1 /* Expands front end tree to back end RTL for GCC. 2 Copyright (C) 1987-2016 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This file handles the generation of rtl code from tree structure 21 at the level of the function as a whole. 22 It creates the rtl expressions for parameters and auto variables 23 and has full responsibility for allocating stack slots. 24 25 `expand_function_start' is called at the beginning of a function, 26 before the function body is parsed, and `expand_function_end' is 27 called after parsing the body. 28 29 Call `assign_stack_local' to allocate a stack slot for a local variable. 30 This is usually done during the RTL generation for the function body, 31 but it can also be done in the reload pass when a pseudo-register does 32 not get a hard register. */ 33 34 #include "config.h" 35 #include "system.h" 36 #include "coretypes.h" 37 #include "backend.h" 38 #include "target.h" 39 #include "rtl.h" 40 #include "tree.h" 41 #include "gimple-expr.h" 42 #include "cfghooks.h" 43 #include "df.h" 44 #include "tm_p.h" 45 #include "stringpool.h" 46 #include "expmed.h" 47 #include "optabs.h" 48 #include "regs.h" 49 #include "emit-rtl.h" 50 #include "recog.h" 51 #include "rtl-error.h" 52 #include "alias.h" 53 #include "fold-const.h" 54 #include "stor-layout.h" 55 #include "varasm.h" 56 #include "except.h" 57 #include "dojump.h" 58 #include "explow.h" 59 #include "calls.h" 60 #include "expr.h" 61 #include "optabs-tree.h" 62 #include "output.h" 63 #include "langhooks.h" 64 #include "common/common-target.h" 65 #include "gimplify.h" 66 #include "tree-pass.h" 67 #include "cfgrtl.h" 68 #include "cfganal.h" 69 #include "cfgbuild.h" 70 #include "cfgcleanup.h" 71 #include "cfgexpand.h" 72 #include "shrink-wrap.h" 73 #include "toplev.h" 74 #include "rtl-iter.h" 75 #include "tree-chkp.h" 76 #include "rtl-chkp.h" 77 #include "tree-dfa.h" 78 #include "tree-ssa.h" 79 80 /* So we can assign to cfun in this file. */ 81 #undef cfun 82 83 #ifndef STACK_ALIGNMENT_NEEDED 84 #define STACK_ALIGNMENT_NEEDED 1 85 #endif 86 87 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) 88 89 /* Round a value to the lowest integer less than it that is a multiple of 90 the required alignment. Avoid using division in case the value is 91 negative. Assume the alignment is a power of two. */ 92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1)) 93 94 /* Similar, but round to the next highest integer that meets the 95 alignment. */ 96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) 97 98 /* Nonzero once virtual register instantiation has been done. 99 assign_stack_local uses frame_pointer_rtx when this is nonzero. 100 calls.c:emit_library_call_value_1 uses it to set up 101 post-instantiation libcalls. */ 102 int virtuals_instantiated; 103 104 /* Assign unique numbers to labels generated for profiling, debugging, etc. */ 105 static GTY(()) int funcdef_no; 106 107 /* These variables hold pointers to functions to create and destroy 108 target specific, per-function data structures. */ 109 struct machine_function * (*init_machine_status) (void); 110 111 /* The currently compiled function. */ 112 struct function *cfun = 0; 113 114 /* These hashes record the prologue and epilogue insns. */ 115 116 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def> 117 { 118 static hashval_t hash (rtx x) { return htab_hash_pointer (x); } 119 static bool equal (rtx a, rtx b) { return a == b; } 120 }; 121 122 static GTY((cache)) 123 hash_table<insn_cache_hasher> *prologue_insn_hash; 124 static GTY((cache)) 125 hash_table<insn_cache_hasher> *epilogue_insn_hash; 126 127 128 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL; 129 vec<tree, va_gc> *types_used_by_cur_var_decl; 130 131 /* Forward declarations. */ 132 133 static struct temp_slot *find_temp_slot_from_address (rtx); 134 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *); 135 static void pad_below (struct args_size *, machine_mode, tree); 136 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *); 137 static int all_blocks (tree, tree *); 138 static tree *get_block_vector (tree, int *); 139 extern tree debug_find_var_in_block_tree (tree, tree); 140 /* We always define `record_insns' even if it's not used so that we 141 can always export `prologue_epilogue_contains'. */ 142 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **) 143 ATTRIBUTE_UNUSED; 144 static bool contains (const_rtx, hash_table<insn_cache_hasher> *); 145 static void prepare_function_start (void); 146 static void do_clobber_return_reg (rtx, void *); 147 static void do_use_return_reg (rtx, void *); 148 149 150 /* Stack of nested functions. */ 151 /* Keep track of the cfun stack. */ 152 153 static vec<function *> function_context_stack; 154 155 /* Save the current context for compilation of a nested function. 156 This is called from language-specific code. */ 157 158 void 159 push_function_context (void) 160 { 161 if (cfun == 0) 162 allocate_struct_function (NULL, false); 163 164 function_context_stack.safe_push (cfun); 165 set_cfun (NULL); 166 } 167 168 /* Restore the last saved context, at the end of a nested function. 169 This function is called from language-specific code. */ 170 171 void 172 pop_function_context (void) 173 { 174 struct function *p = function_context_stack.pop (); 175 set_cfun (p); 176 current_function_decl = p->decl; 177 178 /* Reset variables that have known state during rtx generation. */ 179 virtuals_instantiated = 0; 180 generating_concat_p = 1; 181 } 182 183 /* Clear out all parts of the state in F that can safely be discarded 184 after the function has been parsed, but not compiled, to let 185 garbage collection reclaim the memory. */ 186 187 void 188 free_after_parsing (struct function *f) 189 { 190 f->language = 0; 191 } 192 193 /* Clear out all parts of the state in F that can safely be discarded 194 after the function has been compiled, to let garbage collection 195 reclaim the memory. */ 196 197 void 198 free_after_compilation (struct function *f) 199 { 200 prologue_insn_hash = NULL; 201 epilogue_insn_hash = NULL; 202 203 free (crtl->emit.regno_pointer_align); 204 205 memset (crtl, 0, sizeof (struct rtl_data)); 206 f->eh = NULL; 207 f->machine = NULL; 208 f->cfg = NULL; 209 f->curr_properties &= ~PROP_cfg; 210 211 regno_reg_rtx = NULL; 212 } 213 214 /* Return size needed for stack frame based on slots so far allocated. 215 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; 216 the caller may have to do that. */ 217 218 HOST_WIDE_INT 219 get_frame_size (void) 220 { 221 if (FRAME_GROWS_DOWNWARD) 222 return -frame_offset; 223 else 224 return frame_offset; 225 } 226 227 /* Issue an error message and return TRUE if frame OFFSET overflows in 228 the signed target pointer arithmetics for function FUNC. Otherwise 229 return FALSE. */ 230 231 bool 232 frame_offset_overflow (HOST_WIDE_INT offset, tree func) 233 { 234 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset; 235 236 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1)) 237 /* Leave room for the fixed part of the frame. */ 238 - 64 * UNITS_PER_WORD) 239 { 240 error_at (DECL_SOURCE_LOCATION (func), 241 "total size of local objects too large"); 242 return TRUE; 243 } 244 245 return FALSE; 246 } 247 248 /* Return stack slot alignment in bits for TYPE and MODE. */ 249 250 static unsigned int 251 get_stack_local_alignment (tree type, machine_mode mode) 252 { 253 unsigned int alignment; 254 255 if (mode == BLKmode) 256 alignment = BIGGEST_ALIGNMENT; 257 else 258 alignment = GET_MODE_ALIGNMENT (mode); 259 260 /* Allow the frond-end to (possibly) increase the alignment of this 261 stack slot. */ 262 if (! type) 263 type = lang_hooks.types.type_for_mode (mode, 0); 264 265 return STACK_SLOT_ALIGNMENT (type, mode, alignment); 266 } 267 268 /* Determine whether it is possible to fit a stack slot of size SIZE and 269 alignment ALIGNMENT into an area in the stack frame that starts at 270 frame offset START and has a length of LENGTH. If so, store the frame 271 offset to be used for the stack slot in *POFFSET and return true; 272 return false otherwise. This function will extend the frame size when 273 given a start/length pair that lies at the end of the frame. */ 274 275 static bool 276 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length, 277 HOST_WIDE_INT size, unsigned int alignment, 278 HOST_WIDE_INT *poffset) 279 { 280 HOST_WIDE_INT this_frame_offset; 281 int frame_off, frame_alignment, frame_phase; 282 283 /* Calculate how many bytes the start of local variables is off from 284 stack alignment. */ 285 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; 286 frame_off = STARTING_FRAME_OFFSET % frame_alignment; 287 frame_phase = frame_off ? frame_alignment - frame_off : 0; 288 289 /* Round the frame offset to the specified alignment. */ 290 291 /* We must be careful here, since FRAME_OFFSET might be negative and 292 division with a negative dividend isn't as well defined as we might 293 like. So we instead assume that ALIGNMENT is a power of two and 294 use logical operations which are unambiguous. */ 295 if (FRAME_GROWS_DOWNWARD) 296 this_frame_offset 297 = (FLOOR_ROUND (start + length - size - frame_phase, 298 (unsigned HOST_WIDE_INT) alignment) 299 + frame_phase); 300 else 301 this_frame_offset 302 = (CEIL_ROUND (start - frame_phase, 303 (unsigned HOST_WIDE_INT) alignment) 304 + frame_phase); 305 306 /* See if it fits. If this space is at the edge of the frame, 307 consider extending the frame to make it fit. Our caller relies on 308 this when allocating a new slot. */ 309 if (frame_offset == start && this_frame_offset < frame_offset) 310 frame_offset = this_frame_offset; 311 else if (this_frame_offset < start) 312 return false; 313 else if (start + length == frame_offset 314 && this_frame_offset + size > start + length) 315 frame_offset = this_frame_offset + size; 316 else if (this_frame_offset + size > start + length) 317 return false; 318 319 *poffset = this_frame_offset; 320 return true; 321 } 322 323 /* Create a new frame_space structure describing free space in the stack 324 frame beginning at START and ending at END, and chain it into the 325 function's frame_space_list. */ 326 327 static void 328 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end) 329 { 330 struct frame_space *space = ggc_alloc<frame_space> (); 331 space->next = crtl->frame_space_list; 332 crtl->frame_space_list = space; 333 space->start = start; 334 space->length = end - start; 335 } 336 337 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it 338 with machine mode MODE. 339 340 ALIGN controls the amount of alignment for the address of the slot: 341 0 means according to MODE, 342 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that, 343 -2 means use BITS_PER_UNIT, 344 positive specifies alignment boundary in bits. 345 346 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce 347 alignment and ASLK_RECORD_PAD bit set if we should remember 348 extra space we allocated for alignment purposes. When we are 349 called from assign_stack_temp_for_type, it is not set so we don't 350 track the same stack slot in two independent lists. 351 352 We do not round to stack_boundary here. */ 353 354 rtx 355 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size, 356 int align, int kind) 357 { 358 rtx x, addr; 359 int bigend_correction = 0; 360 HOST_WIDE_INT slot_offset = 0, old_frame_offset; 361 unsigned int alignment, alignment_in_bits; 362 363 if (align == 0) 364 { 365 alignment = get_stack_local_alignment (NULL, mode); 366 alignment /= BITS_PER_UNIT; 367 } 368 else if (align == -1) 369 { 370 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT; 371 size = CEIL_ROUND (size, alignment); 372 } 373 else if (align == -2) 374 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */ 375 else 376 alignment = align / BITS_PER_UNIT; 377 378 alignment_in_bits = alignment * BITS_PER_UNIT; 379 380 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */ 381 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT) 382 { 383 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT; 384 alignment = alignment_in_bits / BITS_PER_UNIT; 385 } 386 387 if (SUPPORTS_STACK_ALIGNMENT) 388 { 389 if (crtl->stack_alignment_estimated < alignment_in_bits) 390 { 391 if (!crtl->stack_realign_processed) 392 crtl->stack_alignment_estimated = alignment_in_bits; 393 else 394 { 395 /* If stack is realigned and stack alignment value 396 hasn't been finalized, it is OK not to increase 397 stack_alignment_estimated. The bigger alignment 398 requirement is recorded in stack_alignment_needed 399 below. */ 400 gcc_assert (!crtl->stack_realign_finalized); 401 if (!crtl->stack_realign_needed) 402 { 403 /* It is OK to reduce the alignment as long as the 404 requested size is 0 or the estimated stack 405 alignment >= mode alignment. */ 406 gcc_assert ((kind & ASLK_REDUCE_ALIGN) 407 || size == 0 408 || (crtl->stack_alignment_estimated 409 >= GET_MODE_ALIGNMENT (mode))); 410 alignment_in_bits = crtl->stack_alignment_estimated; 411 alignment = alignment_in_bits / BITS_PER_UNIT; 412 } 413 } 414 } 415 } 416 417 if (crtl->stack_alignment_needed < alignment_in_bits) 418 crtl->stack_alignment_needed = alignment_in_bits; 419 if (crtl->max_used_stack_slot_alignment < alignment_in_bits) 420 crtl->max_used_stack_slot_alignment = alignment_in_bits; 421 422 if (mode != BLKmode || size != 0) 423 { 424 if (kind & ASLK_RECORD_PAD) 425 { 426 struct frame_space **psp; 427 428 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next) 429 { 430 struct frame_space *space = *psp; 431 if (!try_fit_stack_local (space->start, space->length, size, 432 alignment, &slot_offset)) 433 continue; 434 *psp = space->next; 435 if (slot_offset > space->start) 436 add_frame_space (space->start, slot_offset); 437 if (slot_offset + size < space->start + space->length) 438 add_frame_space (slot_offset + size, 439 space->start + space->length); 440 goto found_space; 441 } 442 } 443 } 444 else if (!STACK_ALIGNMENT_NEEDED) 445 { 446 slot_offset = frame_offset; 447 goto found_space; 448 } 449 450 old_frame_offset = frame_offset; 451 452 if (FRAME_GROWS_DOWNWARD) 453 { 454 frame_offset -= size; 455 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset); 456 457 if (kind & ASLK_RECORD_PAD) 458 { 459 if (slot_offset > frame_offset) 460 add_frame_space (frame_offset, slot_offset); 461 if (slot_offset + size < old_frame_offset) 462 add_frame_space (slot_offset + size, old_frame_offset); 463 } 464 } 465 else 466 { 467 frame_offset += size; 468 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset); 469 470 if (kind & ASLK_RECORD_PAD) 471 { 472 if (slot_offset > old_frame_offset) 473 add_frame_space (old_frame_offset, slot_offset); 474 if (slot_offset + size < frame_offset) 475 add_frame_space (slot_offset + size, frame_offset); 476 } 477 } 478 479 found_space: 480 /* On a big-endian machine, if we are allocating more space than we will use, 481 use the least significant bytes of those that are allocated. */ 482 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size) 483 bigend_correction = size - GET_MODE_SIZE (mode); 484 485 /* If we have already instantiated virtual registers, return the actual 486 address relative to the frame pointer. */ 487 if (virtuals_instantiated) 488 addr = plus_constant (Pmode, frame_pointer_rtx, 489 trunc_int_for_mode 490 (slot_offset + bigend_correction 491 + STARTING_FRAME_OFFSET, Pmode)); 492 else 493 addr = plus_constant (Pmode, virtual_stack_vars_rtx, 494 trunc_int_for_mode 495 (slot_offset + bigend_correction, 496 Pmode)); 497 498 x = gen_rtx_MEM (mode, addr); 499 set_mem_align (x, alignment_in_bits); 500 MEM_NOTRAP_P (x) = 1; 501 502 stack_slot_list 503 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list); 504 505 if (frame_offset_overflow (frame_offset, current_function_decl)) 506 frame_offset = 0; 507 508 return x; 509 } 510 511 /* Wrap up assign_stack_local_1 with last parameter as false. */ 512 513 rtx 514 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align) 515 { 516 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD); 517 } 518 519 /* In order to evaluate some expressions, such as function calls returning 520 structures in memory, we need to temporarily allocate stack locations. 521 We record each allocated temporary in the following structure. 522 523 Associated with each temporary slot is a nesting level. When we pop up 524 one level, all temporaries associated with the previous level are freed. 525 Normally, all temporaries are freed after the execution of the statement 526 in which they were created. However, if we are inside a ({...}) grouping, 527 the result may be in a temporary and hence must be preserved. If the 528 result could be in a temporary, we preserve it if we can determine which 529 one it is in. If we cannot determine which temporary may contain the 530 result, all temporaries are preserved. A temporary is preserved by 531 pretending it was allocated at the previous nesting level. */ 532 533 struct GTY(()) temp_slot { 534 /* Points to next temporary slot. */ 535 struct temp_slot *next; 536 /* Points to previous temporary slot. */ 537 struct temp_slot *prev; 538 /* The rtx to used to reference the slot. */ 539 rtx slot; 540 /* The size, in units, of the slot. */ 541 HOST_WIDE_INT size; 542 /* The type of the object in the slot, or zero if it doesn't correspond 543 to a type. We use this to determine whether a slot can be reused. 544 It can be reused if objects of the type of the new slot will always 545 conflict with objects of the type of the old slot. */ 546 tree type; 547 /* The alignment (in bits) of the slot. */ 548 unsigned int align; 549 /* Nonzero if this temporary is currently in use. */ 550 char in_use; 551 /* Nesting level at which this slot is being used. */ 552 int level; 553 /* The offset of the slot from the frame_pointer, including extra space 554 for alignment. This info is for combine_temp_slots. */ 555 HOST_WIDE_INT base_offset; 556 /* The size of the slot, including extra space for alignment. This 557 info is for combine_temp_slots. */ 558 HOST_WIDE_INT full_size; 559 }; 560 561 /* Entry for the below hash table. */ 562 struct GTY((for_user)) temp_slot_address_entry { 563 hashval_t hash; 564 rtx address; 565 struct temp_slot *temp_slot; 566 }; 567 568 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry> 569 { 570 static hashval_t hash (temp_slot_address_entry *); 571 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *); 572 }; 573 574 /* A table of addresses that represent a stack slot. The table is a mapping 575 from address RTXen to a temp slot. */ 576 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table; 577 static size_t n_temp_slots_in_use; 578 579 /* Removes temporary slot TEMP from LIST. */ 580 581 static void 582 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list) 583 { 584 if (temp->next) 585 temp->next->prev = temp->prev; 586 if (temp->prev) 587 temp->prev->next = temp->next; 588 else 589 *list = temp->next; 590 591 temp->prev = temp->next = NULL; 592 } 593 594 /* Inserts temporary slot TEMP to LIST. */ 595 596 static void 597 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list) 598 { 599 temp->next = *list; 600 if (*list) 601 (*list)->prev = temp; 602 temp->prev = NULL; 603 *list = temp; 604 } 605 606 /* Returns the list of used temp slots at LEVEL. */ 607 608 static struct temp_slot ** 609 temp_slots_at_level (int level) 610 { 611 if (level >= (int) vec_safe_length (used_temp_slots)) 612 vec_safe_grow_cleared (used_temp_slots, level + 1); 613 614 return &(*used_temp_slots)[level]; 615 } 616 617 /* Returns the maximal temporary slot level. */ 618 619 static int 620 max_slot_level (void) 621 { 622 if (!used_temp_slots) 623 return -1; 624 625 return used_temp_slots->length () - 1; 626 } 627 628 /* Moves temporary slot TEMP to LEVEL. */ 629 630 static void 631 move_slot_to_level (struct temp_slot *temp, int level) 632 { 633 cut_slot_from_list (temp, temp_slots_at_level (temp->level)); 634 insert_slot_to_list (temp, temp_slots_at_level (level)); 635 temp->level = level; 636 } 637 638 /* Make temporary slot TEMP available. */ 639 640 static void 641 make_slot_available (struct temp_slot *temp) 642 { 643 cut_slot_from_list (temp, temp_slots_at_level (temp->level)); 644 insert_slot_to_list (temp, &avail_temp_slots); 645 temp->in_use = 0; 646 temp->level = -1; 647 n_temp_slots_in_use--; 648 } 649 650 /* Compute the hash value for an address -> temp slot mapping. 651 The value is cached on the mapping entry. */ 652 static hashval_t 653 temp_slot_address_compute_hash (struct temp_slot_address_entry *t) 654 { 655 int do_not_record = 0; 656 return hash_rtx (t->address, GET_MODE (t->address), 657 &do_not_record, NULL, false); 658 } 659 660 /* Return the hash value for an address -> temp slot mapping. */ 661 hashval_t 662 temp_address_hasher::hash (temp_slot_address_entry *t) 663 { 664 return t->hash; 665 } 666 667 /* Compare two address -> temp slot mapping entries. */ 668 bool 669 temp_address_hasher::equal (temp_slot_address_entry *t1, 670 temp_slot_address_entry *t2) 671 { 672 return exp_equiv_p (t1->address, t2->address, 0, true); 673 } 674 675 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */ 676 static void 677 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot) 678 { 679 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> (); 680 t->address = address; 681 t->temp_slot = temp_slot; 682 t->hash = temp_slot_address_compute_hash (t); 683 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t; 684 } 685 686 /* Remove an address -> temp slot mapping entry if the temp slot is 687 not in use anymore. Callback for remove_unused_temp_slot_addresses. */ 688 int 689 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *) 690 { 691 const struct temp_slot_address_entry *t = *slot; 692 if (! t->temp_slot->in_use) 693 temp_slot_address_table->clear_slot (slot); 694 return 1; 695 } 696 697 /* Remove all mappings of addresses to unused temp slots. */ 698 static void 699 remove_unused_temp_slot_addresses (void) 700 { 701 /* Use quicker clearing if there aren't any active temp slots. */ 702 if (n_temp_slots_in_use) 703 temp_slot_address_table->traverse 704 <void *, remove_unused_temp_slot_addresses_1> (NULL); 705 else 706 temp_slot_address_table->empty (); 707 } 708 709 /* Find the temp slot corresponding to the object at address X. */ 710 711 static struct temp_slot * 712 find_temp_slot_from_address (rtx x) 713 { 714 struct temp_slot *p; 715 struct temp_slot_address_entry tmp, *t; 716 717 /* First try the easy way: 718 See if X exists in the address -> temp slot mapping. */ 719 tmp.address = x; 720 tmp.temp_slot = NULL; 721 tmp.hash = temp_slot_address_compute_hash (&tmp); 722 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash); 723 if (t) 724 return t->temp_slot; 725 726 /* If we have a sum involving a register, see if it points to a temp 727 slot. */ 728 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0)) 729 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0) 730 return p; 731 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1)) 732 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0) 733 return p; 734 735 /* Last resort: Address is a virtual stack var address. */ 736 if (GET_CODE (x) == PLUS 737 && XEXP (x, 0) == virtual_stack_vars_rtx 738 && CONST_INT_P (XEXP (x, 1))) 739 { 740 int i; 741 for (i = max_slot_level (); i >= 0; i--) 742 for (p = *temp_slots_at_level (i); p; p = p->next) 743 { 744 if (INTVAL (XEXP (x, 1)) >= p->base_offset 745 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size) 746 return p; 747 } 748 } 749 750 return NULL; 751 } 752 753 /* Allocate a temporary stack slot and record it for possible later 754 reuse. 755 756 MODE is the machine mode to be given to the returned rtx. 757 758 SIZE is the size in units of the space required. We do no rounding here 759 since assign_stack_local will do any required rounding. 760 761 TYPE is the type that will be used for the stack slot. */ 762 763 rtx 764 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size, 765 tree type) 766 { 767 unsigned int align; 768 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp; 769 rtx slot; 770 771 /* If SIZE is -1 it means that somebody tried to allocate a temporary 772 of a variable size. */ 773 gcc_assert (size != -1); 774 775 align = get_stack_local_alignment (type, mode); 776 777 /* Try to find an available, already-allocated temporary of the proper 778 mode which meets the size and alignment requirements. Choose the 779 smallest one with the closest alignment. 780 781 If assign_stack_temp is called outside of the tree->rtl expansion, 782 we cannot reuse the stack slots (that may still refer to 783 VIRTUAL_STACK_VARS_REGNUM). */ 784 if (!virtuals_instantiated) 785 { 786 for (p = avail_temp_slots; p; p = p->next) 787 { 788 if (p->align >= align && p->size >= size 789 && GET_MODE (p->slot) == mode 790 && objects_must_conflict_p (p->type, type) 791 && (best_p == 0 || best_p->size > p->size 792 || (best_p->size == p->size && best_p->align > p->align))) 793 { 794 if (p->align == align && p->size == size) 795 { 796 selected = p; 797 cut_slot_from_list (selected, &avail_temp_slots); 798 best_p = 0; 799 break; 800 } 801 best_p = p; 802 } 803 } 804 } 805 806 /* Make our best, if any, the one to use. */ 807 if (best_p) 808 { 809 selected = best_p; 810 cut_slot_from_list (selected, &avail_temp_slots); 811 812 /* If there are enough aligned bytes left over, make them into a new 813 temp_slot so that the extra bytes don't get wasted. Do this only 814 for BLKmode slots, so that we can be sure of the alignment. */ 815 if (GET_MODE (best_p->slot) == BLKmode) 816 { 817 int alignment = best_p->align / BITS_PER_UNIT; 818 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment); 819 820 if (best_p->size - rounded_size >= alignment) 821 { 822 p = ggc_alloc<temp_slot> (); 823 p->in_use = 0; 824 p->size = best_p->size - rounded_size; 825 p->base_offset = best_p->base_offset + rounded_size; 826 p->full_size = best_p->full_size - rounded_size; 827 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size); 828 p->align = best_p->align; 829 p->type = best_p->type; 830 insert_slot_to_list (p, &avail_temp_slots); 831 832 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot, 833 stack_slot_list); 834 835 best_p->size = rounded_size; 836 best_p->full_size = rounded_size; 837 } 838 } 839 } 840 841 /* If we still didn't find one, make a new temporary. */ 842 if (selected == 0) 843 { 844 HOST_WIDE_INT frame_offset_old = frame_offset; 845 846 p = ggc_alloc<temp_slot> (); 847 848 /* We are passing an explicit alignment request to assign_stack_local. 849 One side effect of that is assign_stack_local will not round SIZE 850 to ensure the frame offset remains suitably aligned. 851 852 So for requests which depended on the rounding of SIZE, we go ahead 853 and round it now. We also make sure ALIGNMENT is at least 854 BIGGEST_ALIGNMENT. */ 855 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT); 856 p->slot = assign_stack_local_1 (mode, 857 (mode == BLKmode 858 ? CEIL_ROUND (size, 859 (int) align 860 / BITS_PER_UNIT) 861 : size), 862 align, 0); 863 864 p->align = align; 865 866 /* The following slot size computation is necessary because we don't 867 know the actual size of the temporary slot until assign_stack_local 868 has performed all the frame alignment and size rounding for the 869 requested temporary. Note that extra space added for alignment 870 can be either above or below this stack slot depending on which 871 way the frame grows. We include the extra space if and only if it 872 is above this slot. */ 873 if (FRAME_GROWS_DOWNWARD) 874 p->size = frame_offset_old - frame_offset; 875 else 876 p->size = size; 877 878 /* Now define the fields used by combine_temp_slots. */ 879 if (FRAME_GROWS_DOWNWARD) 880 { 881 p->base_offset = frame_offset; 882 p->full_size = frame_offset_old - frame_offset; 883 } 884 else 885 { 886 p->base_offset = frame_offset_old; 887 p->full_size = frame_offset - frame_offset_old; 888 } 889 890 selected = p; 891 } 892 893 p = selected; 894 p->in_use = 1; 895 p->type = type; 896 p->level = temp_slot_level; 897 n_temp_slots_in_use++; 898 899 pp = temp_slots_at_level (p->level); 900 insert_slot_to_list (p, pp); 901 insert_temp_slot_address (XEXP (p->slot, 0), p); 902 903 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */ 904 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0)); 905 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list); 906 907 /* If we know the alias set for the memory that will be used, use 908 it. If there's no TYPE, then we don't know anything about the 909 alias set for the memory. */ 910 set_mem_alias_set (slot, type ? get_alias_set (type) : 0); 911 set_mem_align (slot, align); 912 913 /* If a type is specified, set the relevant flags. */ 914 if (type != 0) 915 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type); 916 MEM_NOTRAP_P (slot) = 1; 917 918 return slot; 919 } 920 921 /* Allocate a temporary stack slot and record it for possible later 922 reuse. First two arguments are same as in preceding function. */ 923 924 rtx 925 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size) 926 { 927 return assign_stack_temp_for_type (mode, size, NULL_TREE); 928 } 929 930 /* Assign a temporary. 931 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl 932 and so that should be used in error messages. In either case, we 933 allocate of the given type. 934 MEMORY_REQUIRED is 1 if the result must be addressable stack memory; 935 it is 0 if a register is OK. 936 DONT_PROMOTE is 1 if we should not promote values in register 937 to wider modes. */ 938 939 rtx 940 assign_temp (tree type_or_decl, int memory_required, 941 int dont_promote ATTRIBUTE_UNUSED) 942 { 943 tree type, decl; 944 machine_mode mode; 945 #ifdef PROMOTE_MODE 946 int unsignedp; 947 #endif 948 949 if (DECL_P (type_or_decl)) 950 decl = type_or_decl, type = TREE_TYPE (decl); 951 else 952 decl = NULL, type = type_or_decl; 953 954 mode = TYPE_MODE (type); 955 #ifdef PROMOTE_MODE 956 unsignedp = TYPE_UNSIGNED (type); 957 #endif 958 959 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front 960 end. See also create_tmp_var for the gimplification-time check. */ 961 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type)); 962 963 if (mode == BLKmode || memory_required) 964 { 965 HOST_WIDE_INT size = int_size_in_bytes (type); 966 rtx tmp; 967 968 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid 969 problems with allocating the stack space. */ 970 if (size == 0) 971 size = 1; 972 973 /* Unfortunately, we don't yet know how to allocate variable-sized 974 temporaries. However, sometimes we can find a fixed upper limit on 975 the size, so try that instead. */ 976 else if (size == -1) 977 size = max_int_size_in_bytes (type); 978 979 /* The size of the temporary may be too large to fit into an integer. */ 980 /* ??? Not sure this should happen except for user silliness, so limit 981 this to things that aren't compiler-generated temporaries. The 982 rest of the time we'll die in assign_stack_temp_for_type. */ 983 if (decl && size == -1 984 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST) 985 { 986 error ("size of variable %q+D is too large", decl); 987 size = 1; 988 } 989 990 tmp = assign_stack_temp_for_type (mode, size, type); 991 return tmp; 992 } 993 994 #ifdef PROMOTE_MODE 995 if (! dont_promote) 996 mode = promote_mode (type, mode, &unsignedp); 997 #endif 998 999 return gen_reg_rtx (mode); 1000 } 1001 1002 /* Combine temporary stack slots which are adjacent on the stack. 1003 1004 This allows for better use of already allocated stack space. This is only 1005 done for BLKmode slots because we can be sure that we won't have alignment 1006 problems in this case. */ 1007 1008 static void 1009 combine_temp_slots (void) 1010 { 1011 struct temp_slot *p, *q, *next, *next_q; 1012 int num_slots; 1013 1014 /* We can't combine slots, because the information about which slot 1015 is in which alias set will be lost. */ 1016 if (flag_strict_aliasing) 1017 return; 1018 1019 /* If there are a lot of temp slots, don't do anything unless 1020 high levels of optimization. */ 1021 if (! flag_expensive_optimizations) 1022 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++) 1023 if (num_slots > 100 || (num_slots > 10 && optimize == 0)) 1024 return; 1025 1026 for (p = avail_temp_slots; p; p = next) 1027 { 1028 int delete_p = 0; 1029 1030 next = p->next; 1031 1032 if (GET_MODE (p->slot) != BLKmode) 1033 continue; 1034 1035 for (q = p->next; q; q = next_q) 1036 { 1037 int delete_q = 0; 1038 1039 next_q = q->next; 1040 1041 if (GET_MODE (q->slot) != BLKmode) 1042 continue; 1043 1044 if (p->base_offset + p->full_size == q->base_offset) 1045 { 1046 /* Q comes after P; combine Q into P. */ 1047 p->size += q->size; 1048 p->full_size += q->full_size; 1049 delete_q = 1; 1050 } 1051 else if (q->base_offset + q->full_size == p->base_offset) 1052 { 1053 /* P comes after Q; combine P into Q. */ 1054 q->size += p->size; 1055 q->full_size += p->full_size; 1056 delete_p = 1; 1057 break; 1058 } 1059 if (delete_q) 1060 cut_slot_from_list (q, &avail_temp_slots); 1061 } 1062 1063 /* Either delete P or advance past it. */ 1064 if (delete_p) 1065 cut_slot_from_list (p, &avail_temp_slots); 1066 } 1067 } 1068 1069 /* Indicate that NEW_RTX is an alternate way of referring to the temp 1070 slot that previously was known by OLD_RTX. */ 1071 1072 void 1073 update_temp_slot_address (rtx old_rtx, rtx new_rtx) 1074 { 1075 struct temp_slot *p; 1076 1077 if (rtx_equal_p (old_rtx, new_rtx)) 1078 return; 1079 1080 p = find_temp_slot_from_address (old_rtx); 1081 1082 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and 1083 NEW_RTX is a register, see if one operand of the PLUS is a 1084 temporary location. If so, NEW_RTX points into it. Otherwise, 1085 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register 1086 in common between them. If so, try a recursive call on those 1087 values. */ 1088 if (p == 0) 1089 { 1090 if (GET_CODE (old_rtx) != PLUS) 1091 return; 1092 1093 if (REG_P (new_rtx)) 1094 { 1095 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx); 1096 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx); 1097 return; 1098 } 1099 else if (GET_CODE (new_rtx) != PLUS) 1100 return; 1101 1102 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0))) 1103 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1)); 1104 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0))) 1105 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1)); 1106 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1))) 1107 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0)); 1108 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1))) 1109 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0)); 1110 1111 return; 1112 } 1113 1114 /* Otherwise add an alias for the temp's address. */ 1115 insert_temp_slot_address (new_rtx, p); 1116 } 1117 1118 /* If X could be a reference to a temporary slot, mark that slot as 1119 belonging to the to one level higher than the current level. If X 1120 matched one of our slots, just mark that one. Otherwise, we can't 1121 easily predict which it is, so upgrade all of them. 1122 1123 This is called when an ({...}) construct occurs and a statement 1124 returns a value in memory. */ 1125 1126 void 1127 preserve_temp_slots (rtx x) 1128 { 1129 struct temp_slot *p = 0, *next; 1130 1131 if (x == 0) 1132 return; 1133 1134 /* If X is a register that is being used as a pointer, see if we have 1135 a temporary slot we know it points to. */ 1136 if (REG_P (x) && REG_POINTER (x)) 1137 p = find_temp_slot_from_address (x); 1138 1139 /* If X is not in memory or is at a constant address, it cannot be in 1140 a temporary slot. */ 1141 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))) 1142 return; 1143 1144 /* First see if we can find a match. */ 1145 if (p == 0) 1146 p = find_temp_slot_from_address (XEXP (x, 0)); 1147 1148 if (p != 0) 1149 { 1150 if (p->level == temp_slot_level) 1151 move_slot_to_level (p, temp_slot_level - 1); 1152 return; 1153 } 1154 1155 /* Otherwise, preserve all non-kept slots at this level. */ 1156 for (p = *temp_slots_at_level (temp_slot_level); p; p = next) 1157 { 1158 next = p->next; 1159 move_slot_to_level (p, temp_slot_level - 1); 1160 } 1161 } 1162 1163 /* Free all temporaries used so far. This is normally called at the 1164 end of generating code for a statement. */ 1165 1166 void 1167 free_temp_slots (void) 1168 { 1169 struct temp_slot *p, *next; 1170 bool some_available = false; 1171 1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next) 1173 { 1174 next = p->next; 1175 make_slot_available (p); 1176 some_available = true; 1177 } 1178 1179 if (some_available) 1180 { 1181 remove_unused_temp_slot_addresses (); 1182 combine_temp_slots (); 1183 } 1184 } 1185 1186 /* Push deeper into the nesting level for stack temporaries. */ 1187 1188 void 1189 push_temp_slots (void) 1190 { 1191 temp_slot_level++; 1192 } 1193 1194 /* Pop a temporary nesting level. All slots in use in the current level 1195 are freed. */ 1196 1197 void 1198 pop_temp_slots (void) 1199 { 1200 free_temp_slots (); 1201 temp_slot_level--; 1202 } 1203 1204 /* Initialize temporary slots. */ 1205 1206 void 1207 init_temp_slots (void) 1208 { 1209 /* We have not allocated any temporaries yet. */ 1210 avail_temp_slots = 0; 1211 vec_alloc (used_temp_slots, 0); 1212 temp_slot_level = 0; 1213 n_temp_slots_in_use = 0; 1214 1215 /* Set up the table to map addresses to temp slots. */ 1216 if (! temp_slot_address_table) 1217 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32); 1218 else 1219 temp_slot_address_table->empty (); 1220 } 1221 1222 /* Functions and data structures to keep track of the values hard regs 1223 had at the start of the function. */ 1224 1225 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val, 1226 and has_hard_reg_initial_val.. */ 1227 struct GTY(()) initial_value_pair { 1228 rtx hard_reg; 1229 rtx pseudo; 1230 }; 1231 /* ??? This could be a VEC but there is currently no way to define an 1232 opaque VEC type. This could be worked around by defining struct 1233 initial_value_pair in function.h. */ 1234 struct GTY(()) initial_value_struct { 1235 int num_entries; 1236 int max_entries; 1237 initial_value_pair * GTY ((length ("%h.num_entries"))) entries; 1238 }; 1239 1240 /* If a pseudo represents an initial hard reg (or expression), return 1241 it, else return NULL_RTX. */ 1242 1243 rtx 1244 get_hard_reg_initial_reg (rtx reg) 1245 { 1246 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1247 int i; 1248 1249 if (ivs == 0) 1250 return NULL_RTX; 1251 1252 for (i = 0; i < ivs->num_entries; i++) 1253 if (rtx_equal_p (ivs->entries[i].pseudo, reg)) 1254 return ivs->entries[i].hard_reg; 1255 1256 return NULL_RTX; 1257 } 1258 1259 /* Make sure that there's a pseudo register of mode MODE that stores the 1260 initial value of hard register REGNO. Return an rtx for such a pseudo. */ 1261 1262 rtx 1263 get_hard_reg_initial_val (machine_mode mode, unsigned int regno) 1264 { 1265 struct initial_value_struct *ivs; 1266 rtx rv; 1267 1268 rv = has_hard_reg_initial_val (mode, regno); 1269 if (rv) 1270 return rv; 1271 1272 ivs = crtl->hard_reg_initial_vals; 1273 if (ivs == 0) 1274 { 1275 ivs = ggc_alloc<initial_value_struct> (); 1276 ivs->num_entries = 0; 1277 ivs->max_entries = 5; 1278 ivs->entries = ggc_vec_alloc<initial_value_pair> (5); 1279 crtl->hard_reg_initial_vals = ivs; 1280 } 1281 1282 if (ivs->num_entries >= ivs->max_entries) 1283 { 1284 ivs->max_entries += 5; 1285 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries, 1286 ivs->max_entries); 1287 } 1288 1289 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno); 1290 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode); 1291 1292 return ivs->entries[ivs->num_entries++].pseudo; 1293 } 1294 1295 /* See if get_hard_reg_initial_val has been used to create a pseudo 1296 for the initial value of hard register REGNO in mode MODE. Return 1297 the associated pseudo if so, otherwise return NULL. */ 1298 1299 rtx 1300 has_hard_reg_initial_val (machine_mode mode, unsigned int regno) 1301 { 1302 struct initial_value_struct *ivs; 1303 int i; 1304 1305 ivs = crtl->hard_reg_initial_vals; 1306 if (ivs != 0) 1307 for (i = 0; i < ivs->num_entries; i++) 1308 if (GET_MODE (ivs->entries[i].hard_reg) == mode 1309 && REGNO (ivs->entries[i].hard_reg) == regno) 1310 return ivs->entries[i].pseudo; 1311 1312 return NULL_RTX; 1313 } 1314 1315 unsigned int 1316 emit_initial_value_sets (void) 1317 { 1318 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1319 int i; 1320 rtx_insn *seq; 1321 1322 if (ivs == 0) 1323 return 0; 1324 1325 start_sequence (); 1326 for (i = 0; i < ivs->num_entries; i++) 1327 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg); 1328 seq = get_insns (); 1329 end_sequence (); 1330 1331 emit_insn_at_entry (seq); 1332 return 0; 1333 } 1334 1335 /* Return the hardreg-pseudoreg initial values pair entry I and 1336 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */ 1337 bool 1338 initial_value_entry (int i, rtx *hreg, rtx *preg) 1339 { 1340 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1341 if (!ivs || i >= ivs->num_entries) 1342 return false; 1343 1344 *hreg = ivs->entries[i].hard_reg; 1345 *preg = ivs->entries[i].pseudo; 1346 return true; 1347 } 1348 1349 /* These routines are responsible for converting virtual register references 1350 to the actual hard register references once RTL generation is complete. 1351 1352 The following four variables are used for communication between the 1353 routines. They contain the offsets of the virtual registers from their 1354 respective hard registers. */ 1355 1356 static int in_arg_offset; 1357 static int var_offset; 1358 static int dynamic_offset; 1359 static int out_arg_offset; 1360 static int cfa_offset; 1361 1362 /* In most machines, the stack pointer register is equivalent to the bottom 1363 of the stack. */ 1364 1365 #ifndef STACK_POINTER_OFFSET 1366 #define STACK_POINTER_OFFSET 0 1367 #endif 1368 1369 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE) 1370 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE 1371 #endif 1372 1373 /* If not defined, pick an appropriate default for the offset of dynamically 1374 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS, 1375 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */ 1376 1377 #ifndef STACK_DYNAMIC_OFFSET 1378 1379 /* The bottom of the stack points to the actual arguments. If 1380 REG_PARM_STACK_SPACE is defined, this includes the space for the register 1381 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined, 1382 stack space for register parameters is not pushed by the caller, but 1383 rather part of the fixed stack areas and hence not included in 1384 `crtl->outgoing_args_size'. Nevertheless, we must allow 1385 for it when allocating stack dynamic objects. */ 1386 1387 #ifdef INCOMING_REG_PARM_STACK_SPACE 1388 #define STACK_DYNAMIC_OFFSET(FNDECL) \ 1389 ((ACCUMULATE_OUTGOING_ARGS \ 1390 ? (crtl->outgoing_args_size \ 1391 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \ 1392 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \ 1393 : 0) + (STACK_POINTER_OFFSET)) 1394 #else 1395 #define STACK_DYNAMIC_OFFSET(FNDECL) \ 1396 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \ 1397 + (STACK_POINTER_OFFSET)) 1398 #endif 1399 #endif 1400 1401 1402 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX 1403 is a virtual register, return the equivalent hard register and set the 1404 offset indirectly through the pointer. Otherwise, return 0. */ 1405 1406 static rtx 1407 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset) 1408 { 1409 rtx new_rtx; 1410 HOST_WIDE_INT offset; 1411 1412 if (x == virtual_incoming_args_rtx) 1413 { 1414 if (stack_realign_drap) 1415 { 1416 /* Replace virtual_incoming_args_rtx with internal arg 1417 pointer if DRAP is used to realign stack. */ 1418 new_rtx = crtl->args.internal_arg_pointer; 1419 offset = 0; 1420 } 1421 else 1422 new_rtx = arg_pointer_rtx, offset = in_arg_offset; 1423 } 1424 else if (x == virtual_stack_vars_rtx) 1425 new_rtx = frame_pointer_rtx, offset = var_offset; 1426 else if (x == virtual_stack_dynamic_rtx) 1427 new_rtx = stack_pointer_rtx, offset = dynamic_offset; 1428 else if (x == virtual_outgoing_args_rtx) 1429 new_rtx = stack_pointer_rtx, offset = out_arg_offset; 1430 else if (x == virtual_cfa_rtx) 1431 { 1432 #ifdef FRAME_POINTER_CFA_OFFSET 1433 new_rtx = frame_pointer_rtx; 1434 #else 1435 new_rtx = arg_pointer_rtx; 1436 #endif 1437 offset = cfa_offset; 1438 } 1439 else if (x == virtual_preferred_stack_boundary_rtx) 1440 { 1441 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT); 1442 offset = 0; 1443 } 1444 else 1445 return NULL_RTX; 1446 1447 *poffset = offset; 1448 return new_rtx; 1449 } 1450 1451 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual 1452 registers present inside of *LOC. The expression is simplified, 1453 as much as possible, but is not to be considered "valid" in any sense 1454 implied by the target. Return true if any change is made. */ 1455 1456 static bool 1457 instantiate_virtual_regs_in_rtx (rtx *loc) 1458 { 1459 if (!*loc) 1460 return false; 1461 bool changed = false; 1462 subrtx_ptr_iterator::array_type array; 1463 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) 1464 { 1465 rtx *loc = *iter; 1466 if (rtx x = *loc) 1467 { 1468 rtx new_rtx; 1469 HOST_WIDE_INT offset; 1470 switch (GET_CODE (x)) 1471 { 1472 case REG: 1473 new_rtx = instantiate_new_reg (x, &offset); 1474 if (new_rtx) 1475 { 1476 *loc = plus_constant (GET_MODE (x), new_rtx, offset); 1477 changed = true; 1478 } 1479 iter.skip_subrtxes (); 1480 break; 1481 1482 case PLUS: 1483 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset); 1484 if (new_rtx) 1485 { 1486 XEXP (x, 0) = new_rtx; 1487 *loc = plus_constant (GET_MODE (x), x, offset, true); 1488 changed = true; 1489 iter.skip_subrtxes (); 1490 break; 1491 } 1492 1493 /* FIXME -- from old code */ 1494 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know 1495 we can commute the PLUS and SUBREG because pointers into the 1496 frame are well-behaved. */ 1497 break; 1498 1499 default: 1500 break; 1501 } 1502 } 1503 } 1504 return changed; 1505 } 1506 1507 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X 1508 matches the predicate for insn CODE operand OPERAND. */ 1509 1510 static int 1511 safe_insn_predicate (int code, int operand, rtx x) 1512 { 1513 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x); 1514 } 1515 1516 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual 1517 registers present inside of insn. The result will be a valid insn. */ 1518 1519 static void 1520 instantiate_virtual_regs_in_insn (rtx_insn *insn) 1521 { 1522 HOST_WIDE_INT offset; 1523 int insn_code, i; 1524 bool any_change = false; 1525 rtx set, new_rtx, x; 1526 rtx_insn *seq; 1527 1528 /* There are some special cases to be handled first. */ 1529 set = single_set (insn); 1530 if (set) 1531 { 1532 /* We're allowed to assign to a virtual register. This is interpreted 1533 to mean that the underlying register gets assigned the inverse 1534 transformation. This is used, for example, in the handling of 1535 non-local gotos. */ 1536 new_rtx = instantiate_new_reg (SET_DEST (set), &offset); 1537 if (new_rtx) 1538 { 1539 start_sequence (); 1540 1541 instantiate_virtual_regs_in_rtx (&SET_SRC (set)); 1542 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set), 1543 gen_int_mode (-offset, GET_MODE (new_rtx))); 1544 x = force_operand (x, new_rtx); 1545 if (x != new_rtx) 1546 emit_move_insn (new_rtx, x); 1547 1548 seq = get_insns (); 1549 end_sequence (); 1550 1551 emit_insn_before (seq, insn); 1552 delete_insn (insn); 1553 return; 1554 } 1555 1556 /* Handle a straight copy from a virtual register by generating a 1557 new add insn. The difference between this and falling through 1558 to the generic case is avoiding a new pseudo and eliminating a 1559 move insn in the initial rtl stream. */ 1560 new_rtx = instantiate_new_reg (SET_SRC (set), &offset); 1561 if (new_rtx && offset != 0 1562 && REG_P (SET_DEST (set)) 1563 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) 1564 { 1565 start_sequence (); 1566 1567 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx, 1568 gen_int_mode (offset, 1569 GET_MODE (SET_DEST (set))), 1570 SET_DEST (set), 1, OPTAB_LIB_WIDEN); 1571 if (x != SET_DEST (set)) 1572 emit_move_insn (SET_DEST (set), x); 1573 1574 seq = get_insns (); 1575 end_sequence (); 1576 1577 emit_insn_before (seq, insn); 1578 delete_insn (insn); 1579 return; 1580 } 1581 1582 extract_insn (insn); 1583 insn_code = INSN_CODE (insn); 1584 1585 /* Handle a plus involving a virtual register by determining if the 1586 operands remain valid if they're modified in place. */ 1587 if (GET_CODE (SET_SRC (set)) == PLUS 1588 && recog_data.n_operands >= 3 1589 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0) 1590 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1) 1591 && CONST_INT_P (recog_data.operand[2]) 1592 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset))) 1593 { 1594 offset += INTVAL (recog_data.operand[2]); 1595 1596 /* If the sum is zero, then replace with a plain move. */ 1597 if (offset == 0 1598 && REG_P (SET_DEST (set)) 1599 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) 1600 { 1601 start_sequence (); 1602 emit_move_insn (SET_DEST (set), new_rtx); 1603 seq = get_insns (); 1604 end_sequence (); 1605 1606 emit_insn_before (seq, insn); 1607 delete_insn (insn); 1608 return; 1609 } 1610 1611 x = gen_int_mode (offset, recog_data.operand_mode[2]); 1612 1613 /* Using validate_change and apply_change_group here leaves 1614 recog_data in an invalid state. Since we know exactly what 1615 we want to check, do those two by hand. */ 1616 if (safe_insn_predicate (insn_code, 1, new_rtx) 1617 && safe_insn_predicate (insn_code, 2, x)) 1618 { 1619 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx; 1620 *recog_data.operand_loc[2] = recog_data.operand[2] = x; 1621 any_change = true; 1622 1623 /* Fall through into the regular operand fixup loop in 1624 order to take care of operands other than 1 and 2. */ 1625 } 1626 } 1627 } 1628 else 1629 { 1630 extract_insn (insn); 1631 insn_code = INSN_CODE (insn); 1632 } 1633 1634 /* In the general case, we expect virtual registers to appear only in 1635 operands, and then only as either bare registers or inside memories. */ 1636 for (i = 0; i < recog_data.n_operands; ++i) 1637 { 1638 x = recog_data.operand[i]; 1639 switch (GET_CODE (x)) 1640 { 1641 case MEM: 1642 { 1643 rtx addr = XEXP (x, 0); 1644 1645 if (!instantiate_virtual_regs_in_rtx (&addr)) 1646 continue; 1647 1648 start_sequence (); 1649 x = replace_equiv_address (x, addr, true); 1650 /* It may happen that the address with the virtual reg 1651 was valid (e.g. based on the virtual stack reg, which might 1652 be acceptable to the predicates with all offsets), whereas 1653 the address now isn't anymore, for instance when the address 1654 is still offsetted, but the base reg isn't virtual-stack-reg 1655 anymore. Below we would do a force_reg on the whole operand, 1656 but this insn might actually only accept memory. Hence, 1657 before doing that last resort, try to reload the address into 1658 a register, so this operand stays a MEM. */ 1659 if (!safe_insn_predicate (insn_code, i, x)) 1660 { 1661 addr = force_reg (GET_MODE (addr), addr); 1662 x = replace_equiv_address (x, addr, true); 1663 } 1664 seq = get_insns (); 1665 end_sequence (); 1666 if (seq) 1667 emit_insn_before (seq, insn); 1668 } 1669 break; 1670 1671 case REG: 1672 new_rtx = instantiate_new_reg (x, &offset); 1673 if (new_rtx == NULL) 1674 continue; 1675 if (offset == 0) 1676 x = new_rtx; 1677 else 1678 { 1679 start_sequence (); 1680 1681 /* Careful, special mode predicates may have stuff in 1682 insn_data[insn_code].operand[i].mode that isn't useful 1683 to us for computing a new value. */ 1684 /* ??? Recognize address_operand and/or "p" constraints 1685 to see if (plus new offset) is a valid before we put 1686 this through expand_simple_binop. */ 1687 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx, 1688 gen_int_mode (offset, GET_MODE (x)), 1689 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1690 seq = get_insns (); 1691 end_sequence (); 1692 emit_insn_before (seq, insn); 1693 } 1694 break; 1695 1696 case SUBREG: 1697 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset); 1698 if (new_rtx == NULL) 1699 continue; 1700 if (offset != 0) 1701 { 1702 start_sequence (); 1703 new_rtx = expand_simple_binop 1704 (GET_MODE (new_rtx), PLUS, new_rtx, 1705 gen_int_mode (offset, GET_MODE (new_rtx)), 1706 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1707 seq = get_insns (); 1708 end_sequence (); 1709 emit_insn_before (seq, insn); 1710 } 1711 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx, 1712 GET_MODE (new_rtx), SUBREG_BYTE (x)); 1713 gcc_assert (x); 1714 break; 1715 1716 default: 1717 continue; 1718 } 1719 1720 /* At this point, X contains the new value for the operand. 1721 Validate the new value vs the insn predicate. Note that 1722 asm insns will have insn_code -1 here. */ 1723 if (!safe_insn_predicate (insn_code, i, x)) 1724 { 1725 start_sequence (); 1726 if (REG_P (x)) 1727 { 1728 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER); 1729 x = copy_to_reg (x); 1730 } 1731 else 1732 x = force_reg (insn_data[insn_code].operand[i].mode, x); 1733 seq = get_insns (); 1734 end_sequence (); 1735 if (seq) 1736 emit_insn_before (seq, insn); 1737 } 1738 1739 *recog_data.operand_loc[i] = recog_data.operand[i] = x; 1740 any_change = true; 1741 } 1742 1743 if (any_change) 1744 { 1745 /* Propagate operand changes into the duplicates. */ 1746 for (i = 0; i < recog_data.n_dups; ++i) 1747 *recog_data.dup_loc[i] 1748 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]); 1749 1750 /* Force re-recognition of the instruction for validation. */ 1751 INSN_CODE (insn) = -1; 1752 } 1753 1754 if (asm_noperands (PATTERN (insn)) >= 0) 1755 { 1756 if (!check_asm_operands (PATTERN (insn))) 1757 { 1758 error_for_asm (insn, "impossible constraint in %<asm%>"); 1759 /* For asm goto, instead of fixing up all the edges 1760 just clear the template and clear input operands 1761 (asm goto doesn't have any output operands). */ 1762 if (JUMP_P (insn)) 1763 { 1764 rtx asm_op = extract_asm_operands (PATTERN (insn)); 1765 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup (""); 1766 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0); 1767 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0); 1768 } 1769 else 1770 delete_insn (insn); 1771 } 1772 } 1773 else 1774 { 1775 if (recog_memoized (insn) < 0) 1776 fatal_insn_not_found (insn); 1777 } 1778 } 1779 1780 /* Subroutine of instantiate_decls. Given RTL representing a decl, 1781 do any instantiation required. */ 1782 1783 void 1784 instantiate_decl_rtl (rtx x) 1785 { 1786 rtx addr; 1787 1788 if (x == 0) 1789 return; 1790 1791 /* If this is a CONCAT, recurse for the pieces. */ 1792 if (GET_CODE (x) == CONCAT) 1793 { 1794 instantiate_decl_rtl (XEXP (x, 0)); 1795 instantiate_decl_rtl (XEXP (x, 1)); 1796 return; 1797 } 1798 1799 /* If this is not a MEM, no need to do anything. Similarly if the 1800 address is a constant or a register that is not a virtual register. */ 1801 if (!MEM_P (x)) 1802 return; 1803 1804 addr = XEXP (x, 0); 1805 if (CONSTANT_P (addr) 1806 || (REG_P (addr) 1807 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER 1808 || REGNO (addr) > LAST_VIRTUAL_REGISTER))) 1809 return; 1810 1811 instantiate_virtual_regs_in_rtx (&XEXP (x, 0)); 1812 } 1813 1814 /* Helper for instantiate_decls called via walk_tree: Process all decls 1815 in the given DECL_VALUE_EXPR. */ 1816 1817 static tree 1818 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) 1819 { 1820 tree t = *tp; 1821 if (! EXPR_P (t)) 1822 { 1823 *walk_subtrees = 0; 1824 if (DECL_P (t)) 1825 { 1826 if (DECL_RTL_SET_P (t)) 1827 instantiate_decl_rtl (DECL_RTL (t)); 1828 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t) 1829 && DECL_INCOMING_RTL (t)) 1830 instantiate_decl_rtl (DECL_INCOMING_RTL (t)); 1831 if ((TREE_CODE (t) == VAR_DECL 1832 || TREE_CODE (t) == RESULT_DECL) 1833 && DECL_HAS_VALUE_EXPR_P (t)) 1834 { 1835 tree v = DECL_VALUE_EXPR (t); 1836 walk_tree (&v, instantiate_expr, NULL, NULL); 1837 } 1838 } 1839 } 1840 return NULL; 1841 } 1842 1843 /* Subroutine of instantiate_decls: Process all decls in the given 1844 BLOCK node and all its subblocks. */ 1845 1846 static void 1847 instantiate_decls_1 (tree let) 1848 { 1849 tree t; 1850 1851 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t)) 1852 { 1853 if (DECL_RTL_SET_P (t)) 1854 instantiate_decl_rtl (DECL_RTL (t)); 1855 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t)) 1856 { 1857 tree v = DECL_VALUE_EXPR (t); 1858 walk_tree (&v, instantiate_expr, NULL, NULL); 1859 } 1860 } 1861 1862 /* Process all subblocks. */ 1863 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t)) 1864 instantiate_decls_1 (t); 1865 } 1866 1867 /* Scan all decls in FNDECL (both variables and parameters) and instantiate 1868 all virtual registers in their DECL_RTL's. */ 1869 1870 static void 1871 instantiate_decls (tree fndecl) 1872 { 1873 tree decl; 1874 unsigned ix; 1875 1876 /* Process all parameters of the function. */ 1877 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl)) 1878 { 1879 instantiate_decl_rtl (DECL_RTL (decl)); 1880 instantiate_decl_rtl (DECL_INCOMING_RTL (decl)); 1881 if (DECL_HAS_VALUE_EXPR_P (decl)) 1882 { 1883 tree v = DECL_VALUE_EXPR (decl); 1884 walk_tree (&v, instantiate_expr, NULL, NULL); 1885 } 1886 } 1887 1888 if ((decl = DECL_RESULT (fndecl)) 1889 && TREE_CODE (decl) == RESULT_DECL) 1890 { 1891 if (DECL_RTL_SET_P (decl)) 1892 instantiate_decl_rtl (DECL_RTL (decl)); 1893 if (DECL_HAS_VALUE_EXPR_P (decl)) 1894 { 1895 tree v = DECL_VALUE_EXPR (decl); 1896 walk_tree (&v, instantiate_expr, NULL, NULL); 1897 } 1898 } 1899 1900 /* Process the saved static chain if it exists. */ 1901 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl; 1902 if (decl && DECL_HAS_VALUE_EXPR_P (decl)) 1903 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl))); 1904 1905 /* Now process all variables defined in the function or its subblocks. */ 1906 instantiate_decls_1 (DECL_INITIAL (fndecl)); 1907 1908 FOR_EACH_LOCAL_DECL (cfun, ix, decl) 1909 if (DECL_RTL_SET_P (decl)) 1910 instantiate_decl_rtl (DECL_RTL (decl)); 1911 vec_free (cfun->local_decls); 1912 } 1913 1914 /* Pass through the INSNS of function FNDECL and convert virtual register 1915 references to hard register references. */ 1916 1917 static unsigned int 1918 instantiate_virtual_regs (void) 1919 { 1920 rtx_insn *insn; 1921 1922 /* Compute the offsets to use for this function. */ 1923 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl); 1924 var_offset = STARTING_FRAME_OFFSET; 1925 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl); 1926 out_arg_offset = STACK_POINTER_OFFSET; 1927 #ifdef FRAME_POINTER_CFA_OFFSET 1928 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl); 1929 #else 1930 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl); 1931 #endif 1932 1933 /* Initialize recognition, indicating that volatile is OK. */ 1934 init_recog (); 1935 1936 /* Scan through all the insns, instantiating every virtual register still 1937 present. */ 1938 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 1939 if (INSN_P (insn)) 1940 { 1941 /* These patterns in the instruction stream can never be recognized. 1942 Fortunately, they shouldn't contain virtual registers either. */ 1943 if (GET_CODE (PATTERN (insn)) == USE 1944 || GET_CODE (PATTERN (insn)) == CLOBBER 1945 || GET_CODE (PATTERN (insn)) == ASM_INPUT) 1946 continue; 1947 else if (DEBUG_INSN_P (insn)) 1948 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn)); 1949 else 1950 instantiate_virtual_regs_in_insn (insn); 1951 1952 if (insn->deleted ()) 1953 continue; 1954 1955 instantiate_virtual_regs_in_rtx (®_NOTES (insn)); 1956 1957 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */ 1958 if (CALL_P (insn)) 1959 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn)); 1960 } 1961 1962 /* Instantiate the virtual registers in the DECLs for debugging purposes. */ 1963 instantiate_decls (current_function_decl); 1964 1965 targetm.instantiate_decls (); 1966 1967 /* Indicate that, from now on, assign_stack_local should use 1968 frame_pointer_rtx. */ 1969 virtuals_instantiated = 1; 1970 1971 return 0; 1972 } 1973 1974 namespace { 1975 1976 const pass_data pass_data_instantiate_virtual_regs = 1977 { 1978 RTL_PASS, /* type */ 1979 "vregs", /* name */ 1980 OPTGROUP_NONE, /* optinfo_flags */ 1981 TV_NONE, /* tv_id */ 1982 0, /* properties_required */ 1983 0, /* properties_provided */ 1984 0, /* properties_destroyed */ 1985 0, /* todo_flags_start */ 1986 0, /* todo_flags_finish */ 1987 }; 1988 1989 class pass_instantiate_virtual_regs : public rtl_opt_pass 1990 { 1991 public: 1992 pass_instantiate_virtual_regs (gcc::context *ctxt) 1993 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt) 1994 {} 1995 1996 /* opt_pass methods: */ 1997 virtual unsigned int execute (function *) 1998 { 1999 return instantiate_virtual_regs (); 2000 } 2001 2002 }; // class pass_instantiate_virtual_regs 2003 2004 } // anon namespace 2005 2006 rtl_opt_pass * 2007 make_pass_instantiate_virtual_regs (gcc::context *ctxt) 2008 { 2009 return new pass_instantiate_virtual_regs (ctxt); 2010 } 2011 2012 2013 /* Return 1 if EXP is an aggregate type (or a value with aggregate type). 2014 This means a type for which function calls must pass an address to the 2015 function or get an address back from the function. 2016 EXP may be a type node or an expression (whose type is tested). */ 2017 2018 int 2019 aggregate_value_p (const_tree exp, const_tree fntype) 2020 { 2021 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp); 2022 int i, regno, nregs; 2023 rtx reg; 2024 2025 if (fntype) 2026 switch (TREE_CODE (fntype)) 2027 { 2028 case CALL_EXPR: 2029 { 2030 tree fndecl = get_callee_fndecl (fntype); 2031 if (fndecl) 2032 fntype = TREE_TYPE (fndecl); 2033 else if (CALL_EXPR_FN (fntype)) 2034 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))); 2035 else 2036 /* For internal functions, assume nothing needs to be 2037 returned in memory. */ 2038 return 0; 2039 } 2040 break; 2041 case FUNCTION_DECL: 2042 fntype = TREE_TYPE (fntype); 2043 break; 2044 case FUNCTION_TYPE: 2045 case METHOD_TYPE: 2046 break; 2047 case IDENTIFIER_NODE: 2048 fntype = NULL_TREE; 2049 break; 2050 default: 2051 /* We don't expect other tree types here. */ 2052 gcc_unreachable (); 2053 } 2054 2055 if (VOID_TYPE_P (type)) 2056 return 0; 2057 2058 /* If a record should be passed the same as its first (and only) member 2059 don't pass it as an aggregate. */ 2060 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type)) 2061 return aggregate_value_p (first_field (type), fntype); 2062 2063 /* If the front end has decided that this needs to be passed by 2064 reference, do so. */ 2065 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL) 2066 && DECL_BY_REFERENCE (exp)) 2067 return 1; 2068 2069 /* Function types that are TREE_ADDRESSABLE force return in memory. */ 2070 if (fntype && TREE_ADDRESSABLE (fntype)) 2071 return 1; 2072 2073 /* Types that are TREE_ADDRESSABLE must be constructed in memory, 2074 and thus can't be returned in registers. */ 2075 if (TREE_ADDRESSABLE (type)) 2076 return 1; 2077 2078 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type)) 2079 return 1; 2080 2081 if (targetm.calls.return_in_memory (type, fntype)) 2082 return 1; 2083 2084 /* Make sure we have suitable call-clobbered regs to return 2085 the value in; if not, we must return it in memory. */ 2086 reg = hard_function_value (type, 0, fntype, 0); 2087 2088 /* If we have something other than a REG (e.g. a PARALLEL), then assume 2089 it is OK. */ 2090 if (!REG_P (reg)) 2091 return 0; 2092 2093 regno = REGNO (reg); 2094 nregs = hard_regno_nregs[regno][TYPE_MODE (type)]; 2095 for (i = 0; i < nregs; i++) 2096 if (! call_used_regs[regno + i]) 2097 return 1; 2098 2099 return 0; 2100 } 2101 2102 /* Return true if we should assign DECL a pseudo register; false if it 2103 should live on the local stack. */ 2104 2105 bool 2106 use_register_for_decl (const_tree decl) 2107 { 2108 if (TREE_CODE (decl) == SSA_NAME) 2109 { 2110 /* We often try to use the SSA_NAME, instead of its underlying 2111 decl, to get type information and guide decisions, to avoid 2112 differences of behavior between anonymous and named 2113 variables, but in this one case we have to go for the actual 2114 variable if there is one. The main reason is that, at least 2115 at -O0, we want to place user variables on the stack, but we 2116 don't mind using pseudos for anonymous or ignored temps. 2117 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs 2118 should go in pseudos, whereas their corresponding variables 2119 might have to go on the stack. So, disregarding the decl 2120 here would negatively impact debug info at -O0, enable 2121 coalescing between SSA_NAMEs that ought to get different 2122 stack/pseudo assignments, and get the incoming argument 2123 processing thoroughly confused by PARM_DECLs expected to live 2124 in stack slots but assigned to pseudos. */ 2125 if (!SSA_NAME_VAR (decl)) 2126 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode 2127 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))); 2128 2129 decl = SSA_NAME_VAR (decl); 2130 } 2131 2132 /* Honor volatile. */ 2133 if (TREE_SIDE_EFFECTS (decl)) 2134 return false; 2135 2136 /* Honor addressability. */ 2137 if (TREE_ADDRESSABLE (decl)) 2138 return false; 2139 2140 /* RESULT_DECLs are a bit special in that they're assigned without 2141 regard to use_register_for_decl, but we generally only store in 2142 them. If we coalesce their SSA NAMEs, we'd better return a 2143 result that matches the assignment in expand_function_start. */ 2144 if (TREE_CODE (decl) == RESULT_DECL) 2145 { 2146 /* If it's not an aggregate, we're going to use a REG or a 2147 PARALLEL containing a REG. */ 2148 if (!aggregate_value_p (decl, current_function_decl)) 2149 return true; 2150 2151 /* If expand_function_start determines the return value, we'll 2152 use MEM if it's not by reference. */ 2153 if (cfun->returns_pcc_struct 2154 || (targetm.calls.struct_value_rtx 2155 (TREE_TYPE (current_function_decl), 1))) 2156 return DECL_BY_REFERENCE (decl); 2157 2158 /* Otherwise, we're taking an extra all.function_result_decl 2159 argument. It's set up in assign_parms_augmented_arg_list, 2160 under the (negated) conditions above, and then it's used to 2161 set up the RESULT_DECL rtl in assign_params, after looping 2162 over all parameters. Now, if the RESULT_DECL is not by 2163 reference, we'll use a MEM either way. */ 2164 if (!DECL_BY_REFERENCE (decl)) 2165 return false; 2166 2167 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take 2168 the function_result_decl's assignment. Since it's a pointer, 2169 we can short-circuit a number of the tests below, and we must 2170 duplicat e them because we don't have the 2171 function_result_decl to test. */ 2172 if (!targetm.calls.allocate_stack_slots_for_args ()) 2173 return true; 2174 /* We don't set DECL_IGNORED_P for the function_result_decl. */ 2175 if (optimize) 2176 return true; 2177 /* We don't set DECL_REGISTER for the function_result_decl. */ 2178 return false; 2179 } 2180 2181 /* Decl is implicitly addressible by bound stores and loads 2182 if it is an aggregate holding bounds. */ 2183 if (chkp_function_instrumented_p (current_function_decl) 2184 && TREE_TYPE (decl) 2185 && !BOUNDED_P (decl) 2186 && chkp_type_has_pointer (TREE_TYPE (decl))) 2187 return false; 2188 2189 /* Only register-like things go in registers. */ 2190 if (DECL_MODE (decl) == BLKmode) 2191 return false; 2192 2193 /* If -ffloat-store specified, don't put explicit float variables 2194 into registers. */ 2195 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa 2196 propagates values across these stores, and it probably shouldn't. */ 2197 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))) 2198 return false; 2199 2200 if (!targetm.calls.allocate_stack_slots_for_args ()) 2201 return true; 2202 2203 /* If we're not interested in tracking debugging information for 2204 this decl, then we can certainly put it in a register. */ 2205 if (DECL_IGNORED_P (decl)) 2206 return true; 2207 2208 if (optimize) 2209 return true; 2210 2211 if (!DECL_REGISTER (decl)) 2212 return false; 2213 2214 switch (TREE_CODE (TREE_TYPE (decl))) 2215 { 2216 case RECORD_TYPE: 2217 case UNION_TYPE: 2218 case QUAL_UNION_TYPE: 2219 /* When not optimizing, disregard register keyword for variables with 2220 types containing methods, otherwise the methods won't be callable 2221 from the debugger. */ 2222 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl)))) 2223 return false; 2224 break; 2225 default: 2226 break; 2227 } 2228 2229 return true; 2230 } 2231 2232 /* Structures to communicate between the subroutines of assign_parms. 2233 The first holds data persistent across all parameters, the second 2234 is cleared out for each parameter. */ 2235 2236 struct assign_parm_data_all 2237 { 2238 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS 2239 should become a job of the target or otherwise encapsulated. */ 2240 CUMULATIVE_ARGS args_so_far_v; 2241 cumulative_args_t args_so_far; 2242 struct args_size stack_args_size; 2243 tree function_result_decl; 2244 tree orig_fnargs; 2245 rtx_insn *first_conversion_insn; 2246 rtx_insn *last_conversion_insn; 2247 HOST_WIDE_INT pretend_args_size; 2248 HOST_WIDE_INT extra_pretend_bytes; 2249 int reg_parm_stack_space; 2250 }; 2251 2252 struct assign_parm_data_one 2253 { 2254 tree nominal_type; 2255 tree passed_type; 2256 rtx entry_parm; 2257 rtx stack_parm; 2258 machine_mode nominal_mode; 2259 machine_mode passed_mode; 2260 machine_mode promoted_mode; 2261 struct locate_and_pad_arg_data locate; 2262 int partial; 2263 BOOL_BITFIELD named_arg : 1; 2264 BOOL_BITFIELD passed_pointer : 1; 2265 BOOL_BITFIELD on_stack : 1; 2266 BOOL_BITFIELD loaded_in_reg : 1; 2267 }; 2268 2269 struct bounds_parm_data 2270 { 2271 assign_parm_data_one parm_data; 2272 tree bounds_parm; 2273 tree ptr_parm; 2274 rtx ptr_entry; 2275 int bound_no; 2276 }; 2277 2278 /* A subroutine of assign_parms. Initialize ALL. */ 2279 2280 static void 2281 assign_parms_initialize_all (struct assign_parm_data_all *all) 2282 { 2283 tree fntype ATTRIBUTE_UNUSED; 2284 2285 memset (all, 0, sizeof (*all)); 2286 2287 fntype = TREE_TYPE (current_function_decl); 2288 2289 #ifdef INIT_CUMULATIVE_INCOMING_ARGS 2290 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX); 2291 #else 2292 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX, 2293 current_function_decl, -1); 2294 #endif 2295 all->args_so_far = pack_cumulative_args (&all->args_so_far_v); 2296 2297 #ifdef INCOMING_REG_PARM_STACK_SPACE 2298 all->reg_parm_stack_space 2299 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl); 2300 #endif 2301 } 2302 2303 /* If ARGS contains entries with complex types, split the entry into two 2304 entries of the component type. Return a new list of substitutions are 2305 needed, else the old list. */ 2306 2307 static void 2308 split_complex_args (vec<tree> *args) 2309 { 2310 unsigned i; 2311 tree p; 2312 2313 FOR_EACH_VEC_ELT (*args, i, p) 2314 { 2315 tree type = TREE_TYPE (p); 2316 if (TREE_CODE (type) == COMPLEX_TYPE 2317 && targetm.calls.split_complex_arg (type)) 2318 { 2319 tree decl; 2320 tree subtype = TREE_TYPE (type); 2321 bool addressable = TREE_ADDRESSABLE (p); 2322 2323 /* Rewrite the PARM_DECL's type with its component. */ 2324 p = copy_node (p); 2325 TREE_TYPE (p) = subtype; 2326 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p)); 2327 DECL_MODE (p) = VOIDmode; 2328 DECL_SIZE (p) = NULL; 2329 DECL_SIZE_UNIT (p) = NULL; 2330 /* If this arg must go in memory, put it in a pseudo here. 2331 We can't allow it to go in memory as per normal parms, 2332 because the usual place might not have the imag part 2333 adjacent to the real part. */ 2334 DECL_ARTIFICIAL (p) = addressable; 2335 DECL_IGNORED_P (p) = addressable; 2336 TREE_ADDRESSABLE (p) = 0; 2337 layout_decl (p, 0); 2338 (*args)[i] = p; 2339 2340 /* Build a second synthetic decl. */ 2341 decl = build_decl (EXPR_LOCATION (p), 2342 PARM_DECL, NULL_TREE, subtype); 2343 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p); 2344 DECL_ARTIFICIAL (decl) = addressable; 2345 DECL_IGNORED_P (decl) = addressable; 2346 layout_decl (decl, 0); 2347 args->safe_insert (++i, decl); 2348 } 2349 } 2350 } 2351 2352 /* A subroutine of assign_parms. Adjust the parameter list to incorporate 2353 the hidden struct return argument, and (abi willing) complex args. 2354 Return the new parameter list. */ 2355 2356 static vec<tree> 2357 assign_parms_augmented_arg_list (struct assign_parm_data_all *all) 2358 { 2359 tree fndecl = current_function_decl; 2360 tree fntype = TREE_TYPE (fndecl); 2361 vec<tree> fnargs = vNULL; 2362 tree arg; 2363 2364 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg)) 2365 fnargs.safe_push (arg); 2366 2367 all->orig_fnargs = DECL_ARGUMENTS (fndecl); 2368 2369 /* If struct value address is treated as the first argument, make it so. */ 2370 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) 2371 && ! cfun->returns_pcc_struct 2372 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) 2373 { 2374 tree type = build_pointer_type (TREE_TYPE (fntype)); 2375 tree decl; 2376 2377 decl = build_decl (DECL_SOURCE_LOCATION (fndecl), 2378 PARM_DECL, get_identifier (".result_ptr"), type); 2379 DECL_ARG_TYPE (decl) = type; 2380 DECL_ARTIFICIAL (decl) = 1; 2381 DECL_NAMELESS (decl) = 1; 2382 TREE_CONSTANT (decl) = 1; 2383 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this 2384 changes, the end of the RESULT_DECL handling block in 2385 use_register_for_decl must be adjusted to match. */ 2386 2387 DECL_CHAIN (decl) = all->orig_fnargs; 2388 all->orig_fnargs = decl; 2389 fnargs.safe_insert (0, decl); 2390 2391 all->function_result_decl = decl; 2392 2393 /* If function is instrumented then bounds of the 2394 passed structure address is the second argument. */ 2395 if (chkp_function_instrumented_p (fndecl)) 2396 { 2397 decl = build_decl (DECL_SOURCE_LOCATION (fndecl), 2398 PARM_DECL, get_identifier (".result_bnd"), 2399 pointer_bounds_type_node); 2400 DECL_ARG_TYPE (decl) = pointer_bounds_type_node; 2401 DECL_ARTIFICIAL (decl) = 1; 2402 DECL_NAMELESS (decl) = 1; 2403 TREE_CONSTANT (decl) = 1; 2404 2405 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs); 2406 DECL_CHAIN (all->orig_fnargs) = decl; 2407 fnargs.safe_insert (1, decl); 2408 } 2409 } 2410 2411 /* If the target wants to split complex arguments into scalars, do so. */ 2412 if (targetm.calls.split_complex_arg) 2413 split_complex_args (&fnargs); 2414 2415 return fnargs; 2416 } 2417 2418 /* A subroutine of assign_parms. Examine PARM and pull out type and mode 2419 data for the parameter. Incorporate ABI specifics such as pass-by- 2420 reference and type promotion. */ 2421 2422 static void 2423 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm, 2424 struct assign_parm_data_one *data) 2425 { 2426 tree nominal_type, passed_type; 2427 machine_mode nominal_mode, passed_mode, promoted_mode; 2428 int unsignedp; 2429 2430 memset (data, 0, sizeof (*data)); 2431 2432 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */ 2433 if (!cfun->stdarg) 2434 data->named_arg = 1; /* No variadic parms. */ 2435 else if (DECL_CHAIN (parm)) 2436 data->named_arg = 1; /* Not the last non-variadic parm. */ 2437 else if (targetm.calls.strict_argument_naming (all->args_so_far)) 2438 data->named_arg = 1; /* Only variadic ones are unnamed. */ 2439 else 2440 data->named_arg = 0; /* Treat as variadic. */ 2441 2442 nominal_type = TREE_TYPE (parm); 2443 passed_type = DECL_ARG_TYPE (parm); 2444 2445 /* Look out for errors propagating this far. Also, if the parameter's 2446 type is void then its value doesn't matter. */ 2447 if (TREE_TYPE (parm) == error_mark_node 2448 /* This can happen after weird syntax errors 2449 or if an enum type is defined among the parms. */ 2450 || TREE_CODE (parm) != PARM_DECL 2451 || passed_type == NULL 2452 || VOID_TYPE_P (nominal_type)) 2453 { 2454 nominal_type = passed_type = void_type_node; 2455 nominal_mode = passed_mode = promoted_mode = VOIDmode; 2456 goto egress; 2457 } 2458 2459 /* Find mode of arg as it is passed, and mode of arg as it should be 2460 during execution of this function. */ 2461 passed_mode = TYPE_MODE (passed_type); 2462 nominal_mode = TYPE_MODE (nominal_type); 2463 2464 /* If the parm is to be passed as a transparent union or record, use the 2465 type of the first field for the tests below. We have already verified 2466 that the modes are the same. */ 2467 if ((TREE_CODE (passed_type) == UNION_TYPE 2468 || TREE_CODE (passed_type) == RECORD_TYPE) 2469 && TYPE_TRANSPARENT_AGGR (passed_type)) 2470 passed_type = TREE_TYPE (first_field (passed_type)); 2471 2472 /* See if this arg was passed by invisible reference. */ 2473 if (pass_by_reference (&all->args_so_far_v, passed_mode, 2474 passed_type, data->named_arg)) 2475 { 2476 passed_type = nominal_type = build_pointer_type (passed_type); 2477 data->passed_pointer = true; 2478 passed_mode = nominal_mode = TYPE_MODE (nominal_type); 2479 } 2480 2481 /* Find mode as it is passed by the ABI. */ 2482 unsignedp = TYPE_UNSIGNED (passed_type); 2483 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp, 2484 TREE_TYPE (current_function_decl), 0); 2485 2486 egress: 2487 data->nominal_type = nominal_type; 2488 data->passed_type = passed_type; 2489 data->nominal_mode = nominal_mode; 2490 data->passed_mode = passed_mode; 2491 data->promoted_mode = promoted_mode; 2492 } 2493 2494 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */ 2495 2496 static void 2497 assign_parms_setup_varargs (struct assign_parm_data_all *all, 2498 struct assign_parm_data_one *data, bool no_rtl) 2499 { 2500 int varargs_pretend_bytes = 0; 2501 2502 targetm.calls.setup_incoming_varargs (all->args_so_far, 2503 data->promoted_mode, 2504 data->passed_type, 2505 &varargs_pretend_bytes, no_rtl); 2506 2507 /* If the back-end has requested extra stack space, record how much is 2508 needed. Do not change pretend_args_size otherwise since it may be 2509 nonzero from an earlier partial argument. */ 2510 if (varargs_pretend_bytes > 0) 2511 all->pretend_args_size = varargs_pretend_bytes; 2512 } 2513 2514 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to 2515 the incoming location of the current parameter. */ 2516 2517 static void 2518 assign_parm_find_entry_rtl (struct assign_parm_data_all *all, 2519 struct assign_parm_data_one *data) 2520 { 2521 HOST_WIDE_INT pretend_bytes = 0; 2522 rtx entry_parm; 2523 bool in_regs; 2524 2525 if (data->promoted_mode == VOIDmode) 2526 { 2527 data->entry_parm = data->stack_parm = const0_rtx; 2528 return; 2529 } 2530 2531 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far, 2532 data->promoted_mode, 2533 data->passed_type, 2534 data->named_arg); 2535 2536 if (entry_parm == 0) 2537 data->promoted_mode = data->passed_mode; 2538 2539 /* Determine parm's home in the stack, in case it arrives in the stack 2540 or we should pretend it did. Compute the stack position and rtx where 2541 the argument arrives and its size. 2542 2543 There is one complexity here: If this was a parameter that would 2544 have been passed in registers, but wasn't only because it is 2545 __builtin_va_alist, we want locate_and_pad_parm to treat it as if 2546 it came in a register so that REG_PARM_STACK_SPACE isn't skipped. 2547 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0 2548 as it was the previous time. */ 2549 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type); 2550 #ifdef STACK_PARMS_IN_REG_PARM_AREA 2551 in_regs = true; 2552 #endif 2553 if (!in_regs && !data->named_arg) 2554 { 2555 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far)) 2556 { 2557 rtx tem; 2558 tem = targetm.calls.function_incoming_arg (all->args_so_far, 2559 data->promoted_mode, 2560 data->passed_type, true); 2561 in_regs = tem != NULL; 2562 } 2563 } 2564 2565 /* If this parameter was passed both in registers and in the stack, use 2566 the copy on the stack. */ 2567 if (targetm.calls.must_pass_in_stack (data->promoted_mode, 2568 data->passed_type)) 2569 entry_parm = 0; 2570 2571 if (entry_parm) 2572 { 2573 int partial; 2574 2575 partial = targetm.calls.arg_partial_bytes (all->args_so_far, 2576 data->promoted_mode, 2577 data->passed_type, 2578 data->named_arg); 2579 data->partial = partial; 2580 2581 /* The caller might already have allocated stack space for the 2582 register parameters. */ 2583 if (partial != 0 && all->reg_parm_stack_space == 0) 2584 { 2585 /* Part of this argument is passed in registers and part 2586 is passed on the stack. Ask the prologue code to extend 2587 the stack part so that we can recreate the full value. 2588 2589 PRETEND_BYTES is the size of the registers we need to store. 2590 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra 2591 stack space that the prologue should allocate. 2592 2593 Internally, gcc assumes that the argument pointer is aligned 2594 to STACK_BOUNDARY bits. This is used both for alignment 2595 optimizations (see init_emit) and to locate arguments that are 2596 aligned to more than PARM_BOUNDARY bits. We must preserve this 2597 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to 2598 a stack boundary. */ 2599 2600 /* We assume at most one partial arg, and it must be the first 2601 argument on the stack. */ 2602 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size); 2603 2604 pretend_bytes = partial; 2605 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES); 2606 2607 /* We want to align relative to the actual stack pointer, so 2608 don't include this in the stack size until later. */ 2609 all->extra_pretend_bytes = all->pretend_args_size; 2610 } 2611 } 2612 2613 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs, 2614 all->reg_parm_stack_space, 2615 entry_parm ? data->partial : 0, current_function_decl, 2616 &all->stack_args_size, &data->locate); 2617 2618 /* Update parm_stack_boundary if this parameter is passed in the 2619 stack. */ 2620 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary) 2621 crtl->parm_stack_boundary = data->locate.boundary; 2622 2623 /* Adjust offsets to include the pretend args. */ 2624 pretend_bytes = all->extra_pretend_bytes - pretend_bytes; 2625 data->locate.slot_offset.constant += pretend_bytes; 2626 data->locate.offset.constant += pretend_bytes; 2627 2628 data->entry_parm = entry_parm; 2629 } 2630 2631 /* A subroutine of assign_parms. If there is actually space on the stack 2632 for this parm, count it in stack_args_size and return true. */ 2633 2634 static bool 2635 assign_parm_is_stack_parm (struct assign_parm_data_all *all, 2636 struct assign_parm_data_one *data) 2637 { 2638 /* Bounds are never passed on the stack to keep compatibility 2639 with not instrumented code. */ 2640 if (POINTER_BOUNDS_TYPE_P (data->passed_type)) 2641 return false; 2642 /* Trivially true if we've no incoming register. */ 2643 else if (data->entry_parm == NULL) 2644 ; 2645 /* Also true if we're partially in registers and partially not, 2646 since we've arranged to drop the entire argument on the stack. */ 2647 else if (data->partial != 0) 2648 ; 2649 /* Also true if the target says that it's passed in both registers 2650 and on the stack. */ 2651 else if (GET_CODE (data->entry_parm) == PARALLEL 2652 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX) 2653 ; 2654 /* Also true if the target says that there's stack allocated for 2655 all register parameters. */ 2656 else if (all->reg_parm_stack_space > 0) 2657 ; 2658 /* Otherwise, no, this parameter has no ABI defined stack slot. */ 2659 else 2660 return false; 2661 2662 all->stack_args_size.constant += data->locate.size.constant; 2663 if (data->locate.size.var) 2664 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var); 2665 2666 return true; 2667 } 2668 2669 /* A subroutine of assign_parms. Given that this parameter is allocated 2670 stack space by the ABI, find it. */ 2671 2672 static void 2673 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data) 2674 { 2675 rtx offset_rtx, stack_parm; 2676 unsigned int align, boundary; 2677 2678 /* If we're passing this arg using a reg, make its stack home the 2679 aligned stack slot. */ 2680 if (data->entry_parm) 2681 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset); 2682 else 2683 offset_rtx = ARGS_SIZE_RTX (data->locate.offset); 2684 2685 stack_parm = crtl->args.internal_arg_pointer; 2686 if (offset_rtx != const0_rtx) 2687 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx); 2688 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm); 2689 2690 if (!data->passed_pointer) 2691 { 2692 set_mem_attributes (stack_parm, parm, 1); 2693 /* set_mem_attributes could set MEM_SIZE to the passed mode's size, 2694 while promoted mode's size is needed. */ 2695 if (data->promoted_mode != BLKmode 2696 && data->promoted_mode != DECL_MODE (parm)) 2697 { 2698 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode)); 2699 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm)) 2700 { 2701 int offset = subreg_lowpart_offset (DECL_MODE (parm), 2702 data->promoted_mode); 2703 if (offset) 2704 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset); 2705 } 2706 } 2707 } 2708 2709 boundary = data->locate.boundary; 2710 align = BITS_PER_UNIT; 2711 2712 /* If we're padding upward, we know that the alignment of the slot 2713 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're 2714 intentionally forcing upward padding. Otherwise we have to come 2715 up with a guess at the alignment based on OFFSET_RTX. */ 2716 if (data->locate.where_pad != downward || data->entry_parm) 2717 align = boundary; 2718 else if (CONST_INT_P (offset_rtx)) 2719 { 2720 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary; 2721 align = align & -align; 2722 } 2723 set_mem_align (stack_parm, align); 2724 2725 if (data->entry_parm) 2726 set_reg_attrs_for_parm (data->entry_parm, stack_parm); 2727 2728 data->stack_parm = stack_parm; 2729 } 2730 2731 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's 2732 always valid and contiguous. */ 2733 2734 static void 2735 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data) 2736 { 2737 rtx entry_parm = data->entry_parm; 2738 rtx stack_parm = data->stack_parm; 2739 2740 /* If this parm was passed part in regs and part in memory, pretend it 2741 arrived entirely in memory by pushing the register-part onto the stack. 2742 In the special case of a DImode or DFmode that is split, we could put 2743 it together in a pseudoreg directly, but for now that's not worth 2744 bothering with. */ 2745 if (data->partial != 0) 2746 { 2747 /* Handle calls that pass values in multiple non-contiguous 2748 locations. The Irix 6 ABI has examples of this. */ 2749 if (GET_CODE (entry_parm) == PARALLEL) 2750 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm, 2751 data->passed_type, 2752 int_size_in_bytes (data->passed_type)); 2753 else 2754 { 2755 gcc_assert (data->partial % UNITS_PER_WORD == 0); 2756 move_block_from_reg (REGNO (entry_parm), 2757 validize_mem (copy_rtx (stack_parm)), 2758 data->partial / UNITS_PER_WORD); 2759 } 2760 2761 entry_parm = stack_parm; 2762 } 2763 2764 /* If we didn't decide this parm came in a register, by default it came 2765 on the stack. */ 2766 else if (entry_parm == NULL) 2767 entry_parm = stack_parm; 2768 2769 /* When an argument is passed in multiple locations, we can't make use 2770 of this information, but we can save some copying if the whole argument 2771 is passed in a single register. */ 2772 else if (GET_CODE (entry_parm) == PARALLEL 2773 && data->nominal_mode != BLKmode 2774 && data->passed_mode != BLKmode) 2775 { 2776 size_t i, len = XVECLEN (entry_parm, 0); 2777 2778 for (i = 0; i < len; i++) 2779 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX 2780 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0)) 2781 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) 2782 == data->passed_mode) 2783 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0) 2784 { 2785 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0); 2786 break; 2787 } 2788 } 2789 2790 data->entry_parm = entry_parm; 2791 } 2792 2793 /* A subroutine of assign_parms. Reconstitute any values which were 2794 passed in multiple registers and would fit in a single register. */ 2795 2796 static void 2797 assign_parm_remove_parallels (struct assign_parm_data_one *data) 2798 { 2799 rtx entry_parm = data->entry_parm; 2800 2801 /* Convert the PARALLEL to a REG of the same mode as the parallel. 2802 This can be done with register operations rather than on the 2803 stack, even if we will store the reconstituted parameter on the 2804 stack later. */ 2805 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode) 2806 { 2807 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm)); 2808 emit_group_store (parmreg, entry_parm, data->passed_type, 2809 GET_MODE_SIZE (GET_MODE (entry_parm))); 2810 entry_parm = parmreg; 2811 } 2812 2813 data->entry_parm = entry_parm; 2814 } 2815 2816 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's 2817 always valid and properly aligned. */ 2818 2819 static void 2820 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data) 2821 { 2822 rtx stack_parm = data->stack_parm; 2823 2824 /* If we can't trust the parm stack slot to be aligned enough for its 2825 ultimate type, don't use that slot after entry. We'll make another 2826 stack slot, if we need one. */ 2827 if (stack_parm 2828 && ((STRICT_ALIGNMENT 2829 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)) 2830 || (data->nominal_type 2831 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm) 2832 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY))) 2833 stack_parm = NULL; 2834 2835 /* If parm was passed in memory, and we need to convert it on entry, 2836 don't store it back in that same slot. */ 2837 else if (data->entry_parm == stack_parm 2838 && data->nominal_mode != BLKmode 2839 && data->nominal_mode != data->passed_mode) 2840 stack_parm = NULL; 2841 2842 /* If stack protection is in effect for this function, don't leave any 2843 pointers in their passed stack slots. */ 2844 else if (crtl->stack_protect_guard 2845 && (flag_stack_protect == 2 2846 || data->passed_pointer 2847 || POINTER_TYPE_P (data->nominal_type))) 2848 stack_parm = NULL; 2849 2850 data->stack_parm = stack_parm; 2851 } 2852 2853 /* A subroutine of assign_parms. Return true if the current parameter 2854 should be stored as a BLKmode in the current frame. */ 2855 2856 static bool 2857 assign_parm_setup_block_p (struct assign_parm_data_one *data) 2858 { 2859 if (data->nominal_mode == BLKmode) 2860 return true; 2861 if (GET_MODE (data->entry_parm) == BLKmode) 2862 return true; 2863 2864 #ifdef BLOCK_REG_PADDING 2865 /* Only assign_parm_setup_block knows how to deal with register arguments 2866 that are padded at the least significant end. */ 2867 if (REG_P (data->entry_parm) 2868 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD 2869 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1) 2870 == (BYTES_BIG_ENDIAN ? upward : downward))) 2871 return true; 2872 #endif 2873 2874 return false; 2875 } 2876 2877 /* A subroutine of assign_parms. Arrange for the parameter to be 2878 present and valid in DATA->STACK_RTL. */ 2879 2880 static void 2881 assign_parm_setup_block (struct assign_parm_data_all *all, 2882 tree parm, struct assign_parm_data_one *data) 2883 { 2884 rtx entry_parm = data->entry_parm; 2885 rtx stack_parm = data->stack_parm; 2886 rtx target_reg = NULL_RTX; 2887 bool in_conversion_seq = false; 2888 HOST_WIDE_INT size; 2889 HOST_WIDE_INT size_stored; 2890 2891 if (GET_CODE (entry_parm) == PARALLEL) 2892 entry_parm = emit_group_move_into_temps (entry_parm); 2893 2894 /* If we want the parameter in a pseudo, don't use a stack slot. */ 2895 if (is_gimple_reg (parm) && use_register_for_decl (parm)) 2896 { 2897 tree def = ssa_default_def (cfun, parm); 2898 gcc_assert (def); 2899 machine_mode mode = promote_ssa_mode (def, NULL); 2900 rtx reg = gen_reg_rtx (mode); 2901 if (GET_CODE (reg) != CONCAT) 2902 stack_parm = reg; 2903 else 2904 { 2905 target_reg = reg; 2906 /* Avoid allocating a stack slot, if there isn't one 2907 preallocated by the ABI. It might seem like we should 2908 always prefer a pseudo, but converting between 2909 floating-point and integer modes goes through the stack 2910 on various machines, so it's better to use the reserved 2911 stack slot than to risk wasting it and allocating more 2912 for the conversion. */ 2913 if (stack_parm == NULL_RTX) 2914 { 2915 int save = generating_concat_p; 2916 generating_concat_p = 0; 2917 stack_parm = gen_reg_rtx (mode); 2918 generating_concat_p = save; 2919 } 2920 } 2921 data->stack_parm = NULL; 2922 } 2923 2924 size = int_size_in_bytes (data->passed_type); 2925 size_stored = CEIL_ROUND (size, UNITS_PER_WORD); 2926 if (stack_parm == 0) 2927 { 2928 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD); 2929 stack_parm = assign_stack_local (BLKmode, size_stored, 2930 DECL_ALIGN (parm)); 2931 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size) 2932 PUT_MODE (stack_parm, GET_MODE (entry_parm)); 2933 set_mem_attributes (stack_parm, parm, 1); 2934 } 2935 2936 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle 2937 calls that pass values in multiple non-contiguous locations. */ 2938 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL) 2939 { 2940 rtx mem; 2941 2942 /* Note that we will be storing an integral number of words. 2943 So we have to be careful to ensure that we allocate an 2944 integral number of words. We do this above when we call 2945 assign_stack_local if space was not allocated in the argument 2946 list. If it was, this will not work if PARM_BOUNDARY is not 2947 a multiple of BITS_PER_WORD. It isn't clear how to fix this 2948 if it becomes a problem. Exception is when BLKmode arrives 2949 with arguments not conforming to word_mode. */ 2950 2951 if (data->stack_parm == 0) 2952 ; 2953 else if (GET_CODE (entry_parm) == PARALLEL) 2954 ; 2955 else 2956 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD)); 2957 2958 mem = validize_mem (copy_rtx (stack_parm)); 2959 2960 /* Handle values in multiple non-contiguous locations. */ 2961 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem)) 2962 emit_group_store (mem, entry_parm, data->passed_type, size); 2963 else if (GET_CODE (entry_parm) == PARALLEL) 2964 { 2965 push_to_sequence2 (all->first_conversion_insn, 2966 all->last_conversion_insn); 2967 emit_group_store (mem, entry_parm, data->passed_type, size); 2968 all->first_conversion_insn = get_insns (); 2969 all->last_conversion_insn = get_last_insn (); 2970 end_sequence (); 2971 in_conversion_seq = true; 2972 } 2973 2974 else if (size == 0) 2975 ; 2976 2977 /* If SIZE is that of a mode no bigger than a word, just use 2978 that mode's store operation. */ 2979 else if (size <= UNITS_PER_WORD) 2980 { 2981 machine_mode mode 2982 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0); 2983 2984 if (mode != BLKmode 2985 #ifdef BLOCK_REG_PADDING 2986 && (size == UNITS_PER_WORD 2987 || (BLOCK_REG_PADDING (mode, data->passed_type, 1) 2988 != (BYTES_BIG_ENDIAN ? upward : downward))) 2989 #endif 2990 ) 2991 { 2992 rtx reg; 2993 2994 /* We are really truncating a word_mode value containing 2995 SIZE bytes into a value of mode MODE. If such an 2996 operation requires no actual instructions, we can refer 2997 to the value directly in mode MODE, otherwise we must 2998 start with the register in word_mode and explicitly 2999 convert it. */ 3000 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD)) 3001 reg = gen_rtx_REG (mode, REGNO (entry_parm)); 3002 else 3003 { 3004 reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3005 reg = convert_to_mode (mode, copy_to_reg (reg), 1); 3006 } 3007 emit_move_insn (change_address (mem, mode, 0), reg); 3008 } 3009 3010 #ifdef BLOCK_REG_PADDING 3011 /* Storing the register in memory as a full word, as 3012 move_block_from_reg below would do, and then using the 3013 MEM in a smaller mode, has the effect of shifting right 3014 if BYTES_BIG_ENDIAN. If we're bypassing memory, the 3015 shifting must be explicit. */ 3016 else if (!MEM_P (mem)) 3017 { 3018 rtx x; 3019 3020 /* If the assert below fails, we should have taken the 3021 mode != BLKmode path above, unless we have downward 3022 padding of smaller-than-word arguments on a machine 3023 with little-endian bytes, which would likely require 3024 additional changes to work correctly. */ 3025 gcc_checking_assert (BYTES_BIG_ENDIAN 3026 && (BLOCK_REG_PADDING (mode, 3027 data->passed_type, 1) 3028 == upward)); 3029 3030 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; 3031 3032 x = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3033 x = expand_shift (RSHIFT_EXPR, word_mode, x, by, 3034 NULL_RTX, 1); 3035 x = force_reg (word_mode, x); 3036 x = gen_lowpart_SUBREG (GET_MODE (mem), x); 3037 3038 emit_move_insn (mem, x); 3039 } 3040 #endif 3041 3042 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN 3043 machine must be aligned to the left before storing 3044 to memory. Note that the previous test doesn't 3045 handle all cases (e.g. SIZE == 3). */ 3046 else if (size != UNITS_PER_WORD 3047 #ifdef BLOCK_REG_PADDING 3048 && (BLOCK_REG_PADDING (mode, data->passed_type, 1) 3049 == downward) 3050 #else 3051 && BYTES_BIG_ENDIAN 3052 #endif 3053 ) 3054 { 3055 rtx tem, x; 3056 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; 3057 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3058 3059 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1); 3060 tem = change_address (mem, word_mode, 0); 3061 emit_move_insn (tem, x); 3062 } 3063 else 3064 move_block_from_reg (REGNO (entry_parm), mem, 3065 size_stored / UNITS_PER_WORD); 3066 } 3067 else if (!MEM_P (mem)) 3068 { 3069 gcc_checking_assert (size > UNITS_PER_WORD); 3070 #ifdef BLOCK_REG_PADDING 3071 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem), 3072 data->passed_type, 0) 3073 == upward); 3074 #endif 3075 emit_move_insn (mem, entry_parm); 3076 } 3077 else 3078 move_block_from_reg (REGNO (entry_parm), mem, 3079 size_stored / UNITS_PER_WORD); 3080 } 3081 else if (data->stack_parm == 0) 3082 { 3083 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3084 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size), 3085 BLOCK_OP_NORMAL); 3086 all->first_conversion_insn = get_insns (); 3087 all->last_conversion_insn = get_last_insn (); 3088 end_sequence (); 3089 in_conversion_seq = true; 3090 } 3091 3092 if (target_reg) 3093 { 3094 if (!in_conversion_seq) 3095 emit_move_insn (target_reg, stack_parm); 3096 else 3097 { 3098 push_to_sequence2 (all->first_conversion_insn, 3099 all->last_conversion_insn); 3100 emit_move_insn (target_reg, stack_parm); 3101 all->first_conversion_insn = get_insns (); 3102 all->last_conversion_insn = get_last_insn (); 3103 end_sequence (); 3104 } 3105 stack_parm = target_reg; 3106 } 3107 3108 data->stack_parm = stack_parm; 3109 set_parm_rtl (parm, stack_parm); 3110 } 3111 3112 /* A subroutine of assign_parms. Allocate a pseudo to hold the current 3113 parameter. Get it there. Perform all ABI specified conversions. */ 3114 3115 static void 3116 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm, 3117 struct assign_parm_data_one *data) 3118 { 3119 rtx parmreg, validated_mem; 3120 rtx equiv_stack_parm; 3121 machine_mode promoted_nominal_mode; 3122 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm)); 3123 bool did_conversion = false; 3124 bool need_conversion, moved; 3125 rtx rtl; 3126 3127 /* Store the parm in a pseudoregister during the function, but we may 3128 need to do it in a wider mode. Using 2 here makes the result 3129 consistent with promote_decl_mode and thus expand_expr_real_1. */ 3130 promoted_nominal_mode 3131 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp, 3132 TREE_TYPE (current_function_decl), 2); 3133 3134 parmreg = gen_reg_rtx (promoted_nominal_mode); 3135 if (!DECL_ARTIFICIAL (parm)) 3136 mark_user_reg (parmreg); 3137 3138 /* If this was an item that we received a pointer to, 3139 set rtl appropriately. */ 3140 if (data->passed_pointer) 3141 { 3142 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg); 3143 set_mem_attributes (rtl, parm, 1); 3144 } 3145 else 3146 rtl = parmreg; 3147 3148 assign_parm_remove_parallels (data); 3149 3150 /* Copy the value into the register, thus bridging between 3151 assign_parm_find_data_types and expand_expr_real_1. */ 3152 3153 equiv_stack_parm = data->stack_parm; 3154 validated_mem = validize_mem (copy_rtx (data->entry_parm)); 3155 3156 need_conversion = (data->nominal_mode != data->passed_mode 3157 || promoted_nominal_mode != data->promoted_mode); 3158 moved = false; 3159 3160 if (need_conversion 3161 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT 3162 && data->nominal_mode == data->passed_mode 3163 && data->nominal_mode == GET_MODE (data->entry_parm)) 3164 { 3165 /* ENTRY_PARM has been converted to PROMOTED_MODE, its 3166 mode, by the caller. We now have to convert it to 3167 NOMINAL_MODE, if different. However, PARMREG may be in 3168 a different mode than NOMINAL_MODE if it is being stored 3169 promoted. 3170 3171 If ENTRY_PARM is a hard register, it might be in a register 3172 not valid for operating in its mode (e.g., an odd-numbered 3173 register for a DFmode). In that case, moves are the only 3174 thing valid, so we can't do a convert from there. This 3175 occurs when the calling sequence allow such misaligned 3176 usages. 3177 3178 In addition, the conversion may involve a call, which could 3179 clobber parameters which haven't been copied to pseudo 3180 registers yet. 3181 3182 First, we try to emit an insn which performs the necessary 3183 conversion. We verify that this insn does not clobber any 3184 hard registers. */ 3185 3186 enum insn_code icode; 3187 rtx op0, op1; 3188 3189 icode = can_extend_p (promoted_nominal_mode, data->passed_mode, 3190 unsignedp); 3191 3192 op0 = parmreg; 3193 op1 = validated_mem; 3194 if (icode != CODE_FOR_nothing 3195 && insn_operand_matches (icode, 0, op0) 3196 && insn_operand_matches (icode, 1, op1)) 3197 { 3198 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND; 3199 rtx_insn *insn, *insns; 3200 rtx t = op1; 3201 HARD_REG_SET hardregs; 3202 3203 start_sequence (); 3204 /* If op1 is a hard register that is likely spilled, first 3205 force it into a pseudo, otherwise combiner might extend 3206 its lifetime too much. */ 3207 if (GET_CODE (t) == SUBREG) 3208 t = SUBREG_REG (t); 3209 if (REG_P (t) 3210 && HARD_REGISTER_P (t) 3211 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t)) 3212 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t)))) 3213 { 3214 t = gen_reg_rtx (GET_MODE (op1)); 3215 emit_move_insn (t, op1); 3216 } 3217 else 3218 t = op1; 3219 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode, 3220 data->passed_mode, unsignedp); 3221 emit_insn (pat); 3222 insns = get_insns (); 3223 3224 moved = true; 3225 CLEAR_HARD_REG_SET (hardregs); 3226 for (insn = insns; insn && moved; insn = NEXT_INSN (insn)) 3227 { 3228 if (INSN_P (insn)) 3229 note_stores (PATTERN (insn), record_hard_reg_sets, 3230 &hardregs); 3231 if (!hard_reg_set_empty_p (hardregs)) 3232 moved = false; 3233 } 3234 3235 end_sequence (); 3236 3237 if (moved) 3238 { 3239 emit_insn (insns); 3240 if (equiv_stack_parm != NULL_RTX) 3241 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg), 3242 equiv_stack_parm); 3243 } 3244 } 3245 } 3246 3247 if (moved) 3248 /* Nothing to do. */ 3249 ; 3250 else if (need_conversion) 3251 { 3252 /* We did not have an insn to convert directly, or the sequence 3253 generated appeared unsafe. We must first copy the parm to a 3254 pseudo reg, and save the conversion until after all 3255 parameters have been moved. */ 3256 3257 int save_tree_used; 3258 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); 3259 3260 emit_move_insn (tempreg, validated_mem); 3261 3262 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3263 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp); 3264 3265 if (GET_CODE (tempreg) == SUBREG 3266 && GET_MODE (tempreg) == data->nominal_mode 3267 && REG_P (SUBREG_REG (tempreg)) 3268 && data->nominal_mode == data->passed_mode 3269 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm) 3270 && GET_MODE_SIZE (GET_MODE (tempreg)) 3271 < GET_MODE_SIZE (GET_MODE (data->entry_parm))) 3272 { 3273 /* The argument is already sign/zero extended, so note it 3274 into the subreg. */ 3275 SUBREG_PROMOTED_VAR_P (tempreg) = 1; 3276 SUBREG_PROMOTED_SET (tempreg, unsignedp); 3277 } 3278 3279 /* TREE_USED gets set erroneously during expand_assignment. */ 3280 save_tree_used = TREE_USED (parm); 3281 SET_DECL_RTL (parm, rtl); 3282 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false); 3283 SET_DECL_RTL (parm, NULL_RTX); 3284 TREE_USED (parm) = save_tree_used; 3285 all->first_conversion_insn = get_insns (); 3286 all->last_conversion_insn = get_last_insn (); 3287 end_sequence (); 3288 3289 did_conversion = true; 3290 } 3291 else 3292 emit_move_insn (parmreg, validated_mem); 3293 3294 /* If we were passed a pointer but the actual value can safely live 3295 in a register, retrieve it and use it directly. */ 3296 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode) 3297 { 3298 /* We can't use nominal_mode, because it will have been set to 3299 Pmode above. We must use the actual mode of the parm. */ 3300 if (use_register_for_decl (parm)) 3301 { 3302 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); 3303 mark_user_reg (parmreg); 3304 } 3305 else 3306 { 3307 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm), 3308 TYPE_MODE (TREE_TYPE (parm)), 3309 TYPE_ALIGN (TREE_TYPE (parm))); 3310 parmreg 3311 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)), 3312 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))), 3313 align); 3314 set_mem_attributes (parmreg, parm, 1); 3315 } 3316 3317 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for 3318 the debug info in case it is not legitimate. */ 3319 if (GET_MODE (parmreg) != GET_MODE (rtl)) 3320 { 3321 rtx tempreg = gen_reg_rtx (GET_MODE (rtl)); 3322 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm)); 3323 3324 push_to_sequence2 (all->first_conversion_insn, 3325 all->last_conversion_insn); 3326 emit_move_insn (tempreg, rtl); 3327 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p); 3328 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, 3329 tempreg); 3330 all->first_conversion_insn = get_insns (); 3331 all->last_conversion_insn = get_last_insn (); 3332 end_sequence (); 3333 3334 did_conversion = true; 3335 } 3336 else 3337 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl); 3338 3339 rtl = parmreg; 3340 3341 /* STACK_PARM is the pointer, not the parm, and PARMREG is 3342 now the parm. */ 3343 data->stack_parm = NULL; 3344 } 3345 3346 set_parm_rtl (parm, rtl); 3347 3348 /* Mark the register as eliminable if we did no conversion and it was 3349 copied from memory at a fixed offset, and the arg pointer was not 3350 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the 3351 offset formed an invalid address, such memory-equivalences as we 3352 make here would screw up life analysis for it. */ 3353 if (data->nominal_mode == data->passed_mode 3354 && !did_conversion 3355 && data->stack_parm != 0 3356 && MEM_P (data->stack_parm) 3357 && data->locate.offset.var == 0 3358 && reg_mentioned_p (virtual_incoming_args_rtx, 3359 XEXP (data->stack_parm, 0))) 3360 { 3361 rtx_insn *linsn = get_last_insn (); 3362 rtx_insn *sinsn; 3363 rtx set; 3364 3365 /* Mark complex types separately. */ 3366 if (GET_CODE (parmreg) == CONCAT) 3367 { 3368 machine_mode submode 3369 = GET_MODE_INNER (GET_MODE (parmreg)); 3370 int regnor = REGNO (XEXP (parmreg, 0)); 3371 int regnoi = REGNO (XEXP (parmreg, 1)); 3372 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0); 3373 rtx stacki = adjust_address_nv (data->stack_parm, submode, 3374 GET_MODE_SIZE (submode)); 3375 3376 /* Scan backwards for the set of the real and 3377 imaginary parts. */ 3378 for (sinsn = linsn; sinsn != 0; 3379 sinsn = prev_nonnote_insn (sinsn)) 3380 { 3381 set = single_set (sinsn); 3382 if (set == 0) 3383 continue; 3384 3385 if (SET_DEST (set) == regno_reg_rtx [regnoi]) 3386 set_unique_reg_note (sinsn, REG_EQUIV, stacki); 3387 else if (SET_DEST (set) == regno_reg_rtx [regnor]) 3388 set_unique_reg_note (sinsn, REG_EQUIV, stackr); 3389 } 3390 } 3391 else 3392 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg); 3393 } 3394 3395 /* For pointer data type, suggest pointer register. */ 3396 if (POINTER_TYPE_P (TREE_TYPE (parm))) 3397 mark_reg_pointer (parmreg, 3398 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); 3399 } 3400 3401 /* A subroutine of assign_parms. Allocate stack space to hold the current 3402 parameter. Get it there. Perform all ABI specified conversions. */ 3403 3404 static void 3405 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm, 3406 struct assign_parm_data_one *data) 3407 { 3408 /* Value must be stored in the stack slot STACK_PARM during function 3409 execution. */ 3410 bool to_conversion = false; 3411 3412 assign_parm_remove_parallels (data); 3413 3414 if (data->promoted_mode != data->nominal_mode) 3415 { 3416 /* Conversion is required. */ 3417 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); 3418 3419 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm))); 3420 3421 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3422 to_conversion = true; 3423 3424 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg, 3425 TYPE_UNSIGNED (TREE_TYPE (parm))); 3426 3427 if (data->stack_parm) 3428 { 3429 int offset = subreg_lowpart_offset (data->nominal_mode, 3430 GET_MODE (data->stack_parm)); 3431 /* ??? This may need a big-endian conversion on sparc64. */ 3432 data->stack_parm 3433 = adjust_address (data->stack_parm, data->nominal_mode, 0); 3434 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm)) 3435 set_mem_offset (data->stack_parm, 3436 MEM_OFFSET (data->stack_parm) + offset); 3437 } 3438 } 3439 3440 if (data->entry_parm != data->stack_parm) 3441 { 3442 rtx src, dest; 3443 3444 if (data->stack_parm == 0) 3445 { 3446 int align = STACK_SLOT_ALIGNMENT (data->passed_type, 3447 GET_MODE (data->entry_parm), 3448 TYPE_ALIGN (data->passed_type)); 3449 data->stack_parm 3450 = assign_stack_local (GET_MODE (data->entry_parm), 3451 GET_MODE_SIZE (GET_MODE (data->entry_parm)), 3452 align); 3453 set_mem_attributes (data->stack_parm, parm, 1); 3454 } 3455 3456 dest = validize_mem (copy_rtx (data->stack_parm)); 3457 src = validize_mem (copy_rtx (data->entry_parm)); 3458 3459 if (MEM_P (src)) 3460 { 3461 /* Use a block move to handle potentially misaligned entry_parm. */ 3462 if (!to_conversion) 3463 push_to_sequence2 (all->first_conversion_insn, 3464 all->last_conversion_insn); 3465 to_conversion = true; 3466 3467 emit_block_move (dest, src, 3468 GEN_INT (int_size_in_bytes (data->passed_type)), 3469 BLOCK_OP_NORMAL); 3470 } 3471 else 3472 emit_move_insn (dest, src); 3473 } 3474 3475 if (to_conversion) 3476 { 3477 all->first_conversion_insn = get_insns (); 3478 all->last_conversion_insn = get_last_insn (); 3479 end_sequence (); 3480 } 3481 3482 set_parm_rtl (parm, data->stack_parm); 3483 } 3484 3485 /* A subroutine of assign_parms. If the ABI splits complex arguments, then 3486 undo the frobbing that we did in assign_parms_augmented_arg_list. */ 3487 3488 static void 3489 assign_parms_unsplit_complex (struct assign_parm_data_all *all, 3490 vec<tree> fnargs) 3491 { 3492 tree parm; 3493 tree orig_fnargs = all->orig_fnargs; 3494 unsigned i = 0; 3495 3496 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i) 3497 { 3498 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE 3499 && targetm.calls.split_complex_arg (TREE_TYPE (parm))) 3500 { 3501 rtx tmp, real, imag; 3502 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm)); 3503 3504 real = DECL_RTL (fnargs[i]); 3505 imag = DECL_RTL (fnargs[i + 1]); 3506 if (inner != GET_MODE (real)) 3507 { 3508 real = gen_lowpart_SUBREG (inner, real); 3509 imag = gen_lowpart_SUBREG (inner, imag); 3510 } 3511 3512 if (TREE_ADDRESSABLE (parm)) 3513 { 3514 rtx rmem, imem; 3515 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm)); 3516 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm), 3517 DECL_MODE (parm), 3518 TYPE_ALIGN (TREE_TYPE (parm))); 3519 3520 /* split_complex_arg put the real and imag parts in 3521 pseudos. Move them to memory. */ 3522 tmp = assign_stack_local (DECL_MODE (parm), size, align); 3523 set_mem_attributes (tmp, parm, 1); 3524 rmem = adjust_address_nv (tmp, inner, 0); 3525 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner)); 3526 push_to_sequence2 (all->first_conversion_insn, 3527 all->last_conversion_insn); 3528 emit_move_insn (rmem, real); 3529 emit_move_insn (imem, imag); 3530 all->first_conversion_insn = get_insns (); 3531 all->last_conversion_insn = get_last_insn (); 3532 end_sequence (); 3533 } 3534 else 3535 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); 3536 set_parm_rtl (parm, tmp); 3537 3538 real = DECL_INCOMING_RTL (fnargs[i]); 3539 imag = DECL_INCOMING_RTL (fnargs[i + 1]); 3540 if (inner != GET_MODE (real)) 3541 { 3542 real = gen_lowpart_SUBREG (inner, real); 3543 imag = gen_lowpart_SUBREG (inner, imag); 3544 } 3545 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); 3546 set_decl_incoming_rtl (parm, tmp, false); 3547 i++; 3548 } 3549 } 3550 } 3551 3552 /* Load bounds of PARM from bounds table. */ 3553 static void 3554 assign_parm_load_bounds (struct assign_parm_data_one *data, 3555 tree parm, 3556 rtx entry, 3557 unsigned bound_no) 3558 { 3559 bitmap_iterator bi; 3560 unsigned i, offs = 0; 3561 int bnd_no = -1; 3562 rtx slot = NULL, ptr = NULL; 3563 3564 if (parm) 3565 { 3566 bitmap slots; 3567 bitmap_obstack_initialize (NULL); 3568 slots = BITMAP_ALLOC (NULL); 3569 chkp_find_bound_slots (TREE_TYPE (parm), slots); 3570 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi) 3571 { 3572 if (bound_no) 3573 bound_no--; 3574 else 3575 { 3576 bnd_no = i; 3577 break; 3578 } 3579 } 3580 BITMAP_FREE (slots); 3581 bitmap_obstack_release (NULL); 3582 } 3583 3584 /* We may have bounds not associated with any pointer. */ 3585 if (bnd_no != -1) 3586 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT; 3587 3588 /* Find associated pointer. */ 3589 if (bnd_no == -1) 3590 { 3591 /* If bounds are not associated with any bounds, 3592 then it is passed in a register or special slot. */ 3593 gcc_assert (data->entry_parm); 3594 ptr = const0_rtx; 3595 } 3596 else if (MEM_P (entry)) 3597 slot = adjust_address (entry, Pmode, offs); 3598 else if (REG_P (entry)) 3599 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no); 3600 else if (GET_CODE (entry) == PARALLEL) 3601 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs)); 3602 else 3603 gcc_unreachable (); 3604 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr, 3605 data->entry_parm); 3606 } 3607 3608 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */ 3609 3610 static void 3611 assign_bounds (vec<bounds_parm_data> &bndargs, 3612 struct assign_parm_data_all &all, 3613 bool assign_regs, bool assign_special, 3614 bool assign_bt) 3615 { 3616 unsigned i, pass; 3617 bounds_parm_data *pbdata; 3618 3619 if (!bndargs.exists ()) 3620 return; 3621 3622 /* We make few passes to store input bounds. Firstly handle bounds 3623 passed in registers. After that we load bounds passed in special 3624 slots. Finally we load bounds from Bounds Table. */ 3625 for (pass = 0; pass < 3; pass++) 3626 FOR_EACH_VEC_ELT (bndargs, i, pbdata) 3627 { 3628 /* Pass 0 => regs only. */ 3629 if (pass == 0 3630 && (!assign_regs 3631 ||(!pbdata->parm_data.entry_parm 3632 || GET_CODE (pbdata->parm_data.entry_parm) != REG))) 3633 continue; 3634 /* Pass 1 => slots only. */ 3635 else if (pass == 1 3636 && (!assign_special 3637 || (!pbdata->parm_data.entry_parm 3638 || GET_CODE (pbdata->parm_data.entry_parm) == REG))) 3639 continue; 3640 /* Pass 2 => BT only. */ 3641 else if (pass == 2 3642 && (!assign_bt 3643 || pbdata->parm_data.entry_parm)) 3644 continue; 3645 3646 if (!pbdata->parm_data.entry_parm 3647 || GET_CODE (pbdata->parm_data.entry_parm) != REG) 3648 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm, 3649 pbdata->ptr_entry, pbdata->bound_no); 3650 3651 set_decl_incoming_rtl (pbdata->bounds_parm, 3652 pbdata->parm_data.entry_parm, false); 3653 3654 if (assign_parm_setup_block_p (&pbdata->parm_data)) 3655 assign_parm_setup_block (&all, pbdata->bounds_parm, 3656 &pbdata->parm_data); 3657 else if (pbdata->parm_data.passed_pointer 3658 || use_register_for_decl (pbdata->bounds_parm)) 3659 assign_parm_setup_reg (&all, pbdata->bounds_parm, 3660 &pbdata->parm_data); 3661 else 3662 assign_parm_setup_stack (&all, pbdata->bounds_parm, 3663 &pbdata->parm_data); 3664 } 3665 } 3666 3667 /* Assign RTL expressions to the function's parameters. This may involve 3668 copying them into registers and using those registers as the DECL_RTL. */ 3669 3670 static void 3671 assign_parms (tree fndecl) 3672 { 3673 struct assign_parm_data_all all; 3674 tree parm; 3675 vec<tree> fnargs; 3676 unsigned i, bound_no = 0; 3677 tree last_arg = NULL; 3678 rtx last_arg_entry = NULL; 3679 vec<bounds_parm_data> bndargs = vNULL; 3680 bounds_parm_data bdata; 3681 3682 crtl->args.internal_arg_pointer 3683 = targetm.calls.internal_arg_pointer (); 3684 3685 assign_parms_initialize_all (&all); 3686 fnargs = assign_parms_augmented_arg_list (&all); 3687 3688 FOR_EACH_VEC_ELT (fnargs, i, parm) 3689 { 3690 struct assign_parm_data_one data; 3691 3692 /* Extract the type of PARM; adjust it according to ABI. */ 3693 assign_parm_find_data_types (&all, parm, &data); 3694 3695 /* Early out for errors and void parameters. */ 3696 if (data.passed_mode == VOIDmode) 3697 { 3698 SET_DECL_RTL (parm, const0_rtx); 3699 DECL_INCOMING_RTL (parm) = DECL_RTL (parm); 3700 continue; 3701 } 3702 3703 /* Estimate stack alignment from parameter alignment. */ 3704 if (SUPPORTS_STACK_ALIGNMENT) 3705 { 3706 unsigned int align 3707 = targetm.calls.function_arg_boundary (data.promoted_mode, 3708 data.passed_type); 3709 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode, 3710 align); 3711 if (TYPE_ALIGN (data.nominal_type) > align) 3712 align = MINIMUM_ALIGNMENT (data.nominal_type, 3713 TYPE_MODE (data.nominal_type), 3714 TYPE_ALIGN (data.nominal_type)); 3715 if (crtl->stack_alignment_estimated < align) 3716 { 3717 gcc_assert (!crtl->stack_realign_processed); 3718 crtl->stack_alignment_estimated = align; 3719 } 3720 } 3721 3722 /* Find out where the parameter arrives in this function. */ 3723 assign_parm_find_entry_rtl (&all, &data); 3724 3725 /* Find out where stack space for this parameter might be. */ 3726 if (assign_parm_is_stack_parm (&all, &data)) 3727 { 3728 assign_parm_find_stack_rtl (parm, &data); 3729 assign_parm_adjust_entry_rtl (&data); 3730 } 3731 if (!POINTER_BOUNDS_TYPE_P (data.passed_type)) 3732 { 3733 /* Remember where last non bounds arg was passed in case 3734 we have to load associated bounds for it from Bounds 3735 Table. */ 3736 last_arg = parm; 3737 last_arg_entry = data.entry_parm; 3738 bound_no = 0; 3739 } 3740 /* Record permanently how this parm was passed. */ 3741 if (data.passed_pointer) 3742 { 3743 rtx incoming_rtl 3744 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)), 3745 data.entry_parm); 3746 set_decl_incoming_rtl (parm, incoming_rtl, true); 3747 } 3748 else 3749 set_decl_incoming_rtl (parm, data.entry_parm, false); 3750 3751 assign_parm_adjust_stack_rtl (&data); 3752 3753 /* Bounds should be loaded in the particular order to 3754 have registers allocated correctly. Collect info about 3755 input bounds and load them later. */ 3756 if (POINTER_BOUNDS_TYPE_P (data.passed_type)) 3757 { 3758 /* Expect bounds in instrumented functions only. */ 3759 gcc_assert (chkp_function_instrumented_p (fndecl)); 3760 3761 bdata.parm_data = data; 3762 bdata.bounds_parm = parm; 3763 bdata.ptr_parm = last_arg; 3764 bdata.ptr_entry = last_arg_entry; 3765 bdata.bound_no = bound_no; 3766 bndargs.safe_push (bdata); 3767 } 3768 else 3769 { 3770 if (assign_parm_setup_block_p (&data)) 3771 assign_parm_setup_block (&all, parm, &data); 3772 else if (data.passed_pointer || use_register_for_decl (parm)) 3773 assign_parm_setup_reg (&all, parm, &data); 3774 else 3775 assign_parm_setup_stack (&all, parm, &data); 3776 } 3777 3778 if (cfun->stdarg && !DECL_CHAIN (parm)) 3779 { 3780 int pretend_bytes = 0; 3781 3782 assign_parms_setup_varargs (&all, &data, false); 3783 3784 if (chkp_function_instrumented_p (fndecl)) 3785 { 3786 /* We expect this is the last parm. Otherwise it is wrong 3787 to assign bounds right now. */ 3788 gcc_assert (i == (fnargs.length () - 1)); 3789 assign_bounds (bndargs, all, true, false, false); 3790 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far, 3791 data.promoted_mode, 3792 data.passed_type, 3793 &pretend_bytes, 3794 false); 3795 assign_bounds (bndargs, all, false, true, true); 3796 bndargs.release (); 3797 } 3798 } 3799 3800 /* Update info on where next arg arrives in registers. */ 3801 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode, 3802 data.passed_type, data.named_arg); 3803 3804 if (POINTER_BOUNDS_TYPE_P (data.passed_type)) 3805 bound_no++; 3806 } 3807 3808 assign_bounds (bndargs, all, true, true, true); 3809 bndargs.release (); 3810 3811 if (targetm.calls.split_complex_arg) 3812 assign_parms_unsplit_complex (&all, fnargs); 3813 3814 fnargs.release (); 3815 3816 /* Output all parameter conversion instructions (possibly including calls) 3817 now that all parameters have been copied out of hard registers. */ 3818 emit_insn (all.first_conversion_insn); 3819 3820 /* Estimate reload stack alignment from scalar return mode. */ 3821 if (SUPPORTS_STACK_ALIGNMENT) 3822 { 3823 if (DECL_RESULT (fndecl)) 3824 { 3825 tree type = TREE_TYPE (DECL_RESULT (fndecl)); 3826 machine_mode mode = TYPE_MODE (type); 3827 3828 if (mode != BLKmode 3829 && mode != VOIDmode 3830 && !AGGREGATE_TYPE_P (type)) 3831 { 3832 unsigned int align = GET_MODE_ALIGNMENT (mode); 3833 if (crtl->stack_alignment_estimated < align) 3834 { 3835 gcc_assert (!crtl->stack_realign_processed); 3836 crtl->stack_alignment_estimated = align; 3837 } 3838 } 3839 } 3840 } 3841 3842 /* If we are receiving a struct value address as the first argument, set up 3843 the RTL for the function result. As this might require code to convert 3844 the transmitted address to Pmode, we do this here to ensure that possible 3845 preliminary conversions of the address have been emitted already. */ 3846 if (all.function_result_decl) 3847 { 3848 tree result = DECL_RESULT (current_function_decl); 3849 rtx addr = DECL_RTL (all.function_result_decl); 3850 rtx x; 3851 3852 if (DECL_BY_REFERENCE (result)) 3853 { 3854 SET_DECL_VALUE_EXPR (result, all.function_result_decl); 3855 x = addr; 3856 } 3857 else 3858 { 3859 SET_DECL_VALUE_EXPR (result, 3860 build1 (INDIRECT_REF, TREE_TYPE (result), 3861 all.function_result_decl)); 3862 addr = convert_memory_address (Pmode, addr); 3863 x = gen_rtx_MEM (DECL_MODE (result), addr); 3864 set_mem_attributes (x, result, 1); 3865 } 3866 3867 DECL_HAS_VALUE_EXPR_P (result) = 1; 3868 3869 set_parm_rtl (result, x); 3870 } 3871 3872 /* We have aligned all the args, so add space for the pretend args. */ 3873 crtl->args.pretend_args_size = all.pretend_args_size; 3874 all.stack_args_size.constant += all.extra_pretend_bytes; 3875 crtl->args.size = all.stack_args_size.constant; 3876 3877 /* Adjust function incoming argument size for alignment and 3878 minimum length. */ 3879 3880 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space); 3881 crtl->args.size = CEIL_ROUND (crtl->args.size, 3882 PARM_BOUNDARY / BITS_PER_UNIT); 3883 3884 if (ARGS_GROW_DOWNWARD) 3885 { 3886 crtl->args.arg_offset_rtx 3887 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant) 3888 : expand_expr (size_diffop (all.stack_args_size.var, 3889 size_int (-all.stack_args_size.constant)), 3890 NULL_RTX, VOIDmode, EXPAND_NORMAL)); 3891 } 3892 else 3893 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size); 3894 3895 /* See how many bytes, if any, of its args a function should try to pop 3896 on return. */ 3897 3898 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl, 3899 TREE_TYPE (fndecl), 3900 crtl->args.size); 3901 3902 /* For stdarg.h function, save info about 3903 regs and stack space used by the named args. */ 3904 3905 crtl->args.info = all.args_so_far_v; 3906 3907 /* Set the rtx used for the function return value. Put this in its 3908 own variable so any optimizers that need this information don't have 3909 to include tree.h. Do this here so it gets done when an inlined 3910 function gets output. */ 3911 3912 crtl->return_rtx 3913 = (DECL_RTL_SET_P (DECL_RESULT (fndecl)) 3914 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX); 3915 3916 /* If scalar return value was computed in a pseudo-reg, or was a named 3917 return value that got dumped to the stack, copy that to the hard 3918 return register. */ 3919 if (DECL_RTL_SET_P (DECL_RESULT (fndecl))) 3920 { 3921 tree decl_result = DECL_RESULT (fndecl); 3922 rtx decl_rtl = DECL_RTL (decl_result); 3923 3924 if (REG_P (decl_rtl) 3925 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER 3926 : DECL_REGISTER (decl_result)) 3927 { 3928 rtx real_decl_rtl; 3929 3930 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result), 3931 fndecl, true); 3932 if (chkp_function_instrumented_p (fndecl)) 3933 crtl->return_bnd 3934 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result), 3935 fndecl, true); 3936 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1; 3937 /* The delay slot scheduler assumes that crtl->return_rtx 3938 holds the hard register containing the return value, not a 3939 temporary pseudo. */ 3940 crtl->return_rtx = real_decl_rtl; 3941 } 3942 } 3943 } 3944 3945 /* A subroutine of gimplify_parameters, invoked via walk_tree. 3946 For all seen types, gimplify their sizes. */ 3947 3948 static tree 3949 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data) 3950 { 3951 tree t = *tp; 3952 3953 *walk_subtrees = 0; 3954 if (TYPE_P (t)) 3955 { 3956 if (POINTER_TYPE_P (t)) 3957 *walk_subtrees = 1; 3958 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t)) 3959 && !TYPE_SIZES_GIMPLIFIED (t)) 3960 { 3961 gimplify_type_sizes (t, (gimple_seq *) data); 3962 *walk_subtrees = 1; 3963 } 3964 } 3965 3966 return NULL; 3967 } 3968 3969 /* Gimplify the parameter list for current_function_decl. This involves 3970 evaluating SAVE_EXPRs of variable sized parameters and generating code 3971 to implement callee-copies reference parameters. Returns a sequence of 3972 statements to add to the beginning of the function. */ 3973 3974 gimple_seq 3975 gimplify_parameters (void) 3976 { 3977 struct assign_parm_data_all all; 3978 tree parm; 3979 gimple_seq stmts = NULL; 3980 vec<tree> fnargs; 3981 unsigned i; 3982 3983 assign_parms_initialize_all (&all); 3984 fnargs = assign_parms_augmented_arg_list (&all); 3985 3986 FOR_EACH_VEC_ELT (fnargs, i, parm) 3987 { 3988 struct assign_parm_data_one data; 3989 3990 /* Extract the type of PARM; adjust it according to ABI. */ 3991 assign_parm_find_data_types (&all, parm, &data); 3992 3993 /* Early out for errors and void parameters. */ 3994 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL) 3995 continue; 3996 3997 /* Update info on where next arg arrives in registers. */ 3998 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode, 3999 data.passed_type, data.named_arg); 4000 4001 /* ??? Once upon a time variable_size stuffed parameter list 4002 SAVE_EXPRs (amongst others) onto a pending sizes list. This 4003 turned out to be less than manageable in the gimple world. 4004 Now we have to hunt them down ourselves. */ 4005 walk_tree_without_duplicates (&data.passed_type, 4006 gimplify_parm_type, &stmts); 4007 4008 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST) 4009 { 4010 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts); 4011 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts); 4012 } 4013 4014 if (data.passed_pointer) 4015 { 4016 tree type = TREE_TYPE (data.passed_type); 4017 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type), 4018 type, data.named_arg)) 4019 { 4020 tree local, t; 4021 4022 /* For constant-sized objects, this is trivial; for 4023 variable-sized objects, we have to play games. */ 4024 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST 4025 && !(flag_stack_check == GENERIC_STACK_CHECK 4026 && compare_tree_int (DECL_SIZE_UNIT (parm), 4027 STACK_CHECK_MAX_VAR_SIZE) > 0)) 4028 { 4029 local = create_tmp_var (type, get_name (parm)); 4030 DECL_IGNORED_P (local) = 0; 4031 /* If PARM was addressable, move that flag over 4032 to the local copy, as its address will be taken, 4033 not the PARMs. Keep the parms address taken 4034 as we'll query that flag during gimplification. */ 4035 if (TREE_ADDRESSABLE (parm)) 4036 TREE_ADDRESSABLE (local) = 1; 4037 else if (TREE_CODE (type) == COMPLEX_TYPE 4038 || TREE_CODE (type) == VECTOR_TYPE) 4039 DECL_GIMPLE_REG_P (local) = 1; 4040 } 4041 else 4042 { 4043 tree ptr_type, addr; 4044 4045 ptr_type = build_pointer_type (type); 4046 addr = create_tmp_reg (ptr_type, get_name (parm)); 4047 DECL_IGNORED_P (addr) = 0; 4048 local = build_fold_indirect_ref (addr); 4049 4050 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN); 4051 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm), 4052 size_int (DECL_ALIGN (parm))); 4053 4054 /* The call has been built for a variable-sized object. */ 4055 CALL_ALLOCA_FOR_VAR_P (t) = 1; 4056 t = fold_convert (ptr_type, t); 4057 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t); 4058 gimplify_and_add (t, &stmts); 4059 } 4060 4061 gimplify_assign (local, parm, &stmts); 4062 4063 SET_DECL_VALUE_EXPR (parm, local); 4064 DECL_HAS_VALUE_EXPR_P (parm) = 1; 4065 } 4066 } 4067 } 4068 4069 fnargs.release (); 4070 4071 return stmts; 4072 } 4073 4074 /* Compute the size and offset from the start of the stacked arguments for a 4075 parm passed in mode PASSED_MODE and with type TYPE. 4076 4077 INITIAL_OFFSET_PTR points to the current offset into the stacked 4078 arguments. 4079 4080 The starting offset and size for this parm are returned in 4081 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is 4082 nonzero, the offset is that of stack slot, which is returned in 4083 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of 4084 padding required from the initial offset ptr to the stack slot. 4085 4086 IN_REGS is nonzero if the argument will be passed in registers. It will 4087 never be set if REG_PARM_STACK_SPACE is not defined. 4088 4089 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved 4090 for arguments which are passed in registers. 4091 4092 FNDECL is the function in which the argument was defined. 4093 4094 There are two types of rounding that are done. The first, controlled by 4095 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the 4096 argument list to be aligned to the specific boundary (in bits). This 4097 rounding affects the initial and starting offsets, but not the argument 4098 size. 4099 4100 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY, 4101 optionally rounds the size of the parm to PARM_BOUNDARY. The 4102 initial offset is not affected by this rounding, while the size always 4103 is and the starting offset may be. */ 4104 4105 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case; 4106 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's 4107 callers pass in the total size of args so far as 4108 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */ 4109 4110 void 4111 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs, 4112 int reg_parm_stack_space, int partial, 4113 tree fndecl ATTRIBUTE_UNUSED, 4114 struct args_size *initial_offset_ptr, 4115 struct locate_and_pad_arg_data *locate) 4116 { 4117 tree sizetree; 4118 enum direction where_pad; 4119 unsigned int boundary, round_boundary; 4120 int part_size_in_regs; 4121 4122 /* If we have found a stack parm before we reach the end of the 4123 area reserved for registers, skip that area. */ 4124 if (! in_regs) 4125 { 4126 if (reg_parm_stack_space > 0) 4127 { 4128 if (initial_offset_ptr->var) 4129 { 4130 initial_offset_ptr->var 4131 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr), 4132 ssize_int (reg_parm_stack_space)); 4133 initial_offset_ptr->constant = 0; 4134 } 4135 else if (initial_offset_ptr->constant < reg_parm_stack_space) 4136 initial_offset_ptr->constant = reg_parm_stack_space; 4137 } 4138 } 4139 4140 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0); 4141 4142 sizetree 4143 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode)); 4144 where_pad = FUNCTION_ARG_PADDING (passed_mode, type); 4145 boundary = targetm.calls.function_arg_boundary (passed_mode, type); 4146 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode, 4147 type); 4148 locate->where_pad = where_pad; 4149 4150 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */ 4151 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT) 4152 boundary = MAX_SUPPORTED_STACK_ALIGNMENT; 4153 4154 locate->boundary = boundary; 4155 4156 if (SUPPORTS_STACK_ALIGNMENT) 4157 { 4158 /* stack_alignment_estimated can't change after stack has been 4159 realigned. */ 4160 if (crtl->stack_alignment_estimated < boundary) 4161 { 4162 if (!crtl->stack_realign_processed) 4163 crtl->stack_alignment_estimated = boundary; 4164 else 4165 { 4166 /* If stack is realigned and stack alignment value 4167 hasn't been finalized, it is OK not to increase 4168 stack_alignment_estimated. The bigger alignment 4169 requirement is recorded in stack_alignment_needed 4170 below. */ 4171 gcc_assert (!crtl->stack_realign_finalized 4172 && crtl->stack_realign_needed); 4173 } 4174 } 4175 } 4176 4177 /* Remember if the outgoing parameter requires extra alignment on the 4178 calling function side. */ 4179 if (crtl->stack_alignment_needed < boundary) 4180 crtl->stack_alignment_needed = boundary; 4181 if (crtl->preferred_stack_boundary < boundary) 4182 crtl->preferred_stack_boundary = boundary; 4183 4184 if (ARGS_GROW_DOWNWARD) 4185 { 4186 locate->slot_offset.constant = -initial_offset_ptr->constant; 4187 if (initial_offset_ptr->var) 4188 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0), 4189 initial_offset_ptr->var); 4190 4191 { 4192 tree s2 = sizetree; 4193 if (where_pad != none 4194 && (!tree_fits_uhwi_p (sizetree) 4195 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary)) 4196 s2 = round_up (s2, round_boundary / BITS_PER_UNIT); 4197 SUB_PARM_SIZE (locate->slot_offset, s2); 4198 } 4199 4200 locate->slot_offset.constant += part_size_in_regs; 4201 4202 if (!in_regs || reg_parm_stack_space > 0) 4203 pad_to_arg_alignment (&locate->slot_offset, boundary, 4204 &locate->alignment_pad); 4205 4206 locate->size.constant = (-initial_offset_ptr->constant 4207 - locate->slot_offset.constant); 4208 if (initial_offset_ptr->var) 4209 locate->size.var = size_binop (MINUS_EXPR, 4210 size_binop (MINUS_EXPR, 4211 ssize_int (0), 4212 initial_offset_ptr->var), 4213 locate->slot_offset.var); 4214 4215 /* Pad_below needs the pre-rounded size to know how much to pad 4216 below. */ 4217 locate->offset = locate->slot_offset; 4218 if (where_pad == downward) 4219 pad_below (&locate->offset, passed_mode, sizetree); 4220 4221 } 4222 else 4223 { 4224 if (!in_regs || reg_parm_stack_space > 0) 4225 pad_to_arg_alignment (initial_offset_ptr, boundary, 4226 &locate->alignment_pad); 4227 locate->slot_offset = *initial_offset_ptr; 4228 4229 #ifdef PUSH_ROUNDING 4230 if (passed_mode != BLKmode) 4231 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree))); 4232 #endif 4233 4234 /* Pad_below needs the pre-rounded size to know how much to pad below 4235 so this must be done before rounding up. */ 4236 locate->offset = locate->slot_offset; 4237 if (where_pad == downward) 4238 pad_below (&locate->offset, passed_mode, sizetree); 4239 4240 if (where_pad != none 4241 && (!tree_fits_uhwi_p (sizetree) 4242 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary)) 4243 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT); 4244 4245 ADD_PARM_SIZE (locate->size, sizetree); 4246 4247 locate->size.constant -= part_size_in_regs; 4248 } 4249 4250 #ifdef FUNCTION_ARG_OFFSET 4251 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type); 4252 #endif 4253 } 4254 4255 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY. 4256 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */ 4257 4258 static void 4259 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary, 4260 struct args_size *alignment_pad) 4261 { 4262 tree save_var = NULL_TREE; 4263 HOST_WIDE_INT save_constant = 0; 4264 int boundary_in_bytes = boundary / BITS_PER_UNIT; 4265 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET; 4266 4267 #ifdef SPARC_STACK_BOUNDARY_HACK 4268 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than 4269 the real alignment of %sp. However, when it does this, the 4270 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ 4271 if (SPARC_STACK_BOUNDARY_HACK) 4272 sp_offset = 0; 4273 #endif 4274 4275 if (boundary > PARM_BOUNDARY) 4276 { 4277 save_var = offset_ptr->var; 4278 save_constant = offset_ptr->constant; 4279 } 4280 4281 alignment_pad->var = NULL_TREE; 4282 alignment_pad->constant = 0; 4283 4284 if (boundary > BITS_PER_UNIT) 4285 { 4286 if (offset_ptr->var) 4287 { 4288 tree sp_offset_tree = ssize_int (sp_offset); 4289 tree offset = size_binop (PLUS_EXPR, 4290 ARGS_SIZE_TREE (*offset_ptr), 4291 sp_offset_tree); 4292 tree rounded; 4293 if (ARGS_GROW_DOWNWARD) 4294 rounded = round_down (offset, boundary / BITS_PER_UNIT); 4295 else 4296 rounded = round_up (offset, boundary / BITS_PER_UNIT); 4297 4298 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree); 4299 /* ARGS_SIZE_TREE includes constant term. */ 4300 offset_ptr->constant = 0; 4301 if (boundary > PARM_BOUNDARY) 4302 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var, 4303 save_var); 4304 } 4305 else 4306 { 4307 offset_ptr->constant = -sp_offset + 4308 (ARGS_GROW_DOWNWARD 4309 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes) 4310 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)); 4311 4312 if (boundary > PARM_BOUNDARY) 4313 alignment_pad->constant = offset_ptr->constant - save_constant; 4314 } 4315 } 4316 } 4317 4318 static void 4319 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree) 4320 { 4321 if (passed_mode != BLKmode) 4322 { 4323 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY) 4324 offset_ptr->constant 4325 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1) 4326 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT) 4327 - GET_MODE_SIZE (passed_mode)); 4328 } 4329 else 4330 { 4331 if (TREE_CODE (sizetree) != INTEGER_CST 4332 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY) 4333 { 4334 /* Round the size up to multiple of PARM_BOUNDARY bits. */ 4335 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT); 4336 /* Add it in. */ 4337 ADD_PARM_SIZE (*offset_ptr, s2); 4338 SUB_PARM_SIZE (*offset_ptr, sizetree); 4339 } 4340 } 4341 } 4342 4343 4344 /* True if register REGNO was alive at a place where `setjmp' was 4345 called and was set more than once or is an argument. Such regs may 4346 be clobbered by `longjmp'. */ 4347 4348 static bool 4349 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno) 4350 { 4351 /* There appear to be cases where some local vars never reach the 4352 backend but have bogus regnos. */ 4353 if (regno >= max_reg_num ()) 4354 return false; 4355 4356 return ((REG_N_SETS (regno) > 1 4357 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), 4358 regno)) 4359 && REGNO_REG_SET_P (setjmp_crosses, regno)); 4360 } 4361 4362 /* Walk the tree of blocks describing the binding levels within a 4363 function and warn about variables the might be killed by setjmp or 4364 vfork. This is done after calling flow_analysis before register 4365 allocation since that will clobber the pseudo-regs to hard 4366 regs. */ 4367 4368 static void 4369 setjmp_vars_warning (bitmap setjmp_crosses, tree block) 4370 { 4371 tree decl, sub; 4372 4373 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl)) 4374 { 4375 if (TREE_CODE (decl) == VAR_DECL 4376 && DECL_RTL_SET_P (decl) 4377 && REG_P (DECL_RTL (decl)) 4378 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl)))) 4379 warning (OPT_Wclobbered, "variable %q+D might be clobbered by" 4380 " %<longjmp%> or %<vfork%>", decl); 4381 } 4382 4383 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub)) 4384 setjmp_vars_warning (setjmp_crosses, sub); 4385 } 4386 4387 /* Do the appropriate part of setjmp_vars_warning 4388 but for arguments instead of local variables. */ 4389 4390 static void 4391 setjmp_args_warning (bitmap setjmp_crosses) 4392 { 4393 tree decl; 4394 for (decl = DECL_ARGUMENTS (current_function_decl); 4395 decl; decl = DECL_CHAIN (decl)) 4396 if (DECL_RTL (decl) != 0 4397 && REG_P (DECL_RTL (decl)) 4398 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl)))) 4399 warning (OPT_Wclobbered, 4400 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>", 4401 decl); 4402 } 4403 4404 /* Generate warning messages for variables live across setjmp. */ 4405 4406 void 4407 generate_setjmp_warnings (void) 4408 { 4409 bitmap setjmp_crosses = regstat_get_setjmp_crosses (); 4410 4411 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS 4412 || bitmap_empty_p (setjmp_crosses)) 4413 return; 4414 4415 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl)); 4416 setjmp_args_warning (setjmp_crosses); 4417 } 4418 4419 4420 /* Reverse the order of elements in the fragment chain T of blocks, 4421 and return the new head of the chain (old last element). 4422 In addition to that clear BLOCK_SAME_RANGE flags when needed 4423 and adjust BLOCK_SUPERCONTEXT from the super fragment to 4424 its super fragment origin. */ 4425 4426 static tree 4427 block_fragments_nreverse (tree t) 4428 { 4429 tree prev = 0, block, next, prev_super = 0; 4430 tree super = BLOCK_SUPERCONTEXT (t); 4431 if (BLOCK_FRAGMENT_ORIGIN (super)) 4432 super = BLOCK_FRAGMENT_ORIGIN (super); 4433 for (block = t; block; block = next) 4434 { 4435 next = BLOCK_FRAGMENT_CHAIN (block); 4436 BLOCK_FRAGMENT_CHAIN (block) = prev; 4437 if ((prev && !BLOCK_SAME_RANGE (prev)) 4438 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block)) 4439 != prev_super)) 4440 BLOCK_SAME_RANGE (block) = 0; 4441 prev_super = BLOCK_SUPERCONTEXT (block); 4442 BLOCK_SUPERCONTEXT (block) = super; 4443 prev = block; 4444 } 4445 t = BLOCK_FRAGMENT_ORIGIN (t); 4446 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t)) 4447 != prev_super) 4448 BLOCK_SAME_RANGE (t) = 0; 4449 BLOCK_SUPERCONTEXT (t) = super; 4450 return prev; 4451 } 4452 4453 /* Reverse the order of elements in the chain T of blocks, 4454 and return the new head of the chain (old last element). 4455 Also do the same on subblocks and reverse the order of elements 4456 in BLOCK_FRAGMENT_CHAIN as well. */ 4457 4458 static tree 4459 blocks_nreverse_all (tree t) 4460 { 4461 tree prev = 0, block, next; 4462 for (block = t; block; block = next) 4463 { 4464 next = BLOCK_CHAIN (block); 4465 BLOCK_CHAIN (block) = prev; 4466 if (BLOCK_FRAGMENT_CHAIN (block) 4467 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE) 4468 { 4469 BLOCK_FRAGMENT_CHAIN (block) 4470 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block)); 4471 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block))) 4472 BLOCK_SAME_RANGE (block) = 0; 4473 } 4474 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block)); 4475 prev = block; 4476 } 4477 return prev; 4478 } 4479 4480 4481 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END}, 4482 and create duplicate blocks. */ 4483 /* ??? Need an option to either create block fragments or to create 4484 abstract origin duplicates of a source block. It really depends 4485 on what optimization has been performed. */ 4486 4487 void 4488 reorder_blocks (void) 4489 { 4490 tree block = DECL_INITIAL (current_function_decl); 4491 4492 if (block == NULL_TREE) 4493 return; 4494 4495 auto_vec<tree, 10> block_stack; 4496 4497 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */ 4498 clear_block_marks (block); 4499 4500 /* Prune the old trees away, so that they don't get in the way. */ 4501 BLOCK_SUBBLOCKS (block) = NULL_TREE; 4502 BLOCK_CHAIN (block) = NULL_TREE; 4503 4504 /* Recreate the block tree from the note nesting. */ 4505 reorder_blocks_1 (get_insns (), block, &block_stack); 4506 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block)); 4507 } 4508 4509 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */ 4510 4511 void 4512 clear_block_marks (tree block) 4513 { 4514 while (block) 4515 { 4516 TREE_ASM_WRITTEN (block) = 0; 4517 clear_block_marks (BLOCK_SUBBLOCKS (block)); 4518 block = BLOCK_CHAIN (block); 4519 } 4520 } 4521 4522 static void 4523 reorder_blocks_1 (rtx_insn *insns, tree current_block, 4524 vec<tree> *p_block_stack) 4525 { 4526 rtx_insn *insn; 4527 tree prev_beg = NULL_TREE, prev_end = NULL_TREE; 4528 4529 for (insn = insns; insn; insn = NEXT_INSN (insn)) 4530 { 4531 if (NOTE_P (insn)) 4532 { 4533 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG) 4534 { 4535 tree block = NOTE_BLOCK (insn); 4536 tree origin; 4537 4538 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE); 4539 origin = block; 4540 4541 if (prev_end) 4542 BLOCK_SAME_RANGE (prev_end) = 0; 4543 prev_end = NULL_TREE; 4544 4545 /* If we have seen this block before, that means it now 4546 spans multiple address regions. Create a new fragment. */ 4547 if (TREE_ASM_WRITTEN (block)) 4548 { 4549 tree new_block = copy_node (block); 4550 4551 BLOCK_SAME_RANGE (new_block) = 0; 4552 BLOCK_FRAGMENT_ORIGIN (new_block) = origin; 4553 BLOCK_FRAGMENT_CHAIN (new_block) 4554 = BLOCK_FRAGMENT_CHAIN (origin); 4555 BLOCK_FRAGMENT_CHAIN (origin) = new_block; 4556 4557 NOTE_BLOCK (insn) = new_block; 4558 block = new_block; 4559 } 4560 4561 if (prev_beg == current_block && prev_beg) 4562 BLOCK_SAME_RANGE (block) = 1; 4563 4564 prev_beg = origin; 4565 4566 BLOCK_SUBBLOCKS (block) = 0; 4567 TREE_ASM_WRITTEN (block) = 1; 4568 /* When there's only one block for the entire function, 4569 current_block == block and we mustn't do this, it 4570 will cause infinite recursion. */ 4571 if (block != current_block) 4572 { 4573 tree super; 4574 if (block != origin) 4575 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block 4576 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT 4577 (origin)) 4578 == current_block); 4579 if (p_block_stack->is_empty ()) 4580 super = current_block; 4581 else 4582 { 4583 super = p_block_stack->last (); 4584 gcc_assert (super == current_block 4585 || BLOCK_FRAGMENT_ORIGIN (super) 4586 == current_block); 4587 } 4588 BLOCK_SUPERCONTEXT (block) = super; 4589 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block); 4590 BLOCK_SUBBLOCKS (current_block) = block; 4591 current_block = origin; 4592 } 4593 p_block_stack->safe_push (block); 4594 } 4595 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END) 4596 { 4597 NOTE_BLOCK (insn) = p_block_stack->pop (); 4598 current_block = BLOCK_SUPERCONTEXT (current_block); 4599 if (BLOCK_FRAGMENT_ORIGIN (current_block)) 4600 current_block = BLOCK_FRAGMENT_ORIGIN (current_block); 4601 prev_beg = NULL_TREE; 4602 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn)) 4603 ? NOTE_BLOCK (insn) : NULL_TREE; 4604 } 4605 } 4606 else 4607 { 4608 prev_beg = NULL_TREE; 4609 if (prev_end) 4610 BLOCK_SAME_RANGE (prev_end) = 0; 4611 prev_end = NULL_TREE; 4612 } 4613 } 4614 } 4615 4616 /* Reverse the order of elements in the chain T of blocks, 4617 and return the new head of the chain (old last element). */ 4618 4619 tree 4620 blocks_nreverse (tree t) 4621 { 4622 tree prev = 0, block, next; 4623 for (block = t; block; block = next) 4624 { 4625 next = BLOCK_CHAIN (block); 4626 BLOCK_CHAIN (block) = prev; 4627 prev = block; 4628 } 4629 return prev; 4630 } 4631 4632 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN) 4633 by modifying the last node in chain 1 to point to chain 2. */ 4634 4635 tree 4636 block_chainon (tree op1, tree op2) 4637 { 4638 tree t1; 4639 4640 if (!op1) 4641 return op2; 4642 if (!op2) 4643 return op1; 4644 4645 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1)) 4646 continue; 4647 BLOCK_CHAIN (t1) = op2; 4648 4649 #ifdef ENABLE_TREE_CHECKING 4650 { 4651 tree t2; 4652 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2)) 4653 gcc_assert (t2 != t1); 4654 } 4655 #endif 4656 4657 return op1; 4658 } 4659 4660 /* Count the subblocks of the list starting with BLOCK. If VECTOR is 4661 non-NULL, list them all into VECTOR, in a depth-first preorder 4662 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all 4663 blocks. */ 4664 4665 static int 4666 all_blocks (tree block, tree *vector) 4667 { 4668 int n_blocks = 0; 4669 4670 while (block) 4671 { 4672 TREE_ASM_WRITTEN (block) = 0; 4673 4674 /* Record this block. */ 4675 if (vector) 4676 vector[n_blocks] = block; 4677 4678 ++n_blocks; 4679 4680 /* Record the subblocks, and their subblocks... */ 4681 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block), 4682 vector ? vector + n_blocks : 0); 4683 block = BLOCK_CHAIN (block); 4684 } 4685 4686 return n_blocks; 4687 } 4688 4689 /* Return a vector containing all the blocks rooted at BLOCK. The 4690 number of elements in the vector is stored in N_BLOCKS_P. The 4691 vector is dynamically allocated; it is the caller's responsibility 4692 to call `free' on the pointer returned. */ 4693 4694 static tree * 4695 get_block_vector (tree block, int *n_blocks_p) 4696 { 4697 tree *block_vector; 4698 4699 *n_blocks_p = all_blocks (block, NULL); 4700 block_vector = XNEWVEC (tree, *n_blocks_p); 4701 all_blocks (block, block_vector); 4702 4703 return block_vector; 4704 } 4705 4706 static GTY(()) int next_block_index = 2; 4707 4708 /* Set BLOCK_NUMBER for all the blocks in FN. */ 4709 4710 void 4711 number_blocks (tree fn) 4712 { 4713 int i; 4714 int n_blocks; 4715 tree *block_vector; 4716 4717 /* For SDB and XCOFF debugging output, we start numbering the blocks 4718 from 1 within each function, rather than keeping a running 4719 count. */ 4720 #if SDB_DEBUGGING_INFO || defined (XCOFF_DEBUGGING_INFO) 4721 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG) 4722 next_block_index = 1; 4723 #endif 4724 4725 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks); 4726 4727 /* The top-level BLOCK isn't numbered at all. */ 4728 for (i = 1; i < n_blocks; ++i) 4729 /* We number the blocks from two. */ 4730 BLOCK_NUMBER (block_vector[i]) = next_block_index++; 4731 4732 free (block_vector); 4733 4734 return; 4735 } 4736 4737 /* If VAR is present in a subblock of BLOCK, return the subblock. */ 4738 4739 DEBUG_FUNCTION tree 4740 debug_find_var_in_block_tree (tree var, tree block) 4741 { 4742 tree t; 4743 4744 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t)) 4745 if (t == var) 4746 return block; 4747 4748 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t)) 4749 { 4750 tree ret = debug_find_var_in_block_tree (var, t); 4751 if (ret) 4752 return ret; 4753 } 4754 4755 return NULL_TREE; 4756 } 4757 4758 /* Keep track of whether we're in a dummy function context. If we are, 4759 we don't want to invoke the set_current_function hook, because we'll 4760 get into trouble if the hook calls target_reinit () recursively or 4761 when the initial initialization is not yet complete. */ 4762 4763 static bool in_dummy_function; 4764 4765 /* Invoke the target hook when setting cfun. Update the optimization options 4766 if the function uses different options than the default. */ 4767 4768 static void 4769 invoke_set_current_function_hook (tree fndecl) 4770 { 4771 if (!in_dummy_function) 4772 { 4773 tree opts = ((fndecl) 4774 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) 4775 : optimization_default_node); 4776 4777 if (!opts) 4778 opts = optimization_default_node; 4779 4780 /* Change optimization options if needed. */ 4781 if (optimization_current_node != opts) 4782 { 4783 optimization_current_node = opts; 4784 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts)); 4785 } 4786 4787 targetm.set_current_function (fndecl); 4788 this_fn_optabs = this_target_optabs; 4789 4790 if (opts != optimization_default_node) 4791 { 4792 init_tree_optimization_optabs (opts); 4793 if (TREE_OPTIMIZATION_OPTABS (opts)) 4794 this_fn_optabs = (struct target_optabs *) 4795 TREE_OPTIMIZATION_OPTABS (opts); 4796 } 4797 } 4798 } 4799 4800 /* cfun should never be set directly; use this function. */ 4801 4802 void 4803 set_cfun (struct function *new_cfun, bool force) 4804 { 4805 if (cfun != new_cfun || force) 4806 { 4807 cfun = new_cfun; 4808 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE); 4809 redirect_edge_var_map_empty (); 4810 } 4811 } 4812 4813 /* Initialized with NOGC, making this poisonous to the garbage collector. */ 4814 4815 static vec<function *> cfun_stack; 4816 4817 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set 4818 current_function_decl accordingly. */ 4819 4820 void 4821 push_cfun (struct function *new_cfun) 4822 { 4823 gcc_assert ((!cfun && !current_function_decl) 4824 || (cfun && current_function_decl == cfun->decl)); 4825 cfun_stack.safe_push (cfun); 4826 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE; 4827 set_cfun (new_cfun); 4828 } 4829 4830 /* Pop cfun from the stack. Also set current_function_decl accordingly. */ 4831 4832 void 4833 pop_cfun (void) 4834 { 4835 struct function *new_cfun = cfun_stack.pop (); 4836 /* When in_dummy_function, we do have a cfun but current_function_decl is 4837 NULL. We also allow pushing NULL cfun and subsequently changing 4838 current_function_decl to something else and have both restored by 4839 pop_cfun. */ 4840 gcc_checking_assert (in_dummy_function 4841 || !cfun 4842 || current_function_decl == cfun->decl); 4843 set_cfun (new_cfun); 4844 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE; 4845 } 4846 4847 /* Return value of funcdef and increase it. */ 4848 int 4849 get_next_funcdef_no (void) 4850 { 4851 return funcdef_no++; 4852 } 4853 4854 /* Return value of funcdef. */ 4855 int 4856 get_last_funcdef_no (void) 4857 { 4858 return funcdef_no; 4859 } 4860 4861 /* Allocate a function structure for FNDECL and set its contents 4862 to the defaults. Set cfun to the newly-allocated object. 4863 Some of the helper functions invoked during initialization assume 4864 that cfun has already been set. Therefore, assign the new object 4865 directly into cfun and invoke the back end hook explicitly at the 4866 very end, rather than initializing a temporary and calling set_cfun 4867 on it. 4868 4869 ABSTRACT_P is true if this is a function that will never be seen by 4870 the middle-end. Such functions are front-end concepts (like C++ 4871 function templates) that do not correspond directly to functions 4872 placed in object files. */ 4873 4874 void 4875 allocate_struct_function (tree fndecl, bool abstract_p) 4876 { 4877 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE; 4878 4879 cfun = ggc_cleared_alloc<function> (); 4880 4881 init_eh_for_function (); 4882 4883 if (init_machine_status) 4884 cfun->machine = (*init_machine_status) (); 4885 4886 #ifdef OVERRIDE_ABI_FORMAT 4887 OVERRIDE_ABI_FORMAT (fndecl); 4888 #endif 4889 4890 if (fndecl != NULL_TREE) 4891 { 4892 DECL_STRUCT_FUNCTION (fndecl) = cfun; 4893 cfun->decl = fndecl; 4894 current_function_funcdef_no = get_next_funcdef_no (); 4895 } 4896 4897 invoke_set_current_function_hook (fndecl); 4898 4899 if (fndecl != NULL_TREE) 4900 { 4901 tree result = DECL_RESULT (fndecl); 4902 4903 if (!abstract_p) 4904 { 4905 /* Now that we have activated any function-specific attributes 4906 that might affect layout, particularly vector modes, relayout 4907 each of the parameters and the result. */ 4908 relayout_decl (result); 4909 for (tree parm = DECL_ARGUMENTS (fndecl); parm; 4910 parm = DECL_CHAIN (parm)) 4911 relayout_decl (parm); 4912 4913 /* Similarly relayout the function decl. */ 4914 targetm.target_option.relayout_function (fndecl); 4915 } 4916 4917 if (!abstract_p && aggregate_value_p (result, fndecl)) 4918 { 4919 #ifdef PCC_STATIC_STRUCT_RETURN 4920 cfun->returns_pcc_struct = 1; 4921 #endif 4922 cfun->returns_struct = 1; 4923 } 4924 4925 cfun->stdarg = stdarg_p (fntype); 4926 4927 /* Assume all registers in stdarg functions need to be saved. */ 4928 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE; 4929 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE; 4930 4931 /* ??? This could be set on a per-function basis by the front-end 4932 but is this worth the hassle? */ 4933 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions; 4934 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions; 4935 4936 if (!profile_flag && !flag_instrument_function_entry_exit) 4937 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1; 4938 } 4939 } 4940 4941 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL 4942 instead of just setting it. */ 4943 4944 void 4945 push_struct_function (tree fndecl) 4946 { 4947 /* When in_dummy_function we might be in the middle of a pop_cfun and 4948 current_function_decl and cfun may not match. */ 4949 gcc_assert (in_dummy_function 4950 || (!cfun && !current_function_decl) 4951 || (cfun && current_function_decl == cfun->decl)); 4952 cfun_stack.safe_push (cfun); 4953 current_function_decl = fndecl; 4954 allocate_struct_function (fndecl, false); 4955 } 4956 4957 /* Reset crtl and other non-struct-function variables to defaults as 4958 appropriate for emitting rtl at the start of a function. */ 4959 4960 static void 4961 prepare_function_start (void) 4962 { 4963 gcc_assert (!get_last_insn ()); 4964 init_temp_slots (); 4965 init_emit (); 4966 init_varasm_status (); 4967 init_expr (); 4968 default_rtl_profile (); 4969 4970 if (flag_stack_usage_info) 4971 { 4972 cfun->su = ggc_cleared_alloc<stack_usage> (); 4973 cfun->su->static_stack_size = -1; 4974 } 4975 4976 cse_not_expected = ! optimize; 4977 4978 /* Caller save not needed yet. */ 4979 caller_save_needed = 0; 4980 4981 /* We haven't done register allocation yet. */ 4982 reg_renumber = 0; 4983 4984 /* Indicate that we have not instantiated virtual registers yet. */ 4985 virtuals_instantiated = 0; 4986 4987 /* Indicate that we want CONCATs now. */ 4988 generating_concat_p = 1; 4989 4990 /* Indicate we have no need of a frame pointer yet. */ 4991 frame_pointer_needed = 0; 4992 } 4993 4994 void 4995 push_dummy_function (bool with_decl) 4996 { 4997 tree fn_decl, fn_type, fn_result_decl; 4998 4999 gcc_assert (!in_dummy_function); 5000 in_dummy_function = true; 5001 5002 if (with_decl) 5003 { 5004 fn_type = build_function_type_list (void_type_node, NULL_TREE); 5005 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE, 5006 fn_type); 5007 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL, 5008 NULL_TREE, void_type_node); 5009 DECL_RESULT (fn_decl) = fn_result_decl; 5010 } 5011 else 5012 fn_decl = NULL_TREE; 5013 5014 push_struct_function (fn_decl); 5015 } 5016 5017 /* Initialize the rtl expansion mechanism so that we can do simple things 5018 like generate sequences. This is used to provide a context during global 5019 initialization of some passes. You must call expand_dummy_function_end 5020 to exit this context. */ 5021 5022 void 5023 init_dummy_function_start (void) 5024 { 5025 push_dummy_function (false); 5026 prepare_function_start (); 5027 } 5028 5029 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node) 5030 and initialize static variables for generating RTL for the statements 5031 of the function. */ 5032 5033 void 5034 init_function_start (tree subr) 5035 { 5036 /* Initialize backend, if needed. */ 5037 initialize_rtl (); 5038 5039 prepare_function_start (); 5040 decide_function_section (subr); 5041 5042 /* Warn if this value is an aggregate type, 5043 regardless of which calling convention we are using for it. */ 5044 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) 5045 warning (OPT_Waggregate_return, "function returns an aggregate"); 5046 } 5047 5048 /* Expand code to verify the stack_protect_guard. This is invoked at 5049 the end of a function to be protected. */ 5050 5051 void 5052 stack_protect_epilogue (void) 5053 { 5054 tree guard_decl = targetm.stack_protect_guard (); 5055 rtx_code_label *label = gen_label_rtx (); 5056 rtx x, y; 5057 rtx_insn *seq; 5058 5059 x = expand_normal (crtl->stack_protect_guard); 5060 y = expand_normal (guard_decl); 5061 5062 /* Allow the target to compare Y with X without leaking either into 5063 a register. */ 5064 if (targetm.have_stack_protect_test () 5065 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX)) 5066 emit_insn (seq); 5067 else 5068 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label); 5069 5070 /* The noreturn predictor has been moved to the tree level. The rtl-level 5071 predictors estimate this branch about 20%, which isn't enough to get 5072 things moved out of line. Since this is the only extant case of adding 5073 a noreturn function at the rtl level, it doesn't seem worth doing ought 5074 except adding the prediction by hand. */ 5075 rtx_insn *tmp = get_last_insn (); 5076 if (JUMP_P (tmp)) 5077 predict_insn_def (tmp, PRED_NORETURN, TAKEN); 5078 5079 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true); 5080 free_temp_slots (); 5081 emit_label (label); 5082 } 5083 5084 /* Start the RTL for a new function, and set variables used for 5085 emitting RTL. 5086 SUBR is the FUNCTION_DECL node. 5087 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with 5088 the function's parameters, which must be run at any return statement. */ 5089 5090 void 5091 expand_function_start (tree subr) 5092 { 5093 /* Make sure volatile mem refs aren't considered 5094 valid operands of arithmetic insns. */ 5095 init_recog_no_volatile (); 5096 5097 crtl->profile 5098 = (profile_flag 5099 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); 5100 5101 crtl->limit_stack 5102 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr)); 5103 5104 /* Make the label for return statements to jump to. Do not special 5105 case machines with special return instructions -- they will be 5106 handled later during jump, ifcvt, or epilogue creation. */ 5107 return_label = gen_label_rtx (); 5108 5109 /* Initialize rtx used to return the value. */ 5110 /* Do this before assign_parms so that we copy the struct value address 5111 before any library calls that assign parms might generate. */ 5112 5113 /* Decide whether to return the value in memory or in a register. */ 5114 tree res = DECL_RESULT (subr); 5115 if (aggregate_value_p (res, subr)) 5116 { 5117 /* Returning something that won't go in a register. */ 5118 rtx value_address = 0; 5119 5120 #ifdef PCC_STATIC_STRUCT_RETURN 5121 if (cfun->returns_pcc_struct) 5122 { 5123 int size = int_size_in_bytes (TREE_TYPE (res)); 5124 value_address = assemble_static_space (size); 5125 } 5126 else 5127 #endif 5128 { 5129 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2); 5130 /* Expect to be passed the address of a place to store the value. 5131 If it is passed as an argument, assign_parms will take care of 5132 it. */ 5133 if (sv) 5134 { 5135 value_address = gen_reg_rtx (Pmode); 5136 emit_move_insn (value_address, sv); 5137 } 5138 } 5139 if (value_address) 5140 { 5141 rtx x = value_address; 5142 if (!DECL_BY_REFERENCE (res)) 5143 { 5144 x = gen_rtx_MEM (DECL_MODE (res), x); 5145 set_mem_attributes (x, res, 1); 5146 } 5147 set_parm_rtl (res, x); 5148 } 5149 } 5150 else if (DECL_MODE (res) == VOIDmode) 5151 /* If return mode is void, this decl rtl should not be used. */ 5152 set_parm_rtl (res, NULL_RTX); 5153 else 5154 { 5155 /* Compute the return values into a pseudo reg, which we will copy 5156 into the true return register after the cleanups are done. */ 5157 tree return_type = TREE_TYPE (res); 5158 5159 /* If we may coalesce this result, make sure it has the expected mode 5160 in case it was promoted. But we need not bother about BLKmode. */ 5161 machine_mode promoted_mode 5162 = flag_tree_coalesce_vars && is_gimple_reg (res) 5163 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL) 5164 : BLKmode; 5165 5166 if (promoted_mode != BLKmode) 5167 set_parm_rtl (res, gen_reg_rtx (promoted_mode)); 5168 else if (TYPE_MODE (return_type) != BLKmode 5169 && targetm.calls.return_in_msb (return_type)) 5170 /* expand_function_end will insert the appropriate padding in 5171 this case. Use the return value's natural (unpadded) mode 5172 within the function proper. */ 5173 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type))); 5174 else 5175 { 5176 /* In order to figure out what mode to use for the pseudo, we 5177 figure out what the mode of the eventual return register will 5178 actually be, and use that. */ 5179 rtx hard_reg = hard_function_value (return_type, subr, 0, 1); 5180 5181 /* Structures that are returned in registers are not 5182 aggregate_value_p, so we may see a PARALLEL or a REG. */ 5183 if (REG_P (hard_reg)) 5184 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg))); 5185 else 5186 { 5187 gcc_assert (GET_CODE (hard_reg) == PARALLEL); 5188 set_parm_rtl (res, gen_group_rtx (hard_reg)); 5189 } 5190 } 5191 5192 /* Set DECL_REGISTER flag so that expand_function_end will copy the 5193 result to the real return register(s). */ 5194 DECL_REGISTER (res) = 1; 5195 5196 if (chkp_function_instrumented_p (current_function_decl)) 5197 { 5198 tree return_type = TREE_TYPE (res); 5199 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type, 5200 subr, 1); 5201 SET_DECL_BOUNDS_RTL (res, bounds); 5202 } 5203 } 5204 5205 /* Initialize rtx for parameters and local variables. 5206 In some cases this requires emitting insns. */ 5207 assign_parms (subr); 5208 5209 /* If function gets a static chain arg, store it. */ 5210 if (cfun->static_chain_decl) 5211 { 5212 tree parm = cfun->static_chain_decl; 5213 rtx local, chain; 5214 rtx_insn *insn; 5215 int unsignedp; 5216 5217 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp)); 5218 chain = targetm.calls.static_chain (current_function_decl, true); 5219 5220 set_decl_incoming_rtl (parm, chain, false); 5221 set_parm_rtl (parm, local); 5222 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); 5223 5224 if (GET_MODE (local) != GET_MODE (chain)) 5225 { 5226 convert_move (local, chain, unsignedp); 5227 insn = get_last_insn (); 5228 } 5229 else 5230 insn = emit_move_insn (local, chain); 5231 5232 /* Mark the register as eliminable, similar to parameters. */ 5233 if (MEM_P (chain) 5234 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0))) 5235 set_dst_reg_note (insn, REG_EQUIV, chain, local); 5236 5237 /* If we aren't optimizing, save the static chain onto the stack. */ 5238 if (!optimize) 5239 { 5240 tree saved_static_chain_decl 5241 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL, 5242 DECL_NAME (parm), TREE_TYPE (parm)); 5243 rtx saved_static_chain_rtx 5244 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); 5245 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx); 5246 emit_move_insn (saved_static_chain_rtx, chain); 5247 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl); 5248 DECL_HAS_VALUE_EXPR_P (parm) = 1; 5249 } 5250 } 5251 5252 /* If the function receives a non-local goto, then store the 5253 bits we need to restore the frame pointer. */ 5254 if (cfun->nonlocal_goto_save_area) 5255 { 5256 tree t_save; 5257 rtx r_save; 5258 5259 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0); 5260 gcc_assert (DECL_RTL_SET_P (var)); 5261 5262 t_save = build4 (ARRAY_REF, 5263 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)), 5264 cfun->nonlocal_goto_save_area, 5265 integer_zero_node, NULL_TREE, NULL_TREE); 5266 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); 5267 gcc_assert (GET_MODE (r_save) == Pmode); 5268 5269 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ()); 5270 update_nonlocal_goto_save_area (); 5271 } 5272 5273 /* The following was moved from init_function_start. 5274 The move is supposed to make sdb output more accurate. */ 5275 /* Indicate the beginning of the function body, 5276 as opposed to parm setup. */ 5277 emit_note (NOTE_INSN_FUNCTION_BEG); 5278 5279 gcc_assert (NOTE_P (get_last_insn ())); 5280 5281 parm_birth_insn = get_last_insn (); 5282 5283 if (crtl->profile) 5284 { 5285 #ifdef PROFILE_HOOK 5286 PROFILE_HOOK (current_function_funcdef_no); 5287 #endif 5288 } 5289 5290 /* If we are doing generic stack checking, the probe should go here. */ 5291 if (flag_stack_check == GENERIC_STACK_CHECK) 5292 stack_check_probe_note = emit_note (NOTE_INSN_DELETED); 5293 } 5294 5295 void 5296 pop_dummy_function (void) 5297 { 5298 pop_cfun (); 5299 in_dummy_function = false; 5300 } 5301 5302 /* Undo the effects of init_dummy_function_start. */ 5303 void 5304 expand_dummy_function_end (void) 5305 { 5306 gcc_assert (in_dummy_function); 5307 5308 /* End any sequences that failed to be closed due to syntax errors. */ 5309 while (in_sequence_p ()) 5310 end_sequence (); 5311 5312 /* Outside function body, can't compute type's actual size 5313 until next function's body starts. */ 5314 5315 free_after_parsing (cfun); 5316 free_after_compilation (cfun); 5317 pop_dummy_function (); 5318 } 5319 5320 /* Helper for diddle_return_value. */ 5321 5322 void 5323 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing) 5324 { 5325 if (! outgoing) 5326 return; 5327 5328 if (REG_P (outgoing)) 5329 (*doit) (outgoing, arg); 5330 else if (GET_CODE (outgoing) == PARALLEL) 5331 { 5332 int i; 5333 5334 for (i = 0; i < XVECLEN (outgoing, 0); i++) 5335 { 5336 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0); 5337 5338 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) 5339 (*doit) (x, arg); 5340 } 5341 } 5342 } 5343 5344 /* Call DOIT for each hard register used as a return value from 5345 the current function. */ 5346 5347 void 5348 diddle_return_value (void (*doit) (rtx, void *), void *arg) 5349 { 5350 diddle_return_value_1 (doit, arg, crtl->return_bnd); 5351 diddle_return_value_1 (doit, arg, crtl->return_rtx); 5352 } 5353 5354 static void 5355 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) 5356 { 5357 emit_clobber (reg); 5358 } 5359 5360 void 5361 clobber_return_register (void) 5362 { 5363 diddle_return_value (do_clobber_return_reg, NULL); 5364 5365 /* In case we do use pseudo to return value, clobber it too. */ 5366 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) 5367 { 5368 tree decl_result = DECL_RESULT (current_function_decl); 5369 rtx decl_rtl = DECL_RTL (decl_result); 5370 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER) 5371 { 5372 do_clobber_return_reg (decl_rtl, NULL); 5373 } 5374 } 5375 } 5376 5377 static void 5378 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) 5379 { 5380 emit_use (reg); 5381 } 5382 5383 static void 5384 use_return_register (void) 5385 { 5386 diddle_return_value (do_use_return_reg, NULL); 5387 } 5388 5389 /* Set the location of the insn chain starting at INSN to LOC. */ 5390 5391 static void 5392 set_insn_locations (rtx_insn *insn, int loc) 5393 { 5394 while (insn != NULL) 5395 { 5396 if (INSN_P (insn)) 5397 INSN_LOCATION (insn) = loc; 5398 insn = NEXT_INSN (insn); 5399 } 5400 } 5401 5402 /* Generate RTL for the end of the current function. */ 5403 5404 void 5405 expand_function_end (void) 5406 { 5407 /* If arg_pointer_save_area was referenced only from a nested 5408 function, we will not have initialized it yet. Do that now. */ 5409 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init) 5410 get_arg_pointer_save_area (); 5411 5412 /* If we are doing generic stack checking and this function makes calls, 5413 do a stack probe at the start of the function to ensure we have enough 5414 space for another stack frame. */ 5415 if (flag_stack_check == GENERIC_STACK_CHECK) 5416 { 5417 rtx_insn *insn, *seq; 5418 5419 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 5420 if (CALL_P (insn)) 5421 { 5422 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE); 5423 start_sequence (); 5424 if (STACK_CHECK_MOVING_SP) 5425 anti_adjust_stack_and_probe (max_frame_size, true); 5426 else 5427 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size); 5428 seq = get_insns (); 5429 end_sequence (); 5430 set_insn_locations (seq, prologue_location); 5431 emit_insn_before (seq, stack_check_probe_note); 5432 break; 5433 } 5434 } 5435 5436 /* End any sequences that failed to be closed due to syntax errors. */ 5437 while (in_sequence_p ()) 5438 end_sequence (); 5439 5440 clear_pending_stack_adjust (); 5441 do_pending_stack_adjust (); 5442 5443 /* Output a linenumber for the end of the function. 5444 SDB depends on this. */ 5445 set_curr_insn_location (input_location); 5446 5447 /* Before the return label (if any), clobber the return 5448 registers so that they are not propagated live to the rest of 5449 the function. This can only happen with functions that drop 5450 through; if there had been a return statement, there would 5451 have either been a return rtx, or a jump to the return label. 5452 5453 We delay actual code generation after the current_function_value_rtx 5454 is computed. */ 5455 rtx_insn *clobber_after = get_last_insn (); 5456 5457 /* Output the label for the actual return from the function. */ 5458 emit_label (return_label); 5459 5460 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ) 5461 { 5462 /* Let except.c know where it should emit the call to unregister 5463 the function context for sjlj exceptions. */ 5464 if (flag_exceptions) 5465 sjlj_emit_function_exit_after (get_last_insn ()); 5466 } 5467 else 5468 { 5469 /* We want to ensure that instructions that may trap are not 5470 moved into the epilogue by scheduling, because we don't 5471 always emit unwind information for the epilogue. */ 5472 if (cfun->can_throw_non_call_exceptions) 5473 emit_insn (gen_blockage ()); 5474 } 5475 5476 /* If this is an implementation of throw, do what's necessary to 5477 communicate between __builtin_eh_return and the epilogue. */ 5478 expand_eh_return (); 5479 5480 /* If scalar return value was computed in a pseudo-reg, or was a named 5481 return value that got dumped to the stack, copy that to the hard 5482 return register. */ 5483 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) 5484 { 5485 tree decl_result = DECL_RESULT (current_function_decl); 5486 rtx decl_rtl = DECL_RTL (decl_result); 5487 5488 if (REG_P (decl_rtl) 5489 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER 5490 : DECL_REGISTER (decl_result)) 5491 { 5492 rtx real_decl_rtl = crtl->return_rtx; 5493 5494 /* This should be set in assign_parms. */ 5495 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl)); 5496 5497 /* If this is a BLKmode structure being returned in registers, 5498 then use the mode computed in expand_return. Note that if 5499 decl_rtl is memory, then its mode may have been changed, 5500 but that crtl->return_rtx has not. */ 5501 if (GET_MODE (real_decl_rtl) == BLKmode) 5502 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl)); 5503 5504 /* If a non-BLKmode return value should be padded at the least 5505 significant end of the register, shift it left by the appropriate 5506 amount. BLKmode results are handled using the group load/store 5507 machinery. */ 5508 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode 5509 && REG_P (real_decl_rtl) 5510 && targetm.calls.return_in_msb (TREE_TYPE (decl_result))) 5511 { 5512 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl), 5513 REGNO (real_decl_rtl)), 5514 decl_rtl); 5515 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl); 5516 } 5517 else if (GET_CODE (real_decl_rtl) == PARALLEL) 5518 { 5519 /* If expand_function_start has created a PARALLEL for decl_rtl, 5520 move the result to the real return registers. Otherwise, do 5521 a group load from decl_rtl for a named return. */ 5522 if (GET_CODE (decl_rtl) == PARALLEL) 5523 emit_group_move (real_decl_rtl, decl_rtl); 5524 else 5525 emit_group_load (real_decl_rtl, decl_rtl, 5526 TREE_TYPE (decl_result), 5527 int_size_in_bytes (TREE_TYPE (decl_result))); 5528 } 5529 /* In the case of complex integer modes smaller than a word, we'll 5530 need to generate some non-trivial bitfield insertions. Do that 5531 on a pseudo and not the hard register. */ 5532 else if (GET_CODE (decl_rtl) == CONCAT 5533 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT 5534 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD) 5535 { 5536 int old_generating_concat_p; 5537 rtx tmp; 5538 5539 old_generating_concat_p = generating_concat_p; 5540 generating_concat_p = 0; 5541 tmp = gen_reg_rtx (GET_MODE (decl_rtl)); 5542 generating_concat_p = old_generating_concat_p; 5543 5544 emit_move_insn (tmp, decl_rtl); 5545 emit_move_insn (real_decl_rtl, tmp); 5546 } 5547 /* If a named return value dumped decl_return to memory, then 5548 we may need to re-do the PROMOTE_MODE signed/unsigned 5549 extension. */ 5550 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl)) 5551 { 5552 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result)); 5553 promote_function_mode (TREE_TYPE (decl_result), 5554 GET_MODE (decl_rtl), &unsignedp, 5555 TREE_TYPE (current_function_decl), 1); 5556 5557 convert_move (real_decl_rtl, decl_rtl, unsignedp); 5558 } 5559 else 5560 emit_move_insn (real_decl_rtl, decl_rtl); 5561 } 5562 } 5563 5564 /* If returning a structure, arrange to return the address of the value 5565 in a place where debuggers expect to find it. 5566 5567 If returning a structure PCC style, 5568 the caller also depends on this value. 5569 And cfun->returns_pcc_struct is not necessarily set. */ 5570 if ((cfun->returns_struct || cfun->returns_pcc_struct) 5571 && !targetm.calls.omit_struct_return_reg) 5572 { 5573 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl)); 5574 tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); 5575 rtx outgoing; 5576 5577 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl))) 5578 type = TREE_TYPE (type); 5579 else 5580 value_address = XEXP (value_address, 0); 5581 5582 outgoing = targetm.calls.function_value (build_pointer_type (type), 5583 current_function_decl, true); 5584 5585 /* Mark this as a function return value so integrate will delete the 5586 assignment and USE below when inlining this function. */ 5587 REG_FUNCTION_VALUE_P (outgoing) = 1; 5588 5589 /* The address may be ptr_mode and OUTGOING may be Pmode. */ 5590 value_address = convert_memory_address (GET_MODE (outgoing), 5591 value_address); 5592 5593 emit_move_insn (outgoing, value_address); 5594 5595 /* Show return register used to hold result (in this case the address 5596 of the result. */ 5597 crtl->return_rtx = outgoing; 5598 } 5599 5600 /* Emit the actual code to clobber return register. Don't emit 5601 it if clobber_after is a barrier, then the previous basic block 5602 certainly doesn't fall thru into the exit block. */ 5603 if (!BARRIER_P (clobber_after)) 5604 { 5605 start_sequence (); 5606 clobber_return_register (); 5607 rtx_insn *seq = get_insns (); 5608 end_sequence (); 5609 5610 emit_insn_after (seq, clobber_after); 5611 } 5612 5613 /* Output the label for the naked return from the function. */ 5614 if (naked_return_label) 5615 emit_label (naked_return_label); 5616 5617 /* @@@ This is a kludge. We want to ensure that instructions that 5618 may trap are not moved into the epilogue by scheduling, because 5619 we don't always emit unwind information for the epilogue. */ 5620 if (cfun->can_throw_non_call_exceptions 5621 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ) 5622 emit_insn (gen_blockage ()); 5623 5624 /* If stack protection is enabled for this function, check the guard. */ 5625 if (crtl->stack_protect_guard) 5626 stack_protect_epilogue (); 5627 5628 /* If we had calls to alloca, and this machine needs 5629 an accurate stack pointer to exit the function, 5630 insert some code to save and restore the stack pointer. */ 5631 if (! EXIT_IGNORE_STACK 5632 && cfun->calls_alloca) 5633 { 5634 rtx tem = 0; 5635 5636 start_sequence (); 5637 emit_stack_save (SAVE_FUNCTION, &tem); 5638 rtx_insn *seq = get_insns (); 5639 end_sequence (); 5640 emit_insn_before (seq, parm_birth_insn); 5641 5642 emit_stack_restore (SAVE_FUNCTION, tem); 5643 } 5644 5645 /* ??? This should no longer be necessary since stupid is no longer with 5646 us, but there are some parts of the compiler (eg reload_combine, and 5647 sh mach_dep_reorg) that still try and compute their own lifetime info 5648 instead of using the general framework. */ 5649 use_return_register (); 5650 } 5651 5652 rtx 5653 get_arg_pointer_save_area (void) 5654 { 5655 rtx ret = arg_pointer_save_area; 5656 5657 if (! ret) 5658 { 5659 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); 5660 arg_pointer_save_area = ret; 5661 } 5662 5663 if (! crtl->arg_pointer_save_area_init) 5664 { 5665 /* Save the arg pointer at the beginning of the function. The 5666 generated stack slot may not be a valid memory address, so we 5667 have to check it and fix it if necessary. */ 5668 start_sequence (); 5669 emit_move_insn (validize_mem (copy_rtx (ret)), 5670 crtl->args.internal_arg_pointer); 5671 rtx_insn *seq = get_insns (); 5672 end_sequence (); 5673 5674 push_topmost_sequence (); 5675 emit_insn_after (seq, entry_of_function ()); 5676 pop_topmost_sequence (); 5677 5678 crtl->arg_pointer_save_area_init = true; 5679 } 5680 5681 return ret; 5682 } 5683 5684 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP 5685 for the first time. */ 5686 5687 static void 5688 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp) 5689 { 5690 rtx_insn *tmp; 5691 hash_table<insn_cache_hasher> *hash = *hashp; 5692 5693 if (hash == NULL) 5694 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17); 5695 5696 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp)) 5697 { 5698 rtx *slot = hash->find_slot (tmp, INSERT); 5699 gcc_assert (*slot == NULL); 5700 *slot = tmp; 5701 } 5702 } 5703 5704 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a 5705 basic block, splitting or peepholes. If INSN is a prologue or epilogue 5706 insn, then record COPY as well. */ 5707 5708 void 5709 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy) 5710 { 5711 hash_table<insn_cache_hasher> *hash; 5712 rtx *slot; 5713 5714 hash = epilogue_insn_hash; 5715 if (!hash || !hash->find (insn)) 5716 { 5717 hash = prologue_insn_hash; 5718 if (!hash || !hash->find (insn)) 5719 return; 5720 } 5721 5722 slot = hash->find_slot (copy, INSERT); 5723 gcc_assert (*slot == NULL); 5724 *slot = copy; 5725 } 5726 5727 /* Determine if any INSNs in HASH are, or are part of, INSN. Because 5728 we can be running after reorg, SEQUENCE rtl is possible. */ 5729 5730 static bool 5731 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash) 5732 { 5733 if (hash == NULL) 5734 return false; 5735 5736 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 5737 { 5738 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn)); 5739 int i; 5740 for (i = seq->len () - 1; i >= 0; i--) 5741 if (hash->find (seq->element (i))) 5742 return true; 5743 return false; 5744 } 5745 5746 return hash->find (const_cast<rtx> (insn)) != NULL; 5747 } 5748 5749 int 5750 prologue_epilogue_contains (const_rtx insn) 5751 { 5752 if (contains (insn, prologue_insn_hash)) 5753 return 1; 5754 if (contains (insn, epilogue_insn_hash)) 5755 return 1; 5756 return 0; 5757 } 5758 5759 /* Insert use of return register before the end of BB. */ 5760 5761 static void 5762 emit_use_return_register_into_block (basic_block bb) 5763 { 5764 start_sequence (); 5765 use_return_register (); 5766 rtx_insn *seq = get_insns (); 5767 end_sequence (); 5768 rtx_insn *insn = BB_END (bb); 5769 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn))) 5770 insn = prev_cc0_setter (insn); 5771 5772 emit_insn_before (seq, insn); 5773 } 5774 5775 5776 /* Create a return pattern, either simple_return or return, depending on 5777 simple_p. */ 5778 5779 static rtx_insn * 5780 gen_return_pattern (bool simple_p) 5781 { 5782 return (simple_p 5783 ? targetm.gen_simple_return () 5784 : targetm.gen_return ()); 5785 } 5786 5787 /* Insert an appropriate return pattern at the end of block BB. This 5788 also means updating block_for_insn appropriately. SIMPLE_P is 5789 the same as in gen_return_pattern and passed to it. */ 5790 5791 void 5792 emit_return_into_block (bool simple_p, basic_block bb) 5793 { 5794 rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p), 5795 BB_END (bb)); 5796 rtx pat = PATTERN (jump); 5797 if (GET_CODE (pat) == PARALLEL) 5798 pat = XVECEXP (pat, 0, 0); 5799 gcc_assert (ANY_RETURN_P (pat)); 5800 JUMP_LABEL (jump) = pat; 5801 } 5802 5803 /* Set JUMP_LABEL for a return insn. */ 5804 5805 void 5806 set_return_jump_label (rtx_insn *returnjump) 5807 { 5808 rtx pat = PATTERN (returnjump); 5809 if (GET_CODE (pat) == PARALLEL) 5810 pat = XVECEXP (pat, 0, 0); 5811 if (ANY_RETURN_P (pat)) 5812 JUMP_LABEL (returnjump) = pat; 5813 else 5814 JUMP_LABEL (returnjump) = ret_rtx; 5815 } 5816 5817 /* Return true if there are any active insns between HEAD and TAIL. */ 5818 bool 5819 active_insn_between (rtx_insn *head, rtx_insn *tail) 5820 { 5821 while (tail) 5822 { 5823 if (active_insn_p (tail)) 5824 return true; 5825 if (tail == head) 5826 return false; 5827 tail = PREV_INSN (tail); 5828 } 5829 return false; 5830 } 5831 5832 /* LAST_BB is a block that exits, and empty of active instructions. 5833 Examine its predecessors for jumps that can be converted to 5834 (conditional) returns. */ 5835 vec<edge> 5836 convert_jumps_to_returns (basic_block last_bb, bool simple_p, 5837 vec<edge> unconverted ATTRIBUTE_UNUSED) 5838 { 5839 int i; 5840 basic_block bb; 5841 edge_iterator ei; 5842 edge e; 5843 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds)); 5844 5845 FOR_EACH_EDGE (e, ei, last_bb->preds) 5846 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 5847 src_bbs.quick_push (e->src); 5848 5849 rtx_insn *label = BB_HEAD (last_bb); 5850 5851 FOR_EACH_VEC_ELT (src_bbs, i, bb) 5852 { 5853 rtx_insn *jump = BB_END (bb); 5854 5855 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label) 5856 continue; 5857 5858 e = find_edge (bb, last_bb); 5859 5860 /* If we have an unconditional jump, we can replace that 5861 with a simple return instruction. */ 5862 if (simplejump_p (jump)) 5863 { 5864 /* The use of the return register might be present in the exit 5865 fallthru block. Either: 5866 - removing the use is safe, and we should remove the use in 5867 the exit fallthru block, or 5868 - removing the use is not safe, and we should add it here. 5869 For now, we conservatively choose the latter. Either of the 5870 2 helps in crossjumping. */ 5871 emit_use_return_register_into_block (bb); 5872 5873 emit_return_into_block (simple_p, bb); 5874 delete_insn (jump); 5875 } 5876 5877 /* If we have a conditional jump branching to the last 5878 block, we can try to replace that with a conditional 5879 return instruction. */ 5880 else if (condjump_p (jump)) 5881 { 5882 rtx dest; 5883 5884 if (simple_p) 5885 dest = simple_return_rtx; 5886 else 5887 dest = ret_rtx; 5888 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0)) 5889 { 5890 if (targetm.have_simple_return () && simple_p) 5891 { 5892 if (dump_file) 5893 fprintf (dump_file, 5894 "Failed to redirect bb %d branch.\n", bb->index); 5895 unconverted.safe_push (e); 5896 } 5897 continue; 5898 } 5899 5900 /* See comment in simplejump_p case above. */ 5901 emit_use_return_register_into_block (bb); 5902 5903 /* If this block has only one successor, it both jumps 5904 and falls through to the fallthru block, so we can't 5905 delete the edge. */ 5906 if (single_succ_p (bb)) 5907 continue; 5908 } 5909 else 5910 { 5911 if (targetm.have_simple_return () && simple_p) 5912 { 5913 if (dump_file) 5914 fprintf (dump_file, 5915 "Failed to redirect bb %d branch.\n", bb->index); 5916 unconverted.safe_push (e); 5917 } 5918 continue; 5919 } 5920 5921 /* Fix up the CFG for the successful change we just made. */ 5922 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun)); 5923 e->flags &= ~EDGE_CROSSING; 5924 } 5925 src_bbs.release (); 5926 return unconverted; 5927 } 5928 5929 /* Emit a return insn for the exit fallthru block. */ 5930 basic_block 5931 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p) 5932 { 5933 basic_block last_bb = exit_fallthru_edge->src; 5934 5935 if (JUMP_P (BB_END (last_bb))) 5936 { 5937 last_bb = split_edge (exit_fallthru_edge); 5938 exit_fallthru_edge = single_succ_edge (last_bb); 5939 } 5940 emit_barrier_after (BB_END (last_bb)); 5941 emit_return_into_block (simple_p, last_bb); 5942 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU; 5943 return last_bb; 5944 } 5945 5946 5947 /* Generate the prologue and epilogue RTL if the machine supports it. Thread 5948 this into place with notes indicating where the prologue ends and where 5949 the epilogue begins. Update the basic block information when possible. 5950 5951 Notes on epilogue placement: 5952 There are several kinds of edges to the exit block: 5953 * a single fallthru edge from LAST_BB 5954 * possibly, edges from blocks containing sibcalls 5955 * possibly, fake edges from infinite loops 5956 5957 The epilogue is always emitted on the fallthru edge from the last basic 5958 block in the function, LAST_BB, into the exit block. 5959 5960 If LAST_BB is empty except for a label, it is the target of every 5961 other basic block in the function that ends in a return. If a 5962 target has a return or simple_return pattern (possibly with 5963 conditional variants), these basic blocks can be changed so that a 5964 return insn is emitted into them, and their target is adjusted to 5965 the real exit block. 5966 5967 Notes on shrink wrapping: We implement a fairly conservative 5968 version of shrink-wrapping rather than the textbook one. We only 5969 generate a single prologue and a single epilogue. This is 5970 sufficient to catch a number of interesting cases involving early 5971 exits. 5972 5973 First, we identify the blocks that require the prologue to occur before 5974 them. These are the ones that modify a call-saved register, or reference 5975 any of the stack or frame pointer registers. To simplify things, we then 5976 mark everything reachable from these blocks as also requiring a prologue. 5977 This takes care of loops automatically, and avoids the need to examine 5978 whether MEMs reference the frame, since it is sufficient to check for 5979 occurrences of the stack or frame pointer. 5980 5981 We then compute the set of blocks for which the need for a prologue 5982 is anticipatable (borrowing terminology from the shrink-wrapping 5983 description in Muchnick's book). These are the blocks which either 5984 require a prologue themselves, or those that have only successors 5985 where the prologue is anticipatable. The prologue needs to be 5986 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1 5987 is not. For the moment, we ensure that only one such edge exists. 5988 5989 The epilogue is placed as described above, but we make a 5990 distinction between inserting return and simple_return patterns 5991 when modifying other blocks that end in a return. Blocks that end 5992 in a sibcall omit the sibcall_epilogue if the block is not in 5993 ANTIC. */ 5994 5995 void 5996 thread_prologue_and_epilogue_insns (void) 5997 { 5998 bool inserted; 5999 vec<edge> unconverted_simple_returns = vNULL; 6000 bitmap_head bb_flags; 6001 rtx_insn *returnjump; 6002 rtx_insn *epilogue_end ATTRIBUTE_UNUSED; 6003 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED; 6004 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge; 6005 edge_iterator ei; 6006 6007 df_analyze (); 6008 6009 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 6010 6011 inserted = false; 6012 epilogue_end = NULL; 6013 returnjump = NULL; 6014 6015 /* Can't deal with multiple successors of the entry block at the 6016 moment. Function should always have at least one entry 6017 point. */ 6018 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun))); 6019 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 6020 orig_entry_edge = entry_edge; 6021 6022 split_prologue_seq = NULL; 6023 if (flag_split_stack 6024 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)) 6025 == NULL)) 6026 { 6027 start_sequence (); 6028 emit_insn (targetm.gen_split_stack_prologue ()); 6029 split_prologue_seq = get_insns (); 6030 end_sequence (); 6031 6032 record_insns (split_prologue_seq, NULL, &prologue_insn_hash); 6033 set_insn_locations (split_prologue_seq, prologue_location); 6034 } 6035 6036 prologue_seq = NULL; 6037 if (targetm.have_prologue ()) 6038 { 6039 start_sequence (); 6040 rtx_insn *seq = targetm.gen_prologue (); 6041 emit_insn (seq); 6042 6043 /* Insert an explicit USE for the frame pointer 6044 if the profiling is on and the frame pointer is required. */ 6045 if (crtl->profile && frame_pointer_needed) 6046 emit_use (hard_frame_pointer_rtx); 6047 6048 /* Retain a map of the prologue insns. */ 6049 record_insns (seq, NULL, &prologue_insn_hash); 6050 emit_note (NOTE_INSN_PROLOGUE_END); 6051 6052 /* Ensure that instructions are not moved into the prologue when 6053 profiling is on. The call to the profiling routine can be 6054 emitted within the live range of a call-clobbered register. */ 6055 if (!targetm.profile_before_prologue () && crtl->profile) 6056 emit_insn (gen_blockage ()); 6057 6058 prologue_seq = get_insns (); 6059 end_sequence (); 6060 set_insn_locations (prologue_seq, prologue_location); 6061 } 6062 6063 bitmap_initialize (&bb_flags, &bitmap_default_obstack); 6064 6065 /* Try to perform a kind of shrink-wrapping, making sure the 6066 prologue/epilogue is emitted only around those parts of the 6067 function that require it. */ 6068 6069 try_shrink_wrapping (&entry_edge, &bb_flags, prologue_seq); 6070 6071 rtx_insn *split_prologue_insn = split_prologue_seq; 6072 if (split_prologue_seq != NULL_RTX) 6073 { 6074 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn)) 6075 split_prologue_insn = NEXT_INSN (split_prologue_insn); 6076 insert_insn_on_edge (split_prologue_seq, orig_entry_edge); 6077 inserted = true; 6078 } 6079 rtx_insn *prologue_insn = prologue_seq; 6080 if (prologue_seq != NULL_RTX) 6081 { 6082 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn)) 6083 prologue_insn = NEXT_INSN (prologue_insn); 6084 insert_insn_on_edge (prologue_seq, entry_edge); 6085 inserted = true; 6086 } 6087 6088 /* If the exit block has no non-fake predecessors, we don't need 6089 an epilogue. */ 6090 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 6091 if ((e->flags & EDGE_FAKE) == 0) 6092 break; 6093 if (e == NULL) 6094 goto epilogue_done; 6095 6096 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)); 6097 6098 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); 6099 6100 if (targetm.have_simple_return () && entry_edge != orig_entry_edge) 6101 exit_fallthru_edge 6102 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags, 6103 &unconverted_simple_returns, 6104 &returnjump); 6105 if (targetm.have_return ()) 6106 { 6107 if (exit_fallthru_edge == NULL) 6108 goto epilogue_done; 6109 6110 if (optimize) 6111 { 6112 basic_block last_bb = exit_fallthru_edge->src; 6113 6114 if (LABEL_P (BB_HEAD (last_bb)) 6115 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb))) 6116 convert_jumps_to_returns (last_bb, false, vNULL); 6117 6118 if (EDGE_COUNT (last_bb->preds) != 0 6119 && single_succ_p (last_bb)) 6120 { 6121 last_bb = emit_return_for_exit (exit_fallthru_edge, false); 6122 epilogue_end = returnjump = BB_END (last_bb); 6123 6124 /* Emitting the return may add a basic block. 6125 Fix bb_flags for the added block. */ 6126 if (targetm.have_simple_return () 6127 && last_bb != exit_fallthru_edge->src) 6128 bitmap_set_bit (&bb_flags, last_bb->index); 6129 6130 goto epilogue_done; 6131 } 6132 } 6133 } 6134 6135 /* A small fib -- epilogue is not yet completed, but we wish to re-use 6136 this marker for the splits of EH_RETURN patterns, and nothing else 6137 uses the flag in the meantime. */ 6138 epilogue_completed = 1; 6139 6140 /* Find non-fallthru edges that end with EH_RETURN instructions. On 6141 some targets, these get split to a special version of the epilogue 6142 code. In order to be able to properly annotate these with unwind 6143 info, try to split them now. If we get a valid split, drop an 6144 EPILOGUE_BEG note and mark the insns as epilogue insns. */ 6145 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 6146 { 6147 rtx_insn *prev, *last, *trial; 6148 6149 if (e->flags & EDGE_FALLTHRU) 6150 continue; 6151 last = BB_END (e->src); 6152 if (!eh_returnjump_p (last)) 6153 continue; 6154 6155 prev = PREV_INSN (last); 6156 trial = try_split (PATTERN (last), last, 1); 6157 if (trial == last) 6158 continue; 6159 6160 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash); 6161 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev); 6162 } 6163 6164 /* If nothing falls through into the exit block, we don't need an 6165 epilogue. */ 6166 6167 if (exit_fallthru_edge == NULL) 6168 goto epilogue_done; 6169 6170 if (targetm.have_epilogue ()) 6171 { 6172 start_sequence (); 6173 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG); 6174 rtx_insn *seq = targetm.gen_epilogue (); 6175 if (seq) 6176 emit_jump_insn (seq); 6177 6178 /* Retain a map of the epilogue insns. */ 6179 record_insns (seq, NULL, &epilogue_insn_hash); 6180 set_insn_locations (seq, epilogue_location); 6181 6182 seq = get_insns (); 6183 returnjump = get_last_insn (); 6184 end_sequence (); 6185 6186 insert_insn_on_edge (seq, exit_fallthru_edge); 6187 inserted = true; 6188 6189 if (JUMP_P (returnjump)) 6190 set_return_jump_label (returnjump); 6191 } 6192 else 6193 { 6194 basic_block cur_bb; 6195 6196 if (! next_active_insn (BB_END (exit_fallthru_edge->src))) 6197 goto epilogue_done; 6198 /* We have a fall-through edge to the exit block, the source is not 6199 at the end of the function, and there will be an assembler epilogue 6200 at the end of the function. 6201 We can't use force_nonfallthru here, because that would try to 6202 use return. Inserting a jump 'by hand' is extremely messy, so 6203 we take advantage of cfg_layout_finalize using 6204 fixup_fallthru_exit_predecessor. */ 6205 cfg_layout_initialize (0); 6206 FOR_EACH_BB_FN (cur_bb, cfun) 6207 if (cur_bb->index >= NUM_FIXED_BLOCKS 6208 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS) 6209 cur_bb->aux = cur_bb->next_bb; 6210 cfg_layout_finalize (); 6211 } 6212 6213 epilogue_done: 6214 6215 default_rtl_profile (); 6216 6217 if (inserted) 6218 { 6219 sbitmap blocks; 6220 6221 commit_edge_insertions (); 6222 6223 /* Look for basic blocks within the prologue insns. */ 6224 if (split_prologue_insn 6225 && BLOCK_FOR_INSN (split_prologue_insn) == NULL) 6226 split_prologue_insn = NULL; 6227 if (prologue_insn 6228 && BLOCK_FOR_INSN (prologue_insn) == NULL) 6229 prologue_insn = NULL; 6230 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); 6231 bitmap_clear (blocks); 6232 if (split_prologue_insn) 6233 bitmap_set_bit (blocks, 6234 BLOCK_FOR_INSN (split_prologue_insn)->index); 6235 if (prologue_insn) 6236 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index); 6237 bitmap_set_bit (blocks, entry_edge->dest->index); 6238 bitmap_set_bit (blocks, orig_entry_edge->dest->index); 6239 find_many_sub_basic_blocks (blocks); 6240 sbitmap_free (blocks); 6241 6242 /* The epilogue insns we inserted may cause the exit edge to no longer 6243 be fallthru. */ 6244 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 6245 { 6246 if (((e->flags & EDGE_FALLTHRU) != 0) 6247 && returnjump_p (BB_END (e->src))) 6248 e->flags &= ~EDGE_FALLTHRU; 6249 } 6250 } 6251 6252 if (targetm.have_simple_return ()) 6253 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, 6254 returnjump, unconverted_simple_returns); 6255 6256 /* Emit sibling epilogues before any sibling call sites. */ 6257 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e = 6258 ei_safe_edge (ei)); 6259 ) 6260 { 6261 basic_block bb = e->src; 6262 rtx_insn *insn = BB_END (bb); 6263 6264 if (!CALL_P (insn) 6265 || ! SIBLING_CALL_P (insn) 6266 || (targetm.have_simple_return () 6267 && entry_edge != orig_entry_edge 6268 && !bitmap_bit_p (&bb_flags, bb->index))) 6269 { 6270 ei_next (&ei); 6271 continue; 6272 } 6273 6274 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ()) 6275 { 6276 start_sequence (); 6277 emit_note (NOTE_INSN_EPILOGUE_BEG); 6278 emit_insn (ep_seq); 6279 rtx_insn *seq = get_insns (); 6280 end_sequence (); 6281 6282 /* Retain a map of the epilogue insns. Used in life analysis to 6283 avoid getting rid of sibcall epilogue insns. Do this before we 6284 actually emit the sequence. */ 6285 record_insns (seq, NULL, &epilogue_insn_hash); 6286 set_insn_locations (seq, epilogue_location); 6287 6288 emit_insn_before (seq, insn); 6289 } 6290 ei_next (&ei); 6291 } 6292 6293 if (epilogue_end) 6294 { 6295 rtx_insn *insn, *next; 6296 6297 /* Similarly, move any line notes that appear after the epilogue. 6298 There is no need, however, to be quite so anal about the existence 6299 of such a note. Also possibly move 6300 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug 6301 info generation. */ 6302 for (insn = epilogue_end; insn; insn = next) 6303 { 6304 next = NEXT_INSN (insn); 6305 if (NOTE_P (insn) 6306 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)) 6307 reorder_insns (insn, insn, PREV_INSN (epilogue_end)); 6308 } 6309 } 6310 6311 bitmap_clear (&bb_flags); 6312 6313 /* Threading the prologue and epilogue changes the artificial refs 6314 in the entry and exit blocks. */ 6315 epilogue_completed = 1; 6316 df_update_entry_exit_and_calls (); 6317 } 6318 6319 /* Reposition the prologue-end and epilogue-begin notes after 6320 instruction scheduling. */ 6321 6322 void 6323 reposition_prologue_and_epilogue_notes (void) 6324 { 6325 if (!targetm.have_prologue () 6326 && !targetm.have_epilogue () 6327 && !targetm.have_sibcall_epilogue ()) 6328 return; 6329 6330 /* Since the hash table is created on demand, the fact that it is 6331 non-null is a signal that it is non-empty. */ 6332 if (prologue_insn_hash != NULL) 6333 { 6334 size_t len = prologue_insn_hash->elements (); 6335 rtx_insn *insn, *last = NULL, *note = NULL; 6336 6337 /* Scan from the beginning until we reach the last prologue insn. */ 6338 /* ??? While we do have the CFG intact, there are two problems: 6339 (1) The prologue can contain loops (typically probing the stack), 6340 which means that the end of the prologue isn't in the first bb. 6341 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */ 6342 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 6343 { 6344 if (NOTE_P (insn)) 6345 { 6346 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END) 6347 note = insn; 6348 } 6349 else if (contains (insn, prologue_insn_hash)) 6350 { 6351 last = insn; 6352 if (--len == 0) 6353 break; 6354 } 6355 } 6356 6357 if (last) 6358 { 6359 if (note == NULL) 6360 { 6361 /* Scan forward looking for the PROLOGUE_END note. It should 6362 be right at the beginning of the block, possibly with other 6363 insn notes that got moved there. */ 6364 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note)) 6365 { 6366 if (NOTE_P (note) 6367 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END) 6368 break; 6369 } 6370 } 6371 6372 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */ 6373 if (LABEL_P (last)) 6374 last = NEXT_INSN (last); 6375 reorder_insns (note, note, last); 6376 } 6377 } 6378 6379 if (epilogue_insn_hash != NULL) 6380 { 6381 edge_iterator ei; 6382 edge e; 6383 6384 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 6385 { 6386 rtx_insn *insn, *first = NULL, *note = NULL; 6387 basic_block bb = e->src; 6388 6389 /* Scan from the beginning until we reach the first epilogue insn. */ 6390 FOR_BB_INSNS (bb, insn) 6391 { 6392 if (NOTE_P (insn)) 6393 { 6394 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG) 6395 { 6396 note = insn; 6397 if (first != NULL) 6398 break; 6399 } 6400 } 6401 else if (first == NULL && contains (insn, epilogue_insn_hash)) 6402 { 6403 first = insn; 6404 if (note != NULL) 6405 break; 6406 } 6407 } 6408 6409 if (note) 6410 { 6411 /* If the function has a single basic block, and no real 6412 epilogue insns (e.g. sibcall with no cleanup), the 6413 epilogue note can get scheduled before the prologue 6414 note. If we have frame related prologue insns, having 6415 them scanned during the epilogue will result in a crash. 6416 In this case re-order the epilogue note to just before 6417 the last insn in the block. */ 6418 if (first == NULL) 6419 first = BB_END (bb); 6420 6421 if (PREV_INSN (first) != note) 6422 reorder_insns (note, note, PREV_INSN (first)); 6423 } 6424 } 6425 } 6426 } 6427 6428 /* Returns the name of function declared by FNDECL. */ 6429 const char * 6430 fndecl_name (tree fndecl) 6431 { 6432 if (fndecl == NULL) 6433 return "(nofn)"; 6434 return lang_hooks.decl_printable_name (fndecl, 2); 6435 } 6436 6437 /* Returns the name of function FN. */ 6438 const char * 6439 function_name (struct function *fn) 6440 { 6441 tree fndecl = (fn == NULL) ? NULL : fn->decl; 6442 return fndecl_name (fndecl); 6443 } 6444 6445 /* Returns the name of the current function. */ 6446 const char * 6447 current_function_name (void) 6448 { 6449 return function_name (cfun); 6450 } 6451 6452 6453 static unsigned int 6454 rest_of_handle_check_leaf_regs (void) 6455 { 6456 #ifdef LEAF_REGISTERS 6457 crtl->uses_only_leaf_regs 6458 = optimize > 0 && only_leaf_regs_used () && leaf_function_p (); 6459 #endif 6460 return 0; 6461 } 6462 6463 /* Insert a TYPE into the used types hash table of CFUN. */ 6464 6465 static void 6466 used_types_insert_helper (tree type, struct function *func) 6467 { 6468 if (type != NULL && func != NULL) 6469 { 6470 if (func->used_types_hash == NULL) 6471 func->used_types_hash = hash_set<tree>::create_ggc (37); 6472 6473 func->used_types_hash->add (type); 6474 } 6475 } 6476 6477 /* Given a type, insert it into the used hash table in cfun. */ 6478 void 6479 used_types_insert (tree t) 6480 { 6481 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE) 6482 if (TYPE_NAME (t)) 6483 break; 6484 else 6485 t = TREE_TYPE (t); 6486 if (TREE_CODE (t) == ERROR_MARK) 6487 return; 6488 if (TYPE_NAME (t) == NULL_TREE 6489 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t))) 6490 t = TYPE_MAIN_VARIANT (t); 6491 if (debug_info_level > DINFO_LEVEL_NONE) 6492 { 6493 if (cfun) 6494 used_types_insert_helper (t, cfun); 6495 else 6496 { 6497 /* So this might be a type referenced by a global variable. 6498 Record that type so that we can later decide to emit its 6499 debug information. */ 6500 vec_safe_push (types_used_by_cur_var_decl, t); 6501 } 6502 } 6503 } 6504 6505 /* Helper to Hash a struct types_used_by_vars_entry. */ 6506 6507 static hashval_t 6508 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry) 6509 { 6510 gcc_assert (entry && entry->var_decl && entry->type); 6511 6512 return iterative_hash_object (entry->type, 6513 iterative_hash_object (entry->var_decl, 0)); 6514 } 6515 6516 /* Hash function of the types_used_by_vars_entry hash table. */ 6517 6518 hashval_t 6519 used_type_hasher::hash (types_used_by_vars_entry *entry) 6520 { 6521 return hash_types_used_by_vars_entry (entry); 6522 } 6523 6524 /*Equality function of the types_used_by_vars_entry hash table. */ 6525 6526 bool 6527 used_type_hasher::equal (types_used_by_vars_entry *e1, 6528 types_used_by_vars_entry *e2) 6529 { 6530 return (e1->var_decl == e2->var_decl && e1->type == e2->type); 6531 } 6532 6533 /* Inserts an entry into the types_used_by_vars_hash hash table. */ 6534 6535 void 6536 types_used_by_var_decl_insert (tree type, tree var_decl) 6537 { 6538 if (type != NULL && var_decl != NULL) 6539 { 6540 types_used_by_vars_entry **slot; 6541 struct types_used_by_vars_entry e; 6542 e.var_decl = var_decl; 6543 e.type = type; 6544 if (types_used_by_vars_hash == NULL) 6545 types_used_by_vars_hash 6546 = hash_table<used_type_hasher>::create_ggc (37); 6547 6548 slot = types_used_by_vars_hash->find_slot (&e, INSERT); 6549 if (*slot == NULL) 6550 { 6551 struct types_used_by_vars_entry *entry; 6552 entry = ggc_alloc<types_used_by_vars_entry> (); 6553 entry->type = type; 6554 entry->var_decl = var_decl; 6555 *slot = entry; 6556 } 6557 } 6558 } 6559 6560 namespace { 6561 6562 const pass_data pass_data_leaf_regs = 6563 { 6564 RTL_PASS, /* type */ 6565 "*leaf_regs", /* name */ 6566 OPTGROUP_NONE, /* optinfo_flags */ 6567 TV_NONE, /* tv_id */ 6568 0, /* properties_required */ 6569 0, /* properties_provided */ 6570 0, /* properties_destroyed */ 6571 0, /* todo_flags_start */ 6572 0, /* todo_flags_finish */ 6573 }; 6574 6575 class pass_leaf_regs : public rtl_opt_pass 6576 { 6577 public: 6578 pass_leaf_regs (gcc::context *ctxt) 6579 : rtl_opt_pass (pass_data_leaf_regs, ctxt) 6580 {} 6581 6582 /* opt_pass methods: */ 6583 virtual unsigned int execute (function *) 6584 { 6585 return rest_of_handle_check_leaf_regs (); 6586 } 6587 6588 }; // class pass_leaf_regs 6589 6590 } // anon namespace 6591 6592 rtl_opt_pass * 6593 make_pass_leaf_regs (gcc::context *ctxt) 6594 { 6595 return new pass_leaf_regs (ctxt); 6596 } 6597 6598 static unsigned int 6599 rest_of_handle_thread_prologue_and_epilogue (void) 6600 { 6601 if (optimize) 6602 cleanup_cfg (CLEANUP_EXPENSIVE); 6603 6604 /* On some machines, the prologue and epilogue code, or parts thereof, 6605 can be represented as RTL. Doing so lets us schedule insns between 6606 it and the rest of the code and also allows delayed branch 6607 scheduling to operate in the epilogue. */ 6608 thread_prologue_and_epilogue_insns (); 6609 6610 /* Some non-cold blocks may now be only reachable from cold blocks. 6611 Fix that up. */ 6612 fixup_partitions (); 6613 6614 /* Shrink-wrapping can result in unreachable edges in the epilogue, 6615 see PR57320. */ 6616 cleanup_cfg (0); 6617 6618 /* The stack usage info is finalized during prologue expansion. */ 6619 if (flag_stack_usage_info) 6620 output_stack_usage (); 6621 6622 return 0; 6623 } 6624 6625 namespace { 6626 6627 const pass_data pass_data_thread_prologue_and_epilogue = 6628 { 6629 RTL_PASS, /* type */ 6630 "pro_and_epilogue", /* name */ 6631 OPTGROUP_NONE, /* optinfo_flags */ 6632 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */ 6633 0, /* properties_required */ 6634 0, /* properties_provided */ 6635 0, /* properties_destroyed */ 6636 0, /* todo_flags_start */ 6637 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */ 6638 }; 6639 6640 class pass_thread_prologue_and_epilogue : public rtl_opt_pass 6641 { 6642 public: 6643 pass_thread_prologue_and_epilogue (gcc::context *ctxt) 6644 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt) 6645 {} 6646 6647 /* opt_pass methods: */ 6648 virtual unsigned int execute (function *) 6649 { 6650 return rest_of_handle_thread_prologue_and_epilogue (); 6651 } 6652 6653 }; // class pass_thread_prologue_and_epilogue 6654 6655 } // anon namespace 6656 6657 rtl_opt_pass * 6658 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt) 6659 { 6660 return new pass_thread_prologue_and_epilogue (ctxt); 6661 } 6662 6663 6664 /* This mini-pass fixes fall-out from SSA in asm statements that have 6665 in-out constraints. Say you start with 6666 6667 orig = inout; 6668 asm ("": "+mr" (inout)); 6669 use (orig); 6670 6671 which is transformed very early to use explicit output and match operands: 6672 6673 orig = inout; 6674 asm ("": "=mr" (inout) : "0" (inout)); 6675 use (orig); 6676 6677 Or, after SSA and copyprop, 6678 6679 asm ("": "=mr" (inout_2) : "0" (inout_1)); 6680 use (inout_1); 6681 6682 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as 6683 they represent two separate values, so they will get different pseudo 6684 registers during expansion. Then, since the two operands need to match 6685 per the constraints, but use different pseudo registers, reload can 6686 only register a reload for these operands. But reloads can only be 6687 satisfied by hardregs, not by memory, so we need a register for this 6688 reload, just because we are presented with non-matching operands. 6689 So, even though we allow memory for this operand, no memory can be 6690 used for it, just because the two operands don't match. This can 6691 cause reload failures on register-starved targets. 6692 6693 So it's a symptom of reload not being able to use memory for reloads 6694 or, alternatively it's also a symptom of both operands not coming into 6695 reload as matching (in which case the pseudo could go to memory just 6696 fine, as the alternative allows it, and no reload would be necessary). 6697 We fix the latter problem here, by transforming 6698 6699 asm ("": "=mr" (inout_2) : "0" (inout_1)); 6700 6701 back to 6702 6703 inout_2 = inout_1; 6704 asm ("": "=mr" (inout_2) : "0" (inout_2)); */ 6705 6706 static void 6707 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs) 6708 { 6709 int i; 6710 bool changed = false; 6711 rtx op = SET_SRC (p_sets[0]); 6712 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op); 6713 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op); 6714 bool *output_matched = XALLOCAVEC (bool, noutputs); 6715 6716 memset (output_matched, 0, noutputs * sizeof (bool)); 6717 for (i = 0; i < ninputs; i++) 6718 { 6719 rtx input, output; 6720 rtx_insn *insns; 6721 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i); 6722 char *end; 6723 int match, j; 6724 6725 if (*constraint == '%') 6726 constraint++; 6727 6728 match = strtoul (constraint, &end, 10); 6729 if (end == constraint) 6730 continue; 6731 6732 gcc_assert (match < noutputs); 6733 output = SET_DEST (p_sets[match]); 6734 input = RTVEC_ELT (inputs, i); 6735 /* Only do the transformation for pseudos. */ 6736 if (! REG_P (output) 6737 || rtx_equal_p (output, input) 6738 || !(REG_P (input) || SUBREG_P (input) 6739 || MEM_P (input) || CONSTANT_P (input)) 6740 || !general_operand (input, GET_MODE (output))) 6741 continue; 6742 6743 /* We can't do anything if the output is also used as input, 6744 as we're going to overwrite it. */ 6745 for (j = 0; j < ninputs; j++) 6746 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j))) 6747 break; 6748 if (j != ninputs) 6749 continue; 6750 6751 /* Avoid changing the same input several times. For 6752 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in)); 6753 only change in once (to out1), rather than changing it 6754 first to out1 and afterwards to out2. */ 6755 if (i > 0) 6756 { 6757 for (j = 0; j < noutputs; j++) 6758 if (output_matched[j] && input == SET_DEST (p_sets[j])) 6759 break; 6760 if (j != noutputs) 6761 continue; 6762 } 6763 output_matched[match] = true; 6764 6765 start_sequence (); 6766 emit_move_insn (output, input); 6767 insns = get_insns (); 6768 end_sequence (); 6769 emit_insn_before (insns, insn); 6770 6771 /* Now replace all mentions of the input with output. We can't 6772 just replace the occurrence in inputs[i], as the register might 6773 also be used in some other input (or even in an address of an 6774 output), which would mean possibly increasing the number of 6775 inputs by one (namely 'output' in addition), which might pose 6776 a too complicated problem for reload to solve. E.g. this situation: 6777 6778 asm ("" : "=r" (output), "=m" (input) : "0" (input)) 6779 6780 Here 'input' is used in two occurrences as input (once for the 6781 input operand, once for the address in the second output operand). 6782 If we would replace only the occurrence of the input operand (to 6783 make the matching) we would be left with this: 6784 6785 output = input 6786 asm ("" : "=r" (output), "=m" (input) : "0" (output)) 6787 6788 Now we suddenly have two different input values (containing the same 6789 value, but different pseudos) where we formerly had only one. 6790 With more complicated asms this might lead to reload failures 6791 which wouldn't have happen without this pass. So, iterate over 6792 all operands and replace all occurrences of the register used. */ 6793 for (j = 0; j < noutputs; j++) 6794 if (!rtx_equal_p (SET_DEST (p_sets[j]), input) 6795 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j]))) 6796 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]), 6797 input, output); 6798 for (j = 0; j < ninputs; j++) 6799 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j))) 6800 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j), 6801 input, output); 6802 6803 changed = true; 6804 } 6805 6806 if (changed) 6807 df_insn_rescan (insn); 6808 } 6809 6810 /* Add the decl D to the local_decls list of FUN. */ 6811 6812 void 6813 add_local_decl (struct function *fun, tree d) 6814 { 6815 gcc_assert (TREE_CODE (d) == VAR_DECL); 6816 vec_safe_push (fun->local_decls, d); 6817 } 6818 6819 namespace { 6820 6821 const pass_data pass_data_match_asm_constraints = 6822 { 6823 RTL_PASS, /* type */ 6824 "asmcons", /* name */ 6825 OPTGROUP_NONE, /* optinfo_flags */ 6826 TV_NONE, /* tv_id */ 6827 0, /* properties_required */ 6828 0, /* properties_provided */ 6829 0, /* properties_destroyed */ 6830 0, /* todo_flags_start */ 6831 0, /* todo_flags_finish */ 6832 }; 6833 6834 class pass_match_asm_constraints : public rtl_opt_pass 6835 { 6836 public: 6837 pass_match_asm_constraints (gcc::context *ctxt) 6838 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt) 6839 {} 6840 6841 /* opt_pass methods: */ 6842 virtual unsigned int execute (function *); 6843 6844 }; // class pass_match_asm_constraints 6845 6846 unsigned 6847 pass_match_asm_constraints::execute (function *fun) 6848 { 6849 basic_block bb; 6850 rtx_insn *insn; 6851 rtx pat, *p_sets; 6852 int noutputs; 6853 6854 if (!crtl->has_asm_statement) 6855 return 0; 6856 6857 df_set_flags (DF_DEFER_INSN_RESCAN); 6858 FOR_EACH_BB_FN (bb, fun) 6859 { 6860 FOR_BB_INSNS (bb, insn) 6861 { 6862 if (!INSN_P (insn)) 6863 continue; 6864 6865 pat = PATTERN (insn); 6866 if (GET_CODE (pat) == PARALLEL) 6867 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0); 6868 else if (GET_CODE (pat) == SET) 6869 p_sets = &PATTERN (insn), noutputs = 1; 6870 else 6871 continue; 6872 6873 if (GET_CODE (*p_sets) == SET 6874 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS) 6875 match_asm_constraints_1 (insn, p_sets, noutputs); 6876 } 6877 } 6878 6879 return TODO_df_finish; 6880 } 6881 6882 } // anon namespace 6883 6884 rtl_opt_pass * 6885 make_pass_match_asm_constraints (gcc::context *ctxt) 6886 { 6887 return new pass_match_asm_constraints (ctxt); 6888 } 6889 6890 6891 #include "gt-function.h" 6892