
113*627f7eb2Smrg static const __float128 C2 = 1.428606820309417232121458176568075500134E-6Q;
114*627f7eb2Smrg 
115*627f7eb2Smrg static const __float128 sqrth = 0.7071067811865475244008443621048490392848Q;
116*627f7eb2Smrg /* ln (2^16384 * (1 - 2^-113)) */
117*627f7eb2Smrg static const __float128 zero = 0;
118*627f7eb2Smrg 
119*627f7eb2Smrg __float128
log1pq(__float128 xm1)120*627f7eb2Smrg log1pq (__float128 xm1)
121*627f7eb2Smrg {
122*627f7eb2Smrg   __float128 x, y, z, r, s;
123*627f7eb2Smrg   ieee854_float128 u;
124*627f7eb2Smrg   int32_t hx;
125*627f7eb2Smrg   int e;
126*627f7eb2Smrg 
127*627f7eb2Smrg   /* Test for NaN or infinity input. */
128*627f7eb2Smrg   u.value = xm1;
129*627f7eb2Smrg   hx = u.words32.w0;
130*627f7eb2Smrg   if ((hx & 0x7fffffff) >= 0x7fff0000)
131*627f7eb2Smrg     return xm1 + fabsq (xm1);
132*627f7eb2Smrg 
133*627f7eb2Smrg   /* log1p(+- 0) = +- 0.  */
134*627f7eb2Smrg   if (((hx & 0x7fffffff) == 0)
135*627f7eb2Smrg       && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
136*627f7eb2Smrg     return xm1;
137*627f7eb2Smrg 
138*627f7eb2Smrg   if ((hx & 0x7fffffff) < 0x3f8e0000)
139*627f7eb2Smrg     {
140*627f7eb2Smrg       math_check_force_underflow (xm1);
141*627f7eb2Smrg       if ((int) xm1 == 0)
142*627f7eb2Smrg 	return xm1;
143*627f7eb2Smrg     }
144*627f7eb2Smrg 
145*627f7eb2Smrg   if (xm1 >= 0x1p113Q)
146*627f7eb2Smrg     x = xm1;
147*627f7eb2Smrg   else
148*627f7eb2Smrg     x = xm1 + 1;
149*627f7eb2Smrg 
150*627f7eb2Smrg   /* log1p(-1) = -inf */
151*627f7eb2Smrg   if (x <= 0)
152*627f7eb2Smrg     {
153*627f7eb2Smrg       if (x == 0)
154*627f7eb2Smrg 	return (-1 / zero);  /* log1p(-1) = -inf */
155*627f7eb2Smrg       else
156*627f7eb2Smrg 	return (zero / (x - x));
157*627f7eb2Smrg     }
158*627f7eb2Smrg 
159*627f7eb2Smrg   /* Separate mantissa from exponent.  */
160*627f7eb2Smrg 
161*627f7eb2Smrg   /* Use frexp used so that denormal numbers will be handled properly.  */
162*627f7eb2Smrg   x = frexpq (x, &e);
163*627f7eb2Smrg 
164*627f7eb2Smrg   /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
165*627f7eb2Smrg      where z = 2(x-1)/x+1).  */
166*627f7eb2Smrg   if ((e > 2) || (e < -2))
167*627f7eb2Smrg     {
168*627f7eb2Smrg       if (x < sqrth)
169*627f7eb2Smrg 	{			/* 2( 2x-1 )/( 2x+1 ) */
170*627f7eb2Smrg 	  e -= 1;
171*627f7eb2Smrg 	  z = x - 0.5Q;
172*627f7eb2Smrg 	  y = 0.5Q * z + 0.5Q;
173*627f7eb2Smrg 	}
174*627f7eb2Smrg       else
175*627f7eb2Smrg 	{			/*  2 (x-1)/(x+1)   */
176*627f7eb2Smrg 	  z = x - 0.5Q;
177*627f7eb2Smrg 	  z -= 0.5Q;
178*627f7eb2Smrg 	  y = 0.5Q * x + 0.5Q;
179*627f7eb2Smrg 	}
180*627f7eb2Smrg       x = z / y;
181*627f7eb2Smrg       z = x * x;
182*627f7eb2Smrg       r = ((((R5 * z
183*627f7eb2Smrg 	      + R4) * z
184*627f7eb2Smrg 	     + R3) * z
185*627f7eb2Smrg 	    + R2) * z
186*627f7eb2Smrg 	   + R1) * z
187*627f7eb2Smrg 	+ R0;
188*627f7eb2Smrg       s = (((((z
189*627f7eb2Smrg 	       + S5) * z
190*627f7eb2Smrg 	      + S4) * z
191*627f7eb2Smrg 	     + S3) * z
192*627f7eb2Smrg 	    + S2) * z
193*627f7eb2Smrg 	   + S1) * z
194*627f7eb2Smrg 	+ S0;
195*627f7eb2Smrg       z = x * (z * r / s);
196*627f7eb2Smrg       z = z + e * C2;
197*627f7eb2Smrg       z = z + x;
198*627f7eb2Smrg       z = z + e * C1;
199*627f7eb2Smrg       return (z);
200*627f7eb2Smrg     }
201*627f7eb2Smrg 
202*627f7eb2Smrg 
203*627f7eb2Smrg   /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
204*627f7eb2Smrg 
205*627f7eb2Smrg   if (x < sqrth)
206*627f7eb2Smrg     {
207*627f7eb2Smrg       e -= 1;
208*627f7eb2Smrg       if (e != 0)
209*627f7eb2Smrg 	x = 2 * x - 1;	/*  2x - 1  */
210*627f7eb2Smrg       else
211*627f7eb2Smrg 	x = xm1;
212*627f7eb2Smrg     }
213*627f7eb2Smrg   else
214*627f7eb2Smrg     {
215*627f7eb2Smrg       if (e != 0)
216*627f7eb2Smrg 	x = x - 1;
217*627f7eb2Smrg       else
218*627f7eb2Smrg 	x = xm1;
219*627f7eb2Smrg     }
220*627f7eb2Smrg   z = x * x;
221*627f7eb2Smrg   r = (((((((((((P12 * x
222*627f7eb2Smrg 		 + P11) * x
223*627f7eb2Smrg 		+ P10) * x
224*627f7eb2Smrg 	       + P9) * x
225*627f7eb2Smrg 	      + P8) * x
226*627f7eb2Smrg 	     + P7) * x
227*627f7eb2Smrg 	    + P6) * x
228*627f7eb2Smrg 	   + P5) * x
229*627f7eb2Smrg 	  + P4) * x
230*627f7eb2Smrg 	 + P3) * x
231*627f7eb2Smrg 	+ P2) * x
232*627f7eb2Smrg        + P1) * x
233*627f7eb2Smrg     + P0;
234*627f7eb2Smrg   s = (((((((((((x
235*627f7eb2Smrg 		 + Q11) * x
236*627f7eb2Smrg 		+ Q10) * x
237*627f7eb2Smrg 	       + Q9) * x
238*627f7eb2Smrg 	      + Q8) * x
239*627f7eb2Smrg 	     + Q7) * x
240*627f7eb2Smrg 	    + Q6) * x
241*627f7eb2Smrg 	   + Q5) * x
242*627f7eb2Smrg 	  + Q4) * x
243*627f7eb2Smrg 	 + Q3) * x
244*627f7eb2Smrg 	+ Q2) * x
245*627f7eb2Smrg        + Q1) * x
246*627f7eb2Smrg     + Q0;
247*627f7eb2Smrg   y = x * (z * r / s);
248*627f7eb2Smrg   y = y + e * C2;
249*627f7eb2Smrg   z = y - 0.5Q * z;
250*627f7eb2Smrg   z = z + x;
251*627f7eb2Smrg   z = z + e * C1;
252*627f7eb2Smrg   return (z);
253*627f7eb2Smrg }
254