1627f7eb2Smrg /* Implementation of the SYSTEM_CLOCK intrinsic.
2*4c3eb207Smrg Copyright (C) 2004-2020 Free Software Foundation, Inc.
3627f7eb2Smrg
4627f7eb2Smrg This file is part of the GNU Fortran runtime library (libgfortran).
5627f7eb2Smrg
6627f7eb2Smrg Libgfortran is free software; you can redistribute it and/or
7627f7eb2Smrg modify it under the terms of the GNU General Public
8627f7eb2Smrg License as published by the Free Software Foundation; either
9627f7eb2Smrg version 3 of the License, or (at your option) any later version.
10627f7eb2Smrg
11627f7eb2Smrg Libgfortran is distributed in the hope that it will be useful,
12627f7eb2Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
13627f7eb2Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14627f7eb2Smrg GNU General Public License for more details.
15627f7eb2Smrg
16627f7eb2Smrg Under Section 7 of GPL version 3, you are granted additional
17627f7eb2Smrg permissions described in the GCC Runtime Library Exception, version
18627f7eb2Smrg 3.1, as published by the Free Software Foundation.
19627f7eb2Smrg
20627f7eb2Smrg You should have received a copy of the GNU General Public License and
21627f7eb2Smrg a copy of the GCC Runtime Library Exception along with this program;
22627f7eb2Smrg see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23627f7eb2Smrg <http://www.gnu.org/licenses/>. */
24627f7eb2Smrg
25627f7eb2Smrg #include "libgfortran.h"
26627f7eb2Smrg
27627f7eb2Smrg #include <limits.h>
28627f7eb2Smrg
29627f7eb2Smrg #include "time_1.h"
30627f7eb2Smrg
31627f7eb2Smrg
32627f7eb2Smrg #if !defined(__MINGW32__)
33627f7eb2Smrg
34627f7eb2Smrg /* POSIX states that CLOCK_REALTIME must be present if clock_gettime
35627f7eb2Smrg is available, others are optional. */
36627f7eb2Smrg #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_LIBRT)
37627f7eb2Smrg #if defined(CLOCK_MONOTONIC) && defined(_POSIX_MONOTONIC_CLOCK) \
38627f7eb2Smrg && _POSIX_MONOTONIC_CLOCK >= 0
39627f7eb2Smrg #define GF_CLOCK_MONOTONIC CLOCK_MONOTONIC
40627f7eb2Smrg #else
41627f7eb2Smrg #define GF_CLOCK_MONOTONIC CLOCK_REALTIME
42627f7eb2Smrg #endif
43627f7eb2Smrg #endif
44627f7eb2Smrg
45627f7eb2Smrg /* Weakref trickery for clock_gettime(). On Glibc <= 2.16,
46627f7eb2Smrg clock_gettime() requires us to link in librt, which also pulls in
47627f7eb2Smrg libpthread. In order to avoid this by default, only call
48627f7eb2Smrg clock_gettime() through a weak reference. */
49627f7eb2Smrg #if SUPPORTS_WEAKREF && defined(HAVE_CLOCK_GETTIME_LIBRT)
50627f7eb2Smrg static int weak_gettime (clockid_t, struct timespec *)
51627f7eb2Smrg __attribute__((__weakref__("clock_gettime")));
52627f7eb2Smrg #endif
53627f7eb2Smrg
54627f7eb2Smrg
55627f7eb2Smrg /* High resolution monotonic clock, falling back to the realtime clock
56627f7eb2Smrg if the target does not support such a clock.
57627f7eb2Smrg
58627f7eb2Smrg Arguments:
59627f7eb2Smrg secs - OUTPUT, seconds
60627f7eb2Smrg fracsecs - OUTPUT, fractional seconds, units given by tk argument
61627f7eb2Smrg tk - OUTPUT, clock resolution [counts/sec]
62627f7eb2Smrg
63627f7eb2Smrg If the target supports a monotonic clock, the OUTPUT arguments
64627f7eb2Smrg represent a monotonically incrementing clock starting from some
65627f7eb2Smrg unspecified time in the past.
66627f7eb2Smrg
67627f7eb2Smrg If a monotonic clock is not available, falls back to the realtime
68627f7eb2Smrg clock which is not monotonic.
69627f7eb2Smrg
70627f7eb2Smrg Return value: 0 for success, -1 for error. In case of error, errno
71627f7eb2Smrg is set.
72627f7eb2Smrg */
73627f7eb2Smrg static int
gf_gettime_mono(time_t * secs,long * fracsecs,long * tck)74627f7eb2Smrg gf_gettime_mono (time_t * secs, long * fracsecs, long * tck)
75627f7eb2Smrg {
76627f7eb2Smrg int err;
77627f7eb2Smrg #ifdef HAVE_CLOCK_GETTIME
78627f7eb2Smrg struct timespec ts;
79627f7eb2Smrg *tck = 1000000000;
80627f7eb2Smrg err = clock_gettime (GF_CLOCK_MONOTONIC, &ts);
81627f7eb2Smrg *secs = ts.tv_sec;
82627f7eb2Smrg *fracsecs = ts.tv_nsec;
83627f7eb2Smrg return err;
84627f7eb2Smrg #else
85627f7eb2Smrg #if SUPPORTS_WEAKREF && defined(HAVE_CLOCK_GETTIME_LIBRT)
86627f7eb2Smrg if (weak_gettime)
87627f7eb2Smrg {
88627f7eb2Smrg struct timespec ts;
89627f7eb2Smrg *tck = 1000000000;
90627f7eb2Smrg err = weak_gettime (GF_CLOCK_MONOTONIC, &ts);
91627f7eb2Smrg *secs = ts.tv_sec;
92627f7eb2Smrg *fracsecs = ts.tv_nsec;
93627f7eb2Smrg return err;
94627f7eb2Smrg }
95627f7eb2Smrg #endif
96627f7eb2Smrg *tck = 1000000;
97627f7eb2Smrg err = gf_gettime (secs, fracsecs);
98627f7eb2Smrg return err;
99627f7eb2Smrg #endif
100627f7eb2Smrg }
101627f7eb2Smrg
102627f7eb2Smrg #endif /* !__MINGW32__ */
103627f7eb2Smrg
104627f7eb2Smrg extern void
105627f7eb2Smrg system_clock_4 (GFC_INTEGER_4 *count, GFC_INTEGER_4 *count_rate,
106627f7eb2Smrg GFC_INTEGER_4 *count_max);
107627f7eb2Smrg export_proto(system_clock_4);
108627f7eb2Smrg
109627f7eb2Smrg extern void
110627f7eb2Smrg system_clock_8 (GFC_INTEGER_8 *count, GFC_INTEGER_8 *count_rate,
111627f7eb2Smrg GFC_INTEGER_8 *count_max);
112627f7eb2Smrg export_proto(system_clock_8);
113627f7eb2Smrg
114627f7eb2Smrg
115627f7eb2Smrg /* prefix(system_clock_4) is the INTEGER(4) version of the SYSTEM_CLOCK
116627f7eb2Smrg intrinsic subroutine. It returns the number of clock ticks for the current
117627f7eb2Smrg system time, the number of ticks per second, and the maximum possible value
118627f7eb2Smrg for COUNT. */
119627f7eb2Smrg
120627f7eb2Smrg void
system_clock_4(GFC_INTEGER_4 * count,GFC_INTEGER_4 * count_rate,GFC_INTEGER_4 * count_max)121627f7eb2Smrg system_clock_4 (GFC_INTEGER_4 *count, GFC_INTEGER_4 *count_rate,
122627f7eb2Smrg GFC_INTEGER_4 *count_max)
123627f7eb2Smrg {
124627f7eb2Smrg #if defined(__MINGW32__)
125627f7eb2Smrg if (count)
126627f7eb2Smrg {
127627f7eb2Smrg /* Use GetTickCount here as the resolution and range is
128627f7eb2Smrg sufficient for the INTEGER(kind=4) version, and
129627f7eb2Smrg QueryPerformanceCounter has potential issues. */
130627f7eb2Smrg uint32_t cnt = GetTickCount ();
131627f7eb2Smrg if (cnt > GFC_INTEGER_4_HUGE)
132627f7eb2Smrg cnt = cnt - GFC_INTEGER_4_HUGE - 1;
133627f7eb2Smrg *count = cnt;
134627f7eb2Smrg }
135627f7eb2Smrg if (count_rate)
136627f7eb2Smrg *count_rate = 1000;
137627f7eb2Smrg if (count_max)
138627f7eb2Smrg *count_max = GFC_INTEGER_4_HUGE;
139627f7eb2Smrg #else
140627f7eb2Smrg time_t secs;
141627f7eb2Smrg long fracsecs, tck;
142627f7eb2Smrg
143627f7eb2Smrg if (gf_gettime_mono (&secs, &fracsecs, &tck) == 0)
144627f7eb2Smrg {
145627f7eb2Smrg long tck_out = tck > 1000 ? 1000 : tck;
146627f7eb2Smrg long tck_r = tck / tck_out;
147627f7eb2Smrg GFC_UINTEGER_4 ucnt = (GFC_UINTEGER_4) secs * tck_out;
148627f7eb2Smrg ucnt += fracsecs / tck_r;
149627f7eb2Smrg if (ucnt > GFC_INTEGER_4_HUGE)
150627f7eb2Smrg ucnt = ucnt - GFC_INTEGER_4_HUGE - 1;
151627f7eb2Smrg if (count)
152627f7eb2Smrg *count = ucnt;
153627f7eb2Smrg if (count_rate)
154627f7eb2Smrg *count_rate = tck_out;
155627f7eb2Smrg if (count_max)
156627f7eb2Smrg *count_max = GFC_INTEGER_4_HUGE;
157627f7eb2Smrg }
158627f7eb2Smrg else
159627f7eb2Smrg {
160627f7eb2Smrg if (count)
161627f7eb2Smrg *count = - GFC_INTEGER_4_HUGE;
162627f7eb2Smrg if (count_rate)
163627f7eb2Smrg *count_rate = 0;
164627f7eb2Smrg if (count_max)
165627f7eb2Smrg *count_max = 0;
166627f7eb2Smrg }
167627f7eb2Smrg #endif
168627f7eb2Smrg }
169627f7eb2Smrg
170627f7eb2Smrg
171627f7eb2Smrg /* INTEGER(8) version of the above routine. */
172627f7eb2Smrg
173627f7eb2Smrg void
system_clock_8(GFC_INTEGER_8 * count,GFC_INTEGER_8 * count_rate,GFC_INTEGER_8 * count_max)174627f7eb2Smrg system_clock_8 (GFC_INTEGER_8 *count, GFC_INTEGER_8 *count_rate,
175627f7eb2Smrg GFC_INTEGER_8 *count_max)
176627f7eb2Smrg {
177627f7eb2Smrg #if defined(__MINGW32__)
178627f7eb2Smrg LARGE_INTEGER cnt;
179627f7eb2Smrg LARGE_INTEGER freq;
180627f7eb2Smrg bool fail = false;
181627f7eb2Smrg if (count && !QueryPerformanceCounter (&cnt))
182627f7eb2Smrg fail = true;
183627f7eb2Smrg if (count_rate && !QueryPerformanceFrequency (&freq))
184627f7eb2Smrg fail = true;
185627f7eb2Smrg if (fail)
186627f7eb2Smrg {
187627f7eb2Smrg if (count)
188627f7eb2Smrg *count = - GFC_INTEGER_8_HUGE;
189627f7eb2Smrg if (count_rate)
190627f7eb2Smrg *count_rate = 0;
191627f7eb2Smrg if (count_max)
192627f7eb2Smrg *count_max = 0;
193627f7eb2Smrg }
194627f7eb2Smrg else
195627f7eb2Smrg {
196627f7eb2Smrg if (count)
197627f7eb2Smrg *count = cnt.QuadPart;
198627f7eb2Smrg if (count_rate)
199627f7eb2Smrg *count_rate = freq.QuadPart;
200627f7eb2Smrg if (count_max)
201627f7eb2Smrg *count_max = GFC_INTEGER_8_HUGE;
202627f7eb2Smrg }
203627f7eb2Smrg #else
204627f7eb2Smrg time_t secs;
205627f7eb2Smrg long fracsecs, tck;
206627f7eb2Smrg
207627f7eb2Smrg if (gf_gettime_mono (&secs, &fracsecs, &tck) == 0)
208627f7eb2Smrg {
209627f7eb2Smrg GFC_UINTEGER_8 ucnt = (GFC_UINTEGER_8) secs * tck;
210627f7eb2Smrg ucnt += fracsecs;
211627f7eb2Smrg if (ucnt > GFC_INTEGER_8_HUGE)
212627f7eb2Smrg ucnt = ucnt - GFC_INTEGER_8_HUGE - 1;
213627f7eb2Smrg if (count)
214627f7eb2Smrg *count = ucnt;
215627f7eb2Smrg if (count_rate)
216627f7eb2Smrg *count_rate = tck;
217627f7eb2Smrg if (count_max)
218627f7eb2Smrg *count_max = GFC_INTEGER_8_HUGE;
219627f7eb2Smrg }
220627f7eb2Smrg else
221627f7eb2Smrg {
222627f7eb2Smrg if (count)
223627f7eb2Smrg *count = - GFC_INTEGER_8_HUGE;
224627f7eb2Smrg if (count_rate)
225627f7eb2Smrg *count_rate = 0;
226627f7eb2Smrg if (count_max)
227627f7eb2Smrg *count_max = 0;
228627f7eb2Smrg }
229627f7eb2Smrg #endif
230627f7eb2Smrg }
231