1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2003 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #if HAVE_NBTOOL_CONFIG_H 30 # include "nbtool_config.h" 31 #endif 32 33 #include <sys/types.h> 34 #include <sys/stat.h> 35 #include <sys/mman.h> 36 #include <sys/zmod.h> 37 #include <ctf_impl.h> 38 #include <unistd.h> 39 #include <fcntl.h> 40 #include <errno.h> 41 #ifdef illumos 42 #include <dlfcn.h> 43 #else 44 #include <zlib.h> 45 #endif 46 #include <gelf.h> 47 48 #ifdef illumos 49 #ifdef _LP64 50 static const char *_libctf_zlib = "/usr/lib/64/libz.so"; 51 #else 52 static const char *_libctf_zlib = "/usr/lib/libz.so"; 53 #endif 54 #endif 55 56 static struct { 57 int (*z_uncompress)(uchar_t *, ulong_t *, const uchar_t *, ulong_t); 58 const char *(*z_error)(int); 59 void *z_dlp; 60 } zlib; 61 62 static size_t _PAGESIZE; 63 static size_t _PAGEMASK; 64 65 #ifdef illumos 66 #pragma init(_libctf_init) 67 #else 68 void _libctf_init(void) __attribute__ ((constructor)); 69 #endif 70 void 71 _libctf_init(void) 72 { 73 #ifdef illumos 74 const char *p = getenv("LIBCTF_DECOMPRESSOR"); 75 76 if (p != NULL) 77 _libctf_zlib = p; /* use alternate decompression library */ 78 #endif 79 80 _libctf_debug = getenv("LIBCTF_DEBUG") != NULL; 81 82 _PAGESIZE = getpagesize(); 83 _PAGEMASK = ~(_PAGESIZE - 1); 84 } 85 86 /* 87 * Attempt to dlopen the decompression library and locate the symbols of 88 * interest that we will need to call. This information in cached so 89 * that multiple calls to ctf_bufopen() do not need to reopen the library. 90 */ 91 void * 92 ctf_zopen(int *errp) 93 { 94 #ifdef illumos 95 ctf_dprintf("decompressing CTF data using %s\n", _libctf_zlib); 96 97 if (zlib.z_dlp != NULL) 98 return (zlib.z_dlp); /* library is already loaded */ 99 100 if (access(_libctf_zlib, R_OK) == -1) 101 return (ctf_set_open_errno(errp, ECTF_ZMISSING)); 102 103 if ((zlib.z_dlp = dlopen(_libctf_zlib, RTLD_LAZY | RTLD_LOCAL)) == NULL) 104 return (ctf_set_open_errno(errp, ECTF_ZINIT)); 105 106 zlib.z_uncompress = (int (*)(uchar_t *, ulong_t *, const uchar_t *, ulong_t)) dlsym(zlib.z_dlp, "uncompress"); 107 zlib.z_error = (const char *(*)(int)) dlsym(zlib.z_dlp, "zError"); 108 109 if (zlib.z_uncompress == NULL || zlib.z_error == NULL) { 110 (void) dlclose(zlib.z_dlp); 111 bzero(&zlib, sizeof (zlib)); 112 return (ctf_set_open_errno(errp, ECTF_ZINIT)); 113 } 114 #else 115 zlib.z_uncompress = uncompress; 116 zlib.z_error = zError; 117 118 /* Dummy return variable as 'no error' */ 119 zlib.z_dlp = (void *) (uintptr_t) 1; 120 #endif 121 122 return (zlib.z_dlp); 123 } 124 125 /* 126 * The ctf_bufopen() routine calls these subroutines, defined by <sys/zmod.h>, 127 * which we then patch through to the functions in the decompression library. 128 */ 129 int 130 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 131 { 132 return (zlib.z_uncompress(dst, (ulong_t *)dstlen, src, srclen)); 133 } 134 135 const char * 136 z_strerror(int err) 137 { 138 return (zlib.z_error(err)); 139 } 140 141 /* 142 * Convert a 32-bit ELF file header into GElf. 143 */ 144 static void 145 ehdr_to_gelf(const Elf32_Ehdr *src, GElf_Ehdr *dst) 146 { 147 bcopy(src->e_ident, dst->e_ident, EI_NIDENT); 148 dst->e_type = src->e_type; 149 dst->e_machine = src->e_machine; 150 dst->e_version = src->e_version; 151 dst->e_entry = (Elf64_Addr)src->e_entry; 152 dst->e_phoff = (Elf64_Off)src->e_phoff; 153 dst->e_shoff = (Elf64_Off)src->e_shoff; 154 dst->e_flags = src->e_flags; 155 dst->e_ehsize = src->e_ehsize; 156 dst->e_phentsize = src->e_phentsize; 157 dst->e_phnum = src->e_phnum; 158 dst->e_shentsize = src->e_shentsize; 159 dst->e_shnum = src->e_shnum; 160 dst->e_shstrndx = src->e_shstrndx; 161 } 162 163 /* 164 * Convert a 32-bit ELF section header into GElf. 165 */ 166 static void 167 shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 168 { 169 dst->sh_name = src->sh_name; 170 dst->sh_type = src->sh_type; 171 dst->sh_flags = src->sh_flags; 172 dst->sh_addr = src->sh_addr; 173 dst->sh_offset = src->sh_offset; 174 dst->sh_size = src->sh_size; 175 dst->sh_link = src->sh_link; 176 dst->sh_info = src->sh_info; 177 dst->sh_addralign = src->sh_addralign; 178 dst->sh_entsize = src->sh_entsize; 179 } 180 181 /* 182 * In order to mmap a section from the ELF file, we must round down sh_offset 183 * to the previous page boundary, and mmap the surrounding page. We store 184 * the pointer to the start of the actual section data back into sp->cts_data. 185 */ 186 const void * 187 ctf_sect_mmap(ctf_sect_t *sp, int fd) 188 { 189 size_t pageoff = sp->cts_offset & ~_PAGEMASK; 190 191 caddr_t base = mmap64(NULL, sp->cts_size + pageoff, PROT_READ, 192 MAP_PRIVATE, fd, sp->cts_offset & _PAGEMASK); 193 194 if (base != MAP_FAILED) 195 sp->cts_data = base + pageoff; 196 197 return (base); 198 } 199 200 /* 201 * Since sp->cts_data has the adjusted offset, we have to again round down 202 * to get the actual mmap address and round up to get the size. 203 */ 204 void 205 ctf_sect_munmap(const ctf_sect_t *sp) 206 { 207 uintptr_t addr = (uintptr_t)sp->cts_data; 208 uintptr_t pageoff = addr & ~_PAGEMASK; 209 210 (void) munmap((void *)(addr - pageoff), sp->cts_size + pageoff); 211 } 212 213 /* 214 * Open the specified file descriptor and return a pointer to a CTF container. 215 * The file can be either an ELF file or raw CTF file. The caller is 216 * responsible for closing the file descriptor when it is no longer needed. 217 */ 218 ctf_file_t * 219 ctf_fdopen(int fd, int *errp) 220 { 221 ctf_sect_t ctfsect, symsect, strsect; 222 ctf_file_t *fp = NULL; 223 size_t shstrndx, shnum; 224 225 struct stat64 st; 226 ssize_t nbytes; 227 228 union { 229 ctf_preamble_t ctf; 230 Elf32_Ehdr e32; 231 GElf_Ehdr e64; 232 } hdr; 233 234 bzero(&ctfsect, sizeof (ctf_sect_t)); 235 bzero(&symsect, sizeof (ctf_sect_t)); 236 bzero(&strsect, sizeof (ctf_sect_t)); 237 bzero(&hdr, sizeof (hdr)); 238 239 if (fstat64(fd, &st) == -1) 240 return (ctf_set_open_errno(errp, errno)); 241 242 if ((nbytes = pread64(fd, &hdr.ctf, sizeof (hdr), 0)) <= 0) 243 return (ctf_set_open_errno(errp, nbytes < 0? errno : ECTF_FMT)); 244 245 /* 246 * If we have read enough bytes to form a CTF header and the magic 247 * string matches, attempt to interpret the file as raw CTF. 248 */ 249 if (nbytes >= (ssize_t) sizeof (ctf_preamble_t) && 250 hdr.ctf.ctp_magic == CTF_MAGIC) { 251 if (hdr.ctf.ctp_version > CTF_VERSION) 252 return (ctf_set_open_errno(errp, ECTF_CTFVERS)); 253 254 ctfsect.cts_data = mmap64(NULL, st.st_size, PROT_READ, 255 MAP_PRIVATE, fd, 0); 256 257 if (ctfsect.cts_data == MAP_FAILED) 258 return (ctf_set_open_errno(errp, errno)); 259 260 ctfsect.cts_name = _CTF_SECTION; 261 ctfsect.cts_type = SHT_PROGBITS; 262 ctfsect.cts_flags = SHF_ALLOC; 263 ctfsect.cts_size = (size_t)st.st_size; 264 ctfsect.cts_entsize = 1; 265 ctfsect.cts_offset = 0; 266 267 if ((fp = ctf_bufopen(&ctfsect, NULL, NULL, errp)) == NULL) 268 ctf_sect_munmap(&ctfsect); 269 270 return (fp); 271 } 272 273 /* 274 * If we have read enough bytes to form an ELF header and the magic 275 * string matches, attempt to interpret the file as an ELF file. We 276 * do our own largefile ELF processing, and convert everything to 277 * GElf structures so that clients can operate on any data model. 278 */ 279 if (nbytes >= (ssize_t) sizeof (Elf32_Ehdr) && 280 bcmp(&hdr.e32.e_ident[EI_MAG0], ELFMAG, SELFMAG) == 0) { 281 #if BYTE_ORDER == _BIG_ENDIAN 282 uchar_t order = ELFDATA2MSB; 283 #else 284 uchar_t order = ELFDATA2LSB; 285 #endif 286 GElf_Shdr *sp; 287 288 void *strs_map; 289 size_t strs_mapsz, i; 290 char *strs; 291 292 if (hdr.e32.e_ident[EI_DATA] != order) 293 return (ctf_set_open_errno(errp, ECTF_ENDIAN)); 294 if (hdr.e32.e_version != EV_CURRENT) 295 return (ctf_set_open_errno(errp, ECTF_ELFVERS)); 296 297 if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS64) { 298 if (nbytes < (ssize_t) sizeof (GElf_Ehdr)) 299 return (ctf_set_open_errno(errp, ECTF_FMT)); 300 } else { 301 Elf32_Ehdr e32 = hdr.e32; 302 ehdr_to_gelf(&e32, &hdr.e64); 303 } 304 305 shnum = hdr.e64.e_shnum; 306 shstrndx = hdr.e64.e_shstrndx; 307 308 /* Extended ELF sections */ 309 if ((shstrndx == SHN_XINDEX) || (shnum == 0)) { 310 if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) { 311 Elf32_Shdr x32; 312 313 if (pread64(fd, &x32, sizeof (x32), 314 hdr.e64.e_shoff) != sizeof (x32)) 315 return (ctf_set_open_errno(errp, 316 errno)); 317 318 shnum = x32.sh_size; 319 shstrndx = x32.sh_link; 320 } else { 321 Elf64_Shdr x64; 322 323 if (pread64(fd, &x64, sizeof (x64), 324 hdr.e64.e_shoff) != sizeof (x64)) 325 return (ctf_set_open_errno(errp, 326 errno)); 327 328 shnum = x64.sh_size; 329 shstrndx = x64.sh_link; 330 } 331 } 332 333 if (shstrndx >= shnum) 334 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 335 336 nbytes = sizeof (GElf_Shdr) * shnum; 337 338 if ((sp = malloc(nbytes)) == NULL) 339 return (ctf_set_open_errno(errp, errno)); 340 341 /* 342 * Read in and convert to GElf the array of Shdr structures 343 * from e_shoff so we can locate sections of interest. 344 */ 345 if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) { 346 Elf32_Shdr *sp32; 347 348 nbytes = sizeof (Elf32_Shdr) * shnum; 349 350 if ((sp32 = malloc(nbytes)) == NULL || pread64(fd, 351 sp32, nbytes, hdr.e64.e_shoff) != nbytes) { 352 free(sp); 353 free(sp32); 354 return (ctf_set_open_errno(errp, errno)); 355 } 356 357 for (i = 0; i < shnum; i++) 358 shdr_to_gelf(&sp32[i], &sp[i]); 359 360 free(sp32); 361 362 } else if (pread64(fd, sp, nbytes, hdr.e64.e_shoff) != nbytes) { 363 free(sp); 364 return (ctf_set_open_errno(errp, errno)); 365 } 366 367 /* 368 * Now mmap the section header strings section so that we can 369 * perform string comparison on the section names. 370 */ 371 strs_mapsz = sp[shstrndx].sh_size + 372 (sp[shstrndx].sh_offset & ~_PAGEMASK); 373 374 strs_map = mmap64(NULL, strs_mapsz, PROT_READ, MAP_PRIVATE, 375 fd, sp[shstrndx].sh_offset & _PAGEMASK); 376 377 if (strs_map == MAP_FAILED) 378 return (ctf_set_open_errno(errp, errno)); 379 380 strs = (char *)strs_map + 381 (sp[shstrndx].sh_offset & ~_PAGEMASK); 382 383 if (strs_map == MAP_FAILED) { 384 free(sp); 385 return (ctf_set_open_errno(errp, ECTF_MMAP)); 386 } 387 388 /* 389 * Iterate over the section header array looking for the CTF 390 * section and symbol table. The strtab is linked to symtab. 391 */ 392 for (i = 0; i < shnum; i++) { 393 const GElf_Shdr *shp = &sp[i]; 394 const GElf_Shdr *lhp = &sp[shp->sh_link]; 395 396 if (shp->sh_link >= shnum) 397 continue; /* corrupt sh_link field */ 398 399 if (shp->sh_name >= sp[shstrndx].sh_size || 400 lhp->sh_name >= sp[shstrndx].sh_size) 401 continue; /* corrupt sh_name field */ 402 403 if (shp->sh_type == SHT_PROGBITS && 404 strcmp(strs + shp->sh_name, _CTF_SECTION) == 0) { 405 ctfsect.cts_name = strs + shp->sh_name; 406 ctfsect.cts_type = shp->sh_type; 407 ctfsect.cts_flags = shp->sh_flags; 408 ctfsect.cts_size = shp->sh_size; 409 ctfsect.cts_entsize = shp->sh_entsize; 410 ctfsect.cts_offset = (off64_t)shp->sh_offset; 411 412 } else if (shp->sh_type == SHT_SYMTAB) { 413 symsect.cts_name = strs + shp->sh_name; 414 symsect.cts_type = shp->sh_type; 415 symsect.cts_flags = shp->sh_flags; 416 symsect.cts_size = shp->sh_size; 417 symsect.cts_entsize = shp->sh_entsize; 418 symsect.cts_offset = (off64_t)shp->sh_offset; 419 420 strsect.cts_name = strs + lhp->sh_name; 421 strsect.cts_type = lhp->sh_type; 422 strsect.cts_flags = lhp->sh_flags; 423 strsect.cts_size = lhp->sh_size; 424 strsect.cts_entsize = lhp->sh_entsize; 425 strsect.cts_offset = (off64_t)lhp->sh_offset; 426 } 427 } 428 429 free(sp); /* free section header array */ 430 431 if (ctfsect.cts_type == SHT_NULL) { 432 (void) munmap(strs_map, strs_mapsz); 433 return (ctf_set_open_errno(errp, ECTF_NOCTFDATA)); 434 } 435 436 /* 437 * Now mmap the CTF data, symtab, and strtab sections and 438 * call ctf_bufopen() to do the rest of the work. 439 */ 440 if (ctf_sect_mmap(&ctfsect, fd) == MAP_FAILED) { 441 (void) munmap(strs_map, strs_mapsz); 442 return (ctf_set_open_errno(errp, ECTF_MMAP)); 443 } 444 445 if (symsect.cts_type != SHT_NULL && 446 strsect.cts_type != SHT_NULL) { 447 if (ctf_sect_mmap(&symsect, fd) == MAP_FAILED || 448 ctf_sect_mmap(&strsect, fd) == MAP_FAILED) { 449 (void) ctf_set_open_errno(errp, ECTF_MMAP); 450 goto bad; /* unmap all and abort */ 451 } 452 fp = ctf_bufopen(&ctfsect, &symsect, &strsect, errp); 453 } else 454 fp = ctf_bufopen(&ctfsect, NULL, NULL, errp); 455 bad: 456 if (fp == NULL) { 457 ctf_sect_munmap(&ctfsect); 458 ctf_sect_munmap(&symsect); 459 ctf_sect_munmap(&strsect); 460 } else 461 fp->ctf_flags |= LCTF_MMAP; 462 463 (void) munmap(strs_map, strs_mapsz); 464 return (fp); 465 } 466 467 return (ctf_set_open_errno(errp, ECTF_FMT)); 468 } 469 470 /* 471 * Open the specified file and return a pointer to a CTF container. The file 472 * can be either an ELF file or raw CTF file. This is just a convenient 473 * wrapper around ctf_fdopen() for callers. 474 */ 475 ctf_file_t * 476 ctf_open(const char *filename, int *errp) 477 { 478 ctf_file_t *fp; 479 int fd; 480 481 if ((fd = open64(filename, O_RDONLY)) == -1) { 482 if (errp != NULL) 483 *errp = errno; 484 return (NULL); 485 } 486 487 fp = ctf_fdopen(fd, errp); 488 (void) close(fd); 489 return (fp); 490 } 491 492 /* 493 * Write the uncompressed CTF data stream to the specified file descriptor. 494 * This is useful for saving the results of dynamic CTF containers. 495 */ 496 int 497 ctf_write(ctf_file_t *fp, int fd) 498 { 499 const uchar_t *buf = fp->ctf_base; 500 ssize_t resid = fp->ctf_size; 501 ssize_t len; 502 503 while (resid != 0) { 504 if ((len = write(fd, buf, resid)) <= 0) 505 return (ctf_set_errno(fp, errno)); 506 resid -= len; 507 buf += len; 508 } 509 510 return (0); 511 } 512 513 /* 514 * Set the CTF library client version to the specified version. If version is 515 * zero, we just return the default library version number. 516 */ 517 int 518 ctf_version(int version) 519 { 520 if (version < 0) { 521 errno = EINVAL; 522 return (-1); 523 } 524 525 if (version > 0) { 526 if (version > CTF_VERSION) { 527 errno = ENOTSUP; 528 return (-1); 529 } 530 ctf_dprintf("ctf_version: client using version %d\n", version); 531 _libctf_version = version; 532 } 533 534 return (_libctf_version); 535 } 536