xref: /netbsd-src/external/gpl3/gcc.old/dist/libquadmath/math/asinq.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1*627f7eb2Smrg /*
2*627f7eb2Smrg  * ====================================================
3*627f7eb2Smrg  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4*627f7eb2Smrg  *
5*627f7eb2Smrg  * Developed at SunPro, a Sun Microsystems, Inc. business.
6*627f7eb2Smrg  * Permission to use, copy, modify, and distribute this
7*627f7eb2Smrg  * software is freely granted, provided that this notice
8*627f7eb2Smrg  * is preserved.
9*627f7eb2Smrg  * ====================================================
10*627f7eb2Smrg  */
11*627f7eb2Smrg 
12*627f7eb2Smrg /*
13*627f7eb2Smrg   Long double expansions are
14*627f7eb2Smrg   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15*627f7eb2Smrg   and are incorporated herein by permission of the author.  The author
16*627f7eb2Smrg   reserves the right to distribute this material elsewhere under different
17*627f7eb2Smrg   copying permissions.  These modifications are distributed here under the
18*627f7eb2Smrg   following terms:
19*627f7eb2Smrg 
20*627f7eb2Smrg     This library is free software; you can redistribute it and/or
21*627f7eb2Smrg     modify it under the terms of the GNU Lesser General Public
22*627f7eb2Smrg     License as published by the Free Software Foundation; either
23*627f7eb2Smrg     version 2.1 of the License, or (at your option) any later version.
24*627f7eb2Smrg 
25*627f7eb2Smrg     This library is distributed in the hope that it will be useful,
26*627f7eb2Smrg     but WITHOUT ANY WARRANTY; without even the implied warranty of
27*627f7eb2Smrg     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
28*627f7eb2Smrg     Lesser General Public License for more details.
29*627f7eb2Smrg 
30*627f7eb2Smrg     You should have received a copy of the GNU Lesser General Public
31*627f7eb2Smrg     License along with this library; if not, see
32*627f7eb2Smrg     <http://www.gnu.org/licenses/>.  */
33*627f7eb2Smrg 
34*627f7eb2Smrg /* __ieee754_asin(x)
35*627f7eb2Smrg  * Method :
36*627f7eb2Smrg  *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
37*627f7eb2Smrg  *	we approximate asin(x) on [0,0.5] by
38*627f7eb2Smrg  *		asin(x) = x + x*x^2*R(x^2)
39*627f7eb2Smrg  *      Between .5 and .625 the approximation is
40*627f7eb2Smrg  *              asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
41*627f7eb2Smrg  *	For x in [0.625,1]
42*627f7eb2Smrg  *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
43*627f7eb2Smrg  *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
44*627f7eb2Smrg  *	then for x>0.98
45*627f7eb2Smrg  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
46*627f7eb2Smrg  *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
47*627f7eb2Smrg  *	For x<=0.98, let pio4_hi = pio2_hi/2, then
48*627f7eb2Smrg  *		f = hi part of s;
49*627f7eb2Smrg  *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
50*627f7eb2Smrg  *	and
51*627f7eb2Smrg  *		asin(x) = pi/2 - 2*(s+s*z*R(z))
52*627f7eb2Smrg  *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
53*627f7eb2Smrg  *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
54*627f7eb2Smrg  *
55*627f7eb2Smrg  * Special cases:
56*627f7eb2Smrg  *	if x is NaN, return x itself;
57*627f7eb2Smrg  *	if |x|>1, return NaN with invalid signal.
58*627f7eb2Smrg  *
59*627f7eb2Smrg  */
60*627f7eb2Smrg 
61*627f7eb2Smrg #include "quadmath-imp.h"
62*627f7eb2Smrg 
63*627f7eb2Smrg static const __float128
64*627f7eb2Smrg   one = 1,
65*627f7eb2Smrg   huge = 1.0e+4932Q,
66*627f7eb2Smrg   pio2_hi = 1.5707963267948966192313216916397514420986Q,
67*627f7eb2Smrg   pio2_lo = 4.3359050650618905123985220130216759843812E-35Q,
68*627f7eb2Smrg   pio4_hi = 7.8539816339744830961566084581987569936977E-1Q,
69*627f7eb2Smrg 
70*627f7eb2Smrg 	/* coefficient for R(x^2) */
71*627f7eb2Smrg 
72*627f7eb2Smrg   /* asin(x) = x + x^3 pS(x^2) / qS(x^2)
73*627f7eb2Smrg      0 <= x <= 0.5
74*627f7eb2Smrg      peak relative error 1.9e-35  */
75*627f7eb2Smrg   pS0 = -8.358099012470680544198472400254596543711E2Q,
76*627f7eb2Smrg   pS1 =  3.674973957689619490312782828051860366493E3Q,
77*627f7eb2Smrg   pS2 = -6.730729094812979665807581609853656623219E3Q,
78*627f7eb2Smrg   pS3 =  6.643843795209060298375552684423454077633E3Q,
79*627f7eb2Smrg   pS4 = -3.817341990928606692235481812252049415993E3Q,
80*627f7eb2Smrg   pS5 =  1.284635388402653715636722822195716476156E3Q,
81*627f7eb2Smrg   pS6 = -2.410736125231549204856567737329112037867E2Q,
82*627f7eb2Smrg   pS7 =  2.219191969382402856557594215833622156220E1Q,
83*627f7eb2Smrg   pS8 = -7.249056260830627156600112195061001036533E-1Q,
84*627f7eb2Smrg   pS9 =  1.055923570937755300061509030361395604448E-3Q,
85*627f7eb2Smrg 
86*627f7eb2Smrg   qS0 = -5.014859407482408326519083440151745519205E3Q,
87*627f7eb2Smrg   qS1 =  2.430653047950480068881028451580393430537E4Q,
88*627f7eb2Smrg   qS2 = -4.997904737193653607449250593976069726962E4Q,
89*627f7eb2Smrg   qS3 =  5.675712336110456923807959930107347511086E4Q,
90*627f7eb2Smrg   qS4 = -3.881523118339661268482937768522572588022E4Q,
91*627f7eb2Smrg   qS5 =  1.634202194895541569749717032234510811216E4Q,
92*627f7eb2Smrg   qS6 = -4.151452662440709301601820849901296953752E3Q,
93*627f7eb2Smrg   qS7 =  5.956050864057192019085175976175695342168E2Q,
94*627f7eb2Smrg   qS8 = -4.175375777334867025769346564600396877176E1Q,
95*627f7eb2Smrg   /* 1.000000000000000000000000000000000000000E0 */
96*627f7eb2Smrg 
97*627f7eb2Smrg   /* asin(0.5625 + x) = asin(0.5625) + x rS(x) / sS(x)
98*627f7eb2Smrg      -0.0625 <= x <= 0.0625
99*627f7eb2Smrg      peak relative error 3.3e-35  */
100*627f7eb2Smrg   rS0 = -5.619049346208901520945464704848780243887E0Q,
101*627f7eb2Smrg   rS1 =  4.460504162777731472539175700169871920352E1Q,
102*627f7eb2Smrg   rS2 = -1.317669505315409261479577040530751477488E2Q,
103*627f7eb2Smrg   rS3 =  1.626532582423661989632442410808596009227E2Q,
104*627f7eb2Smrg   rS4 = -3.144806644195158614904369445440583873264E1Q,
105*627f7eb2Smrg   rS5 = -9.806674443470740708765165604769099559553E1Q,
106*627f7eb2Smrg   rS6 =  5.708468492052010816555762842394927806920E1Q,
107*627f7eb2Smrg   rS7 =  1.396540499232262112248553357962639431922E1Q,
108*627f7eb2Smrg   rS8 = -1.126243289311910363001762058295832610344E1Q,
109*627f7eb2Smrg   rS9 = -4.956179821329901954211277873774472383512E-1Q,
110*627f7eb2Smrg   rS10 =  3.313227657082367169241333738391762525780E-1Q,
111*627f7eb2Smrg 
112*627f7eb2Smrg   sS0 = -4.645814742084009935700221277307007679325E0Q,
113*627f7eb2Smrg   sS1 =  3.879074822457694323970438316317961918430E1Q,
114*627f7eb2Smrg   sS2 = -1.221986588013474694623973554726201001066E2Q,
115*627f7eb2Smrg   sS3 =  1.658821150347718105012079876756201905822E2Q,
116*627f7eb2Smrg   sS4 = -4.804379630977558197953176474426239748977E1Q,
117*627f7eb2Smrg   sS5 = -1.004296417397316948114344573811562952793E2Q,
118*627f7eb2Smrg   sS6 =  7.530281592861320234941101403870010111138E1Q,
119*627f7eb2Smrg   sS7 =  1.270735595411673647119592092304357226607E1Q,
120*627f7eb2Smrg   sS8 = -1.815144839646376500705105967064792930282E1Q,
121*627f7eb2Smrg   sS9 = -7.821597334910963922204235247786840828217E-2Q,
122*627f7eb2Smrg   /*  1.000000000000000000000000000000000000000E0 */
123*627f7eb2Smrg 
124*627f7eb2Smrg  asinr5625 =  5.9740641664535021430381036628424864397707E-1Q;
125*627f7eb2Smrg 
126*627f7eb2Smrg 
127*627f7eb2Smrg 
128*627f7eb2Smrg __float128
asinq(__float128 x)129*627f7eb2Smrg asinq (__float128 x)
130*627f7eb2Smrg {
131*627f7eb2Smrg   __float128 t, w, p, q, c, r, s;
132*627f7eb2Smrg   int32_t ix, sign, flag;
133*627f7eb2Smrg   ieee854_float128 u;
134*627f7eb2Smrg 
135*627f7eb2Smrg   flag = 0;
136*627f7eb2Smrg   u.value = x;
137*627f7eb2Smrg   sign = u.words32.w0;
138*627f7eb2Smrg   ix = sign & 0x7fffffff;
139*627f7eb2Smrg   u.words32.w0 = ix;    /* |x| */
140*627f7eb2Smrg   if (ix >= 0x3fff0000)	/* |x|>= 1 */
141*627f7eb2Smrg     {
142*627f7eb2Smrg       if (ix == 0x3fff0000
143*627f7eb2Smrg 	  && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
144*627f7eb2Smrg 	/* asin(1)=+-pi/2 with inexact */
145*627f7eb2Smrg 	return x * pio2_hi + x * pio2_lo;
146*627f7eb2Smrg       return (x - x) / (x - x);	/* asin(|x|>1) is NaN */
147*627f7eb2Smrg     }
148*627f7eb2Smrg   else if (ix < 0x3ffe0000) /* |x| < 0.5 */
149*627f7eb2Smrg     {
150*627f7eb2Smrg       if (ix < 0x3fc60000) /* |x| < 2**-57 */
151*627f7eb2Smrg 	{
152*627f7eb2Smrg 	  math_check_force_underflow (x);
153*627f7eb2Smrg 	  __float128 force_inexact = huge + x;
154*627f7eb2Smrg 	  math_force_eval (force_inexact);
155*627f7eb2Smrg 	  return x;		/* return x with inexact if x!=0 */
156*627f7eb2Smrg 	}
157*627f7eb2Smrg       else
158*627f7eb2Smrg 	{
159*627f7eb2Smrg 	  t = x * x;
160*627f7eb2Smrg 	  /* Mark to use pS, qS later on.  */
161*627f7eb2Smrg 	  flag = 1;
162*627f7eb2Smrg 	}
163*627f7eb2Smrg     }
164*627f7eb2Smrg   else if (ix < 0x3ffe4000) /* 0.625 */
165*627f7eb2Smrg     {
166*627f7eb2Smrg       t = u.value - 0.5625;
167*627f7eb2Smrg       p = ((((((((((rS10 * t
168*627f7eb2Smrg 		    + rS9) * t
169*627f7eb2Smrg 		   + rS8) * t
170*627f7eb2Smrg 		  + rS7) * t
171*627f7eb2Smrg 		 + rS6) * t
172*627f7eb2Smrg 		+ rS5) * t
173*627f7eb2Smrg 	       + rS4) * t
174*627f7eb2Smrg 	      + rS3) * t
175*627f7eb2Smrg 	     + rS2) * t
176*627f7eb2Smrg 	    + rS1) * t
177*627f7eb2Smrg 	   + rS0) * t;
178*627f7eb2Smrg 
179*627f7eb2Smrg       q = ((((((((( t
180*627f7eb2Smrg 		    + sS9) * t
181*627f7eb2Smrg 		  + sS8) * t
182*627f7eb2Smrg 		 + sS7) * t
183*627f7eb2Smrg 		+ sS6) * t
184*627f7eb2Smrg 	       + sS5) * t
185*627f7eb2Smrg 	      + sS4) * t
186*627f7eb2Smrg 	     + sS3) * t
187*627f7eb2Smrg 	    + sS2) * t
188*627f7eb2Smrg 	   + sS1) * t
189*627f7eb2Smrg 	+ sS0;
190*627f7eb2Smrg       t = asinr5625 + p / q;
191*627f7eb2Smrg       if ((sign & 0x80000000) == 0)
192*627f7eb2Smrg 	return t;
193*627f7eb2Smrg       else
194*627f7eb2Smrg 	return -t;
195*627f7eb2Smrg     }
196*627f7eb2Smrg   else
197*627f7eb2Smrg     {
198*627f7eb2Smrg       /* 1 > |x| >= 0.625 */
199*627f7eb2Smrg       w = one - u.value;
200*627f7eb2Smrg       t = w * 0.5;
201*627f7eb2Smrg     }
202*627f7eb2Smrg 
203*627f7eb2Smrg   p = (((((((((pS9 * t
204*627f7eb2Smrg 	       + pS8) * t
205*627f7eb2Smrg 	      + pS7) * t
206*627f7eb2Smrg 	     + pS6) * t
207*627f7eb2Smrg 	    + pS5) * t
208*627f7eb2Smrg 	   + pS4) * t
209*627f7eb2Smrg 	  + pS3) * t
210*627f7eb2Smrg 	 + pS2) * t
211*627f7eb2Smrg 	+ pS1) * t
212*627f7eb2Smrg        + pS0) * t;
213*627f7eb2Smrg 
214*627f7eb2Smrg   q = (((((((( t
215*627f7eb2Smrg 	      + qS8) * t
216*627f7eb2Smrg 	     + qS7) * t
217*627f7eb2Smrg 	    + qS6) * t
218*627f7eb2Smrg 	   + qS5) * t
219*627f7eb2Smrg 	  + qS4) * t
220*627f7eb2Smrg 	 + qS3) * t
221*627f7eb2Smrg 	+ qS2) * t
222*627f7eb2Smrg        + qS1) * t
223*627f7eb2Smrg     + qS0;
224*627f7eb2Smrg 
225*627f7eb2Smrg   if (flag) /* 2^-57 < |x| < 0.5 */
226*627f7eb2Smrg     {
227*627f7eb2Smrg       w = p / q;
228*627f7eb2Smrg       return x + x * w;
229*627f7eb2Smrg     }
230*627f7eb2Smrg 
231*627f7eb2Smrg   s = sqrtq (t);
232*627f7eb2Smrg   if (ix >= 0x3ffef333) /* |x| > 0.975 */
233*627f7eb2Smrg     {
234*627f7eb2Smrg       w = p / q;
235*627f7eb2Smrg       t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
236*627f7eb2Smrg     }
237*627f7eb2Smrg   else
238*627f7eb2Smrg     {
239*627f7eb2Smrg       u.value = s;
240*627f7eb2Smrg       u.words32.w3 = 0;
241*627f7eb2Smrg       u.words32.w2 = 0;
242*627f7eb2Smrg       w = u.value;
243*627f7eb2Smrg       c = (t - w * w) / (s + w);
244*627f7eb2Smrg       r = p / q;
245*627f7eb2Smrg       p = 2.0 * s * r - (pio2_lo - 2.0 * c);
246*627f7eb2Smrg       q = pio4_hi - 2.0 * w;
247*627f7eb2Smrg       t = pio4_hi - (p - q);
248*627f7eb2Smrg     }
249*627f7eb2Smrg 
250*627f7eb2Smrg   if ((sign & 0x80000000) == 0)
251*627f7eb2Smrg     return t;
252*627f7eb2Smrg   else
253*627f7eb2Smrg     return -t;
254*627f7eb2Smrg }
255