xref: /netbsd-src/external/bsd/zstd/dist/lib/common/fse.h (revision 3117ece4fc4a4ca4489ba793710b60b0d26bab6c)
1*3117ece4Schristos /* ******************************************************************
2*3117ece4Schristos  * FSE : Finite State Entropy codec
3*3117ece4Schristos  * Public Prototypes declaration
4*3117ece4Schristos  * Copyright (c) Meta Platforms, Inc. and affiliates.
5*3117ece4Schristos  *
6*3117ece4Schristos  * You can contact the author at :
7*3117ece4Schristos  * - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
8*3117ece4Schristos  *
9*3117ece4Schristos  * This source code is licensed under both the BSD-style license (found in the
10*3117ece4Schristos  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11*3117ece4Schristos  * in the COPYING file in the root directory of this source tree).
12*3117ece4Schristos  * You may select, at your option, one of the above-listed licenses.
13*3117ece4Schristos ****************************************************************** */
14*3117ece4Schristos 
15*3117ece4Schristos #if defined (__cplusplus)
16*3117ece4Schristos extern "C" {
17*3117ece4Schristos #endif
18*3117ece4Schristos 
19*3117ece4Schristos #ifndef FSE_H
20*3117ece4Schristos #define FSE_H
21*3117ece4Schristos 
22*3117ece4Schristos 
23*3117ece4Schristos /*-*****************************************
24*3117ece4Schristos *  Dependencies
25*3117ece4Schristos ******************************************/
26*3117ece4Schristos #include "zstd_deps.h"    /* size_t, ptrdiff_t */
27*3117ece4Schristos 
28*3117ece4Schristos 
29*3117ece4Schristos /*-*****************************************
30*3117ece4Schristos *  FSE_PUBLIC_API : control library symbols visibility
31*3117ece4Schristos ******************************************/
32*3117ece4Schristos #if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
33*3117ece4Schristos #  define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
34*3117ece4Schristos #elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1)   /* Visual expected */
35*3117ece4Schristos #  define FSE_PUBLIC_API __declspec(dllexport)
36*3117ece4Schristos #elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
37*3117ece4Schristos #  define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
38*3117ece4Schristos #else
39*3117ece4Schristos #  define FSE_PUBLIC_API
40*3117ece4Schristos #endif
41*3117ece4Schristos 
42*3117ece4Schristos /*------   Version   ------*/
43*3117ece4Schristos #define FSE_VERSION_MAJOR    0
44*3117ece4Schristos #define FSE_VERSION_MINOR    9
45*3117ece4Schristos #define FSE_VERSION_RELEASE  0
46*3117ece4Schristos 
47*3117ece4Schristos #define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
48*3117ece4Schristos #define FSE_QUOTE(str) #str
49*3117ece4Schristos #define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
50*3117ece4Schristos #define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
51*3117ece4Schristos 
52*3117ece4Schristos #define FSE_VERSION_NUMBER  (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
53*3117ece4Schristos FSE_PUBLIC_API unsigned FSE_versionNumber(void);   /**< library version number; to be used when checking dll version */
54*3117ece4Schristos 
55*3117ece4Schristos 
56*3117ece4Schristos /*-*****************************************
57*3117ece4Schristos *  Tool functions
58*3117ece4Schristos ******************************************/
59*3117ece4Schristos FSE_PUBLIC_API size_t FSE_compressBound(size_t size);       /* maximum compressed size */
60*3117ece4Schristos 
61*3117ece4Schristos /* Error Management */
62*3117ece4Schristos FSE_PUBLIC_API unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
63*3117ece4Schristos FSE_PUBLIC_API const char* FSE_getErrorName(size_t code);   /* provides error code string (useful for debugging) */
64*3117ece4Schristos 
65*3117ece4Schristos 
66*3117ece4Schristos /*-*****************************************
67*3117ece4Schristos *  FSE detailed API
68*3117ece4Schristos ******************************************/
69*3117ece4Schristos /*!
70*3117ece4Schristos FSE_compress() does the following:
71*3117ece4Schristos 1. count symbol occurrence from source[] into table count[] (see hist.h)
72*3117ece4Schristos 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
73*3117ece4Schristos 3. save normalized counters to memory buffer using writeNCount()
74*3117ece4Schristos 4. build encoding table 'CTable' from normalized counters
75*3117ece4Schristos 5. encode the data stream using encoding table 'CTable'
76*3117ece4Schristos 
77*3117ece4Schristos FSE_decompress() does the following:
78*3117ece4Schristos 1. read normalized counters with readNCount()
79*3117ece4Schristos 2. build decoding table 'DTable' from normalized counters
80*3117ece4Schristos 3. decode the data stream using decoding table 'DTable'
81*3117ece4Schristos 
82*3117ece4Schristos The following API allows targeting specific sub-functions for advanced tasks.
83*3117ece4Schristos For example, it's possible to compress several blocks using the same 'CTable',
84*3117ece4Schristos or to save and provide normalized distribution using external method.
85*3117ece4Schristos */
86*3117ece4Schristos 
87*3117ece4Schristos /* *** COMPRESSION *** */
88*3117ece4Schristos 
89*3117ece4Schristos /*! FSE_optimalTableLog():
90*3117ece4Schristos     dynamically downsize 'tableLog' when conditions are met.
91*3117ece4Schristos     It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
92*3117ece4Schristos     @return : recommended tableLog (necessarily <= 'maxTableLog') */
93*3117ece4Schristos FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
94*3117ece4Schristos 
95*3117ece4Schristos /*! FSE_normalizeCount():
96*3117ece4Schristos     normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
97*3117ece4Schristos     'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
98*3117ece4Schristos     useLowProbCount is a boolean parameter which trades off compressed size for
99*3117ece4Schristos     faster header decoding. When it is set to 1, the compressed data will be slightly
100*3117ece4Schristos     smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
101*3117ece4Schristos     faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
102*3117ece4Schristos     is a good default, since header deserialization makes a big speed difference.
103*3117ece4Schristos     Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
104*3117ece4Schristos     @return : tableLog,
105*3117ece4Schristos               or an errorCode, which can be tested using FSE_isError() */
106*3117ece4Schristos FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
107*3117ece4Schristos                     const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
108*3117ece4Schristos 
109*3117ece4Schristos /*! FSE_NCountWriteBound():
110*3117ece4Schristos     Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
111*3117ece4Schristos     Typically useful for allocation purpose. */
112*3117ece4Schristos FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
113*3117ece4Schristos 
114*3117ece4Schristos /*! FSE_writeNCount():
115*3117ece4Schristos     Compactly save 'normalizedCounter' into 'buffer'.
116*3117ece4Schristos     @return : size of the compressed table,
117*3117ece4Schristos               or an errorCode, which can be tested using FSE_isError(). */
118*3117ece4Schristos FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
119*3117ece4Schristos                                  const short* normalizedCounter,
120*3117ece4Schristos                                  unsigned maxSymbolValue, unsigned tableLog);
121*3117ece4Schristos 
122*3117ece4Schristos /*! Constructor and Destructor of FSE_CTable.
123*3117ece4Schristos     Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
124*3117ece4Schristos typedef unsigned FSE_CTable;   /* don't allocate that. It's only meant to be more restrictive than void* */
125*3117ece4Schristos 
126*3117ece4Schristos /*! FSE_buildCTable():
127*3117ece4Schristos     Builds `ct`, which must be already allocated, using FSE_createCTable().
128*3117ece4Schristos     @return : 0, or an errorCode, which can be tested using FSE_isError() */
129*3117ece4Schristos FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
130*3117ece4Schristos 
131*3117ece4Schristos /*! FSE_compress_usingCTable():
132*3117ece4Schristos     Compress `src` using `ct` into `dst` which must be already allocated.
133*3117ece4Schristos     @return : size of compressed data (<= `dstCapacity`),
134*3117ece4Schristos               or 0 if compressed data could not fit into `dst`,
135*3117ece4Schristos               or an errorCode, which can be tested using FSE_isError() */
136*3117ece4Schristos FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
137*3117ece4Schristos 
138*3117ece4Schristos /*!
139*3117ece4Schristos Tutorial :
140*3117ece4Schristos ----------
141*3117ece4Schristos The first step is to count all symbols. FSE_count() does this job very fast.
142*3117ece4Schristos Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
143*3117ece4Schristos 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
144*3117ece4Schristos maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
145*3117ece4Schristos FSE_count() will return the number of occurrence of the most frequent symbol.
146*3117ece4Schristos This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
147*3117ece4Schristos If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
148*3117ece4Schristos 
149*3117ece4Schristos The next step is to normalize the frequencies.
150*3117ece4Schristos FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
151*3117ece4Schristos It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
152*3117ece4Schristos You can use 'tableLog'==0 to mean "use default tableLog value".
153*3117ece4Schristos If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
154*3117ece4Schristos which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
155*3117ece4Schristos 
156*3117ece4Schristos The result of FSE_normalizeCount() will be saved into a table,
157*3117ece4Schristos called 'normalizedCounter', which is a table of signed short.
158*3117ece4Schristos 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
159*3117ece4Schristos The return value is tableLog if everything proceeded as expected.
160*3117ece4Schristos It is 0 if there is a single symbol within distribution.
161*3117ece4Schristos If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
162*3117ece4Schristos 
163*3117ece4Schristos 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
164*3117ece4Schristos 'buffer' must be already allocated.
165*3117ece4Schristos For guaranteed success, buffer size must be at least FSE_headerBound().
166*3117ece4Schristos The result of the function is the number of bytes written into 'buffer'.
167*3117ece4Schristos If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
168*3117ece4Schristos 
169*3117ece4Schristos 'normalizedCounter' can then be used to create the compression table 'CTable'.
170*3117ece4Schristos The space required by 'CTable' must be already allocated, using FSE_createCTable().
171*3117ece4Schristos You can then use FSE_buildCTable() to fill 'CTable'.
172*3117ece4Schristos If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
173*3117ece4Schristos 
174*3117ece4Schristos 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
175*3117ece4Schristos Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
176*3117ece4Schristos The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
177*3117ece4Schristos If it returns '0', compressed data could not fit into 'dst'.
178*3117ece4Schristos If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
179*3117ece4Schristos */
180*3117ece4Schristos 
181*3117ece4Schristos 
182*3117ece4Schristos /* *** DECOMPRESSION *** */
183*3117ece4Schristos 
184*3117ece4Schristos /*! FSE_readNCount():
185*3117ece4Schristos     Read compactly saved 'normalizedCounter' from 'rBuffer'.
186*3117ece4Schristos     @return : size read from 'rBuffer',
187*3117ece4Schristos               or an errorCode, which can be tested using FSE_isError().
188*3117ece4Schristos               maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
189*3117ece4Schristos FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
190*3117ece4Schristos                            unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
191*3117ece4Schristos                            const void* rBuffer, size_t rBuffSize);
192*3117ece4Schristos 
193*3117ece4Schristos /*! FSE_readNCount_bmi2():
194*3117ece4Schristos  * Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
195*3117ece4Schristos  */
196*3117ece4Schristos FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
197*3117ece4Schristos                            unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
198*3117ece4Schristos                            const void* rBuffer, size_t rBuffSize, int bmi2);
199*3117ece4Schristos 
200*3117ece4Schristos typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
201*3117ece4Schristos 
202*3117ece4Schristos /*!
203*3117ece4Schristos Tutorial :
204*3117ece4Schristos ----------
205*3117ece4Schristos (Note : these functions only decompress FSE-compressed blocks.
206*3117ece4Schristos  If block is uncompressed, use memcpy() instead
207*3117ece4Schristos  If block is a single repeated byte, use memset() instead )
208*3117ece4Schristos 
209*3117ece4Schristos The first step is to obtain the normalized frequencies of symbols.
210*3117ece4Schristos This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
211*3117ece4Schristos 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
212*3117ece4Schristos In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
213*3117ece4Schristos or size the table to handle worst case situations (typically 256).
214*3117ece4Schristos FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
215*3117ece4Schristos The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
216*3117ece4Schristos Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
217*3117ece4Schristos If there is an error, the function will return an error code, which can be tested using FSE_isError().
218*3117ece4Schristos 
219*3117ece4Schristos The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
220*3117ece4Schristos This is performed by the function FSE_buildDTable().
221*3117ece4Schristos The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
222*3117ece4Schristos If there is an error, the function will return an error code, which can be tested using FSE_isError().
223*3117ece4Schristos 
224*3117ece4Schristos `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
225*3117ece4Schristos `cSrcSize` must be strictly correct, otherwise decompression will fail.
226*3117ece4Schristos FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
227*3117ece4Schristos If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
228*3117ece4Schristos */
229*3117ece4Schristos 
230*3117ece4Schristos #endif  /* FSE_H */
231*3117ece4Schristos 
232*3117ece4Schristos 
233*3117ece4Schristos #if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
234*3117ece4Schristos #define FSE_H_FSE_STATIC_LINKING_ONLY
235*3117ece4Schristos 
236*3117ece4Schristos /* *** Dependency *** */
237*3117ece4Schristos #include "bitstream.h"
238*3117ece4Schristos 
239*3117ece4Schristos 
240*3117ece4Schristos /* *****************************************
241*3117ece4Schristos *  Static allocation
242*3117ece4Schristos *******************************************/
243*3117ece4Schristos /* FSE buffer bounds */
244*3117ece4Schristos #define FSE_NCOUNTBOUND 512
245*3117ece4Schristos #define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
246*3117ece4Schristos #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
247*3117ece4Schristos 
248*3117ece4Schristos /* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
249*3117ece4Schristos #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
250*3117ece4Schristos #define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<(maxTableLog)))
251*3117ece4Schristos 
252*3117ece4Schristos /* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
253*3117ece4Schristos #define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue)   (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
254*3117ece4Schristos #define FSE_DTABLE_SIZE(maxTableLog)                   (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
255*3117ece4Schristos 
256*3117ece4Schristos 
257*3117ece4Schristos /* *****************************************
258*3117ece4Schristos  *  FSE advanced API
259*3117ece4Schristos  ***************************************** */
260*3117ece4Schristos 
261*3117ece4Schristos unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
262*3117ece4Schristos /**< same as FSE_optimalTableLog(), which used `minus==2` */
263*3117ece4Schristos 
264*3117ece4Schristos size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
265*3117ece4Schristos /**< build a fake FSE_CTable, designed to compress always the same symbolValue */
266*3117ece4Schristos 
267*3117ece4Schristos /* FSE_buildCTable_wksp() :
268*3117ece4Schristos  * Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
269*3117ece4Schristos  * `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
270*3117ece4Schristos  * See FSE_buildCTable_wksp() for breakdown of workspace usage.
271*3117ece4Schristos  */
272*3117ece4Schristos #define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
273*3117ece4Schristos #define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
274*3117ece4Schristos size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
275*3117ece4Schristos 
276*3117ece4Schristos #define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
277*3117ece4Schristos #define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
278*3117ece4Schristos FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
279*3117ece4Schristos /**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
280*3117ece4Schristos 
281*3117ece4Schristos #define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
282*3117ece4Schristos #define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
283*3117ece4Schristos size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
284*3117ece4Schristos /**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`.
285*3117ece4Schristos  * Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */
286*3117ece4Schristos 
287*3117ece4Schristos typedef enum {
288*3117ece4Schristos    FSE_repeat_none,  /**< Cannot use the previous table */
289*3117ece4Schristos    FSE_repeat_check, /**< Can use the previous table but it must be checked */
290*3117ece4Schristos    FSE_repeat_valid  /**< Can use the previous table and it is assumed to be valid */
291*3117ece4Schristos  } FSE_repeat;
292*3117ece4Schristos 
293*3117ece4Schristos /* *****************************************
294*3117ece4Schristos *  FSE symbol compression API
295*3117ece4Schristos *******************************************/
296*3117ece4Schristos /*!
297*3117ece4Schristos    This API consists of small unitary functions, which highly benefit from being inlined.
298*3117ece4Schristos    Hence their body are included in next section.
299*3117ece4Schristos */
300*3117ece4Schristos typedef struct {
301*3117ece4Schristos     ptrdiff_t   value;
302*3117ece4Schristos     const void* stateTable;
303*3117ece4Schristos     const void* symbolTT;
304*3117ece4Schristos     unsigned    stateLog;
305*3117ece4Schristos } FSE_CState_t;
306*3117ece4Schristos 
307*3117ece4Schristos static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
308*3117ece4Schristos 
309*3117ece4Schristos static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
310*3117ece4Schristos 
311*3117ece4Schristos static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
312*3117ece4Schristos 
313*3117ece4Schristos /**<
314*3117ece4Schristos These functions are inner components of FSE_compress_usingCTable().
315*3117ece4Schristos They allow the creation of custom streams, mixing multiple tables and bit sources.
316*3117ece4Schristos 
317*3117ece4Schristos A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
318*3117ece4Schristos So the first symbol you will encode is the last you will decode, like a LIFO stack.
319*3117ece4Schristos 
320*3117ece4Schristos You will need a few variables to track your CStream. They are :
321*3117ece4Schristos 
322*3117ece4Schristos FSE_CTable    ct;         // Provided by FSE_buildCTable()
323*3117ece4Schristos BIT_CStream_t bitStream;  // bitStream tracking structure
324*3117ece4Schristos FSE_CState_t  state;      // State tracking structure (can have several)
325*3117ece4Schristos 
326*3117ece4Schristos 
327*3117ece4Schristos The first thing to do is to init bitStream and state.
328*3117ece4Schristos     size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
329*3117ece4Schristos     FSE_initCState(&state, ct);
330*3117ece4Schristos 
331*3117ece4Schristos Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
332*3117ece4Schristos You can then encode your input data, byte after byte.
333*3117ece4Schristos FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
334*3117ece4Schristos Remember decoding will be done in reverse direction.
335*3117ece4Schristos     FSE_encodeByte(&bitStream, &state, symbol);
336*3117ece4Schristos 
337*3117ece4Schristos At any time, you can also add any bit sequence.
338*3117ece4Schristos Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
339*3117ece4Schristos     BIT_addBits(&bitStream, bitField, nbBits);
340*3117ece4Schristos 
341*3117ece4Schristos The above methods don't commit data to memory, they just store it into local register, for speed.
342*3117ece4Schristos Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
343*3117ece4Schristos Writing data to memory is a manual operation, performed by the flushBits function.
344*3117ece4Schristos     BIT_flushBits(&bitStream);
345*3117ece4Schristos 
346*3117ece4Schristos Your last FSE encoding operation shall be to flush your last state value(s).
347*3117ece4Schristos     FSE_flushState(&bitStream, &state);
348*3117ece4Schristos 
349*3117ece4Schristos Finally, you must close the bitStream.
350*3117ece4Schristos The function returns the size of CStream in bytes.
351*3117ece4Schristos If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
352*3117ece4Schristos If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
353*3117ece4Schristos     size_t size = BIT_closeCStream(&bitStream);
354*3117ece4Schristos */
355*3117ece4Schristos 
356*3117ece4Schristos 
357*3117ece4Schristos /* *****************************************
358*3117ece4Schristos *  FSE symbol decompression API
359*3117ece4Schristos *******************************************/
360*3117ece4Schristos typedef struct {
361*3117ece4Schristos     size_t      state;
362*3117ece4Schristos     const void* table;   /* precise table may vary, depending on U16 */
363*3117ece4Schristos } FSE_DState_t;
364*3117ece4Schristos 
365*3117ece4Schristos 
366*3117ece4Schristos static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
367*3117ece4Schristos 
368*3117ece4Schristos static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
369*3117ece4Schristos 
370*3117ece4Schristos static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
371*3117ece4Schristos 
372*3117ece4Schristos /**<
373*3117ece4Schristos Let's now decompose FSE_decompress_usingDTable() into its unitary components.
374*3117ece4Schristos You will decode FSE-encoded symbols from the bitStream,
375*3117ece4Schristos and also any other bitFields you put in, **in reverse order**.
376*3117ece4Schristos 
377*3117ece4Schristos You will need a few variables to track your bitStream. They are :
378*3117ece4Schristos 
379*3117ece4Schristos BIT_DStream_t DStream;    // Stream context
380*3117ece4Schristos FSE_DState_t  DState;     // State context. Multiple ones are possible
381*3117ece4Schristos FSE_DTable*   DTablePtr;  // Decoding table, provided by FSE_buildDTable()
382*3117ece4Schristos 
383*3117ece4Schristos The first thing to do is to init the bitStream.
384*3117ece4Schristos     errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
385*3117ece4Schristos 
386*3117ece4Schristos You should then retrieve your initial state(s)
387*3117ece4Schristos (in reverse flushing order if you have several ones) :
388*3117ece4Schristos     errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
389*3117ece4Schristos 
390*3117ece4Schristos You can then decode your data, symbol after symbol.
391*3117ece4Schristos For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
392*3117ece4Schristos Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
393*3117ece4Schristos     unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
394*3117ece4Schristos 
395*3117ece4Schristos You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
396*3117ece4Schristos Note : maximum allowed nbBits is 25, for 32-bits compatibility
397*3117ece4Schristos     size_t bitField = BIT_readBits(&DStream, nbBits);
398*3117ece4Schristos 
399*3117ece4Schristos All above operations only read from local register (which size depends on size_t).
400*3117ece4Schristos Refueling the register from memory is manually performed by the reload method.
401*3117ece4Schristos     endSignal = FSE_reloadDStream(&DStream);
402*3117ece4Schristos 
403*3117ece4Schristos BIT_reloadDStream() result tells if there is still some more data to read from DStream.
404*3117ece4Schristos BIT_DStream_unfinished : there is still some data left into the DStream.
405*3117ece4Schristos BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
406*3117ece4Schristos BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
407*3117ece4Schristos BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
408*3117ece4Schristos 
409*3117ece4Schristos When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
410*3117ece4Schristos to properly detect the exact end of stream.
411*3117ece4Schristos After each decoded symbol, check if DStream is fully consumed using this simple test :
412*3117ece4Schristos     BIT_reloadDStream(&DStream) >= BIT_DStream_completed
413*3117ece4Schristos 
414*3117ece4Schristos When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
415*3117ece4Schristos Checking if DStream has reached its end is performed by :
416*3117ece4Schristos     BIT_endOfDStream(&DStream);
417*3117ece4Schristos Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
418*3117ece4Schristos     FSE_endOfDState(&DState);
419*3117ece4Schristos */
420*3117ece4Schristos 
421*3117ece4Schristos 
422*3117ece4Schristos /* *****************************************
423*3117ece4Schristos *  FSE unsafe API
424*3117ece4Schristos *******************************************/
425*3117ece4Schristos static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
426*3117ece4Schristos /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
427*3117ece4Schristos 
428*3117ece4Schristos 
429*3117ece4Schristos /* *****************************************
430*3117ece4Schristos *  Implementation of inlined functions
431*3117ece4Schristos *******************************************/
432*3117ece4Schristos typedef struct {
433*3117ece4Schristos     int deltaFindState;
434*3117ece4Schristos     U32 deltaNbBits;
435*3117ece4Schristos } FSE_symbolCompressionTransform; /* total 8 bytes */
436*3117ece4Schristos 
437*3117ece4Schristos MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
438*3117ece4Schristos {
439*3117ece4Schristos     const void* ptr = ct;
440*3117ece4Schristos     const U16* u16ptr = (const U16*) ptr;
441*3117ece4Schristos     const U32 tableLog = MEM_read16(ptr);
442*3117ece4Schristos     statePtr->value = (ptrdiff_t)1<<tableLog;
443*3117ece4Schristos     statePtr->stateTable = u16ptr+2;
444*3117ece4Schristos     statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
445*3117ece4Schristos     statePtr->stateLog = tableLog;
446*3117ece4Schristos }
447*3117ece4Schristos 
448*3117ece4Schristos 
449*3117ece4Schristos /*! FSE_initCState2() :
450*3117ece4Schristos *   Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
451*3117ece4Schristos *   uses the smallest state value possible, saving the cost of this symbol */
452*3117ece4Schristos MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
453*3117ece4Schristos {
454*3117ece4Schristos     FSE_initCState(statePtr, ct);
455*3117ece4Schristos     {   const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
456*3117ece4Schristos         const U16* stateTable = (const U16*)(statePtr->stateTable);
457*3117ece4Schristos         U32 nbBitsOut  = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
458*3117ece4Schristos         statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
459*3117ece4Schristos         statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
460*3117ece4Schristos     }
461*3117ece4Schristos }
462*3117ece4Schristos 
463*3117ece4Schristos MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
464*3117ece4Schristos {
465*3117ece4Schristos     FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
466*3117ece4Schristos     const U16* const stateTable = (const U16*)(statePtr->stateTable);
467*3117ece4Schristos     U32 const nbBitsOut  = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
468*3117ece4Schristos     BIT_addBits(bitC,  (size_t)statePtr->value, nbBitsOut);
469*3117ece4Schristos     statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
470*3117ece4Schristos }
471*3117ece4Schristos 
472*3117ece4Schristos MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
473*3117ece4Schristos {
474*3117ece4Schristos     BIT_addBits(bitC, (size_t)statePtr->value, statePtr->stateLog);
475*3117ece4Schristos     BIT_flushBits(bitC);
476*3117ece4Schristos }
477*3117ece4Schristos 
478*3117ece4Schristos 
479*3117ece4Schristos /* FSE_getMaxNbBits() :
480*3117ece4Schristos  * Approximate maximum cost of a symbol, in bits.
481*3117ece4Schristos  * Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
482*3117ece4Schristos  * note 1 : assume symbolValue is valid (<= maxSymbolValue)
483*3117ece4Schristos  * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
484*3117ece4Schristos MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
485*3117ece4Schristos {
486*3117ece4Schristos     const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
487*3117ece4Schristos     return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
488*3117ece4Schristos }
489*3117ece4Schristos 
490*3117ece4Schristos /* FSE_bitCost() :
491*3117ece4Schristos  * Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
492*3117ece4Schristos  * note 1 : assume symbolValue is valid (<= maxSymbolValue)
493*3117ece4Schristos  * note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
494*3117ece4Schristos MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
495*3117ece4Schristos {
496*3117ece4Schristos     const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
497*3117ece4Schristos     U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
498*3117ece4Schristos     U32 const threshold = (minNbBits+1) << 16;
499*3117ece4Schristos     assert(tableLog < 16);
500*3117ece4Schristos     assert(accuracyLog < 31-tableLog);  /* ensure enough room for renormalization double shift */
501*3117ece4Schristos     {   U32 const tableSize = 1 << tableLog;
502*3117ece4Schristos         U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
503*3117ece4Schristos         U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog;   /* linear interpolation (very approximate) */
504*3117ece4Schristos         U32 const bitMultiplier = 1 << accuracyLog;
505*3117ece4Schristos         assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
506*3117ece4Schristos         assert(normalizedDeltaFromThreshold <= bitMultiplier);
507*3117ece4Schristos         return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
508*3117ece4Schristos     }
509*3117ece4Schristos }
510*3117ece4Schristos 
511*3117ece4Schristos 
512*3117ece4Schristos /* ======    Decompression    ====== */
513*3117ece4Schristos 
514*3117ece4Schristos typedef struct {
515*3117ece4Schristos     U16 tableLog;
516*3117ece4Schristos     U16 fastMode;
517*3117ece4Schristos } FSE_DTableHeader;   /* sizeof U32 */
518*3117ece4Schristos 
519*3117ece4Schristos typedef struct
520*3117ece4Schristos {
521*3117ece4Schristos     unsigned short newState;
522*3117ece4Schristos     unsigned char  symbol;
523*3117ece4Schristos     unsigned char  nbBits;
524*3117ece4Schristos } FSE_decode_t;   /* size == U32 */
525*3117ece4Schristos 
526*3117ece4Schristos MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
527*3117ece4Schristos {
528*3117ece4Schristos     const void* ptr = dt;
529*3117ece4Schristos     const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
530*3117ece4Schristos     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
531*3117ece4Schristos     BIT_reloadDStream(bitD);
532*3117ece4Schristos     DStatePtr->table = dt + 1;
533*3117ece4Schristos }
534*3117ece4Schristos 
535*3117ece4Schristos MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
536*3117ece4Schristos {
537*3117ece4Schristos     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
538*3117ece4Schristos     return DInfo.symbol;
539*3117ece4Schristos }
540*3117ece4Schristos 
541*3117ece4Schristos MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
542*3117ece4Schristos {
543*3117ece4Schristos     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
544*3117ece4Schristos     U32 const nbBits = DInfo.nbBits;
545*3117ece4Schristos     size_t const lowBits = BIT_readBits(bitD, nbBits);
546*3117ece4Schristos     DStatePtr->state = DInfo.newState + lowBits;
547*3117ece4Schristos }
548*3117ece4Schristos 
549*3117ece4Schristos MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
550*3117ece4Schristos {
551*3117ece4Schristos     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
552*3117ece4Schristos     U32 const nbBits = DInfo.nbBits;
553*3117ece4Schristos     BYTE const symbol = DInfo.symbol;
554*3117ece4Schristos     size_t const lowBits = BIT_readBits(bitD, nbBits);
555*3117ece4Schristos 
556*3117ece4Schristos     DStatePtr->state = DInfo.newState + lowBits;
557*3117ece4Schristos     return symbol;
558*3117ece4Schristos }
559*3117ece4Schristos 
560*3117ece4Schristos /*! FSE_decodeSymbolFast() :
561*3117ece4Schristos     unsafe, only works if no symbol has a probability > 50% */
562*3117ece4Schristos MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
563*3117ece4Schristos {
564*3117ece4Schristos     FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
565*3117ece4Schristos     U32 const nbBits = DInfo.nbBits;
566*3117ece4Schristos     BYTE const symbol = DInfo.symbol;
567*3117ece4Schristos     size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
568*3117ece4Schristos 
569*3117ece4Schristos     DStatePtr->state = DInfo.newState + lowBits;
570*3117ece4Schristos     return symbol;
571*3117ece4Schristos }
572*3117ece4Schristos 
573*3117ece4Schristos MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
574*3117ece4Schristos {
575*3117ece4Schristos     return DStatePtr->state == 0;
576*3117ece4Schristos }
577*3117ece4Schristos 
578*3117ece4Schristos 
579*3117ece4Schristos 
580*3117ece4Schristos #ifndef FSE_COMMONDEFS_ONLY
581*3117ece4Schristos 
582*3117ece4Schristos /* **************************************************************
583*3117ece4Schristos *  Tuning parameters
584*3117ece4Schristos ****************************************************************/
585*3117ece4Schristos /*!MEMORY_USAGE :
586*3117ece4Schristos *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
587*3117ece4Schristos *  Increasing memory usage improves compression ratio
588*3117ece4Schristos *  Reduced memory usage can improve speed, due to cache effect
589*3117ece4Schristos *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
590*3117ece4Schristos #ifndef FSE_MAX_MEMORY_USAGE
591*3117ece4Schristos #  define FSE_MAX_MEMORY_USAGE 14
592*3117ece4Schristos #endif
593*3117ece4Schristos #ifndef FSE_DEFAULT_MEMORY_USAGE
594*3117ece4Schristos #  define FSE_DEFAULT_MEMORY_USAGE 13
595*3117ece4Schristos #endif
596*3117ece4Schristos #if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
597*3117ece4Schristos #  error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
598*3117ece4Schristos #endif
599*3117ece4Schristos 
600*3117ece4Schristos /*!FSE_MAX_SYMBOL_VALUE :
601*3117ece4Schristos *  Maximum symbol value authorized.
602*3117ece4Schristos *  Required for proper stack allocation */
603*3117ece4Schristos #ifndef FSE_MAX_SYMBOL_VALUE
604*3117ece4Schristos #  define FSE_MAX_SYMBOL_VALUE 255
605*3117ece4Schristos #endif
606*3117ece4Schristos 
607*3117ece4Schristos /* **************************************************************
608*3117ece4Schristos *  template functions type & suffix
609*3117ece4Schristos ****************************************************************/
610*3117ece4Schristos #define FSE_FUNCTION_TYPE BYTE
611*3117ece4Schristos #define FSE_FUNCTION_EXTENSION
612*3117ece4Schristos #define FSE_DECODE_TYPE FSE_decode_t
613*3117ece4Schristos 
614*3117ece4Schristos 
615*3117ece4Schristos #endif   /* !FSE_COMMONDEFS_ONLY */
616*3117ece4Schristos 
617*3117ece4Schristos 
618*3117ece4Schristos /* ***************************************************************
619*3117ece4Schristos *  Constants
620*3117ece4Schristos *****************************************************************/
621*3117ece4Schristos #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
622*3117ece4Schristos #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
623*3117ece4Schristos #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
624*3117ece4Schristos #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
625*3117ece4Schristos #define FSE_MIN_TABLELOG 5
626*3117ece4Schristos 
627*3117ece4Schristos #define FSE_TABLELOG_ABSOLUTE_MAX 15
628*3117ece4Schristos #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
629*3117ece4Schristos #  error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
630*3117ece4Schristos #endif
631*3117ece4Schristos 
632*3117ece4Schristos #define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
633*3117ece4Schristos 
634*3117ece4Schristos 
635*3117ece4Schristos #endif /* FSE_STATIC_LINKING_ONLY */
636*3117ece4Schristos 
637*3117ece4Schristos 
638*3117ece4Schristos #if defined (__cplusplus)
639*3117ece4Schristos }
640*3117ece4Schristos #endif
641