1 /* Interface to hashtable implementations. 2 Copyright (C) 2006-2022 Free Software Foundation, Inc. 3 4 This file is part of libctf. 5 6 libctf is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 This program is distributed in the hope that it will be useful, but 12 WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 14 See the GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; see the file COPYING. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include <ctf-impl.h> 21 #include <string.h> 22 #include "libiberty.h" 23 #include "hashtab.h" 24 25 /* We have three hashtable implementations: 26 27 - ctf_hash_* is an interface to a fixed-size hash from const char * -> 28 ctf_id_t with number of elements specified at creation time, that should 29 support addition of items but need not support removal. 30 31 - ctf_dynhash_* is an interface to a dynamically-expanding hash with 32 unknown size that should support addition of large numbers of items, and 33 removal as well, and is used only at type-insertion time and during 34 linking. 35 36 - ctf_dynset_* is an interface to a dynamically-expanding hash that contains 37 only keys: no values. 38 39 These can be implemented by the same underlying hashmap if you wish. */ 40 41 /* The helem is used for general key/value mappings in both the ctf_hash and 42 ctf_dynhash: the owner may not have space allocated for it, and will be 43 garbage (not NULL!) in that case. */ 44 45 typedef struct ctf_helem 46 { 47 void *key; /* Either a pointer, or a coerced ctf_id_t. */ 48 void *value; /* The value (possibly a coerced int). */ 49 ctf_dynhash_t *owner; /* The hash that owns us. */ 50 } ctf_helem_t; 51 52 /* Equally, the key_free and value_free may not exist. */ 53 54 struct ctf_dynhash 55 { 56 struct htab *htab; 57 ctf_hash_free_fun key_free; 58 ctf_hash_free_fun value_free; 59 }; 60 61 /* Hash and eq functions for the dynhash and hash. */ 62 63 unsigned int 64 ctf_hash_integer (const void *ptr) 65 { 66 ctf_helem_t *hep = (ctf_helem_t *) ptr; 67 68 return htab_hash_pointer (hep->key); 69 } 70 71 int 72 ctf_hash_eq_integer (const void *a, const void *b) 73 { 74 ctf_helem_t *hep_a = (ctf_helem_t *) a; 75 ctf_helem_t *hep_b = (ctf_helem_t *) b; 76 77 return htab_eq_pointer (hep_a->key, hep_b->key); 78 } 79 80 unsigned int 81 ctf_hash_string (const void *ptr) 82 { 83 ctf_helem_t *hep = (ctf_helem_t *) ptr; 84 85 return htab_hash_string (hep->key); 86 } 87 88 int 89 ctf_hash_eq_string (const void *a, const void *b) 90 { 91 ctf_helem_t *hep_a = (ctf_helem_t *) a; 92 ctf_helem_t *hep_b = (ctf_helem_t *) b; 93 94 return !strcmp((const char *) hep_a->key, (const char *) hep_b->key); 95 } 96 97 /* Hash a type_key. */ 98 unsigned int 99 ctf_hash_type_key (const void *ptr) 100 { 101 ctf_helem_t *hep = (ctf_helem_t *) ptr; 102 ctf_link_type_key_t *k = (ctf_link_type_key_t *) hep->key; 103 104 return htab_hash_pointer (k->cltk_fp) + 59 105 * htab_hash_pointer ((void *) (uintptr_t) k->cltk_idx); 106 } 107 108 int 109 ctf_hash_eq_type_key (const void *a, const void *b) 110 { 111 ctf_helem_t *hep_a = (ctf_helem_t *) a; 112 ctf_helem_t *hep_b = (ctf_helem_t *) b; 113 ctf_link_type_key_t *key_a = (ctf_link_type_key_t *) hep_a->key; 114 ctf_link_type_key_t *key_b = (ctf_link_type_key_t *) hep_b->key; 115 116 return (key_a->cltk_fp == key_b->cltk_fp) 117 && (key_a->cltk_idx == key_b->cltk_idx); 118 } 119 120 /* Hash a type_id_key. */ 121 unsigned int 122 ctf_hash_type_id_key (const void *ptr) 123 { 124 ctf_helem_t *hep = (ctf_helem_t *) ptr; 125 ctf_type_id_key_t *k = (ctf_type_id_key_t *) hep->key; 126 127 return htab_hash_pointer ((void *) (uintptr_t) k->ctii_input_num) 128 + 59 * htab_hash_pointer ((void *) (uintptr_t) k->ctii_type); 129 } 130 131 int 132 ctf_hash_eq_type_id_key (const void *a, const void *b) 133 { 134 ctf_helem_t *hep_a = (ctf_helem_t *) a; 135 ctf_helem_t *hep_b = (ctf_helem_t *) b; 136 ctf_type_id_key_t *key_a = (ctf_type_id_key_t *) hep_a->key; 137 ctf_type_id_key_t *key_b = (ctf_type_id_key_t *) hep_b->key; 138 139 return (key_a->ctii_input_num == key_b->ctii_input_num) 140 && (key_a->ctii_type == key_b->ctii_type); 141 } 142 143 /* The dynhash, used for hashes whose size is not known at creation time. */ 144 145 /* Free a single ctf_helem with arbitrary key/value functions. */ 146 147 static void 148 ctf_dynhash_item_free (void *item) 149 { 150 ctf_helem_t *helem = item; 151 152 if (helem->owner->key_free && helem->key) 153 helem->owner->key_free (helem->key); 154 if (helem->owner->value_free && helem->value) 155 helem->owner->value_free (helem->value); 156 free (helem); 157 } 158 159 ctf_dynhash_t * 160 ctf_dynhash_create (ctf_hash_fun hash_fun, ctf_hash_eq_fun eq_fun, 161 ctf_hash_free_fun key_free, ctf_hash_free_fun value_free) 162 { 163 ctf_dynhash_t *dynhash; 164 htab_del del = ctf_dynhash_item_free; 165 166 if (key_free || value_free) 167 dynhash = malloc (sizeof (ctf_dynhash_t)); 168 else 169 dynhash = malloc (offsetof (ctf_dynhash_t, key_free)); 170 if (!dynhash) 171 return NULL; 172 173 if (key_free == NULL && value_free == NULL) 174 del = free; 175 176 /* 7 is arbitrary and untested for now. */ 177 if ((dynhash->htab = htab_create_alloc (7, (htab_hash) hash_fun, eq_fun, 178 del, xcalloc, free)) == NULL) 179 { 180 free (dynhash); 181 return NULL; 182 } 183 184 if (key_free || value_free) 185 { 186 dynhash->key_free = key_free; 187 dynhash->value_free = value_free; 188 } 189 190 return dynhash; 191 } 192 193 static ctf_helem_t ** 194 ctf_hashtab_lookup (struct htab *htab, const void *key, enum insert_option insert) 195 { 196 ctf_helem_t tmp = { .key = (void *) key }; 197 return (ctf_helem_t **) htab_find_slot (htab, &tmp, insert); 198 } 199 200 static ctf_helem_t * 201 ctf_hashtab_insert (struct htab *htab, void *key, void *value, 202 ctf_hash_free_fun key_free, 203 ctf_hash_free_fun value_free) 204 { 205 ctf_helem_t **slot; 206 207 slot = ctf_hashtab_lookup (htab, key, INSERT); 208 209 if (!slot) 210 { 211 errno = ENOMEM; 212 return NULL; 213 } 214 215 if (!*slot) 216 { 217 /* Only spend space on the owner if we're going to use it: if there is a 218 key or value freeing function. */ 219 if (key_free || value_free) 220 *slot = malloc (sizeof (ctf_helem_t)); 221 else 222 *slot = malloc (offsetof (ctf_helem_t, owner)); 223 if (!*slot) 224 return NULL; 225 (*slot)->key = key; 226 } 227 else 228 { 229 if (key_free) 230 key_free (key); 231 if (value_free) 232 value_free ((*slot)->value); 233 } 234 (*slot)->value = value; 235 return *slot; 236 } 237 238 int 239 ctf_dynhash_insert (ctf_dynhash_t *hp, void *key, void *value) 240 { 241 ctf_helem_t *slot; 242 ctf_hash_free_fun key_free = NULL, value_free = NULL; 243 244 if (hp->htab->del_f == ctf_dynhash_item_free) 245 { 246 key_free = hp->key_free; 247 value_free = hp->value_free; 248 } 249 slot = ctf_hashtab_insert (hp->htab, key, value, 250 key_free, value_free); 251 252 if (!slot) 253 return errno; 254 255 /* Keep track of the owner, so that the del function can get at the key_free 256 and value_free functions. Only do this if one of those functions is set: 257 if not, the owner is not even present in the helem. */ 258 259 if (key_free || value_free) 260 slot->owner = hp; 261 262 return 0; 263 } 264 265 void 266 ctf_dynhash_remove (ctf_dynhash_t *hp, const void *key) 267 { 268 ctf_helem_t hep = { (void *) key, NULL, NULL }; 269 htab_remove_elt (hp->htab, &hep); 270 } 271 272 void 273 ctf_dynhash_empty (ctf_dynhash_t *hp) 274 { 275 htab_empty (hp->htab); 276 } 277 278 size_t 279 ctf_dynhash_elements (ctf_dynhash_t *hp) 280 { 281 return htab_elements (hp->htab); 282 } 283 284 void * 285 ctf_dynhash_lookup (ctf_dynhash_t *hp, const void *key) 286 { 287 ctf_helem_t **slot; 288 289 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT); 290 291 if (slot) 292 return (*slot)->value; 293 294 return NULL; 295 } 296 297 /* TRUE/FALSE return. */ 298 int 299 ctf_dynhash_lookup_kv (ctf_dynhash_t *hp, const void *key, 300 const void **orig_key, void **value) 301 { 302 ctf_helem_t **slot; 303 304 slot = ctf_hashtab_lookup (hp->htab, key, NO_INSERT); 305 306 if (slot) 307 { 308 if (orig_key) 309 *orig_key = (*slot)->key; 310 if (value) 311 *value = (*slot)->value; 312 return 1; 313 } 314 return 0; 315 } 316 317 typedef struct ctf_traverse_cb_arg 318 { 319 ctf_hash_iter_f fun; 320 void *arg; 321 } ctf_traverse_cb_arg_t; 322 323 static int 324 ctf_hashtab_traverse (void **slot, void *arg_) 325 { 326 ctf_helem_t *helem = *((ctf_helem_t **) slot); 327 ctf_traverse_cb_arg_t *arg = (ctf_traverse_cb_arg_t *) arg_; 328 329 arg->fun (helem->key, helem->value, arg->arg); 330 return 1; 331 } 332 333 void 334 ctf_dynhash_iter (ctf_dynhash_t *hp, ctf_hash_iter_f fun, void *arg_) 335 { 336 ctf_traverse_cb_arg_t arg = { fun, arg_ }; 337 htab_traverse (hp->htab, ctf_hashtab_traverse, &arg); 338 } 339 340 typedef struct ctf_traverse_find_cb_arg 341 { 342 ctf_hash_iter_find_f fun; 343 void *arg; 344 void *found_key; 345 } ctf_traverse_find_cb_arg_t; 346 347 static int 348 ctf_hashtab_traverse_find (void **slot, void *arg_) 349 { 350 ctf_helem_t *helem = *((ctf_helem_t **) slot); 351 ctf_traverse_find_cb_arg_t *arg = (ctf_traverse_find_cb_arg_t *) arg_; 352 353 if (arg->fun (helem->key, helem->value, arg->arg)) 354 { 355 arg->found_key = helem->key; 356 return 0; 357 } 358 return 1; 359 } 360 361 void * 362 ctf_dynhash_iter_find (ctf_dynhash_t *hp, ctf_hash_iter_find_f fun, void *arg_) 363 { 364 ctf_traverse_find_cb_arg_t arg = { fun, arg_, NULL }; 365 htab_traverse (hp->htab, ctf_hashtab_traverse_find, &arg); 366 return arg.found_key; 367 } 368 369 typedef struct ctf_traverse_remove_cb_arg 370 { 371 struct htab *htab; 372 ctf_hash_iter_remove_f fun; 373 void *arg; 374 } ctf_traverse_remove_cb_arg_t; 375 376 static int 377 ctf_hashtab_traverse_remove (void **slot, void *arg_) 378 { 379 ctf_helem_t *helem = *((ctf_helem_t **) slot); 380 ctf_traverse_remove_cb_arg_t *arg = (ctf_traverse_remove_cb_arg_t *) arg_; 381 382 if (arg->fun (helem->key, helem->value, arg->arg)) 383 htab_clear_slot (arg->htab, slot); 384 return 1; 385 } 386 387 void 388 ctf_dynhash_iter_remove (ctf_dynhash_t *hp, ctf_hash_iter_remove_f fun, 389 void *arg_) 390 { 391 ctf_traverse_remove_cb_arg_t arg = { hp->htab, fun, arg_ }; 392 htab_traverse (hp->htab, ctf_hashtab_traverse_remove, &arg); 393 } 394 395 /* Traverse a dynhash in arbitrary order, in _next iterator form. 396 397 Mutating the dynhash while iterating is not supported (just as it isn't for 398 htab_traverse). 399 400 Note: unusually, this returns zero on success and a *positive* value on 401 error, because it does not take an fp, taking an error pointer would be 402 incredibly clunky, and nearly all error-handling ends up stuffing the result 403 of this into some sort of errno or ctf_errno, which is invariably 404 positive. So doing this simplifies essentially all callers. */ 405 int 406 ctf_dynhash_next (ctf_dynhash_t *h, ctf_next_t **it, void **key, void **value) 407 { 408 ctf_next_t *i = *it; 409 ctf_helem_t *slot; 410 411 if (!i) 412 { 413 size_t size = htab_size (h->htab); 414 415 /* If the table has too many entries to fit in an ssize_t, just give up. 416 This might be spurious, but if any type-related hashtable has ever been 417 nearly as large as that then something very odd is going on. */ 418 if (((ssize_t) size) < 0) 419 return EDOM; 420 421 if ((i = ctf_next_create ()) == NULL) 422 return ENOMEM; 423 424 i->u.ctn_hash_slot = h->htab->entries; 425 i->cu.ctn_h = h; 426 i->ctn_n = 0; 427 i->ctn_size = (ssize_t) size; 428 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next; 429 *it = i; 430 } 431 432 if ((void (*) (void)) ctf_dynhash_next != i->ctn_iter_fun) 433 return ECTF_NEXT_WRONGFUN; 434 435 if (h != i->cu.ctn_h) 436 return ECTF_NEXT_WRONGFP; 437 438 if ((ssize_t) i->ctn_n == i->ctn_size) 439 goto hash_end; 440 441 while ((ssize_t) i->ctn_n < i->ctn_size 442 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY 443 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY)) 444 { 445 i->u.ctn_hash_slot++; 446 i->ctn_n++; 447 } 448 449 if ((ssize_t) i->ctn_n == i->ctn_size) 450 goto hash_end; 451 452 slot = *i->u.ctn_hash_slot; 453 454 if (key) 455 *key = slot->key; 456 if (value) 457 *value = slot->value; 458 459 i->u.ctn_hash_slot++; 460 i->ctn_n++; 461 462 return 0; 463 464 hash_end: 465 ctf_next_destroy (i); 466 *it = NULL; 467 return ECTF_NEXT_END; 468 } 469 470 int 471 ctf_dynhash_sort_by_name (const ctf_next_hkv_t *one, const ctf_next_hkv_t *two, 472 void *unused _libctf_unused_) 473 { 474 return strcmp ((char *) one->hkv_key, (char *) two->hkv_key); 475 } 476 477 /* Traverse a sorted dynhash, in _next iterator form. 478 479 See ctf_dynhash_next for notes on error returns, etc. 480 481 Sort keys before iterating over them using the SORT_FUN and SORT_ARG. 482 483 If SORT_FUN is null, thunks to ctf_dynhash_next. */ 484 int 485 ctf_dynhash_next_sorted (ctf_dynhash_t *h, ctf_next_t **it, void **key, 486 void **value, ctf_hash_sort_f sort_fun, void *sort_arg) 487 { 488 ctf_next_t *i = *it; 489 490 if (sort_fun == NULL) 491 return ctf_dynhash_next (h, it, key, value); 492 493 if (!i) 494 { 495 size_t els = ctf_dynhash_elements (h); 496 ctf_next_t *accum_i = NULL; 497 void *key, *value; 498 int err; 499 ctf_next_hkv_t *walk; 500 501 if (((ssize_t) els) < 0) 502 return EDOM; 503 504 if ((i = ctf_next_create ()) == NULL) 505 return ENOMEM; 506 507 if ((i->u.ctn_sorted_hkv = calloc (els, sizeof (ctf_next_hkv_t))) == NULL) 508 { 509 ctf_next_destroy (i); 510 return ENOMEM; 511 } 512 walk = i->u.ctn_sorted_hkv; 513 514 i->cu.ctn_h = h; 515 516 while ((err = ctf_dynhash_next (h, &accum_i, &key, &value)) == 0) 517 { 518 walk->hkv_key = key; 519 walk->hkv_value = value; 520 walk++; 521 } 522 if (err != ECTF_NEXT_END) 523 { 524 ctf_next_destroy (i); 525 return err; 526 } 527 528 if (sort_fun) 529 ctf_qsort_r (i->u.ctn_sorted_hkv, els, sizeof (ctf_next_hkv_t), 530 (int (*) (const void *, const void *, void *)) sort_fun, 531 sort_arg); 532 i->ctn_n = 0; 533 i->ctn_size = (ssize_t) els; 534 i->ctn_iter_fun = (void (*) (void)) ctf_dynhash_next_sorted; 535 *it = i; 536 } 537 538 if ((void (*) (void)) ctf_dynhash_next_sorted != i->ctn_iter_fun) 539 return ECTF_NEXT_WRONGFUN; 540 541 if (h != i->cu.ctn_h) 542 return ECTF_NEXT_WRONGFP; 543 544 if ((ssize_t) i->ctn_n == i->ctn_size) 545 { 546 ctf_next_destroy (i); 547 *it = NULL; 548 return ECTF_NEXT_END; 549 } 550 551 if (key) 552 *key = i->u.ctn_sorted_hkv[i->ctn_n].hkv_key; 553 if (value) 554 *value = i->u.ctn_sorted_hkv[i->ctn_n].hkv_value; 555 i->ctn_n++; 556 return 0; 557 } 558 559 void 560 ctf_dynhash_destroy (ctf_dynhash_t *hp) 561 { 562 if (hp != NULL) 563 htab_delete (hp->htab); 564 free (hp); 565 } 566 567 /* The dynset, used for sets of keys with no value. The implementation of this 568 can be much simpler, because without a value the slot can simply be the 569 stored key, which means we don't need to store the freeing functions and the 570 dynset itself is just a htab. */ 571 572 ctf_dynset_t * 573 ctf_dynset_create (htab_hash hash_fun, htab_eq eq_fun, 574 ctf_hash_free_fun key_free) 575 { 576 /* 7 is arbitrary and untested for now. */ 577 return (ctf_dynset_t *) htab_create_alloc (7, (htab_hash) hash_fun, eq_fun, 578 key_free, xcalloc, free); 579 } 580 581 /* The dynset has one complexity: the underlying implementation reserves two 582 values for internal hash table implementation details (empty versus deleted 583 entries). These values are otherwise very useful for pointers cast to ints, 584 so transform the ctf_dynset_inserted value to allow for it. (This 585 introduces an ambiguity in that one can no longer store these two values in 586 the dynset, but if we pick high enough values this is very unlikely to be a 587 problem.) 588 589 We leak this implementation detail to the freeing functions on the grounds 590 that any use of these functions is overwhelmingly likely to be in sets using 591 real pointers, which will be unaffected. */ 592 593 #define DYNSET_EMPTY_ENTRY_REPLACEMENT ((void *) (uintptr_t) -64) 594 #define DYNSET_DELETED_ENTRY_REPLACEMENT ((void *) (uintptr_t) -63) 595 596 static void * 597 key_to_internal (const void *key) 598 { 599 if (key == HTAB_EMPTY_ENTRY) 600 return DYNSET_EMPTY_ENTRY_REPLACEMENT; 601 else if (key == HTAB_DELETED_ENTRY) 602 return DYNSET_DELETED_ENTRY_REPLACEMENT; 603 604 return (void *) key; 605 } 606 607 static void * 608 internal_to_key (const void *internal) 609 { 610 if (internal == DYNSET_EMPTY_ENTRY_REPLACEMENT) 611 return HTAB_EMPTY_ENTRY; 612 else if (internal == DYNSET_DELETED_ENTRY_REPLACEMENT) 613 return HTAB_DELETED_ENTRY; 614 return (void *) internal; 615 } 616 617 int 618 ctf_dynset_insert (ctf_dynset_t *hp, void *key) 619 { 620 struct htab *htab = (struct htab *) hp; 621 void **slot; 622 623 slot = htab_find_slot (htab, key, INSERT); 624 625 if (!slot) 626 { 627 errno = ENOMEM; 628 return -errno; 629 } 630 631 if (*slot) 632 { 633 if (htab->del_f) 634 (*htab->del_f) (*slot); 635 } 636 637 *slot = key_to_internal (key); 638 639 return 0; 640 } 641 642 void 643 ctf_dynset_remove (ctf_dynset_t *hp, const void *key) 644 { 645 htab_remove_elt ((struct htab *) hp, key_to_internal (key)); 646 } 647 648 void 649 ctf_dynset_destroy (ctf_dynset_t *hp) 650 { 651 if (hp != NULL) 652 htab_delete ((struct htab *) hp); 653 } 654 655 void * 656 ctf_dynset_lookup (ctf_dynset_t *hp, const void *key) 657 { 658 void **slot = htab_find_slot ((struct htab *) hp, 659 key_to_internal (key), NO_INSERT); 660 661 if (slot) 662 return internal_to_key (*slot); 663 return NULL; 664 } 665 666 size_t 667 ctf_dynset_elements (ctf_dynset_t *hp) 668 { 669 return htab_elements ((struct htab *) hp); 670 } 671 672 /* TRUE/FALSE return. */ 673 int 674 ctf_dynset_exists (ctf_dynset_t *hp, const void *key, const void **orig_key) 675 { 676 void **slot = htab_find_slot ((struct htab *) hp, 677 key_to_internal (key), NO_INSERT); 678 679 if (orig_key && slot) 680 *orig_key = internal_to_key (*slot); 681 return (slot != NULL); 682 } 683 684 /* Look up a completely random value from the set, if any exist. 685 Keys with value zero cannot be distinguished from a nonexistent key. */ 686 void * 687 ctf_dynset_lookup_any (ctf_dynset_t *hp) 688 { 689 struct htab *htab = (struct htab *) hp; 690 void **slot = htab->entries; 691 void **limit = slot + htab_size (htab); 692 693 while (slot < limit 694 && (*slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)) 695 slot++; 696 697 if (slot < limit) 698 return internal_to_key (*slot); 699 return NULL; 700 } 701 702 /* Traverse a dynset in arbitrary order, in _next iterator form. 703 704 Otherwise, just like ctf_dynhash_next. */ 705 int 706 ctf_dynset_next (ctf_dynset_t *hp, ctf_next_t **it, void **key) 707 { 708 struct htab *htab = (struct htab *) hp; 709 ctf_next_t *i = *it; 710 void *slot; 711 712 if (!i) 713 { 714 size_t size = htab_size (htab); 715 716 /* If the table has too many entries to fit in an ssize_t, just give up. 717 This might be spurious, but if any type-related hashtable has ever been 718 nearly as large as that then somthing very odd is going on. */ 719 720 if (((ssize_t) size) < 0) 721 return EDOM; 722 723 if ((i = ctf_next_create ()) == NULL) 724 return ENOMEM; 725 726 i->u.ctn_hash_slot = htab->entries; 727 i->cu.ctn_s = hp; 728 i->ctn_n = 0; 729 i->ctn_size = (ssize_t) size; 730 i->ctn_iter_fun = (void (*) (void)) ctf_dynset_next; 731 *it = i; 732 } 733 734 if ((void (*) (void)) ctf_dynset_next != i->ctn_iter_fun) 735 return ECTF_NEXT_WRONGFUN; 736 737 if (hp != i->cu.ctn_s) 738 return ECTF_NEXT_WRONGFP; 739 740 if ((ssize_t) i->ctn_n == i->ctn_size) 741 goto set_end; 742 743 while ((ssize_t) i->ctn_n < i->ctn_size 744 && (*i->u.ctn_hash_slot == HTAB_EMPTY_ENTRY 745 || *i->u.ctn_hash_slot == HTAB_DELETED_ENTRY)) 746 { 747 i->u.ctn_hash_slot++; 748 i->ctn_n++; 749 } 750 751 if ((ssize_t) i->ctn_n == i->ctn_size) 752 goto set_end; 753 754 slot = *i->u.ctn_hash_slot; 755 756 if (key) 757 *key = internal_to_key (slot); 758 759 i->u.ctn_hash_slot++; 760 i->ctn_n++; 761 762 return 0; 763 764 set_end: 765 ctf_next_destroy (i); 766 *it = NULL; 767 return ECTF_NEXT_END; 768 } 769 770 /* ctf_hash, used for fixed-size maps from const char * -> ctf_id_t without 771 removal. This is a straight cast of a hashtab. */ 772 773 ctf_hash_t * 774 ctf_hash_create (unsigned long nelems, ctf_hash_fun hash_fun, 775 ctf_hash_eq_fun eq_fun) 776 { 777 return (ctf_hash_t *) htab_create_alloc (nelems, (htab_hash) hash_fun, 778 eq_fun, free, xcalloc, free); 779 } 780 781 uint32_t 782 ctf_hash_size (const ctf_hash_t *hp) 783 { 784 return htab_elements ((struct htab *) hp); 785 } 786 787 int 788 ctf_hash_insert_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type, 789 uint32_t name) 790 { 791 const char *str = ctf_strraw (fp, name); 792 793 if (type == 0) 794 return EINVAL; 795 796 if (str == NULL 797 && CTF_NAME_STID (name) == CTF_STRTAB_1 798 && fp->ctf_syn_ext_strtab == NULL 799 && fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL) 800 return ECTF_STRTAB; 801 802 if (str == NULL) 803 return ECTF_BADNAME; 804 805 if (str[0] == '\0') 806 return 0; /* Just ignore empty strings on behalf of caller. */ 807 808 if (ctf_hashtab_insert ((struct htab *) hp, (char *) str, 809 (void *) (ptrdiff_t) type, NULL, NULL) != NULL) 810 return 0; 811 return errno; 812 } 813 814 /* if the key is already in the hash, override the previous definition with 815 this new official definition. If the key is not present, then call 816 ctf_hash_insert_type and hash it in. */ 817 int 818 ctf_hash_define_type (ctf_hash_t *hp, ctf_dict_t *fp, uint32_t type, 819 uint32_t name) 820 { 821 /* This matches the semantics of ctf_hash_insert_type in this 822 implementation anyway. */ 823 824 return ctf_hash_insert_type (hp, fp, type, name); 825 } 826 827 ctf_id_t 828 ctf_hash_lookup_type (ctf_hash_t *hp, ctf_dict_t *fp __attribute__ ((__unused__)), 829 const char *key) 830 { 831 ctf_helem_t **slot; 832 833 slot = ctf_hashtab_lookup ((struct htab *) hp, key, NO_INSERT); 834 835 if (slot) 836 return (ctf_id_t) (uintptr_t) ((*slot)->value); 837 838 return 0; 839 } 840 841 void 842 ctf_hash_destroy (ctf_hash_t *hp) 843 { 844 if (hp != NULL) 845 htab_delete ((struct htab *) hp); 846 } 847