xref: /netbsd-src/external/gpl3/gcc.old/dist/libquadmath/math/hypotq.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1*627f7eb2Smrg /* e_hypotl.c -- long double version of e_hypot.c.
2*627f7eb2Smrg  * Conversion to long double by Jakub Jelinek, jakub@redhat.com.
3*627f7eb2Smrg  */
4*627f7eb2Smrg 
5*627f7eb2Smrg /*
6*627f7eb2Smrg  * ====================================================
7*627f7eb2Smrg  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8*627f7eb2Smrg  *
9*627f7eb2Smrg  * Developed at SunPro, a Sun Microsystems, Inc. business.
10*627f7eb2Smrg  * Permission to use, copy, modify, and distribute this
11*627f7eb2Smrg  * software is freely granted, provided that this notice
12*627f7eb2Smrg  * is preserved.
13*627f7eb2Smrg  * ====================================================
14*627f7eb2Smrg  */
15*627f7eb2Smrg 
16*627f7eb2Smrg /* hypotq(x,y)
17*627f7eb2Smrg  *
18*627f7eb2Smrg  * Method :
19*627f7eb2Smrg  *	If (assume round-to-nearest) z=x*x+y*y
20*627f7eb2Smrg  *	has error less than sqrtq(2)/2 ulp, than
21*627f7eb2Smrg  *	sqrtq(z) has error less than 1 ulp (exercise).
22*627f7eb2Smrg  *
23*627f7eb2Smrg  *	So, compute sqrtq(x*x+y*y) with some care as
24*627f7eb2Smrg  *	follows to get the error below 1 ulp:
25*627f7eb2Smrg  *
26*627f7eb2Smrg  *	Assume x>y>0;
27*627f7eb2Smrg  *	(if possible, set rounding to round-to-nearest)
28*627f7eb2Smrg  *	1. if x > 2y  use
29*627f7eb2Smrg  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
30*627f7eb2Smrg  *	where x1 = x with lower 64 bits cleared, x2 = x-x1; else
31*627f7eb2Smrg  *	2. if x <= 2y use
32*627f7eb2Smrg  *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
33*627f7eb2Smrg  *	where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1,
34*627f7eb2Smrg  *	y1= y with lower 64 bits chopped, y2 = y-y1.
35*627f7eb2Smrg  *
36*627f7eb2Smrg  *	NOTE: scaling may be necessary if some argument is too
37*627f7eb2Smrg  *	      large or too tiny
38*627f7eb2Smrg  *
39*627f7eb2Smrg  * Special cases:
40*627f7eb2Smrg  *	hypotl(x,y) is INF if x or y is +INF or -INF; else
41*627f7eb2Smrg  *	hypotl(x,y) is NAN if x or y is NAN.
42*627f7eb2Smrg  *
43*627f7eb2Smrg  * Accuracy:
44*627f7eb2Smrg  *	hypotl(x,y) returns sqrtq(x^2+y^2) with error less
45*627f7eb2Smrg  *	than 1 ulps (units in the last place)
46*627f7eb2Smrg  */
47*627f7eb2Smrg 
48*627f7eb2Smrg #include "quadmath-imp.h"
49*627f7eb2Smrg 
50*627f7eb2Smrg __float128
hypotq(__float128 x,__float128 y)51*627f7eb2Smrg hypotq(__float128 x, __float128 y)
52*627f7eb2Smrg {
53*627f7eb2Smrg 	__float128 a,b,t1,t2,y1,y2,w;
54*627f7eb2Smrg 	int64_t j,k,ha,hb;
55*627f7eb2Smrg 
56*627f7eb2Smrg 	GET_FLT128_MSW64(ha,x);
57*627f7eb2Smrg 	ha &= 0x7fffffffffffffffLL;
58*627f7eb2Smrg 	GET_FLT128_MSW64(hb,y);
59*627f7eb2Smrg 	hb &= 0x7fffffffffffffffLL;
60*627f7eb2Smrg 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
61*627f7eb2Smrg 	SET_FLT128_MSW64(a,ha);	/* a <- |a| */
62*627f7eb2Smrg 	SET_FLT128_MSW64(b,hb);	/* b <- |b| */
63*627f7eb2Smrg 	if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */
64*627f7eb2Smrg 	k=0;
65*627f7eb2Smrg 	if(ha > 0x5f3f000000000000LL) {	/* a>2**8000 */
66*627f7eb2Smrg 	   if(ha >= 0x7fff000000000000LL) {	/* Inf or NaN */
67*627f7eb2Smrg 	       uint64_t low;
68*627f7eb2Smrg 	       w = a+b;			/* for sNaN */
69*627f7eb2Smrg 	       if (issignalingq (a) || issignalingq (b))
70*627f7eb2Smrg 		 return w;
71*627f7eb2Smrg 	       GET_FLT128_LSW64(low,a);
72*627f7eb2Smrg 	       if(((ha&0xffffffffffffLL)|low)==0) w = a;
73*627f7eb2Smrg 	       GET_FLT128_LSW64(low,b);
74*627f7eb2Smrg 	       if(((hb^0x7fff000000000000LL)|low)==0) w = b;
75*627f7eb2Smrg 	       return w;
76*627f7eb2Smrg 	   }
77*627f7eb2Smrg 	   /* scale a and b by 2**-9600 */
78*627f7eb2Smrg 	   ha -= 0x2580000000000000LL;
79*627f7eb2Smrg 	   hb -= 0x2580000000000000LL;	k += 9600;
80*627f7eb2Smrg 	   SET_FLT128_MSW64(a,ha);
81*627f7eb2Smrg 	   SET_FLT128_MSW64(b,hb);
82*627f7eb2Smrg 	}
83*627f7eb2Smrg 	if(hb < 0x20bf000000000000LL) {	/* b < 2**-8000 */
84*627f7eb2Smrg 	    if(hb <= 0x0000ffffffffffffLL) {	/* subnormal b or 0 */
85*627f7eb2Smrg 		uint64_t low;
86*627f7eb2Smrg 		GET_FLT128_LSW64(low,b);
87*627f7eb2Smrg 		if((hb|low)==0) return a;
88*627f7eb2Smrg 		t1=0;
89*627f7eb2Smrg 		SET_FLT128_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */
90*627f7eb2Smrg 		b *= t1;
91*627f7eb2Smrg 		a *= t1;
92*627f7eb2Smrg 		k -= 16382;
93*627f7eb2Smrg 		GET_FLT128_MSW64 (ha, a);
94*627f7eb2Smrg 		GET_FLT128_MSW64 (hb, b);
95*627f7eb2Smrg 		if (hb > ha)
96*627f7eb2Smrg 		  {
97*627f7eb2Smrg 		    t1 = a;
98*627f7eb2Smrg 		    a = b;
99*627f7eb2Smrg 		    b = t1;
100*627f7eb2Smrg 		    j = ha;
101*627f7eb2Smrg 		    ha = hb;
102*627f7eb2Smrg 		    hb = j;
103*627f7eb2Smrg 		  }
104*627f7eb2Smrg 	    } else {		/* scale a and b by 2^9600 */
105*627f7eb2Smrg 		ha += 0x2580000000000000LL;	/* a *= 2^9600 */
106*627f7eb2Smrg 		hb += 0x2580000000000000LL;	/* b *= 2^9600 */
107*627f7eb2Smrg 		k -= 9600;
108*627f7eb2Smrg 		SET_FLT128_MSW64(a,ha);
109*627f7eb2Smrg 		SET_FLT128_MSW64(b,hb);
110*627f7eb2Smrg 	    }
111*627f7eb2Smrg 	}
112*627f7eb2Smrg     /* medium size a and b */
113*627f7eb2Smrg 	w = a-b;
114*627f7eb2Smrg 	if (w>b) {
115*627f7eb2Smrg 	    t1 = 0;
116*627f7eb2Smrg 	    SET_FLT128_MSW64(t1,ha);
117*627f7eb2Smrg 	    t2 = a-t1;
118*627f7eb2Smrg 	    w  = sqrtq(t1*t1-(b*(-b)-t2*(a+t1)));
119*627f7eb2Smrg 	} else {
120*627f7eb2Smrg 	    a  = a+a;
121*627f7eb2Smrg 	    y1 = 0;
122*627f7eb2Smrg 	    SET_FLT128_MSW64(y1,hb);
123*627f7eb2Smrg 	    y2 = b - y1;
124*627f7eb2Smrg 	    t1 = 0;
125*627f7eb2Smrg 	    SET_FLT128_MSW64(t1,ha+0x0001000000000000LL);
126*627f7eb2Smrg 	    t2 = a - t1;
127*627f7eb2Smrg 	    w  = sqrtq(t1*y1-(w*(-w)-(t1*y2+t2*b)));
128*627f7eb2Smrg 	}
129*627f7eb2Smrg 	if(k!=0) {
130*627f7eb2Smrg 	    uint64_t high;
131*627f7eb2Smrg 	    t1 = 1;
132*627f7eb2Smrg 	    GET_FLT128_MSW64(high,t1);
133*627f7eb2Smrg 	    SET_FLT128_MSW64(t1,high+(k<<48));
134*627f7eb2Smrg 	    w *= t1;
135*627f7eb2Smrg 	    math_check_force_underflow_nonneg (w);
136*627f7eb2Smrg 	    return w;
137*627f7eb2Smrg 	} else return w;
138*627f7eb2Smrg }
139