1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 #ifdef HAVE_NBTOOL_CONFIG_H 24 #include "nbtool_config.h" 25 #endif 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 /* 31 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 32 */ 33 34 #include <ctf_impl.h> 35 #include <sys/mman.h> 36 #include <sys/zmod.h> 37 38 static const ctf_dmodel_t _libctf_models[] = { 39 { "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 }, 40 { "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 }, 41 { NULL, 0, 0, 0, 0, 0, 0 } 42 }; 43 44 const char _CTF_SECTION[] = ".SUNW_ctf"; 45 const char _CTF_NULLSTR[] = ""; 46 47 int _libctf_version = CTF_VERSION; /* library client version */ 48 int _libctf_debug = 0; /* debugging messages enabled */ 49 50 static ushort_t 51 get_kind_v1(ushort_t info) 52 { 53 return (CTF_INFO_KIND_V1(info)); 54 } 55 56 static ushort_t 57 get_kind_v2(ushort_t info) 58 { 59 return (CTF_INFO_KIND(info)); 60 } 61 62 static ushort_t 63 get_root_v1(ushort_t info) 64 { 65 return (CTF_INFO_ISROOT_V1(info)); 66 } 67 68 static ushort_t 69 get_root_v2(ushort_t info) 70 { 71 return (CTF_INFO_ISROOT(info)); 72 } 73 74 static ushort_t 75 get_vlen_v1(ushort_t info) 76 { 77 return (CTF_INFO_VLEN_V1(info)); 78 } 79 80 static ushort_t 81 get_vlen_v2(ushort_t info) 82 { 83 return (CTF_INFO_VLEN(info)); 84 } 85 86 static const ctf_fileops_t ctf_fileops[] = { 87 { NULL, NULL, NULL }, 88 { get_kind_v1, get_root_v1, get_vlen_v1 }, 89 { get_kind_v2, get_root_v2, get_vlen_v2 }, 90 }; 91 92 /* 93 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it. 94 */ 95 static Elf64_Sym * 96 sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst) 97 { 98 dst->st_name = src->st_name; 99 dst->st_value = src->st_value; 100 dst->st_size = src->st_size; 101 dst->st_info = src->st_info; 102 dst->st_other = src->st_other; 103 dst->st_shndx = src->st_shndx; 104 105 return (dst); 106 } 107 108 /* 109 * Initialize the symtab translation table by filling each entry with the 110 * offset of the CTF type or function data corresponding to each STT_FUNC or 111 * STT_OBJECT entry in the symbol table. 112 */ 113 static int 114 init_symtab(ctf_file_t *fp, const ctf_header_t *hp, 115 const ctf_sect_t *sp, const ctf_sect_t *strp) 116 { 117 const uchar_t *symp = sp->cts_data; 118 uint_t *xp = fp->ctf_sxlate; 119 uint_t *xend = xp + fp->ctf_nsyms; 120 121 uint_t objtoff = hp->cth_objtoff; 122 uint_t funcoff = hp->cth_funcoff; 123 124 ushort_t info, vlen; 125 Elf64_Sym sym, *gsp; 126 const char *name; 127 128 /* 129 * The CTF data object and function type sections are ordered to match 130 * the relative order of the respective symbol types in the symtab. 131 * If no type information is available for a symbol table entry, a 132 * pad is inserted in the CTF section. As a further optimization, 133 * anonymous or undefined symbols are omitted from the CTF data. 134 */ 135 for (; xp < xend; xp++, symp += sp->cts_entsize) { 136 if (sp->cts_entsize == sizeof (Elf32_Sym)) 137 gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym); 138 else 139 gsp = (Elf64_Sym *)(uintptr_t)symp; 140 141 if (gsp->st_name < strp->cts_size) 142 name = (const char *)strp->cts_data + gsp->st_name; 143 else 144 name = _CTF_NULLSTR; 145 146 if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF || 147 strcmp(name, "_START_") == 0 || 148 strcmp(name, "_END_") == 0) { 149 *xp = -1u; 150 continue; 151 } 152 153 switch (ELF64_ST_TYPE(gsp->st_info)) { 154 case STT_OBJECT: 155 if (objtoff >= hp->cth_funcoff || 156 (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) { 157 *xp = -1u; 158 break; 159 } 160 161 *xp = objtoff; 162 objtoff += sizeof (ushort_t); 163 break; 164 165 case STT_FUNC: 166 if (funcoff >= hp->cth_typeoff) { 167 *xp = -1u; 168 break; 169 } 170 171 *xp = funcoff; 172 173 info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff); 174 vlen = LCTF_INFO_VLEN(fp, info); 175 176 /* 177 * If we encounter a zero pad at the end, just skip it. 178 * Otherwise skip over the function and its return type 179 * (+2) and the argument list (vlen). 180 */ 181 if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN && 182 vlen == 0) 183 funcoff += sizeof (ushort_t); /* skip pad */ 184 else 185 funcoff += sizeof (ushort_t) * (vlen + 2); 186 break; 187 188 default: 189 *xp = -1u; 190 break; 191 } 192 } 193 194 ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms); 195 return (0); 196 } 197 198 /* 199 * Initialize the type ID translation table with the byte offset of each type, 200 * and initialize the hash tables of each named type. 201 */ 202 static int 203 init_types(ctf_file_t *fp, const ctf_header_t *cth) 204 { 205 /* LINTED - pointer alignment */ 206 const ctf_type_t *tbuf = (const ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff); 207 /* LINTED - pointer alignment */ 208 const ctf_type_t *tend = (const ctf_type_t *)(fp->ctf_buf + cth->cth_stroff); 209 210 ulong_t pop[CTF_K_MAX + 1] = { 0 }; 211 const ctf_type_t *tp; 212 ctf_hash_t *hp; 213 ushort_t id, dst; 214 uint_t *xp; 215 216 /* 217 * We initially determine whether the container is a child or a parent 218 * based on the value of cth_parname. To support containers that pre- 219 * date cth_parname, we also scan the types themselves for references 220 * to values in the range reserved for child types in our first pass. 221 */ 222 int child = cth->cth_parname != 0; 223 int nlstructs = 0, nlunions = 0; 224 int err; 225 226 /* 227 * We make two passes through the entire type section. In this first 228 * pass, we count the number of each type and the total number of types. 229 */ 230 for (tp = tbuf; tp < tend; fp->ctf_typemax++) { 231 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); 232 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); 233 ssize_t size, increment; 234 235 size_t vbytes; 236 uint_t n; 237 238 (void) ctf_get_ctt_size(fp, tp, &size, &increment); 239 240 switch (kind) { 241 case CTF_K_INTEGER: 242 case CTF_K_FLOAT: 243 vbytes = sizeof (uint_t); 244 break; 245 case CTF_K_ARRAY: 246 vbytes = sizeof (ctf_array_t); 247 break; 248 case CTF_K_FUNCTION: 249 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); 250 break; 251 case CTF_K_STRUCT: 252 case CTF_K_UNION: 253 if (fp->ctf_version == CTF_VERSION_1 || 254 size < CTF_LSTRUCT_THRESH) { 255 ctf_member_t *mp = (ctf_member_t *) 256 ((uintptr_t)tp + increment); 257 258 vbytes = sizeof (ctf_member_t) * vlen; 259 for (n = vlen; n != 0; n--, mp++) 260 child |= CTF_TYPE_ISCHILD(mp->ctm_type); 261 } else { 262 ctf_lmember_t *lmp = (ctf_lmember_t *) 263 ((uintptr_t)tp + increment); 264 265 vbytes = sizeof (ctf_lmember_t) * vlen; 266 for (n = vlen; n != 0; n--, lmp++) 267 child |= 268 CTF_TYPE_ISCHILD(lmp->ctlm_type); 269 } 270 break; 271 case CTF_K_ENUM: 272 vbytes = sizeof (ctf_enum_t) * vlen; 273 break; 274 case CTF_K_FORWARD: 275 /* 276 * For forward declarations, ctt_type is the CTF_K_* 277 * kind for the tag, so bump that population count too. 278 * If ctt_type is unknown, treat the tag as a struct. 279 */ 280 if (tp->ctt_type == CTF_K_UNKNOWN || 281 tp->ctt_type >= CTF_K_MAX) 282 pop[CTF_K_STRUCT]++; 283 else 284 pop[tp->ctt_type]++; 285 /*FALLTHRU*/ 286 case CTF_K_UNKNOWN: 287 vbytes = 0; 288 break; 289 case CTF_K_POINTER: 290 case CTF_K_TYPEDEF: 291 case CTF_K_VOLATILE: 292 case CTF_K_CONST: 293 case CTF_K_RESTRICT: 294 child |= CTF_TYPE_ISCHILD(tp->ctt_type); 295 vbytes = 0; 296 break; 297 default: 298 ctf_dprintf("detected invalid CTF kind -- %u\n", kind); 299 return (ECTF_CORRUPT); 300 } 301 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); 302 pop[kind]++; 303 } 304 305 /* 306 * If we detected a reference to a child type ID, then we know this 307 * container is a child and may have a parent's types imported later. 308 */ 309 if (child) { 310 ctf_dprintf("CTF container %p is a child\n", (void *)fp); 311 fp->ctf_flags |= LCTF_CHILD; 312 } else 313 ctf_dprintf("CTF container %p is a parent\n", (void *)fp); 314 315 /* 316 * Now that we've counted up the number of each type, we can allocate 317 * the hash tables, type translation table, and pointer table. 318 */ 319 if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0) 320 return (err); 321 322 if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0) 323 return (err); 324 325 if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0) 326 return (err); 327 328 if ((err = ctf_hash_create(&fp->ctf_names, 329 pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] + 330 pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] + 331 pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0) 332 return (err); 333 334 fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1)); 335 fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1)); 336 337 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL) 338 return (EAGAIN); /* memory allocation failed */ 339 340 xp = fp->ctf_txlate; 341 *xp++ = 0; /* type id 0 is used as a sentinel value */ 342 343 bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); 344 bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); 345 346 /* 347 * In the second pass through the types, we fill in each entry of the 348 * type and pointer tables and add names to the appropriate hashes. 349 */ 350 for (id = 1, tp = tbuf; tp < tend; xp++, id++) { 351 ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); 352 ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); 353 ssize_t size, increment; 354 355 const char *name; 356 size_t vbytes; 357 ctf_helem_t *hep; 358 ctf_encoding_t cte; 359 360 (void) ctf_get_ctt_size(fp, tp, &size, &increment); 361 name = ctf_strptr(fp, tp->ctt_name); 362 363 switch (kind) { 364 case CTF_K_INTEGER: 365 case CTF_K_FLOAT: 366 /* 367 * Only insert a new integer base type definition if 368 * this type name has not been defined yet. We re-use 369 * the names with different encodings for bit-fields. 370 */ 371 if ((hep = ctf_hash_lookup(&fp->ctf_names, fp, 372 name, strlen(name))) == NULL) { 373 err = ctf_hash_insert(&fp->ctf_names, fp, 374 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 375 if (err != 0 && err != ECTF_STRTAB) 376 return (err); 377 } else if (ctf_type_encoding(fp, hep->h_type, 378 &cte) == 0 && cte.cte_bits == 0) { 379 /* 380 * Work-around SOS8 stabs bug: replace existing 381 * intrinsic w/ same name if it was zero bits. 382 */ 383 hep->h_type = CTF_INDEX_TO_TYPE(id, child); 384 } 385 vbytes = sizeof (uint_t); 386 break; 387 388 case CTF_K_ARRAY: 389 vbytes = sizeof (ctf_array_t); 390 break; 391 392 case CTF_K_FUNCTION: 393 err = ctf_hash_insert(&fp->ctf_names, fp, 394 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 395 if (err != 0 && err != ECTF_STRTAB) 396 return (err); 397 vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); 398 break; 399 400 case CTF_K_STRUCT: 401 err = ctf_hash_define(&fp->ctf_structs, fp, 402 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 403 404 if (err != 0 && err != ECTF_STRTAB) 405 return (err); 406 407 if (fp->ctf_version == CTF_VERSION_1 || 408 size < CTF_LSTRUCT_THRESH) 409 vbytes = sizeof (ctf_member_t) * vlen; 410 else { 411 vbytes = sizeof (ctf_lmember_t) * vlen; 412 nlstructs++; 413 } 414 break; 415 416 case CTF_K_UNION: 417 err = ctf_hash_define(&fp->ctf_unions, fp, 418 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 419 420 if (err != 0 && err != ECTF_STRTAB) 421 return (err); 422 423 if (fp->ctf_version == CTF_VERSION_1 || 424 size < CTF_LSTRUCT_THRESH) 425 vbytes = sizeof (ctf_member_t) * vlen; 426 else { 427 vbytes = sizeof (ctf_lmember_t) * vlen; 428 nlunions++; 429 } 430 break; 431 432 case CTF_K_ENUM: 433 err = ctf_hash_define(&fp->ctf_enums, fp, 434 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 435 436 if (err != 0 && err != ECTF_STRTAB) 437 return (err); 438 439 vbytes = sizeof (ctf_enum_t) * vlen; 440 break; 441 442 case CTF_K_TYPEDEF: 443 err = ctf_hash_insert(&fp->ctf_names, fp, 444 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 445 if (err != 0 && err != ECTF_STRTAB) 446 return (err); 447 vbytes = 0; 448 break; 449 450 case CTF_K_FORWARD: 451 /* 452 * Only insert forward tags into the given hash if the 453 * type or tag name is not already present. 454 */ 455 switch (tp->ctt_type) { 456 case CTF_K_STRUCT: 457 hp = &fp->ctf_structs; 458 break; 459 case CTF_K_UNION: 460 hp = &fp->ctf_unions; 461 break; 462 case CTF_K_ENUM: 463 hp = &fp->ctf_enums; 464 break; 465 default: 466 hp = &fp->ctf_structs; 467 } 468 469 if (ctf_hash_lookup(hp, fp, 470 name, strlen(name)) == NULL) { 471 err = ctf_hash_insert(hp, fp, 472 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 473 if (err != 0 && err != ECTF_STRTAB) 474 return (err); 475 } 476 vbytes = 0; 477 break; 478 479 case CTF_K_POINTER: 480 /* 481 * If the type referenced by the pointer is in this CTF 482 * container, then store the index of the pointer type 483 * in fp->ctf_ptrtab[ index of referenced type ]. 484 */ 485 if (CTF_TYPE_ISCHILD(tp->ctt_type) == child && 486 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) 487 fp->ctf_ptrtab[ 488 CTF_TYPE_TO_INDEX(tp->ctt_type)] = id; 489 /*FALLTHRU*/ 490 491 case CTF_K_VOLATILE: 492 case CTF_K_CONST: 493 case CTF_K_RESTRICT: 494 err = ctf_hash_insert(&fp->ctf_names, fp, 495 CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); 496 if (err != 0 && err != ECTF_STRTAB) 497 return (err); 498 /*FALLTHRU*/ 499 500 default: 501 vbytes = 0; 502 break; 503 } 504 505 *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf); 506 tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); 507 } 508 509 ctf_dprintf("%lu total types processed\n", fp->ctf_typemax); 510 ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums)); 511 ctf_dprintf("%u struct names hashed (%d long)\n", 512 ctf_hash_size(&fp->ctf_structs), nlstructs); 513 ctf_dprintf("%u union names hashed (%d long)\n", 514 ctf_hash_size(&fp->ctf_unions), nlunions); 515 ctf_dprintf("%u base type names hashed\n", 516 ctf_hash_size(&fp->ctf_names)); 517 518 /* 519 * Make an additional pass through the pointer table to find pointers 520 * that point to anonymous typedef nodes. If we find one, modify the 521 * pointer table so that the pointer is also known to point to the 522 * node that is referenced by the anonymous typedef node. 523 */ 524 for (id = 1; id <= fp->ctf_typemax; id++) { 525 if ((dst = fp->ctf_ptrtab[id]) != 0) { 526 tp = LCTF_INDEX_TO_TYPEPTR(fp, id); 527 528 if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF && 529 strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 && 530 CTF_TYPE_ISCHILD(tp->ctt_type) == child && 531 CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) 532 fp->ctf_ptrtab[ 533 CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst; 534 } 535 } 536 537 return (0); 538 } 539 540 /* 541 * Decode the specified CTF buffer and optional symbol table and create a new 542 * CTF container representing the symbolic debugging information. This code 543 * can be used directly by the debugger, or it can be used as the engine for 544 * ctf_fdopen() or ctf_open(), below. 545 */ 546 ctf_file_t * 547 ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect, 548 const ctf_sect_t *strsect, int *errp) 549 { 550 const ctf_preamble_t *pp; 551 ctf_header_t hp; 552 ctf_file_t *fp; 553 void *buf, *base; 554 size_t size, hdrsz; 555 int err; 556 557 if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL))) 558 return (ctf_set_open_errno(errp, EINVAL)); 559 560 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) && 561 symsect->cts_entsize != sizeof (Elf64_Sym)) 562 return (ctf_set_open_errno(errp, ECTF_SYMTAB)); 563 564 if (symsect != NULL && symsect->cts_data == NULL) 565 return (ctf_set_open_errno(errp, ECTF_SYMBAD)); 566 567 if (strsect != NULL && strsect->cts_data == NULL) 568 return (ctf_set_open_errno(errp, ECTF_STRBAD)); 569 570 if (ctfsect->cts_size < sizeof (ctf_preamble_t)) 571 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 572 573 pp = (const ctf_preamble_t *)ctfsect->cts_data; 574 575 ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n", 576 pp->ctp_magic, pp->ctp_version); 577 578 /* 579 * Validate each part of the CTF header (either V1 or V2). 580 * First, we validate the preamble (common to all versions). At that 581 * point, we know specific header version, and can validate the 582 * version-specific parts including section offsets and alignments. 583 */ 584 if (pp->ctp_magic != CTF_MAGIC) 585 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 586 587 if (pp->ctp_version == CTF_VERSION_2) { 588 if (ctfsect->cts_size < sizeof (ctf_header_t)) 589 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 590 591 bcopy(ctfsect->cts_data, &hp, sizeof (hp)); 592 hdrsz = sizeof (ctf_header_t); 593 594 } else if (pp->ctp_version == CTF_VERSION_1) { 595 const ctf_header_v1_t *h1p = 596 (const ctf_header_v1_t *)ctfsect->cts_data; 597 598 if (ctfsect->cts_size < sizeof (ctf_header_v1_t)) 599 return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); 600 601 bzero(&hp, sizeof (hp)); 602 hp.cth_preamble = h1p->cth_preamble; 603 hp.cth_objtoff = h1p->cth_objtoff; 604 hp.cth_funcoff = h1p->cth_funcoff; 605 hp.cth_typeoff = h1p->cth_typeoff; 606 hp.cth_stroff = h1p->cth_stroff; 607 hp.cth_strlen = h1p->cth_strlen; 608 609 hdrsz = sizeof (ctf_header_v1_t); 610 } else 611 return (ctf_set_open_errno(errp, ECTF_CTFVERS)); 612 613 size = hp.cth_stroff + hp.cth_strlen; 614 615 ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size); 616 617 if (hp.cth_lbloff > size || hp.cth_objtoff > size || 618 hp.cth_funcoff > size || hp.cth_typeoff > size || 619 hp.cth_stroff > size) 620 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 621 622 if (hp.cth_lbloff > hp.cth_objtoff || 623 hp.cth_objtoff > hp.cth_funcoff || 624 hp.cth_funcoff > hp.cth_typeoff || 625 hp.cth_typeoff > hp.cth_stroff) 626 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 627 628 if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) || 629 (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3)) 630 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 631 632 /* 633 * Once everything is determined to be valid, attempt to decompress 634 * the CTF data buffer if it is compressed. Otherwise we just put 635 * the data section's buffer pointer into ctf_buf, below. 636 */ 637 if (hp.cth_flags & CTF_F_COMPRESS) { 638 size_t srclen, dstlen; 639 const void *src; 640 int rc = Z_OK; 641 642 if (ctf_zopen(errp) == NULL) 643 return (NULL); /* errp is set for us */ 644 645 if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED) 646 return (ctf_set_open_errno(errp, ECTF_ZALLOC)); 647 648 bcopy(ctfsect->cts_data, base, hdrsz); 649 ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS; 650 buf = (uchar_t *)base + hdrsz; 651 652 src = (uchar_t *)ctfsect->cts_data + hdrsz; 653 srclen = ctfsect->cts_size - hdrsz; 654 dstlen = size; 655 656 if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) { 657 ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc)); 658 ctf_data_free(base, size + hdrsz); 659 return (ctf_set_open_errno(errp, ECTF_DECOMPRESS)); 660 } 661 662 if (dstlen != size) { 663 ctf_dprintf("zlib inflate short -- got %lu of %lu " 664 "bytes\n", (ulong_t)dstlen, (ulong_t)size); 665 ctf_data_free(base, size + hdrsz); 666 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 667 } 668 669 ctf_data_protect(base, size + hdrsz); 670 671 } else { 672 base = (void *)ctfsect->cts_data; 673 buf = (uchar_t *)base + hdrsz; 674 } 675 676 /* 677 * Once we have uncompressed and validated the CTF data buffer, we can 678 * proceed with allocating a ctf_file_t and initializing it. 679 */ 680 if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL) 681 return (ctf_set_open_errno(errp, EAGAIN)); 682 683 bzero(fp, sizeof (ctf_file_t)); 684 fp->ctf_version = hp.cth_version; 685 fp->ctf_fileops = &ctf_fileops[hp.cth_version]; 686 bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t)); 687 688 if (symsect != NULL) { 689 bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t)); 690 bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t)); 691 } 692 693 if (fp->ctf_data.cts_name != NULL) 694 fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name); 695 if (fp->ctf_symtab.cts_name != NULL) 696 fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name); 697 if (fp->ctf_strtab.cts_name != NULL) 698 fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name); 699 700 if (fp->ctf_data.cts_name == NULL) 701 fp->ctf_data.cts_name = __UNCONST(_CTF_NULLSTR); 702 if (fp->ctf_symtab.cts_name == NULL) 703 fp->ctf_symtab.cts_name = __UNCONST(_CTF_NULLSTR); 704 if (fp->ctf_strtab.cts_name == NULL) 705 fp->ctf_strtab.cts_name = __UNCONST(_CTF_NULLSTR); 706 707 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff; 708 fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen; 709 710 if (strsect != NULL) { 711 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data; 712 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size; 713 } 714 715 fp->ctf_base = base; 716 fp->ctf_buf = buf; 717 fp->ctf_size = size + hdrsz; 718 719 /* 720 * If we have a parent container name and label, store the relocated 721 * string pointers in the CTF container for easy access later. 722 */ 723 if (hp.cth_parlabel != 0) 724 fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel); 725 if (hp.cth_parname != 0) 726 fp->ctf_parname = ctf_strptr(fp, hp.cth_parname); 727 728 ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n", 729 fp->ctf_parname ? fp->ctf_parname : "<NULL>", 730 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>"); 731 732 /* 733 * If we have a symbol table section, allocate and initialize 734 * the symtab translation table, pointed to by ctf_sxlate. 735 */ 736 if (symsect != NULL) { 737 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize; 738 fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t)); 739 740 if (fp->ctf_sxlate == NULL) { 741 (void) ctf_set_open_errno(errp, EAGAIN); 742 goto bad; 743 } 744 745 if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) { 746 (void) ctf_set_open_errno(errp, err); 747 goto bad; 748 } 749 } 750 751 if ((err = init_types(fp, &hp)) != 0) { 752 (void) ctf_set_open_errno(errp, err); 753 goto bad; 754 } 755 756 /* 757 * Initialize the ctf_lookup_by_name top-level dictionary. We keep an 758 * array of type name prefixes and the corresponding ctf_hash to use. 759 * NOTE: This code must be kept in sync with the code in ctf_update(). 760 */ 761 fp->ctf_lookups[0].ctl_prefix = "struct"; 762 fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix); 763 fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; 764 fp->ctf_lookups[1].ctl_prefix = "union"; 765 fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix); 766 fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; 767 fp->ctf_lookups[2].ctl_prefix = "enum"; 768 fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix); 769 fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; 770 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR; 771 fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix); 772 fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; 773 fp->ctf_lookups[4].ctl_prefix = NULL; 774 fp->ctf_lookups[4].ctl_len = 0; 775 fp->ctf_lookups[4].ctl_hash = NULL; 776 777 if (symsect != NULL) { 778 if (symsect->cts_entsize == sizeof (Elf64_Sym)) 779 (void) ctf_setmodel(fp, CTF_MODEL_LP64); 780 else 781 (void) ctf_setmodel(fp, CTF_MODEL_ILP32); 782 } else 783 (void) ctf_setmodel(fp, CTF_MODEL_NATIVE); 784 785 fp->ctf_refcnt = 1; 786 return (fp); 787 788 bad: 789 ctf_close(fp); 790 return (NULL); 791 } 792 793 /* 794 * Dupliate a ctf_file_t and its underlying section information into a new 795 * container. This works by copying the three ctf_sect_t's of the original 796 * container if they exist and passing those into ctf_bufopen. To copy those, we 797 * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not 798 * the cheapest thing, but it's what we've got. 799 */ 800 ctf_file_t * 801 ctf_dup(ctf_file_t *ofp) 802 { 803 ctf_file_t *fp; 804 ctf_sect_t ctfsect, symsect, strsect; 805 ctf_sect_t *ctp, *symp, *strp; 806 void *cbuf, *symbuf, *strbuf; 807 int err; 808 809 cbuf = symbuf = strbuf = NULL; 810 /* 811 * The ctfsect isn't allowed to not exist, but the symbol and string 812 * section might not. We only need to copy the data of the section, not 813 * the name, as ctf_bufopen will take care of that. 814 */ 815 bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t)); 816 cbuf = ctf_data_alloc(ctfsect.cts_size); 817 if (cbuf == NULL) { 818 (void) ctf_set_errno(ofp, ECTF_MMAP); 819 return (NULL); 820 } 821 822 bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size); 823 ctf_data_protect(cbuf, ctfsect.cts_size); 824 ctfsect.cts_data = cbuf; 825 ctfsect.cts_offset = 0; 826 ctp = &ctfsect; 827 828 if (ofp->ctf_symtab.cts_data != NULL) { 829 bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t)); 830 symbuf = ctf_data_alloc(symsect.cts_size); 831 if (symbuf == NULL) { 832 (void) ctf_set_errno(ofp, ECTF_MMAP); 833 goto err; 834 } 835 bcopy(symsect.cts_data, symbuf, symsect.cts_size); 836 ctf_data_protect(symbuf, symsect.cts_size); 837 symsect.cts_data = symbuf; 838 symsect.cts_offset = 0; 839 symp = &symsect; 840 } else { 841 symp = NULL; 842 } 843 844 if (ofp->ctf_strtab.cts_data != NULL) { 845 bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t)); 846 strbuf = ctf_data_alloc(strsect.cts_size); 847 if (strbuf == NULL) { 848 (void) ctf_set_errno(ofp, ECTF_MMAP); 849 goto err; 850 } 851 bcopy(strsect.cts_data, strbuf, strsect.cts_size); 852 ctf_data_protect(strbuf, strsect.cts_size); 853 strsect.cts_data = strbuf; 854 strsect.cts_offset = 0; 855 strp = &strsect; 856 } else { 857 strp = NULL; 858 } 859 860 fp = ctf_bufopen(ctp, symp, strp, &err); 861 if (fp == NULL) { 862 (void) ctf_set_errno(ofp, err); 863 goto err; 864 } 865 866 fp->ctf_flags |= LCTF_MMAP; 867 868 return (fp); 869 870 err: 871 ctf_data_free(cbuf, ctfsect.cts_size); 872 if (symbuf != NULL) 873 ctf_data_free(symbuf, symsect.cts_size); 874 if (strbuf != NULL) 875 ctf_data_free(strbuf, strsect.cts_size); 876 return (NULL); 877 } 878 879 /* 880 * Close the specified CTF container and free associated data structures. Note 881 * that ctf_close() is a reference counted operation: if the specified file is 882 * the parent of other active containers, its reference count will be greater 883 * than one and it will be freed later when no active children exist. 884 */ 885 void 886 ctf_close(ctf_file_t *fp) 887 { 888 ctf_dtdef_t *dtd, *ntd; 889 890 if (fp == NULL) 891 return; /* allow ctf_close(NULL) to simplify caller code */ 892 893 ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt); 894 895 if (fp->ctf_refcnt > 1) { 896 fp->ctf_refcnt--; 897 return; 898 } 899 900 if (fp->ctf_parent != NULL) 901 ctf_close(fp->ctf_parent); 902 903 /* 904 * Note, to work properly with reference counting on the dynamic 905 * section, we must delete the list in reverse. 906 */ 907 for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { 908 ntd = ctf_list_prev(dtd); 909 ctf_dtd_delete(fp, dtd); 910 } 911 912 ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *)); 913 914 if (fp->ctf_flags & LCTF_MMAP) { 915 if (fp->ctf_data.cts_data != NULL) 916 ctf_sect_munmap(&fp->ctf_data); 917 if (fp->ctf_symtab.cts_data != NULL) 918 ctf_sect_munmap(&fp->ctf_symtab); 919 if (fp->ctf_strtab.cts_data != NULL) 920 ctf_sect_munmap(&fp->ctf_strtab); 921 } 922 923 if (fp->ctf_data.cts_name != _CTF_NULLSTR && 924 fp->ctf_data.cts_name != NULL) { 925 ctf_free(__UNCONST(fp->ctf_data.cts_name), 926 strlen(fp->ctf_data.cts_name) + 1); 927 } 928 929 if (fp->ctf_symtab.cts_name != _CTF_NULLSTR && 930 fp->ctf_symtab.cts_name != NULL) { 931 ctf_free(__UNCONST(fp->ctf_symtab.cts_name), 932 strlen(fp->ctf_symtab.cts_name) + 1); 933 } 934 935 if (fp->ctf_strtab.cts_name != _CTF_NULLSTR && 936 fp->ctf_strtab.cts_name != NULL) { 937 ctf_free(__UNCONST(fp->ctf_strtab.cts_name), 938 strlen(fp->ctf_strtab.cts_name) + 1); 939 } 940 941 if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL) 942 ctf_data_free(__UNCONST(fp->ctf_base), fp->ctf_size); 943 944 if (fp->ctf_sxlate != NULL) 945 ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms); 946 947 if (fp->ctf_txlate != NULL) { 948 ctf_free(fp->ctf_txlate, 949 sizeof (uint_t) * (fp->ctf_typemax + 1)); 950 } 951 952 if (fp->ctf_ptrtab != NULL) { 953 ctf_free(fp->ctf_ptrtab, 954 sizeof (ushort_t) * (fp->ctf_typemax + 1)); 955 } 956 957 ctf_hash_destroy(&fp->ctf_structs); 958 ctf_hash_destroy(&fp->ctf_unions); 959 ctf_hash_destroy(&fp->ctf_enums); 960 ctf_hash_destroy(&fp->ctf_names); 961 962 ctf_free(fp, sizeof (ctf_file_t)); 963 } 964 965 /* 966 * Return the CTF handle for the parent CTF container, if one exists. 967 * Otherwise return NULL to indicate this container has no imported parent. 968 */ 969 ctf_file_t * 970 ctf_parent_file(ctf_file_t *fp) 971 { 972 return (fp->ctf_parent); 973 } 974 975 /* 976 * Return the name of the parent CTF container, if one exists. Otherwise 977 * return NULL to indicate this container is a root container. 978 */ 979 const char * 980 ctf_parent_name(ctf_file_t *fp) 981 { 982 return (fp->ctf_parname); 983 } 984 985 /* 986 * Import the types from the specified parent container by storing a pointer 987 * to it in ctf_parent and incrementing its reference count. Only one parent 988 * is allowed: if a parent already exists, it is replaced by the new parent. 989 */ 990 int 991 ctf_import(ctf_file_t *fp, ctf_file_t *pfp) 992 { 993 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0)) 994 return (ctf_set_errno(fp, EINVAL)); 995 996 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel) 997 return (ctf_set_errno(fp, ECTF_DMODEL)); 998 999 if (fp->ctf_parent != NULL) 1000 ctf_close(fp->ctf_parent); 1001 1002 if (pfp != NULL) { 1003 fp->ctf_flags |= LCTF_CHILD; 1004 pfp->ctf_refcnt++; 1005 } 1006 1007 fp->ctf_parent = pfp; 1008 return (0); 1009 } 1010 1011 /* 1012 * Set the data model constant for the CTF container. 1013 */ 1014 int 1015 ctf_setmodel(ctf_file_t *fp, int model) 1016 { 1017 const ctf_dmodel_t *dp; 1018 1019 for (dp = _libctf_models; dp->ctd_name != NULL; dp++) { 1020 if (dp->ctd_code == model) { 1021 fp->ctf_dmodel = dp; 1022 return (0); 1023 } 1024 } 1025 1026 return (ctf_set_errno(fp, EINVAL)); 1027 } 1028 1029 /* 1030 * Return the data model constant for the CTF container. 1031 */ 1032 int 1033 ctf_getmodel(ctf_file_t *fp) 1034 { 1035 return (fp->ctf_dmodel->ctd_code); 1036 } 1037 1038 void 1039 ctf_setspecific(ctf_file_t *fp, void *data) 1040 { 1041 fp->ctf_specific = data; 1042 } 1043 1044 void * 1045 ctf_getspecific(ctf_file_t *fp) 1046 { 1047 return (fp->ctf_specific); 1048 } 1049