1*3117ece4Schristos /* ****************************************************************** 2*3117ece4Schristos * FSE : Finite State Entropy codec 3*3117ece4Schristos * Public Prototypes declaration 4*3117ece4Schristos * Copyright (c) Meta Platforms, Inc. and affiliates. 5*3117ece4Schristos * 6*3117ece4Schristos * You can contact the author at : 7*3117ece4Schristos * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy 8*3117ece4Schristos * 9*3117ece4Schristos * This source code is licensed under both the BSD-style license (found in the 10*3117ece4Schristos * LICENSE file in the root directory of this source tree) and the GPLv2 (found 11*3117ece4Schristos * in the COPYING file in the root directory of this source tree). 12*3117ece4Schristos * You may select, at your option, one of the above-listed licenses. 13*3117ece4Schristos ****************************************************************** */ 14*3117ece4Schristos 15*3117ece4Schristos #if defined (__cplusplus) 16*3117ece4Schristos extern "C" { 17*3117ece4Schristos #endif 18*3117ece4Schristos 19*3117ece4Schristos #ifndef FSE_H 20*3117ece4Schristos #define FSE_H 21*3117ece4Schristos 22*3117ece4Schristos 23*3117ece4Schristos /*-***************************************** 24*3117ece4Schristos * Dependencies 25*3117ece4Schristos ******************************************/ 26*3117ece4Schristos #include "zstd_deps.h" /* size_t, ptrdiff_t */ 27*3117ece4Schristos 28*3117ece4Schristos 29*3117ece4Schristos /*-***************************************** 30*3117ece4Schristos * FSE_PUBLIC_API : control library symbols visibility 31*3117ece4Schristos ******************************************/ 32*3117ece4Schristos #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4) 33*3117ece4Schristos # define FSE_PUBLIC_API __attribute__ ((visibility ("default"))) 34*3117ece4Schristos #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */ 35*3117ece4Schristos # define FSE_PUBLIC_API __declspec(dllexport) 36*3117ece4Schristos #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1) 37*3117ece4Schristos # define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/ 38*3117ece4Schristos #else 39*3117ece4Schristos # define FSE_PUBLIC_API 40*3117ece4Schristos #endif 41*3117ece4Schristos 42*3117ece4Schristos /*------ Version ------*/ 43*3117ece4Schristos #define FSE_VERSION_MAJOR 0 44*3117ece4Schristos #define FSE_VERSION_MINOR 9 45*3117ece4Schristos #define FSE_VERSION_RELEASE 0 46*3117ece4Schristos 47*3117ece4Schristos #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE 48*3117ece4Schristos #define FSE_QUOTE(str) #str 49*3117ece4Schristos #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str) 50*3117ece4Schristos #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION) 51*3117ece4Schristos 52*3117ece4Schristos #define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE) 53*3117ece4Schristos FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */ 54*3117ece4Schristos 55*3117ece4Schristos 56*3117ece4Schristos /*-***************************************** 57*3117ece4Schristos * Tool functions 58*3117ece4Schristos ******************************************/ 59*3117ece4Schristos FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */ 60*3117ece4Schristos 61*3117ece4Schristos /* Error Management */ 62*3117ece4Schristos FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ 63*3117ece4Schristos FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ 64*3117ece4Schristos 65*3117ece4Schristos 66*3117ece4Schristos /*-***************************************** 67*3117ece4Schristos * FSE detailed API 68*3117ece4Schristos ******************************************/ 69*3117ece4Schristos /*! 70*3117ece4Schristos FSE_compress() does the following: 71*3117ece4Schristos 1. count symbol occurrence from source[] into table count[] (see hist.h) 72*3117ece4Schristos 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) 73*3117ece4Schristos 3. save normalized counters to memory buffer using writeNCount() 74*3117ece4Schristos 4. build encoding table 'CTable' from normalized counters 75*3117ece4Schristos 5. encode the data stream using encoding table 'CTable' 76*3117ece4Schristos 77*3117ece4Schristos FSE_decompress() does the following: 78*3117ece4Schristos 1. read normalized counters with readNCount() 79*3117ece4Schristos 2. build decoding table 'DTable' from normalized counters 80*3117ece4Schristos 3. decode the data stream using decoding table 'DTable' 81*3117ece4Schristos 82*3117ece4Schristos The following API allows targeting specific sub-functions for advanced tasks. 83*3117ece4Schristos For example, it's possible to compress several blocks using the same 'CTable', 84*3117ece4Schristos or to save and provide normalized distribution using external method. 85*3117ece4Schristos */ 86*3117ece4Schristos 87*3117ece4Schristos /* *** COMPRESSION *** */ 88*3117ece4Schristos 89*3117ece4Schristos /*! FSE_optimalTableLog(): 90*3117ece4Schristos dynamically downsize 'tableLog' when conditions are met. 91*3117ece4Schristos It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. 92*3117ece4Schristos @return : recommended tableLog (necessarily <= 'maxTableLog') */ 93*3117ece4Schristos FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue); 94*3117ece4Schristos 95*3117ece4Schristos /*! FSE_normalizeCount(): 96*3117ece4Schristos normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) 97*3117ece4Schristos 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). 98*3117ece4Schristos useLowProbCount is a boolean parameter which trades off compressed size for 99*3117ece4Schristos faster header decoding. When it is set to 1, the compressed data will be slightly 100*3117ece4Schristos smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be 101*3117ece4Schristos faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0 102*3117ece4Schristos is a good default, since header deserialization makes a big speed difference. 103*3117ece4Schristos Otherwise, useLowProbCount=1 is a good default, since the speed difference is small. 104*3117ece4Schristos @return : tableLog, 105*3117ece4Schristos or an errorCode, which can be tested using FSE_isError() */ 106*3117ece4Schristos FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, 107*3117ece4Schristos const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount); 108*3117ece4Schristos 109*3117ece4Schristos /*! FSE_NCountWriteBound(): 110*3117ece4Schristos Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. 111*3117ece4Schristos Typically useful for allocation purpose. */ 112*3117ece4Schristos FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); 113*3117ece4Schristos 114*3117ece4Schristos /*! FSE_writeNCount(): 115*3117ece4Schristos Compactly save 'normalizedCounter' into 'buffer'. 116*3117ece4Schristos @return : size of the compressed table, 117*3117ece4Schristos or an errorCode, which can be tested using FSE_isError(). */ 118*3117ece4Schristos FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize, 119*3117ece4Schristos const short* normalizedCounter, 120*3117ece4Schristos unsigned maxSymbolValue, unsigned tableLog); 121*3117ece4Schristos 122*3117ece4Schristos /*! Constructor and Destructor of FSE_CTable. 123*3117ece4Schristos Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ 124*3117ece4Schristos typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ 125*3117ece4Schristos 126*3117ece4Schristos /*! FSE_buildCTable(): 127*3117ece4Schristos Builds `ct`, which must be already allocated, using FSE_createCTable(). 128*3117ece4Schristos @return : 0, or an errorCode, which can be tested using FSE_isError() */ 129*3117ece4Schristos FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); 130*3117ece4Schristos 131*3117ece4Schristos /*! FSE_compress_usingCTable(): 132*3117ece4Schristos Compress `src` using `ct` into `dst` which must be already allocated. 133*3117ece4Schristos @return : size of compressed data (<= `dstCapacity`), 134*3117ece4Schristos or 0 if compressed data could not fit into `dst`, 135*3117ece4Schristos or an errorCode, which can be tested using FSE_isError() */ 136*3117ece4Schristos FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); 137*3117ece4Schristos 138*3117ece4Schristos /*! 139*3117ece4Schristos Tutorial : 140*3117ece4Schristos ---------- 141*3117ece4Schristos The first step is to count all symbols. FSE_count() does this job very fast. 142*3117ece4Schristos Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. 143*3117ece4Schristos 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] 144*3117ece4Schristos maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) 145*3117ece4Schristos FSE_count() will return the number of occurrence of the most frequent symbol. 146*3117ece4Schristos This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. 147*3117ece4Schristos If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). 148*3117ece4Schristos 149*3117ece4Schristos The next step is to normalize the frequencies. 150*3117ece4Schristos FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. 151*3117ece4Schristos It also guarantees a minimum of 1 to any Symbol with frequency >= 1. 152*3117ece4Schristos You can use 'tableLog'==0 to mean "use default tableLog value". 153*3117ece4Schristos If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), 154*3117ece4Schristos which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). 155*3117ece4Schristos 156*3117ece4Schristos The result of FSE_normalizeCount() will be saved into a table, 157*3117ece4Schristos called 'normalizedCounter', which is a table of signed short. 158*3117ece4Schristos 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. 159*3117ece4Schristos The return value is tableLog if everything proceeded as expected. 160*3117ece4Schristos It is 0 if there is a single symbol within distribution. 161*3117ece4Schristos If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). 162*3117ece4Schristos 163*3117ece4Schristos 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). 164*3117ece4Schristos 'buffer' must be already allocated. 165*3117ece4Schristos For guaranteed success, buffer size must be at least FSE_headerBound(). 166*3117ece4Schristos The result of the function is the number of bytes written into 'buffer'. 167*3117ece4Schristos If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). 168*3117ece4Schristos 169*3117ece4Schristos 'normalizedCounter' can then be used to create the compression table 'CTable'. 170*3117ece4Schristos The space required by 'CTable' must be already allocated, using FSE_createCTable(). 171*3117ece4Schristos You can then use FSE_buildCTable() to fill 'CTable'. 172*3117ece4Schristos If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). 173*3117ece4Schristos 174*3117ece4Schristos 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). 175*3117ece4Schristos Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' 176*3117ece4Schristos The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. 177*3117ece4Schristos If it returns '0', compressed data could not fit into 'dst'. 178*3117ece4Schristos If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). 179*3117ece4Schristos */ 180*3117ece4Schristos 181*3117ece4Schristos 182*3117ece4Schristos /* *** DECOMPRESSION *** */ 183*3117ece4Schristos 184*3117ece4Schristos /*! FSE_readNCount(): 185*3117ece4Schristos Read compactly saved 'normalizedCounter' from 'rBuffer'. 186*3117ece4Schristos @return : size read from 'rBuffer', 187*3117ece4Schristos or an errorCode, which can be tested using FSE_isError(). 188*3117ece4Schristos maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ 189*3117ece4Schristos FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter, 190*3117ece4Schristos unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, 191*3117ece4Schristos const void* rBuffer, size_t rBuffSize); 192*3117ece4Schristos 193*3117ece4Schristos /*! FSE_readNCount_bmi2(): 194*3117ece4Schristos * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise. 195*3117ece4Schristos */ 196*3117ece4Schristos FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter, 197*3117ece4Schristos unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, 198*3117ece4Schristos const void* rBuffer, size_t rBuffSize, int bmi2); 199*3117ece4Schristos 200*3117ece4Schristos typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ 201*3117ece4Schristos 202*3117ece4Schristos /*! 203*3117ece4Schristos Tutorial : 204*3117ece4Schristos ---------- 205*3117ece4Schristos (Note : these functions only decompress FSE-compressed blocks. 206*3117ece4Schristos If block is uncompressed, use memcpy() instead 207*3117ece4Schristos If block is a single repeated byte, use memset() instead ) 208*3117ece4Schristos 209*3117ece4Schristos The first step is to obtain the normalized frequencies of symbols. 210*3117ece4Schristos This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). 211*3117ece4Schristos 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. 212*3117ece4Schristos In practice, that means it's necessary to know 'maxSymbolValue' beforehand, 213*3117ece4Schristos or size the table to handle worst case situations (typically 256). 214*3117ece4Schristos FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. 215*3117ece4Schristos The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. 216*3117ece4Schristos Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. 217*3117ece4Schristos If there is an error, the function will return an error code, which can be tested using FSE_isError(). 218*3117ece4Schristos 219*3117ece4Schristos The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. 220*3117ece4Schristos This is performed by the function FSE_buildDTable(). 221*3117ece4Schristos The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). 222*3117ece4Schristos If there is an error, the function will return an error code, which can be tested using FSE_isError(). 223*3117ece4Schristos 224*3117ece4Schristos `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). 225*3117ece4Schristos `cSrcSize` must be strictly correct, otherwise decompression will fail. 226*3117ece4Schristos FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). 227*3117ece4Schristos If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) 228*3117ece4Schristos */ 229*3117ece4Schristos 230*3117ece4Schristos #endif /* FSE_H */ 231*3117ece4Schristos 232*3117ece4Schristos 233*3117ece4Schristos #if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY) 234*3117ece4Schristos #define FSE_H_FSE_STATIC_LINKING_ONLY 235*3117ece4Schristos 236*3117ece4Schristos /* *** Dependency *** */ 237*3117ece4Schristos #include "bitstream.h" 238*3117ece4Schristos 239*3117ece4Schristos 240*3117ece4Schristos /* ***************************************** 241*3117ece4Schristos * Static allocation 242*3117ece4Schristos *******************************************/ 243*3117ece4Schristos /* FSE buffer bounds */ 244*3117ece4Schristos #define FSE_NCOUNTBOUND 512 245*3117ece4Schristos #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */) 246*3117ece4Schristos #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */ 247*3117ece4Schristos 248*3117ece4Schristos /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */ 249*3117ece4Schristos #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2)) 250*3117ece4Schristos #define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog))) 251*3117ece4Schristos 252*3117ece4Schristos /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */ 253*3117ece4Schristos #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable)) 254*3117ece4Schristos #define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable)) 255*3117ece4Schristos 256*3117ece4Schristos 257*3117ece4Schristos /* ***************************************** 258*3117ece4Schristos * FSE advanced API 259*3117ece4Schristos ***************************************** */ 260*3117ece4Schristos 261*3117ece4Schristos unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); 262*3117ece4Schristos /**< same as FSE_optimalTableLog(), which used `minus==2` */ 263*3117ece4Schristos 264*3117ece4Schristos size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue); 265*3117ece4Schristos /**< build a fake FSE_CTable, designed to compress always the same symbolValue */ 266*3117ece4Schristos 267*3117ece4Schristos /* FSE_buildCTable_wksp() : 268*3117ece4Schristos * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`). 269*3117ece4Schristos * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`. 270*3117ece4Schristos * See FSE_buildCTable_wksp() for breakdown of workspace usage. 271*3117ece4Schristos */ 272*3117ece4Schristos #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */) 273*3117ece4Schristos #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)) 274*3117ece4Schristos size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); 275*3117ece4Schristos 276*3117ece4Schristos #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8) 277*3117ece4Schristos #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned)) 278*3117ece4Schristos FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize); 279*3117ece4Schristos /**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */ 280*3117ece4Schristos 281*3117ece4Schristos #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1) 282*3117ece4Schristos #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned)) 283*3117ece4Schristos size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2); 284*3117ece4Schristos /**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`. 285*3117ece4Schristos * Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */ 286*3117ece4Schristos 287*3117ece4Schristos typedef enum { 288*3117ece4Schristos FSE_repeat_none, /**< Cannot use the previous table */ 289*3117ece4Schristos FSE_repeat_check, /**< Can use the previous table but it must be checked */ 290*3117ece4Schristos FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */ 291*3117ece4Schristos } FSE_repeat; 292*3117ece4Schristos 293*3117ece4Schristos /* ***************************************** 294*3117ece4Schristos * FSE symbol compression API 295*3117ece4Schristos *******************************************/ 296*3117ece4Schristos /*! 297*3117ece4Schristos This API consists of small unitary functions, which highly benefit from being inlined. 298*3117ece4Schristos Hence their body are included in next section. 299*3117ece4Schristos */ 300*3117ece4Schristos typedef struct { 301*3117ece4Schristos ptrdiff_t value; 302*3117ece4Schristos const void* stateTable; 303*3117ece4Schristos const void* symbolTT; 304*3117ece4Schristos unsigned stateLog; 305*3117ece4Schristos } FSE_CState_t; 306*3117ece4Schristos 307*3117ece4Schristos static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct); 308*3117ece4Schristos 309*3117ece4Schristos static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol); 310*3117ece4Schristos 311*3117ece4Schristos static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr); 312*3117ece4Schristos 313*3117ece4Schristos /**< 314*3117ece4Schristos These functions are inner components of FSE_compress_usingCTable(). 315*3117ece4Schristos They allow the creation of custom streams, mixing multiple tables and bit sources. 316*3117ece4Schristos 317*3117ece4Schristos A key property to keep in mind is that encoding and decoding are done **in reverse direction**. 318*3117ece4Schristos So the first symbol you will encode is the last you will decode, like a LIFO stack. 319*3117ece4Schristos 320*3117ece4Schristos You will need a few variables to track your CStream. They are : 321*3117ece4Schristos 322*3117ece4Schristos FSE_CTable ct; // Provided by FSE_buildCTable() 323*3117ece4Schristos BIT_CStream_t bitStream; // bitStream tracking structure 324*3117ece4Schristos FSE_CState_t state; // State tracking structure (can have several) 325*3117ece4Schristos 326*3117ece4Schristos 327*3117ece4Schristos The first thing to do is to init bitStream and state. 328*3117ece4Schristos size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize); 329*3117ece4Schristos FSE_initCState(&state, ct); 330*3117ece4Schristos 331*3117ece4Schristos Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError(); 332*3117ece4Schristos You can then encode your input data, byte after byte. 333*3117ece4Schristos FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time. 334*3117ece4Schristos Remember decoding will be done in reverse direction. 335*3117ece4Schristos FSE_encodeByte(&bitStream, &state, symbol); 336*3117ece4Schristos 337*3117ece4Schristos At any time, you can also add any bit sequence. 338*3117ece4Schristos Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders 339*3117ece4Schristos BIT_addBits(&bitStream, bitField, nbBits); 340*3117ece4Schristos 341*3117ece4Schristos The above methods don't commit data to memory, they just store it into local register, for speed. 342*3117ece4Schristos Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t). 343*3117ece4Schristos Writing data to memory is a manual operation, performed by the flushBits function. 344*3117ece4Schristos BIT_flushBits(&bitStream); 345*3117ece4Schristos 346*3117ece4Schristos Your last FSE encoding operation shall be to flush your last state value(s). 347*3117ece4Schristos FSE_flushState(&bitStream, &state); 348*3117ece4Schristos 349*3117ece4Schristos Finally, you must close the bitStream. 350*3117ece4Schristos The function returns the size of CStream in bytes. 351*3117ece4Schristos If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible) 352*3117ece4Schristos If there is an error, it returns an errorCode (which can be tested using FSE_isError()). 353*3117ece4Schristos size_t size = BIT_closeCStream(&bitStream); 354*3117ece4Schristos */ 355*3117ece4Schristos 356*3117ece4Schristos 357*3117ece4Schristos /* ***************************************** 358*3117ece4Schristos * FSE symbol decompression API 359*3117ece4Schristos *******************************************/ 360*3117ece4Schristos typedef struct { 361*3117ece4Schristos size_t state; 362*3117ece4Schristos const void* table; /* precise table may vary, depending on U16 */ 363*3117ece4Schristos } FSE_DState_t; 364*3117ece4Schristos 365*3117ece4Schristos 366*3117ece4Schristos static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt); 367*3117ece4Schristos 368*3117ece4Schristos static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); 369*3117ece4Schristos 370*3117ece4Schristos static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr); 371*3117ece4Schristos 372*3117ece4Schristos /**< 373*3117ece4Schristos Let's now decompose FSE_decompress_usingDTable() into its unitary components. 374*3117ece4Schristos You will decode FSE-encoded symbols from the bitStream, 375*3117ece4Schristos and also any other bitFields you put in, **in reverse order**. 376*3117ece4Schristos 377*3117ece4Schristos You will need a few variables to track your bitStream. They are : 378*3117ece4Schristos 379*3117ece4Schristos BIT_DStream_t DStream; // Stream context 380*3117ece4Schristos FSE_DState_t DState; // State context. Multiple ones are possible 381*3117ece4Schristos FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable() 382*3117ece4Schristos 383*3117ece4Schristos The first thing to do is to init the bitStream. 384*3117ece4Schristos errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize); 385*3117ece4Schristos 386*3117ece4Schristos You should then retrieve your initial state(s) 387*3117ece4Schristos (in reverse flushing order if you have several ones) : 388*3117ece4Schristos errorCode = FSE_initDState(&DState, &DStream, DTablePtr); 389*3117ece4Schristos 390*3117ece4Schristos You can then decode your data, symbol after symbol. 391*3117ece4Schristos For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'. 392*3117ece4Schristos Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out). 393*3117ece4Schristos unsigned char symbol = FSE_decodeSymbol(&DState, &DStream); 394*3117ece4Schristos 395*3117ece4Schristos You can retrieve any bitfield you eventually stored into the bitStream (in reverse order) 396*3117ece4Schristos Note : maximum allowed nbBits is 25, for 32-bits compatibility 397*3117ece4Schristos size_t bitField = BIT_readBits(&DStream, nbBits); 398*3117ece4Schristos 399*3117ece4Schristos All above operations only read from local register (which size depends on size_t). 400*3117ece4Schristos Refueling the register from memory is manually performed by the reload method. 401*3117ece4Schristos endSignal = FSE_reloadDStream(&DStream); 402*3117ece4Schristos 403*3117ece4Schristos BIT_reloadDStream() result tells if there is still some more data to read from DStream. 404*3117ece4Schristos BIT_DStream_unfinished : there is still some data left into the DStream. 405*3117ece4Schristos BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled. 406*3117ece4Schristos BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed. 407*3117ece4Schristos BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted. 408*3117ece4Schristos 409*3117ece4Schristos When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop, 410*3117ece4Schristos to properly detect the exact end of stream. 411*3117ece4Schristos After each decoded symbol, check if DStream is fully consumed using this simple test : 412*3117ece4Schristos BIT_reloadDStream(&DStream) >= BIT_DStream_completed 413*3117ece4Schristos 414*3117ece4Schristos When it's done, verify decompression is fully completed, by checking both DStream and the relevant states. 415*3117ece4Schristos Checking if DStream has reached its end is performed by : 416*3117ece4Schristos BIT_endOfDStream(&DStream); 417*3117ece4Schristos Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible. 418*3117ece4Schristos FSE_endOfDState(&DState); 419*3117ece4Schristos */ 420*3117ece4Schristos 421*3117ece4Schristos 422*3117ece4Schristos /* ***************************************** 423*3117ece4Schristos * FSE unsafe API 424*3117ece4Schristos *******************************************/ 425*3117ece4Schristos static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD); 426*3117ece4Schristos /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ 427*3117ece4Schristos 428*3117ece4Schristos 429*3117ece4Schristos /* ***************************************** 430*3117ece4Schristos * Implementation of inlined functions 431*3117ece4Schristos *******************************************/ 432*3117ece4Schristos typedef struct { 433*3117ece4Schristos int deltaFindState; 434*3117ece4Schristos U32 deltaNbBits; 435*3117ece4Schristos } FSE_symbolCompressionTransform; /* total 8 bytes */ 436*3117ece4Schristos 437*3117ece4Schristos MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct) 438*3117ece4Schristos { 439*3117ece4Schristos const void* ptr = ct; 440*3117ece4Schristos const U16* u16ptr = (const U16*) ptr; 441*3117ece4Schristos const U32 tableLog = MEM_read16(ptr); 442*3117ece4Schristos statePtr->value = (ptrdiff_t)1<<tableLog; 443*3117ece4Schristos statePtr->stateTable = u16ptr+2; 444*3117ece4Schristos statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1); 445*3117ece4Schristos statePtr->stateLog = tableLog; 446*3117ece4Schristos } 447*3117ece4Schristos 448*3117ece4Schristos 449*3117ece4Schristos /*! FSE_initCState2() : 450*3117ece4Schristos * Same as FSE_initCState(), but the first symbol to include (which will be the last to be read) 451*3117ece4Schristos * uses the smallest state value possible, saving the cost of this symbol */ 452*3117ece4Schristos MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol) 453*3117ece4Schristos { 454*3117ece4Schristos FSE_initCState(statePtr, ct); 455*3117ece4Schristos { const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; 456*3117ece4Schristos const U16* stateTable = (const U16*)(statePtr->stateTable); 457*3117ece4Schristos U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16); 458*3117ece4Schristos statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits; 459*3117ece4Schristos statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; 460*3117ece4Schristos } 461*3117ece4Schristos } 462*3117ece4Schristos 463*3117ece4Schristos MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol) 464*3117ece4Schristos { 465*3117ece4Schristos FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol]; 466*3117ece4Schristos const U16* const stateTable = (const U16*)(statePtr->stateTable); 467*3117ece4Schristos U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16); 468*3117ece4Schristos BIT_addBits(bitC, (size_t)statePtr->value, nbBitsOut); 469*3117ece4Schristos statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState]; 470*3117ece4Schristos } 471*3117ece4Schristos 472*3117ece4Schristos MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr) 473*3117ece4Schristos { 474*3117ece4Schristos BIT_addBits(bitC, (size_t)statePtr->value, statePtr->stateLog); 475*3117ece4Schristos BIT_flushBits(bitC); 476*3117ece4Schristos } 477*3117ece4Schristos 478*3117ece4Schristos 479*3117ece4Schristos /* FSE_getMaxNbBits() : 480*3117ece4Schristos * Approximate maximum cost of a symbol, in bits. 481*3117ece4Schristos * Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2) 482*3117ece4Schristos * note 1 : assume symbolValue is valid (<= maxSymbolValue) 483*3117ece4Schristos * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ 484*3117ece4Schristos MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue) 485*3117ece4Schristos { 486*3117ece4Schristos const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; 487*3117ece4Schristos return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16; 488*3117ece4Schristos } 489*3117ece4Schristos 490*3117ece4Schristos /* FSE_bitCost() : 491*3117ece4Schristos * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits) 492*3117ece4Schristos * note 1 : assume symbolValue is valid (<= maxSymbolValue) 493*3117ece4Schristos * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */ 494*3117ece4Schristos MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog) 495*3117ece4Schristos { 496*3117ece4Schristos const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr; 497*3117ece4Schristos U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16; 498*3117ece4Schristos U32 const threshold = (minNbBits+1) << 16; 499*3117ece4Schristos assert(tableLog < 16); 500*3117ece4Schristos assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */ 501*3117ece4Schristos { U32 const tableSize = 1 << tableLog; 502*3117ece4Schristos U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize); 503*3117ece4Schristos U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */ 504*3117ece4Schristos U32 const bitMultiplier = 1 << accuracyLog; 505*3117ece4Schristos assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold); 506*3117ece4Schristos assert(normalizedDeltaFromThreshold <= bitMultiplier); 507*3117ece4Schristos return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold; 508*3117ece4Schristos } 509*3117ece4Schristos } 510*3117ece4Schristos 511*3117ece4Schristos 512*3117ece4Schristos /* ====== Decompression ====== */ 513*3117ece4Schristos 514*3117ece4Schristos typedef struct { 515*3117ece4Schristos U16 tableLog; 516*3117ece4Schristos U16 fastMode; 517*3117ece4Schristos } FSE_DTableHeader; /* sizeof U32 */ 518*3117ece4Schristos 519*3117ece4Schristos typedef struct 520*3117ece4Schristos { 521*3117ece4Schristos unsigned short newState; 522*3117ece4Schristos unsigned char symbol; 523*3117ece4Schristos unsigned char nbBits; 524*3117ece4Schristos } FSE_decode_t; /* size == U32 */ 525*3117ece4Schristos 526*3117ece4Schristos MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt) 527*3117ece4Schristos { 528*3117ece4Schristos const void* ptr = dt; 529*3117ece4Schristos const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr; 530*3117ece4Schristos DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog); 531*3117ece4Schristos BIT_reloadDStream(bitD); 532*3117ece4Schristos DStatePtr->table = dt + 1; 533*3117ece4Schristos } 534*3117ece4Schristos 535*3117ece4Schristos MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr) 536*3117ece4Schristos { 537*3117ece4Schristos FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; 538*3117ece4Schristos return DInfo.symbol; 539*3117ece4Schristos } 540*3117ece4Schristos 541*3117ece4Schristos MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) 542*3117ece4Schristos { 543*3117ece4Schristos FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; 544*3117ece4Schristos U32 const nbBits = DInfo.nbBits; 545*3117ece4Schristos size_t const lowBits = BIT_readBits(bitD, nbBits); 546*3117ece4Schristos DStatePtr->state = DInfo.newState + lowBits; 547*3117ece4Schristos } 548*3117ece4Schristos 549*3117ece4Schristos MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) 550*3117ece4Schristos { 551*3117ece4Schristos FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; 552*3117ece4Schristos U32 const nbBits = DInfo.nbBits; 553*3117ece4Schristos BYTE const symbol = DInfo.symbol; 554*3117ece4Schristos size_t const lowBits = BIT_readBits(bitD, nbBits); 555*3117ece4Schristos 556*3117ece4Schristos DStatePtr->state = DInfo.newState + lowBits; 557*3117ece4Schristos return symbol; 558*3117ece4Schristos } 559*3117ece4Schristos 560*3117ece4Schristos /*! FSE_decodeSymbolFast() : 561*3117ece4Schristos unsafe, only works if no symbol has a probability > 50% */ 562*3117ece4Schristos MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD) 563*3117ece4Schristos { 564*3117ece4Schristos FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state]; 565*3117ece4Schristos U32 const nbBits = DInfo.nbBits; 566*3117ece4Schristos BYTE const symbol = DInfo.symbol; 567*3117ece4Schristos size_t const lowBits = BIT_readBitsFast(bitD, nbBits); 568*3117ece4Schristos 569*3117ece4Schristos DStatePtr->state = DInfo.newState + lowBits; 570*3117ece4Schristos return symbol; 571*3117ece4Schristos } 572*3117ece4Schristos 573*3117ece4Schristos MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr) 574*3117ece4Schristos { 575*3117ece4Schristos return DStatePtr->state == 0; 576*3117ece4Schristos } 577*3117ece4Schristos 578*3117ece4Schristos 579*3117ece4Schristos 580*3117ece4Schristos #ifndef FSE_COMMONDEFS_ONLY 581*3117ece4Schristos 582*3117ece4Schristos /* ************************************************************** 583*3117ece4Schristos * Tuning parameters 584*3117ece4Schristos ****************************************************************/ 585*3117ece4Schristos /*!MEMORY_USAGE : 586*3117ece4Schristos * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) 587*3117ece4Schristos * Increasing memory usage improves compression ratio 588*3117ece4Schristos * Reduced memory usage can improve speed, due to cache effect 589*3117ece4Schristos * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ 590*3117ece4Schristos #ifndef FSE_MAX_MEMORY_USAGE 591*3117ece4Schristos # define FSE_MAX_MEMORY_USAGE 14 592*3117ece4Schristos #endif 593*3117ece4Schristos #ifndef FSE_DEFAULT_MEMORY_USAGE 594*3117ece4Schristos # define FSE_DEFAULT_MEMORY_USAGE 13 595*3117ece4Schristos #endif 596*3117ece4Schristos #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE) 597*3117ece4Schristos # error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE" 598*3117ece4Schristos #endif 599*3117ece4Schristos 600*3117ece4Schristos /*!FSE_MAX_SYMBOL_VALUE : 601*3117ece4Schristos * Maximum symbol value authorized. 602*3117ece4Schristos * Required for proper stack allocation */ 603*3117ece4Schristos #ifndef FSE_MAX_SYMBOL_VALUE 604*3117ece4Schristos # define FSE_MAX_SYMBOL_VALUE 255 605*3117ece4Schristos #endif 606*3117ece4Schristos 607*3117ece4Schristos /* ************************************************************** 608*3117ece4Schristos * template functions type & suffix 609*3117ece4Schristos ****************************************************************/ 610*3117ece4Schristos #define FSE_FUNCTION_TYPE BYTE 611*3117ece4Schristos #define FSE_FUNCTION_EXTENSION 612*3117ece4Schristos #define FSE_DECODE_TYPE FSE_decode_t 613*3117ece4Schristos 614*3117ece4Schristos 615*3117ece4Schristos #endif /* !FSE_COMMONDEFS_ONLY */ 616*3117ece4Schristos 617*3117ece4Schristos 618*3117ece4Schristos /* *************************************************************** 619*3117ece4Schristos * Constants 620*3117ece4Schristos *****************************************************************/ 621*3117ece4Schristos #define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2) 622*3117ece4Schristos #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG) 623*3117ece4Schristos #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1) 624*3117ece4Schristos #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2) 625*3117ece4Schristos #define FSE_MIN_TABLELOG 5 626*3117ece4Schristos 627*3117ece4Schristos #define FSE_TABLELOG_ABSOLUTE_MAX 15 628*3117ece4Schristos #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX 629*3117ece4Schristos # error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported" 630*3117ece4Schristos #endif 631*3117ece4Schristos 632*3117ece4Schristos #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3) 633*3117ece4Schristos 634*3117ece4Schristos 635*3117ece4Schristos #endif /* FSE_STATIC_LINKING_ONLY */ 636*3117ece4Schristos 637*3117ece4Schristos 638*3117ece4Schristos #if defined (__cplusplus) 639*3117ece4Schristos } 640*3117ece4Schristos #endif 641