1*3117ece4SchristosZstandard Compression Format 2*3117ece4Schristos============================ 3*3117ece4Schristos 4*3117ece4Schristos### Notices 5*3117ece4Schristos 6*3117ece4SchristosCopyright (c) Meta Platforms, Inc. and affiliates. 7*3117ece4Schristos 8*3117ece4SchristosPermission is granted to copy and distribute this document 9*3117ece4Schristosfor any purpose and without charge, 10*3117ece4Schristosincluding translations into other languages 11*3117ece4Schristosand incorporation into compilations, 12*3117ece4Schristosprovided that the copyright notice and this notice are preserved, 13*3117ece4Schristosand that any substantive changes or deletions from the original 14*3117ece4Schristosare clearly marked. 15*3117ece4SchristosDistribution of this document is unlimited. 16*3117ece4Schristos 17*3117ece4Schristos### Version 18*3117ece4Schristos 19*3117ece4Schristos0.4.0 (2023-06-05) 20*3117ece4Schristos 21*3117ece4Schristos 22*3117ece4SchristosIntroduction 23*3117ece4Schristos------------ 24*3117ece4Schristos 25*3117ece4SchristosThe purpose of this document is to define a lossless compressed data format, 26*3117ece4Schristosthat is independent of CPU type, operating system, 27*3117ece4Schristosfile system and character set, suitable for 28*3117ece4Schristosfile compression, pipe and streaming compression, 29*3117ece4Schristosusing the [Zstandard algorithm](https://facebook.github.io/zstd/). 30*3117ece4SchristosThe text of the specification assumes a basic background in programming 31*3117ece4Schristosat the level of bits and other primitive data representations. 32*3117ece4Schristos 33*3117ece4SchristosThe data can be produced or consumed, 34*3117ece4Schristoseven for an arbitrarily long sequentially presented input data stream, 35*3117ece4Schristosusing only an a priori bounded amount of intermediate storage, 36*3117ece4Schristosand hence can be used in data communications. 37*3117ece4SchristosThe format uses the Zstandard compression method, 38*3117ece4Schristosand optional [xxHash-64 checksum method](https://cyan4973.github.io/xxHash/), 39*3117ece4Schristosfor detection of data corruption. 40*3117ece4Schristos 41*3117ece4SchristosThe data format defined by this specification 42*3117ece4Schristosdoes not attempt to allow random access to compressed data. 43*3117ece4Schristos 44*3117ece4SchristosUnless otherwise indicated below, 45*3117ece4Schristosa compliant compressor must produce data sets 46*3117ece4Schristosthat conform to the specifications presented here. 47*3117ece4SchristosIt doesn’t need to support all options though. 48*3117ece4Schristos 49*3117ece4SchristosA compliant decompressor must be able to decompress 50*3117ece4Schristosat least one working set of parameters 51*3117ece4Schristosthat conforms to the specifications presented here. 52*3117ece4SchristosIt may also ignore informative fields, such as checksum. 53*3117ece4SchristosWhenever it does not support a parameter defined in the compressed stream, 54*3117ece4Schristosit must produce a non-ambiguous error code and associated error message 55*3117ece4Schristosexplaining which parameter is unsupported. 56*3117ece4Schristos 57*3117ece4SchristosThis specification is intended for use by implementers of software 58*3117ece4Schristosto compress data into Zstandard format and/or decompress data from Zstandard format. 59*3117ece4SchristosThe Zstandard format is supported by an open source reference implementation, 60*3117ece4Schristoswritten in portable C, and available at : https://github.com/facebook/zstd . 61*3117ece4Schristos 62*3117ece4Schristos 63*3117ece4Schristos### Overall conventions 64*3117ece4SchristosIn this document: 65*3117ece4Schristos- square brackets i.e. `[` and `]` are used to indicate optional fields or parameters. 66*3117ece4Schristos- the naming convention for identifiers is `Mixed_Case_With_Underscores` 67*3117ece4Schristos 68*3117ece4Schristos### Definitions 69*3117ece4SchristosContent compressed by Zstandard is transformed into a Zstandard __frame__. 70*3117ece4SchristosMultiple frames can be appended into a single file or stream. 71*3117ece4SchristosA frame is completely independent, has a defined beginning and end, 72*3117ece4Schristosand a set of parameters which tells the decoder how to decompress it. 73*3117ece4Schristos 74*3117ece4SchristosA frame encapsulates one or multiple __blocks__. 75*3117ece4SchristosEach block contains arbitrary content, which is described by its header, 76*3117ece4Schristosand has a guaranteed maximum content size, which depends on frame parameters. 77*3117ece4SchristosUnlike frames, each block depends on previous blocks for proper decoding. 78*3117ece4SchristosHowever, each block can be decompressed without waiting for its successor, 79*3117ece4Schristosallowing streaming operations. 80*3117ece4Schristos 81*3117ece4SchristosOverview 82*3117ece4Schristos--------- 83*3117ece4Schristos- [Frames](#frames) 84*3117ece4Schristos - [Zstandard frames](#zstandard-frames) 85*3117ece4Schristos - [Blocks](#blocks) 86*3117ece4Schristos - [Literals Section](#literals-section) 87*3117ece4Schristos - [Sequences Section](#sequences-section) 88*3117ece4Schristos - [Sequence Execution](#sequence-execution) 89*3117ece4Schristos - [Skippable frames](#skippable-frames) 90*3117ece4Schristos- [Entropy Encoding](#entropy-encoding) 91*3117ece4Schristos - [FSE](#fse) 92*3117ece4Schristos - [Huffman Coding](#huffman-coding) 93*3117ece4Schristos- [Dictionary Format](#dictionary-format) 94*3117ece4Schristos 95*3117ece4SchristosFrames 96*3117ece4Schristos------ 97*3117ece4SchristosZstandard compressed data is made of one or more __frames__. 98*3117ece4SchristosEach frame is independent and can be decompressed independently of other frames. 99*3117ece4SchristosThe decompressed content of multiple concatenated frames is the concatenation of 100*3117ece4Schristoseach frame decompressed content. 101*3117ece4Schristos 102*3117ece4SchristosThere are two frame formats defined by Zstandard: 103*3117ece4Schristos Zstandard frames and Skippable frames. 104*3117ece4SchristosZstandard frames contain compressed data, while 105*3117ece4Schristosskippable frames contain custom user metadata. 106*3117ece4Schristos 107*3117ece4Schristos## Zstandard frames 108*3117ece4SchristosThe structure of a single Zstandard frame is following: 109*3117ece4Schristos 110*3117ece4Schristos| `Magic_Number` | `Frame_Header` |`Data_Block`| [More data blocks] | [`Content_Checksum`] | 111*3117ece4Schristos|:--------------:|:--------------:|:----------:| ------------------ |:--------------------:| 112*3117ece4Schristos| 4 bytes | 2-14 bytes | n bytes | | 0-4 bytes | 113*3117ece4Schristos 114*3117ece4Schristos__`Magic_Number`__ 115*3117ece4Schristos 116*3117ece4Schristos4 Bytes, __little-endian__ format. 117*3117ece4SchristosValue : 0xFD2FB528 118*3117ece4SchristosNote: This value was selected to be less probable to find at the beginning of some random file. 119*3117ece4SchristosIt avoids trivial patterns (0x00, 0xFF, repeated bytes, increasing bytes, etc.), 120*3117ece4Schristoscontains byte values outside of ASCII range, 121*3117ece4Schristosand doesn't map into UTF8 space. 122*3117ece4SchristosIt reduces the chances that a text file represent this value by accident. 123*3117ece4Schristos 124*3117ece4Schristos__`Frame_Header`__ 125*3117ece4Schristos 126*3117ece4Schristos2 to 14 Bytes, detailed in [`Frame_Header`](#frame_header). 127*3117ece4Schristos 128*3117ece4Schristos__`Data_Block`__ 129*3117ece4Schristos 130*3117ece4SchristosDetailed in [`Blocks`](#blocks). 131*3117ece4SchristosThat’s where compressed data is stored. 132*3117ece4Schristos 133*3117ece4Schristos__`Content_Checksum`__ 134*3117ece4Schristos 135*3117ece4SchristosAn optional 32-bit checksum, only present if `Content_Checksum_flag` is set. 136*3117ece4SchristosThe content checksum is the result 137*3117ece4Schristosof [xxh64() hash function](https://cyan4973.github.io/xxHash/) 138*3117ece4Schristosdigesting the original (decoded) data as input, and a seed of zero. 139*3117ece4SchristosThe low 4 bytes of the checksum are stored in __little-endian__ format. 140*3117ece4Schristos 141*3117ece4Schristos### `Frame_Header` 142*3117ece4Schristos 143*3117ece4SchristosThe `Frame_Header` has a variable size, with a minimum of 2 bytes, 144*3117ece4Schristosand up to 14 bytes depending on optional parameters. 145*3117ece4SchristosThe structure of `Frame_Header` is following: 146*3117ece4Schristos 147*3117ece4Schristos| `Frame_Header_Descriptor` | [`Window_Descriptor`] | [`Dictionary_ID`] | [`Frame_Content_Size`] | 148*3117ece4Schristos| ------------------------- | --------------------- | ----------------- | ---------------------- | 149*3117ece4Schristos| 1 byte | 0-1 byte | 0-4 bytes | 0-8 bytes | 150*3117ece4Schristos 151*3117ece4Schristos#### `Frame_Header_Descriptor` 152*3117ece4Schristos 153*3117ece4SchristosThe first header's byte is called the `Frame_Header_Descriptor`. 154*3117ece4SchristosIt describes which other fields are present. 155*3117ece4SchristosDecoding this byte is enough to tell the size of `Frame_Header`. 156*3117ece4Schristos 157*3117ece4Schristos| Bit number | Field name | 158*3117ece4Schristos| ---------- | ---------- | 159*3117ece4Schristos| 7-6 | `Frame_Content_Size_flag` | 160*3117ece4Schristos| 5 | `Single_Segment_flag` | 161*3117ece4Schristos| 4 | `Unused_bit` | 162*3117ece4Schristos| 3 | `Reserved_bit` | 163*3117ece4Schristos| 2 | `Content_Checksum_flag` | 164*3117ece4Schristos| 1-0 | `Dictionary_ID_flag` | 165*3117ece4Schristos 166*3117ece4SchristosIn this table, bit 7 is the highest bit, while bit 0 is the lowest one. 167*3117ece4Schristos 168*3117ece4Schristos__`Frame_Content_Size_flag`__ 169*3117ece4Schristos 170*3117ece4SchristosThis is a 2-bits flag (`= Frame_Header_Descriptor >> 6`), 171*3117ece4Schristosspecifying if `Frame_Content_Size` (the decompressed data size) 172*3117ece4Schristosis provided within the header. 173*3117ece4Schristos`Flag_Value` provides `FCS_Field_Size`, 174*3117ece4Schristoswhich is the number of bytes used by `Frame_Content_Size` 175*3117ece4Schristosaccording to the following table: 176*3117ece4Schristos 177*3117ece4Schristos| `Flag_Value` | 0 | 1 | 2 | 3 | 178*3117ece4Schristos| -------------- | ------ | --- | --- | --- | 179*3117ece4Schristos|`FCS_Field_Size`| 0 or 1 | 2 | 4 | 8 | 180*3117ece4Schristos 181*3117ece4SchristosWhen `Flag_Value` is `0`, `FCS_Field_Size` depends on `Single_Segment_flag` : 182*3117ece4Schristosif `Single_Segment_flag` is set, `FCS_Field_Size` is 1. 183*3117ece4SchristosOtherwise, `FCS_Field_Size` is 0 : `Frame_Content_Size` is not provided. 184*3117ece4Schristos 185*3117ece4Schristos__`Single_Segment_flag`__ 186*3117ece4Schristos 187*3117ece4SchristosIf this flag is set, 188*3117ece4Schristosdata must be regenerated within a single continuous memory segment. 189*3117ece4Schristos 190*3117ece4SchristosIn this case, `Window_Descriptor` byte is skipped, 191*3117ece4Schristosbut `Frame_Content_Size` is necessarily present. 192*3117ece4SchristosAs a consequence, the decoder must allocate a memory segment 193*3117ece4Schristosof size equal or larger than `Frame_Content_Size`. 194*3117ece4Schristos 195*3117ece4SchristosIn order to preserve the decoder from unreasonable memory requirements, 196*3117ece4Schristosa decoder is allowed to reject a compressed frame 197*3117ece4Schristoswhich requests a memory size beyond decoder's authorized range. 198*3117ece4Schristos 199*3117ece4SchristosFor broader compatibility, decoders are recommended to support 200*3117ece4Schristosmemory sizes of at least 8 MB. 201*3117ece4SchristosThis is only a recommendation, 202*3117ece4Schristoseach decoder is free to support higher or lower limits, 203*3117ece4Schristosdepending on local limitations. 204*3117ece4Schristos 205*3117ece4Schristos__`Unused_bit`__ 206*3117ece4Schristos 207*3117ece4SchristosA decoder compliant with this specification version shall not interpret this bit. 208*3117ece4SchristosIt might be used in any future version, 209*3117ece4Schristosto signal a property which is transparent to properly decode the frame. 210*3117ece4SchristosAn encoder compliant with this specification version must set this bit to zero. 211*3117ece4Schristos 212*3117ece4Schristos__`Reserved_bit`__ 213*3117ece4Schristos 214*3117ece4SchristosThis bit is reserved for some future feature. 215*3117ece4SchristosIts value _must be zero_. 216*3117ece4SchristosA decoder compliant with this specification version must ensure it is not set. 217*3117ece4SchristosThis bit may be used in a future revision, 218*3117ece4Schristosto signal a feature that must be interpreted to decode the frame correctly. 219*3117ece4Schristos 220*3117ece4Schristos__`Content_Checksum_flag`__ 221*3117ece4Schristos 222*3117ece4SchristosIf this flag is set, a 32-bits `Content_Checksum` will be present at frame's end. 223*3117ece4SchristosSee `Content_Checksum` paragraph. 224*3117ece4Schristos 225*3117ece4Schristos__`Dictionary_ID_flag`__ 226*3117ece4Schristos 227*3117ece4SchristosThis is a 2-bits flag (`= FHD & 3`), 228*3117ece4Schristostelling if a dictionary ID is provided within the header. 229*3117ece4SchristosIt also specifies the size of this field as `DID_Field_Size`. 230*3117ece4Schristos 231*3117ece4Schristos|`Flag_Value` | 0 | 1 | 2 | 3 | 232*3117ece4Schristos| -------------- | --- | --- | --- | --- | 233*3117ece4Schristos|`DID_Field_Size`| 0 | 1 | 2 | 4 | 234*3117ece4Schristos 235*3117ece4Schristos#### `Window_Descriptor` 236*3117ece4Schristos 237*3117ece4SchristosProvides guarantees on minimum memory buffer required to decompress a frame. 238*3117ece4SchristosThis information is important for decoders to allocate enough memory. 239*3117ece4Schristos 240*3117ece4SchristosThe `Window_Descriptor` byte is optional. 241*3117ece4SchristosWhen `Single_Segment_flag` is set, `Window_Descriptor` is not present. 242*3117ece4SchristosIn this case, `Window_Size` is `Frame_Content_Size`, 243*3117ece4Schristoswhich can be any value from 0 to 2^64-1 bytes (16 ExaBytes). 244*3117ece4Schristos 245*3117ece4Schristos| Bit numbers | 7-3 | 2-0 | 246*3117ece4Schristos| ----------- | ---------- | ---------- | 247*3117ece4Schristos| Field name | `Exponent` | `Mantissa` | 248*3117ece4Schristos 249*3117ece4SchristosThe minimum memory buffer size is called `Window_Size`. 250*3117ece4SchristosIt is described by the following formulas : 251*3117ece4Schristos``` 252*3117ece4SchristoswindowLog = 10 + Exponent; 253*3117ece4SchristoswindowBase = 1 << windowLog; 254*3117ece4SchristoswindowAdd = (windowBase / 8) * Mantissa; 255*3117ece4SchristosWindow_Size = windowBase + windowAdd; 256*3117ece4Schristos``` 257*3117ece4SchristosThe minimum `Window_Size` is 1 KB. 258*3117ece4SchristosThe maximum `Window_Size` is `(1<<41) + 7*(1<<38)` bytes, which is 3.75 TB. 259*3117ece4Schristos 260*3117ece4SchristosIn general, larger `Window_Size` tend to improve compression ratio, 261*3117ece4Schristosbut at the cost of memory usage. 262*3117ece4Schristos 263*3117ece4SchristosTo properly decode compressed data, 264*3117ece4Schristosa decoder will need to allocate a buffer of at least `Window_Size` bytes. 265*3117ece4Schristos 266*3117ece4SchristosIn order to preserve decoder from unreasonable memory requirements, 267*3117ece4Schristosa decoder is allowed to reject a compressed frame 268*3117ece4Schristoswhich requests a memory size beyond decoder's authorized range. 269*3117ece4Schristos 270*3117ece4SchristosFor improved interoperability, 271*3117ece4Schristosit's recommended for decoders to support `Window_Size` of up to 8 MB, 272*3117ece4Schristosand it's recommended for encoders to not generate frame requiring `Window_Size` larger than 8 MB. 273*3117ece4SchristosIt's merely a recommendation though, 274*3117ece4Schristosdecoders are free to support larger or lower limits, 275*3117ece4Schristosdepending on local limitations. 276*3117ece4Schristos 277*3117ece4Schristos#### `Dictionary_ID` 278*3117ece4Schristos 279*3117ece4SchristosThis is a variable size field, which contains 280*3117ece4Schristosthe ID of the dictionary required to properly decode the frame. 281*3117ece4Schristos`Dictionary_ID` field is optional. When it's not present, 282*3117ece4Schristosit's up to the decoder to know which dictionary to use. 283*3117ece4Schristos 284*3117ece4Schristos`Dictionary_ID` field size is provided by `DID_Field_Size`. 285*3117ece4Schristos`DID_Field_Size` is directly derived from value of `Dictionary_ID_flag`. 286*3117ece4Schristos1 byte can represent an ID 0-255. 287*3117ece4Schristos2 bytes can represent an ID 0-65535. 288*3117ece4Schristos4 bytes can represent an ID 0-4294967295. 289*3117ece4SchristosFormat is __little-endian__. 290*3117ece4Schristos 291*3117ece4SchristosIt's allowed to represent a small ID (for example `13`) 292*3117ece4Schristoswith a large 4-bytes dictionary ID, even if it is less efficient. 293*3117ece4Schristos 294*3117ece4SchristosA value of `0` has same meaning as no `Dictionary_ID`, 295*3117ece4Schristosin which case the frame may or may not need a dictionary to be decoded, 296*3117ece4Schristosand the ID of such a dictionary is not specified. 297*3117ece4SchristosThe decoder must know this information by other means. 298*3117ece4Schristos 299*3117ece4Schristos#### `Frame_Content_Size` 300*3117ece4Schristos 301*3117ece4SchristosThis is the original (uncompressed) size. This information is optional. 302*3117ece4Schristos`Frame_Content_Size` uses a variable number of bytes, provided by `FCS_Field_Size`. 303*3117ece4Schristos`FCS_Field_Size` is provided by the value of `Frame_Content_Size_flag`. 304*3117ece4Schristos`FCS_Field_Size` can be equal to 0 (not present), 1, 2, 4 or 8 bytes. 305*3117ece4Schristos 306*3117ece4Schristos| `FCS_Field_Size` | Range | 307*3117ece4Schristos| ---------------- | ---------- | 308*3117ece4Schristos| 0 | unknown | 309*3117ece4Schristos| 1 | 0 - 255 | 310*3117ece4Schristos| 2 | 256 - 65791| 311*3117ece4Schristos| 4 | 0 - 2^32-1 | 312*3117ece4Schristos| 8 | 0 - 2^64-1 | 313*3117ece4Schristos 314*3117ece4Schristos`Frame_Content_Size` format is __little-endian__. 315*3117ece4SchristosWhen `FCS_Field_Size` is 1, 4 or 8 bytes, the value is read directly. 316*3117ece4SchristosWhen `FCS_Field_Size` is 2, _the offset of 256 is added_. 317*3117ece4SchristosIt's allowed to represent a small size (for example `18`) using any compatible variant. 318*3117ece4Schristos 319*3117ece4Schristos 320*3117ece4SchristosBlocks 321*3117ece4Schristos------- 322*3117ece4Schristos 323*3117ece4SchristosAfter `Magic_Number` and `Frame_Header`, there are some number of blocks. 324*3117ece4SchristosEach frame must have at least one block, 325*3117ece4Schristosbut there is no upper limit on the number of blocks per frame. 326*3117ece4Schristos 327*3117ece4SchristosThe structure of a block is as follows: 328*3117ece4Schristos 329*3117ece4Schristos| `Block_Header` | `Block_Content` | 330*3117ece4Schristos|:--------------:|:---------------:| 331*3117ece4Schristos| 3 bytes | n bytes | 332*3117ece4Schristos 333*3117ece4Schristos__`Block_Header`__ 334*3117ece4Schristos 335*3117ece4Schristos`Block_Header` uses 3 bytes, written using __little-endian__ convention. 336*3117ece4SchristosIt contains 3 fields : 337*3117ece4Schristos 338*3117ece4Schristos| `Last_Block` | `Block_Type` | `Block_Size` | 339*3117ece4Schristos|:------------:|:------------:|:------------:| 340*3117ece4Schristos| bit 0 | bits 1-2 | bits 3-23 | 341*3117ece4Schristos 342*3117ece4Schristos__`Last_Block`__ 343*3117ece4Schristos 344*3117ece4SchristosThe lowest bit signals if this block is the last one. 345*3117ece4SchristosThe frame will end after this last block. 346*3117ece4SchristosIt may be followed by an optional `Content_Checksum` 347*3117ece4Schristos(see [Zstandard Frames](#zstandard-frames)). 348*3117ece4Schristos 349*3117ece4Schristos__`Block_Type`__ 350*3117ece4Schristos 351*3117ece4SchristosThe next 2 bits represent the `Block_Type`. 352*3117ece4Schristos`Block_Type` influences the meaning of `Block_Size`. 353*3117ece4SchristosThere are 4 block types : 354*3117ece4Schristos 355*3117ece4Schristos| Value | 0 | 1 | 2 | 3 | 356*3117ece4Schristos| ------------ | ----------- | ----------- | ------------------ | --------- | 357*3117ece4Schristos| `Block_Type` | `Raw_Block` | `RLE_Block` | `Compressed_Block` | `Reserved`| 358*3117ece4Schristos 359*3117ece4Schristos- `Raw_Block` - this is an uncompressed block. 360*3117ece4Schristos `Block_Content` contains `Block_Size` bytes. 361*3117ece4Schristos 362*3117ece4Schristos- `RLE_Block` - this is a single byte, repeated `Block_Size` times. 363*3117ece4Schristos `Block_Content` consists of a single byte. 364*3117ece4Schristos On the decompression side, this byte must be repeated `Block_Size` times. 365*3117ece4Schristos 366*3117ece4Schristos- `Compressed_Block` - this is a [Zstandard compressed block](#compressed-blocks), 367*3117ece4Schristos explained later on. 368*3117ece4Schristos `Block_Size` is the length of `Block_Content`, the compressed data. 369*3117ece4Schristos The decompressed size is not known, 370*3117ece4Schristos but its maximum possible value is guaranteed (see below) 371*3117ece4Schristos 372*3117ece4Schristos- `Reserved` - this is not a block. 373*3117ece4Schristos This value cannot be used with current version of this specification. 374*3117ece4Schristos If such a value is present, it is considered corrupted data. 375*3117ece4Schristos 376*3117ece4Schristos__`Block_Size`__ 377*3117ece4Schristos 378*3117ece4SchristosThe upper 21 bits of `Block_Header` represent the `Block_Size`. 379*3117ece4Schristos 380*3117ece4SchristosWhen `Block_Type` is `Compressed_Block` or `Raw_Block`, 381*3117ece4Schristos`Block_Size` is the size of `Block_Content` (hence excluding `Block_Header`). 382*3117ece4Schristos 383*3117ece4SchristosWhen `Block_Type` is `RLE_Block`, since `Block_Content`’s size is always 1, 384*3117ece4Schristos`Block_Size` represents the number of times this byte must be repeated. 385*3117ece4Schristos 386*3117ece4Schristos`Block_Size` is limited by `Block_Maximum_Size` (see below). 387*3117ece4Schristos 388*3117ece4Schristos__`Block_Content`__ and __`Block_Maximum_Size`__ 389*3117ece4Schristos 390*3117ece4SchristosThe size of `Block_Content` is limited by `Block_Maximum_Size`, 391*3117ece4Schristoswhich is the smallest of: 392*3117ece4Schristos- `Window_Size` 393*3117ece4Schristos- 128 KB 394*3117ece4Schristos 395*3117ece4Schristos`Block_Maximum_Size` is constant for a given frame. 396*3117ece4SchristosThis maximum is applicable to both the decompressed size 397*3117ece4Schristosand the compressed size of any block in the frame. 398*3117ece4Schristos 399*3117ece4SchristosThe reasoning for this limit is that a decoder can read this information 400*3117ece4Schristosat the beginning of a frame and use it to allocate buffers. 401*3117ece4SchristosThe guarantees on the size of blocks ensure that 402*3117ece4Schristosthe buffers will be large enough for any following block of the valid frame. 403*3117ece4Schristos 404*3117ece4Schristos 405*3117ece4SchristosCompressed Blocks 406*3117ece4Schristos----------------- 407*3117ece4SchristosTo decompress a compressed block, the compressed size must be provided 408*3117ece4Schristosfrom `Block_Size` field within `Block_Header`. 409*3117ece4Schristos 410*3117ece4SchristosA compressed block consists of 2 sections : 411*3117ece4Schristos- [Literals Section](#literals-section) 412*3117ece4Schristos- [Sequences Section](#sequences-section) 413*3117ece4Schristos 414*3117ece4SchristosThe results of the two sections are then combined to produce the decompressed 415*3117ece4Schristosdata in [Sequence Execution](#sequence-execution) 416*3117ece4Schristos 417*3117ece4Schristos#### Prerequisites 418*3117ece4SchristosTo decode a compressed block, the following elements are necessary : 419*3117ece4Schristos- Previous decoded data, up to a distance of `Window_Size`, 420*3117ece4Schristos or beginning of the Frame, whichever is smaller. 421*3117ece4Schristos- List of "recent offsets" from previous `Compressed_Block`. 422*3117ece4Schristos- The previous Huffman tree, required by `Treeless_Literals_Block` type 423*3117ece4Schristos- Previous FSE decoding tables, required by `Repeat_Mode` 424*3117ece4Schristos for each symbol type (literals lengths, match lengths, offsets) 425*3117ece4Schristos 426*3117ece4SchristosNote that decoding tables aren't always from the previous `Compressed_Block`. 427*3117ece4Schristos 428*3117ece4Schristos- Every decoding table can come from a dictionary. 429*3117ece4Schristos- The Huffman tree comes from the previous `Compressed_Literals_Block`. 430*3117ece4Schristos 431*3117ece4SchristosLiterals Section 432*3117ece4Schristos---------------- 433*3117ece4SchristosAll literals are regrouped in the first part of the block. 434*3117ece4SchristosThey can be decoded first, and then copied during [Sequence Execution], 435*3117ece4Schristosor they can be decoded on the flow during [Sequence Execution]. 436*3117ece4Schristos 437*3117ece4SchristosLiterals can be stored uncompressed or compressed using Huffman prefix codes. 438*3117ece4SchristosWhen compressed, a tree description may optionally be present, 439*3117ece4Schristosfollowed by 1 or 4 streams. 440*3117ece4Schristos 441*3117ece4Schristos| `Literals_Section_Header` | [`Huffman_Tree_Description`] | [jumpTable] | Stream1 | [Stream2] | [Stream3] | [Stream4] | 442*3117ece4Schristos| ------------------------- | ---------------------------- | ----------- | ------- | --------- | --------- | --------- | 443*3117ece4Schristos 444*3117ece4Schristos 445*3117ece4Schristos### `Literals_Section_Header` 446*3117ece4Schristos 447*3117ece4SchristosHeader is in charge of describing how literals are packed. 448*3117ece4SchristosIt's a byte-aligned variable-size bitfield, ranging from 1 to 5 bytes, 449*3117ece4Schristosusing __little-endian__ convention. 450*3117ece4Schristos 451*3117ece4Schristos| `Literals_Block_Type` | `Size_Format` | `Regenerated_Size` | [`Compressed_Size`] | 452*3117ece4Schristos| --------------------- | ------------- | ------------------ | ------------------- | 453*3117ece4Schristos| 2 bits | 1 - 2 bits | 5 - 20 bits | 0 - 18 bits | 454*3117ece4Schristos 455*3117ece4SchristosIn this representation, bits on the left are the lowest bits. 456*3117ece4Schristos 457*3117ece4Schristos__`Literals_Block_Type`__ 458*3117ece4Schristos 459*3117ece4SchristosThis field uses 2 lowest bits of first byte, describing 4 different block types : 460*3117ece4Schristos 461*3117ece4Schristos| `Literals_Block_Type` | Value | 462*3117ece4Schristos| --------------------------- | ----- | 463*3117ece4Schristos| `Raw_Literals_Block` | 0 | 464*3117ece4Schristos| `RLE_Literals_Block` | 1 | 465*3117ece4Schristos| `Compressed_Literals_Block` | 2 | 466*3117ece4Schristos| `Treeless_Literals_Block` | 3 | 467*3117ece4Schristos 468*3117ece4Schristos- `Raw_Literals_Block` - Literals are stored uncompressed. 469*3117ece4Schristos- `RLE_Literals_Block` - Literals consist of a single byte value 470*3117ece4Schristos repeated `Regenerated_Size` times. 471*3117ece4Schristos- `Compressed_Literals_Block` - This is a standard Huffman-compressed block, 472*3117ece4Schristos starting with a Huffman tree description. 473*3117ece4Schristos In this mode, there are at least 2 different literals represented in the Huffman tree description. 474*3117ece4Schristos See details below. 475*3117ece4Schristos- `Treeless_Literals_Block` - This is a Huffman-compressed block, 476*3117ece4Schristos using Huffman tree _from previous Huffman-compressed literals block_. 477*3117ece4Schristos `Huffman_Tree_Description` will be skipped. 478*3117ece4Schristos Note: If this mode is triggered without any previous Huffman-table in the frame 479*3117ece4Schristos (or [dictionary](#dictionary-format)), this should be treated as data corruption. 480*3117ece4Schristos 481*3117ece4Schristos__`Size_Format`__ 482*3117ece4Schristos 483*3117ece4Schristos`Size_Format` is divided into 2 families : 484*3117ece4Schristos 485*3117ece4Schristos- For `Raw_Literals_Block` and `RLE_Literals_Block`, 486*3117ece4Schristos it's only necessary to decode `Regenerated_Size`. 487*3117ece4Schristos There is no `Compressed_Size` field. 488*3117ece4Schristos- For `Compressed_Block` and `Treeless_Literals_Block`, 489*3117ece4Schristos it's required to decode both `Compressed_Size` 490*3117ece4Schristos and `Regenerated_Size` (the decompressed size). 491*3117ece4Schristos It's also necessary to decode the number of streams (1 or 4). 492*3117ece4Schristos 493*3117ece4SchristosFor values spanning several bytes, convention is __little-endian__. 494*3117ece4Schristos 495*3117ece4Schristos__`Size_Format` for `Raw_Literals_Block` and `RLE_Literals_Block`__ : 496*3117ece4Schristos 497*3117ece4Schristos`Size_Format` uses 1 _or_ 2 bits. 498*3117ece4SchristosIts value is : `Size_Format = (Literals_Section_Header[0]>>2) & 3` 499*3117ece4Schristos 500*3117ece4Schristos- `Size_Format` == 00 or 10 : `Size_Format` uses 1 bit. 501*3117ece4Schristos `Regenerated_Size` uses 5 bits (0-31). 502*3117ece4Schristos `Literals_Section_Header` uses 1 byte. 503*3117ece4Schristos `Regenerated_Size = Literals_Section_Header[0]>>3` 504*3117ece4Schristos- `Size_Format` == 01 : `Size_Format` uses 2 bits. 505*3117ece4Schristos `Regenerated_Size` uses 12 bits (0-4095). 506*3117ece4Schristos `Literals_Section_Header` uses 2 bytes. 507*3117ece4Schristos `Regenerated_Size = (Literals_Section_Header[0]>>4) + (Literals_Section_Header[1]<<4)` 508*3117ece4Schristos- `Size_Format` == 11 : `Size_Format` uses 2 bits. 509*3117ece4Schristos `Regenerated_Size` uses 20 bits (0-1048575). 510*3117ece4Schristos `Literals_Section_Header` uses 3 bytes. 511*3117ece4Schristos `Regenerated_Size = (Literals_Section_Header[0]>>4) + (Literals_Section_Header[1]<<4) + (Literals_Section_Header[2]<<12)` 512*3117ece4Schristos 513*3117ece4SchristosOnly Stream1 is present for these cases. 514*3117ece4SchristosNote : it's allowed to represent a short value (for example `27`) 515*3117ece4Schristosusing a long format, even if it's less efficient. 516*3117ece4Schristos 517*3117ece4Schristos__`Size_Format` for `Compressed_Literals_Block` and `Treeless_Literals_Block`__ : 518*3117ece4Schristos 519*3117ece4Schristos`Size_Format` always uses 2 bits. 520*3117ece4Schristos 521*3117ece4Schristos- `Size_Format` == 00 : _A single stream_. 522*3117ece4Schristos Both `Regenerated_Size` and `Compressed_Size` use 10 bits (0-1023). 523*3117ece4Schristos `Literals_Section_Header` uses 3 bytes. 524*3117ece4Schristos- `Size_Format` == 01 : 4 streams. 525*3117ece4Schristos Both `Regenerated_Size` and `Compressed_Size` use 10 bits (6-1023). 526*3117ece4Schristos `Literals_Section_Header` uses 3 bytes. 527*3117ece4Schristos- `Size_Format` == 10 : 4 streams. 528*3117ece4Schristos Both `Regenerated_Size` and `Compressed_Size` use 14 bits (6-16383). 529*3117ece4Schristos `Literals_Section_Header` uses 4 bytes. 530*3117ece4Schristos- `Size_Format` == 11 : 4 streams. 531*3117ece4Schristos Both `Regenerated_Size` and `Compressed_Size` use 18 bits (6-262143). 532*3117ece4Schristos `Literals_Section_Header` uses 5 bytes. 533*3117ece4Schristos 534*3117ece4SchristosBoth `Compressed_Size` and `Regenerated_Size` fields follow __little-endian__ convention. 535*3117ece4SchristosNote: `Compressed_Size` __includes__ the size of the Huffman Tree description 536*3117ece4Schristos_when_ it is present. 537*3117ece4SchristosNote 2: `Compressed_Size` can never be `==0`. 538*3117ece4SchristosEven in single-stream scenario, assuming an empty content, it must be `>=1`, 539*3117ece4Schristossince it contains at least the final end bit flag. 540*3117ece4SchristosIn 4-streams scenario, a valid `Compressed_Size` is necessarily `>= 10` 541*3117ece4Schristos(6 bytes for the jump table, + 4x1 bytes for the 4 streams). 542*3117ece4Schristos 543*3117ece4Schristos4 streams is faster than 1 stream in decompression speed, 544*3117ece4Schristosby exploiting instruction level parallelism. 545*3117ece4SchristosBut it's also more expensive, 546*3117ece4Schristoscosting on average ~7.3 bytes more than the 1 stream mode, mostly from the jump table. 547*3117ece4Schristos 548*3117ece4SchristosIn general, use the 4 streams mode when there are more literals to decode, 549*3117ece4Schristosto favor higher decompression speeds. 550*3117ece4SchristosNote that beyond >1KB of literals, the 4 streams mode is compulsory. 551*3117ece4Schristos 552*3117ece4SchristosNote that a minimum of 6 bytes is required for the 4 streams mode. 553*3117ece4SchristosThat's a technical minimum, but it's not recommended to employ the 4 streams mode 554*3117ece4Schristosfor such a small quantity, that would be wasteful. 555*3117ece4SchristosA more practical lower bound would be around ~256 bytes. 556*3117ece4Schristos 557*3117ece4Schristos#### Raw Literals Block 558*3117ece4SchristosThe data in Stream1 is `Regenerated_Size` bytes long, 559*3117ece4Schristosit contains the raw literals data to be used during [Sequence Execution]. 560*3117ece4Schristos 561*3117ece4Schristos#### RLE Literals Block 562*3117ece4SchristosStream1 consists of a single byte which should be repeated `Regenerated_Size` times 563*3117ece4Schristosto generate the decoded literals. 564*3117ece4Schristos 565*3117ece4Schristos#### Compressed Literals Block and Treeless Literals Block 566*3117ece4SchristosBoth of these modes contain Huffman encoded data. 567*3117ece4Schristos 568*3117ece4SchristosFor `Treeless_Literals_Block`, 569*3117ece4Schristosthe Huffman table comes from previously compressed literals block, 570*3117ece4Schristosor from a dictionary. 571*3117ece4Schristos 572*3117ece4Schristos 573*3117ece4Schristos### `Huffman_Tree_Description` 574*3117ece4SchristosThis section is only present when `Literals_Block_Type` type is `Compressed_Literals_Block` (`2`). 575*3117ece4SchristosThe tree describes the weights of all literals symbols that can be present in the literals block, at least 2 and up to 256. 576*3117ece4SchristosThe format of the Huffman tree description can be found at [Huffman Tree description](#huffman-tree-description). 577*3117ece4SchristosThe size of `Huffman_Tree_Description` is determined during decoding process, 578*3117ece4Schristosit must be used to determine where streams begin. 579*3117ece4Schristos`Total_Streams_Size = Compressed_Size - Huffman_Tree_Description_Size`. 580*3117ece4Schristos 581*3117ece4Schristos 582*3117ece4Schristos### Jump Table 583*3117ece4SchristosThe Jump Table is only present when there are 4 Huffman-coded streams. 584*3117ece4Schristos 585*3117ece4SchristosReminder : Huffman compressed data consists of either 1 or 4 streams. 586*3117ece4Schristos 587*3117ece4SchristosIf only one stream is present, it is a single bitstream occupying the entire 588*3117ece4Schristosremaining portion of the literals block, encoded as described in 589*3117ece4Schristos[Huffman-Coded Streams](#huffman-coded-streams). 590*3117ece4Schristos 591*3117ece4SchristosIf there are four streams, `Literals_Section_Header` only provided 592*3117ece4Schristosenough information to know the decompressed and compressed sizes 593*3117ece4Schristosof all four streams _combined_. 594*3117ece4SchristosThe decompressed size of _each_ stream is equal to `(Regenerated_Size+3)/4`, 595*3117ece4Schristosexcept for the last stream which may be up to 3 bytes smaller, 596*3117ece4Schristosto reach a total decompressed size as specified in `Regenerated_Size`. 597*3117ece4Schristos 598*3117ece4SchristosThe compressed size of each stream is provided explicitly in the Jump Table. 599*3117ece4SchristosJump Table is 6 bytes long, and consists of three 2-byte __little-endian__ fields, 600*3117ece4Schristosdescribing the compressed sizes of the first three streams. 601*3117ece4Schristos`Stream4_Size` is computed from `Total_Streams_Size` minus sizes of other streams: 602*3117ece4Schristos 603*3117ece4Schristos`Stream4_Size = Total_Streams_Size - 6 - Stream1_Size - Stream2_Size - Stream3_Size`. 604*3117ece4Schristos 605*3117ece4Schristos`Stream4_Size` is necessarily `>= 1`. Therefore, 606*3117ece4Schristosif `Total_Streams_Size < Stream1_Size + Stream2_Size + Stream3_Size + 6 + 1`, 607*3117ece4Schristosdata is considered corrupted. 608*3117ece4Schristos 609*3117ece4SchristosEach of these 4 bitstreams is then decoded independently as a Huffman-Coded stream, 610*3117ece4Schristosas described in [Huffman-Coded Streams](#huffman-coded-streams) 611*3117ece4Schristos 612*3117ece4Schristos 613*3117ece4SchristosSequences Section 614*3117ece4Schristos----------------- 615*3117ece4SchristosA compressed block is a succession of _sequences_ . 616*3117ece4SchristosA sequence is a literal copy command, followed by a match copy command. 617*3117ece4SchristosA literal copy command specifies a length. 618*3117ece4SchristosIt is the number of bytes to be copied (or extracted) from the Literals Section. 619*3117ece4SchristosA match copy command specifies an offset and a length. 620*3117ece4Schristos 621*3117ece4SchristosWhen all _sequences_ are decoded, 622*3117ece4Schristosif there are literals left in the _literals section_, 623*3117ece4Schristosthese bytes are added at the end of the block. 624*3117ece4Schristos 625*3117ece4SchristosThis is described in more detail in [Sequence Execution](#sequence-execution). 626*3117ece4Schristos 627*3117ece4SchristosThe `Sequences_Section` regroup all symbols required to decode commands. 628*3117ece4SchristosThere are 3 symbol types : literals lengths, offsets and match lengths. 629*3117ece4SchristosThey are encoded together, interleaved, in a single _bitstream_. 630*3117ece4Schristos 631*3117ece4SchristosThe `Sequences_Section` starts by a header, 632*3117ece4Schristosfollowed by optional probability tables for each symbol type, 633*3117ece4Schristosfollowed by the bitstream. 634*3117ece4Schristos 635*3117ece4Schristos| `Sequences_Section_Header` | [`Literals_Length_Table`] | [`Offset_Table`] | [`Match_Length_Table`] | bitStream | 636*3117ece4Schristos| -------------------------- | ------------------------- | ---------------- | ---------------------- | --------- | 637*3117ece4Schristos 638*3117ece4SchristosTo decode the `Sequences_Section`, it's required to know its size. 639*3117ece4SchristosIts size is deduced from the size of `Literals_Section`: 640*3117ece4Schristos`Sequences_Section_Size = Block_Size - Literals_Section_Size`. 641*3117ece4Schristos 642*3117ece4Schristos 643*3117ece4Schristos#### `Sequences_Section_Header` 644*3117ece4Schristos 645*3117ece4SchristosConsists of 2 items: 646*3117ece4Schristos- `Number_of_Sequences` 647*3117ece4Schristos- Symbol compression modes 648*3117ece4Schristos 649*3117ece4Schristos__`Number_of_Sequences`__ 650*3117ece4Schristos 651*3117ece4SchristosThis is a variable size field using between 1 and 3 bytes. 652*3117ece4SchristosLet's call its first byte `byte0`. 653*3117ece4Schristos- `if (byte0 < 128)` : `Number_of_Sequences = byte0` . Uses 1 byte. 654*3117ece4Schristos- `if (byte0 < 255)` : `Number_of_Sequences = ((byte0 - 0x80) << 8) + byte1`. Uses 2 bytes. 655*3117ece4Schristos Note that the 2 bytes format fully overlaps the 1 byte format. 656*3117ece4Schristos- `if (byte0 == 255)`: `Number_of_Sequences = byte1 + (byte2<<8) + 0x7F00`. Uses 3 bytes. 657*3117ece4Schristos 658*3117ece4Schristos`if (Number_of_Sequences == 0)` : there are no sequences. 659*3117ece4Schristos The sequence section stops immediately, 660*3117ece4Schristos FSE tables used in `Repeat_Mode` aren't updated. 661*3117ece4Schristos Block's decompressed content is defined solely by the Literals Section content. 662*3117ece4Schristos 663*3117ece4Schristos__Symbol compression modes__ 664*3117ece4Schristos 665*3117ece4SchristosThis is a single byte, defining the compression mode of each symbol type. 666*3117ece4Schristos 667*3117ece4Schristos|Bit number| 7-6 | 5-4 | 3-2 | 1-0 | 668*3117ece4Schristos| -------- | ----------------------- | -------------- | -------------------- | ---------- | 669*3117ece4Schristos|Field name| `Literals_Lengths_Mode` | `Offsets_Mode` | `Match_Lengths_Mode` | `Reserved` | 670*3117ece4Schristos 671*3117ece4SchristosThe last field, `Reserved`, must be all-zeroes. 672*3117ece4Schristos 673*3117ece4Schristos`Literals_Lengths_Mode`, `Offsets_Mode` and `Match_Lengths_Mode` define the `Compression_Mode` of 674*3117ece4Schristosliterals lengths, offsets, and match lengths symbols respectively. 675*3117ece4Schristos 676*3117ece4SchristosThey follow the same enumeration : 677*3117ece4Schristos 678*3117ece4Schristos| Value | 0 | 1 | 2 | 3 | 679*3117ece4Schristos| ------------------ | ----------------- | ---------- | --------------------- | ------------- | 680*3117ece4Schristos| `Compression_Mode` | `Predefined_Mode` | `RLE_Mode` | `FSE_Compressed_Mode` | `Repeat_Mode` | 681*3117ece4Schristos 682*3117ece4Schristos- `Predefined_Mode` : A predefined FSE distribution table is used, defined in 683*3117ece4Schristos [default distributions](#default-distributions). 684*3117ece4Schristos No distribution table will be present. 685*3117ece4Schristos- `RLE_Mode` : The table description consists of a single byte, which contains the symbol's value. 686*3117ece4Schristos This symbol will be used for all sequences. 687*3117ece4Schristos- `FSE_Compressed_Mode` : standard FSE compression. 688*3117ece4Schristos A distribution table will be present. 689*3117ece4Schristos The format of this distribution table is described in [FSE Table Description](#fse-table-description). 690*3117ece4Schristos Note that the maximum allowed accuracy log for literals length and match length tables is 9, 691*3117ece4Schristos and the maximum accuracy log for the offsets table is 8. 692*3117ece4Schristos `FSE_Compressed_Mode` must not be used when only one symbol is present, 693*3117ece4Schristos `RLE_Mode` should be used instead (although any other mode will work). 694*3117ece4Schristos- `Repeat_Mode` : The table used in the previous `Compressed_Block` with `Number_of_Sequences > 0` will be used again, 695*3117ece4Schristos or if this is the first block, table in the dictionary will be used. 696*3117ece4Schristos Note that this includes `RLE_mode`, so if `Repeat_Mode` follows `RLE_Mode`, the same symbol will be repeated. 697*3117ece4Schristos It also includes `Predefined_Mode`, in which case `Repeat_Mode` will have same outcome as `Predefined_Mode`. 698*3117ece4Schristos No distribution table will be present. 699*3117ece4Schristos If this mode is used without any previous sequence table in the frame 700*3117ece4Schristos (nor [dictionary](#dictionary-format)) to repeat, this should be treated as corruption. 701*3117ece4Schristos 702*3117ece4Schristos#### The codes for literals lengths, match lengths, and offsets. 703*3117ece4Schristos 704*3117ece4SchristosEach symbol is a _code_ in its own context, 705*3117ece4Schristoswhich specifies `Baseline` and `Number_of_Bits` to add. 706*3117ece4Schristos_Codes_ are FSE compressed, 707*3117ece4Schristosand interleaved with raw additional bits in the same bitstream. 708*3117ece4Schristos 709*3117ece4Schristos##### Literals length codes 710*3117ece4Schristos 711*3117ece4SchristosLiterals length codes are values ranging from `0` to `35` included. 712*3117ece4SchristosThey define lengths from 0 to 131071 bytes. 713*3117ece4SchristosThe literals length is equal to the decoded `Baseline` plus 714*3117ece4Schristosthe result of reading `Number_of_Bits` bits from the bitstream, 715*3117ece4Schristosas a __little-endian__ value. 716*3117ece4Schristos 717*3117ece4Schristos| `Literals_Length_Code` | 0-15 | 718*3117ece4Schristos| ---------------------- | ---------------------- | 719*3117ece4Schristos| length | `Literals_Length_Code` | 720*3117ece4Schristos| `Number_of_Bits` | 0 | 721*3117ece4Schristos 722*3117ece4Schristos| `Literals_Length_Code` | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 723*3117ece4Schristos| ---------------------- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 724*3117ece4Schristos| `Baseline` | 16 | 18 | 20 | 22 | 24 | 28 | 32 | 40 | 725*3117ece4Schristos| `Number_of_Bits` | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 726*3117ece4Schristos 727*3117ece4Schristos| `Literals_Length_Code` | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 728*3117ece4Schristos| ---------------------- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 729*3117ece4Schristos| `Baseline` | 48 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 730*3117ece4Schristos| `Number_of_Bits` | 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 731*3117ece4Schristos 732*3117ece4Schristos| `Literals_Length_Code` | 32 | 33 | 34 | 35 | 733*3117ece4Schristos| ---------------------- | ---- | ---- | ---- | ---- | 734*3117ece4Schristos| `Baseline` | 8192 |16384 |32768 |65536 | 735*3117ece4Schristos| `Number_of_Bits` | 13 | 14 | 15 | 16 | 736*3117ece4Schristos 737*3117ece4Schristos 738*3117ece4Schristos##### Match length codes 739*3117ece4Schristos 740*3117ece4SchristosMatch length codes are values ranging from `0` to `52` included. 741*3117ece4SchristosThey define lengths from 3 to 131074 bytes. 742*3117ece4SchristosThe match length is equal to the decoded `Baseline` plus 743*3117ece4Schristosthe result of reading `Number_of_Bits` bits from the bitstream, 744*3117ece4Schristosas a __little-endian__ value. 745*3117ece4Schristos 746*3117ece4Schristos| `Match_Length_Code` | 0-31 | 747*3117ece4Schristos| ------------------- | ----------------------- | 748*3117ece4Schristos| value | `Match_Length_Code` + 3 | 749*3117ece4Schristos| `Number_of_Bits` | 0 | 750*3117ece4Schristos 751*3117ece4Schristos| `Match_Length_Code` | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 752*3117ece4Schristos| ------------------- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 753*3117ece4Schristos| `Baseline` | 35 | 37 | 39 | 41 | 43 | 47 | 51 | 59 | 754*3117ece4Schristos| `Number_of_Bits` | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 755*3117ece4Schristos 756*3117ece4Schristos| `Match_Length_Code` | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 757*3117ece4Schristos| ------------------- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | ---- | 758*3117ece4Schristos| `Baseline` | 67 | 83 | 99 | 131 | 259 | 515 | 1027 | 2051 | 759*3117ece4Schristos| `Number_of_Bits` | 4 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | 760*3117ece4Schristos 761*3117ece4Schristos| `Match_Length_Code` | 48 | 49 | 50 | 51 | 52 | 762*3117ece4Schristos| ------------------- | ---- | ---- | ---- | ---- | ---- | 763*3117ece4Schristos| `Baseline` | 4099 | 8195 |16387 |32771 |65539 | 764*3117ece4Schristos| `Number_of_Bits` | 12 | 13 | 14 | 15 | 16 | 765*3117ece4Schristos 766*3117ece4Schristos##### Offset codes 767*3117ece4Schristos 768*3117ece4SchristosOffset codes are values ranging from `0` to `N`. 769*3117ece4Schristos 770*3117ece4SchristosA decoder is free to limit its maximum `N` supported. 771*3117ece4SchristosRecommendation is to support at least up to `22`. 772*3117ece4SchristosFor information, at the time of this writing. 773*3117ece4Schristosthe reference decoder supports a maximum `N` value of `31`. 774*3117ece4Schristos 775*3117ece4SchristosAn offset code is also the number of additional bits to read in __little-endian__ fashion, 776*3117ece4Schristosand can be translated into an `Offset_Value` using the following formulas : 777*3117ece4Schristos 778*3117ece4Schristos``` 779*3117ece4SchristosOffset_Value = (1 << offsetCode) + readNBits(offsetCode); 780*3117ece4Schristosif (Offset_Value > 3) offset = Offset_Value - 3; 781*3117ece4Schristos``` 782*3117ece4SchristosIt means that maximum `Offset_Value` is `(2^(N+1))-1` 783*3117ece4Schristossupporting back-reference distances up to `(2^(N+1))-4`, 784*3117ece4Schristosbut is limited by [maximum back-reference distance](#window_descriptor). 785*3117ece4Schristos 786*3117ece4Schristos`Offset_Value` from 1 to 3 are special : they define "repeat codes". 787*3117ece4SchristosThis is described in more detail in [Repeat Offsets](#repeat-offsets). 788*3117ece4Schristos 789*3117ece4Schristos#### Decoding Sequences 790*3117ece4SchristosFSE bitstreams are read in reverse direction than written. In zstd, 791*3117ece4Schristosthe compressor writes bits forward into a block and the decompressor 792*3117ece4Schristosmust read the bitstream _backwards_. 793*3117ece4Schristos 794*3117ece4SchristosTo find the start of the bitstream it is therefore necessary to 795*3117ece4Schristosknow the offset of the last byte of the block which can be found 796*3117ece4Schristosby counting `Block_Size` bytes after the block header. 797*3117ece4Schristos 798*3117ece4SchristosAfter writing the last bit containing information, the compressor 799*3117ece4Schristoswrites a single `1`-bit and then fills the byte with 0-7 `0` bits of 800*3117ece4Schristospadding. The last byte of the compressed bitstream cannot be `0` for 801*3117ece4Schristosthat reason. 802*3117ece4Schristos 803*3117ece4SchristosWhen decompressing, the last byte containing the padding is the first 804*3117ece4Schristosbyte to read. The decompressor needs to skip 0-7 initial `0`-bits and 805*3117ece4Schristosthe first `1`-bit it occurs. Afterwards, the useful part of the bitstream 806*3117ece4Schristosbegins. 807*3117ece4Schristos 808*3117ece4SchristosFSE decoding requires a 'state' to be carried from symbol to symbol. 809*3117ece4SchristosFor more explanation on FSE decoding, see the [FSE section](#fse). 810*3117ece4Schristos 811*3117ece4SchristosFor sequence decoding, a separate state keeps track of each 812*3117ece4Schristosliteral lengths, offsets, and match lengths symbols. 813*3117ece4SchristosSome FSE primitives are also used. 814*3117ece4SchristosFor more details on the operation of these primitives, see the [FSE section](#fse). 815*3117ece4Schristos 816*3117ece4Schristos##### Starting states 817*3117ece4SchristosThe bitstream starts with initial FSE state values, 818*3117ece4Schristoseach using the required number of bits in their respective _accuracy_, 819*3117ece4Schristosdecoded previously from their normalized distribution. 820*3117ece4Schristos 821*3117ece4SchristosIt starts by `Literals_Length_State`, 822*3117ece4Schristosfollowed by `Offset_State`, 823*3117ece4Schristosand finally `Match_Length_State`. 824*3117ece4Schristos 825*3117ece4SchristosReminder : always keep in mind that all values are read _backward_, 826*3117ece4Schristosso the 'start' of the bitstream is at the highest position in memory, 827*3117ece4Schristosimmediately before the last `1`-bit for padding. 828*3117ece4Schristos 829*3117ece4SchristosAfter decoding the starting states, a single sequence is decoded 830*3117ece4Schristos`Number_Of_Sequences` times. 831*3117ece4SchristosThese sequences are decoded in order from first to last. 832*3117ece4SchristosSince the compressor writes the bitstream in the forward direction, 833*3117ece4Schristosthis means the compressor must encode the sequences starting with the last 834*3117ece4Schristosone and ending with the first. 835*3117ece4Schristos 836*3117ece4Schristos##### Decoding a sequence 837*3117ece4SchristosFor each of the symbol types, the FSE state can be used to determine the appropriate code. 838*3117ece4SchristosThe code then defines the `Baseline` and `Number_of_Bits` to read for each type. 839*3117ece4SchristosSee the [description of the codes] for how to determine these values. 840*3117ece4Schristos 841*3117ece4Schristos[description of the codes]: #the-codes-for-literals-lengths-match-lengths-and-offsets 842*3117ece4Schristos 843*3117ece4SchristosDecoding starts by reading the `Number_of_Bits` required to decode `Offset`. 844*3117ece4SchristosIt then does the same for `Match_Length`, and then for `Literals_Length`. 845*3117ece4SchristosThis sequence is then used for [sequence execution](#sequence-execution). 846*3117ece4Schristos 847*3117ece4SchristosIf it is not the last sequence in the block, 848*3117ece4Schristosthe next operation is to update states. 849*3117ece4SchristosUsing the rules pre-calculated in the decoding tables, 850*3117ece4Schristos`Literals_Length_State` is updated, 851*3117ece4Schristosfollowed by `Match_Length_State`, 852*3117ece4Schristosand then `Offset_State`. 853*3117ece4SchristosSee the [FSE section](#fse) for details on how to update states from the bitstream. 854*3117ece4Schristos 855*3117ece4SchristosThis operation will be repeated `Number_of_Sequences` times. 856*3117ece4SchristosAt the end, the bitstream shall be entirely consumed, 857*3117ece4Schristosotherwise the bitstream is considered corrupted. 858*3117ece4Schristos 859*3117ece4Schristos#### Default Distributions 860*3117ece4SchristosIf `Predefined_Mode` is selected for a symbol type, 861*3117ece4Schristosits FSE decoding table is generated from a predefined distribution table defined here. 862*3117ece4SchristosFor details on how to convert this distribution into a decoding table, see the [FSE section]. 863*3117ece4Schristos 864*3117ece4Schristos[FSE section]: #from-normalized-distribution-to-decoding-tables 865*3117ece4Schristos 866*3117ece4Schristos##### Literals Length 867*3117ece4SchristosThe decoding table uses an accuracy log of 6 bits (64 states). 868*3117ece4Schristos``` 869*3117ece4Schristosshort literalsLength_defaultDistribution[36] = 870*3117ece4Schristos { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 871*3117ece4Schristos 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, 872*3117ece4Schristos -1,-1,-1,-1 }; 873*3117ece4Schristos``` 874*3117ece4Schristos 875*3117ece4Schristos##### Match Length 876*3117ece4SchristosThe decoding table uses an accuracy log of 6 bits (64 states). 877*3117ece4Schristos``` 878*3117ece4Schristosshort matchLengths_defaultDistribution[53] = 879*3117ece4Schristos { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 880*3117ece4Schristos 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 881*3117ece4Schristos 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1, 882*3117ece4Schristos -1,-1,-1,-1,-1 }; 883*3117ece4Schristos``` 884*3117ece4Schristos 885*3117ece4Schristos##### Offset Codes 886*3117ece4SchristosThe decoding table uses an accuracy log of 5 bits (32 states), 887*3117ece4Schristosand supports a maximum `N` value of 28, allowing offset values up to 536,870,908 . 888*3117ece4Schristos 889*3117ece4SchristosIf any sequence in the compressed block requires a larger offset than this, 890*3117ece4Schristosit's not possible to use the default distribution to represent it. 891*3117ece4Schristos``` 892*3117ece4Schristosshort offsetCodes_defaultDistribution[29] = 893*3117ece4Schristos { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 894*3117ece4Schristos 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 }; 895*3117ece4Schristos``` 896*3117ece4Schristos 897*3117ece4Schristos 898*3117ece4SchristosSequence Execution 899*3117ece4Schristos------------------ 900*3117ece4SchristosOnce literals and sequences have been decoded, 901*3117ece4Schristosthey are combined to produce the decoded content of a block. 902*3117ece4Schristos 903*3117ece4SchristosEach sequence consists of a tuple of (`literals_length`, `offset_value`, `match_length`), 904*3117ece4Schristosdecoded as described in the [Sequences Section](#sequences-section). 905*3117ece4SchristosTo execute a sequence, first copy `literals_length` bytes 906*3117ece4Schristosfrom the decoded literals to the output. 907*3117ece4Schristos 908*3117ece4SchristosThen `match_length` bytes are copied from previous decoded data. 909*3117ece4SchristosThe offset to copy from is determined by `offset_value`: 910*3117ece4Schristosif `offset_value > 3`, then the offset is `offset_value - 3`. 911*3117ece4SchristosIf `offset_value` is from 1-3, the offset is a special repeat offset value. 912*3117ece4SchristosSee the [repeat offset](#repeat-offsets) section for how the offset is determined 913*3117ece4Schristosin this case. 914*3117ece4Schristos 915*3117ece4SchristosThe offset is defined as from the current position, so an offset of 6 916*3117ece4Schristosand a match length of 3 means that 3 bytes should be copied from 6 bytes back. 917*3117ece4SchristosNote that all offsets leading to previously decoded data 918*3117ece4Schristosmust be smaller than `Window_Size` defined in `Frame_Header_Descriptor`. 919*3117ece4Schristos 920*3117ece4Schristos#### Repeat offsets 921*3117ece4SchristosAs seen in [Sequence Execution](#sequence-execution), 922*3117ece4Schristosthe first 3 values define a repeated offset and we will call them 923*3117ece4Schristos`Repeated_Offset1`, `Repeated_Offset2`, and `Repeated_Offset3`. 924*3117ece4SchristosThey are sorted in recency order, with `Repeated_Offset1` meaning "most recent one". 925*3117ece4Schristos 926*3117ece4SchristosIf `offset_value == 1`, then the offset used is `Repeated_Offset1`, etc. 927*3117ece4Schristos 928*3117ece4SchristosThere is an exception though, when current sequence's `literals_length = 0`. 929*3117ece4SchristosIn this case, repeated offsets are shifted by one, 930*3117ece4Schristosso an `offset_value` of 1 means `Repeated_Offset2`, 931*3117ece4Schristosan `offset_value` of 2 means `Repeated_Offset3`, 932*3117ece4Schristosand an `offset_value` of 3 means `Repeated_Offset1 - 1`. 933*3117ece4Schristos 934*3117ece4SchristosIn the final case, if `Repeated_Offset1 - 1` evaluates to 0, then the 935*3117ece4Schristosdata is considered corrupted. 936*3117ece4Schristos 937*3117ece4SchristosFor the first block, the starting offset history is populated with following values : 938*3117ece4Schristos`Repeated_Offset1`=1, `Repeated_Offset2`=4, `Repeated_Offset3`=8, 939*3117ece4Schristosunless a dictionary is used, in which case they come from the dictionary. 940*3117ece4Schristos 941*3117ece4SchristosThen each block gets its starting offset history from the ending values of the most recent `Compressed_Block`. 942*3117ece4SchristosNote that blocks which are not `Compressed_Block` are skipped, they do not contribute to offset history. 943*3117ece4Schristos 944*3117ece4Schristos[Offset Codes]: #offset-codes 945*3117ece4Schristos 946*3117ece4Schristos###### Offset updates rules 947*3117ece4Schristos 948*3117ece4SchristosDuring the execution of the sequences of a `Compressed_Block`, the 949*3117ece4Schristos`Repeated_Offsets`' values are kept up to date, so that they always represent 950*3117ece4Schristosthe three most-recently used offsets. In order to achieve that, they are 951*3117ece4Schristosupdated after executing each sequence in the following way: 952*3117ece4Schristos 953*3117ece4SchristosWhen the sequence's `offset_value` does not refer to one of the 954*3117ece4Schristos`Repeated_Offsets`--when it has value greater than 3, or when it has value 3 955*3117ece4Schristosand the sequence's `literals_length` is zero--the `Repeated_Offsets`' values 956*3117ece4Schristosare shifted back one, and `Repeated_Offset1` takes on the value of the 957*3117ece4Schristosjust-used offset. 958*3117ece4Schristos 959*3117ece4SchristosOtherwise, when the sequence's `offset_value` refers to one of the 960*3117ece4Schristos`Repeated_Offsets`--when it has value 1 or 2, or when it has value 3 and the 961*3117ece4Schristossequence's `literals_length` is non-zero--the `Repeated_Offsets` are re-ordered 962*3117ece4Schristosso that `Repeated_Offset1` takes on the value of the used Repeated_Offset, and 963*3117ece4Schristosthe existing values are pushed back from the first `Repeated_Offset` through to 964*3117ece4Schristosthe `Repeated_Offset` selected by the `offset_value`. This effectively performs 965*3117ece4Schristosa single-stepped wrapping rotation of the values of these offsets, so that 966*3117ece4Schristostheir order again reflects the recency of their use. 967*3117ece4Schristos 968*3117ece4SchristosThe following table shows the values of the `Repeated_Offsets` as a series of 969*3117ece4Schristossequences are applied to them: 970*3117ece4Schristos 971*3117ece4Schristos| `offset_value` | `literals_length` | `Repeated_Offset1` | `Repeated_Offset2` | `Repeated_Offset3` | Comment | 972*3117ece4Schristos|:--------------:|:-----------------:|:------------------:|:------------------:|:------------------:|:-----------------------:| 973*3117ece4Schristos| | | 1 | 4 | 8 | starting values | 974*3117ece4Schristos| 1114 | 11 | 1111 | 1 | 4 | non-repeat | 975*3117ece4Schristos| 1 | 22 | 1111 | 1 | 4 | repeat 1: no change | 976*3117ece4Schristos| 2225 | 22 | 2222 | 1111 | 1 | non-repeat | 977*3117ece4Schristos| 1114 | 111 | 1111 | 2222 | 1111 | non-repeat | 978*3117ece4Schristos| 3336 | 33 | 3333 | 1111 | 2222 | non-repeat | 979*3117ece4Schristos| 2 | 22 | 1111 | 3333 | 2222 | repeat 2: swap 1 & 2 | 980*3117ece4Schristos| 3 | 33 | 2222 | 1111 | 3333 | repeat 3: rotate 3 to 1 | 981*3117ece4Schristos| 3 | 0 | 2221 | 2222 | 1111 | special case : insert `repeat1 - 1` | 982*3117ece4Schristos| 1 | 0 | 2222 | 2221 | 1111 | == repeat 2 | 983*3117ece4Schristos 984*3117ece4Schristos 985*3117ece4SchristosSkippable Frames 986*3117ece4Schristos---------------- 987*3117ece4Schristos 988*3117ece4Schristos| `Magic_Number` | `Frame_Size` | `User_Data` | 989*3117ece4Schristos|:--------------:|:------------:|:-----------:| 990*3117ece4Schristos| 4 bytes | 4 bytes | n bytes | 991*3117ece4Schristos 992*3117ece4SchristosSkippable frames allow the insertion of user-defined metadata 993*3117ece4Schristosinto a flow of concatenated frames. 994*3117ece4Schristos 995*3117ece4SchristosSkippable frames defined in this specification are compatible with [LZ4] ones. 996*3117ece4Schristos 997*3117ece4Schristos[LZ4]:https://lz4.github.io/lz4/ 998*3117ece4Schristos 999*3117ece4SchristosFrom a compliant decoder perspective, skippable frames need just be skipped, 1000*3117ece4Schristosand their content ignored, resuming decoding after the skippable frame. 1001*3117ece4Schristos 1002*3117ece4SchristosIt can be noted that a skippable frame 1003*3117ece4Schristoscan be used to watermark a stream of concatenated frames 1004*3117ece4Schristosembedding any kind of tracking information (even just a UUID). 1005*3117ece4SchristosUsers wary of such possibility should scan the stream of concatenated frames 1006*3117ece4Schristosin an attempt to detect such frame for analysis or removal. 1007*3117ece4Schristos 1008*3117ece4Schristos__`Magic_Number`__ 1009*3117ece4Schristos 1010*3117ece4Schristos4 Bytes, __little-endian__ format. 1011*3117ece4SchristosValue : 0x184D2A5?, which means any value from 0x184D2A50 to 0x184D2A5F. 1012*3117ece4SchristosAll 16 values are valid to identify a skippable frame. 1013*3117ece4SchristosThis specification doesn't detail any specific tagging for skippable frames. 1014*3117ece4Schristos 1015*3117ece4Schristos__`Frame_Size`__ 1016*3117ece4Schristos 1017*3117ece4SchristosThis is the size, in bytes, of the following `User_Data` 1018*3117ece4Schristos(without including the magic number nor the size field itself). 1019*3117ece4SchristosThis field is represented using 4 Bytes, __little-endian__ format, unsigned 32-bits. 1020*3117ece4SchristosThis means `User_Data` can’t be bigger than (2^32-1) bytes. 1021*3117ece4Schristos 1022*3117ece4Schristos__`User_Data`__ 1023*3117ece4Schristos 1024*3117ece4SchristosThe `User_Data` can be anything. Data will just be skipped by the decoder. 1025*3117ece4Schristos 1026*3117ece4Schristos 1027*3117ece4Schristos 1028*3117ece4SchristosEntropy Encoding 1029*3117ece4Schristos---------------- 1030*3117ece4SchristosTwo types of entropy encoding are used by the Zstandard format: 1031*3117ece4SchristosFSE, and Huffman coding. 1032*3117ece4SchristosHuffman is used to compress literals, 1033*3117ece4Schristoswhile FSE is used for all other symbols 1034*3117ece4Schristos(`Literals_Length_Code`, `Match_Length_Code`, offset codes) 1035*3117ece4Schristosand to compress Huffman headers. 1036*3117ece4Schristos 1037*3117ece4Schristos 1038*3117ece4SchristosFSE 1039*3117ece4Schristos--- 1040*3117ece4SchristosFSE, short for Finite State Entropy, is an entropy codec based on [ANS]. 1041*3117ece4SchristosFSE encoding/decoding involves a state that is carried over between symbols, 1042*3117ece4Schristosso decoding must be done in the opposite direction as encoding. 1043*3117ece4SchristosTherefore, all FSE bitstreams are read from end to beginning. 1044*3117ece4SchristosNote that the order of the bits in the stream is not reversed, 1045*3117ece4Schristoswe just read the elements in the reverse order they are written. 1046*3117ece4Schristos 1047*3117ece4SchristosFor additional details on FSE, see [Finite State Entropy]. 1048*3117ece4Schristos 1049*3117ece4Schristos[Finite State Entropy]:https://github.com/Cyan4973/FiniteStateEntropy/ 1050*3117ece4Schristos 1051*3117ece4SchristosFSE decoding involves a decoding table which has a power of 2 size, and contain three elements: 1052*3117ece4Schristos`Symbol`, `Num_Bits`, and `Baseline`. 1053*3117ece4SchristosThe `log2` of the table size is its `Accuracy_Log`. 1054*3117ece4SchristosAn FSE state value represents an index in this table. 1055*3117ece4Schristos 1056*3117ece4SchristosTo obtain the initial state value, consume `Accuracy_Log` bits from the stream as a __little-endian__ value. 1057*3117ece4SchristosThe next symbol in the stream is the `Symbol` indicated in the table for that state. 1058*3117ece4SchristosTo obtain the next state value, 1059*3117ece4Schristosthe decoder should consume `Num_Bits` bits from the stream as a __little-endian__ value and add it to `Baseline`. 1060*3117ece4Schristos 1061*3117ece4Schristos[ANS]: https://en.wikipedia.org/wiki/Asymmetric_Numeral_Systems 1062*3117ece4Schristos 1063*3117ece4Schristos### FSE Table Description 1064*3117ece4SchristosTo decode FSE streams, it is necessary to construct the decoding table. 1065*3117ece4SchristosThe Zstandard format encodes FSE table descriptions as follows: 1066*3117ece4Schristos 1067*3117ece4SchristosAn FSE distribution table describes the probabilities of all symbols 1068*3117ece4Schristosfrom `0` to the last present one (included) 1069*3117ece4Schristoson a normalized scale of `1 << Accuracy_Log` . 1070*3117ece4SchristosNote that there must be two or more symbols with nonzero probability. 1071*3117ece4Schristos 1072*3117ece4SchristosIt's a bitstream which is read forward, in __little-endian__ fashion. 1073*3117ece4SchristosIt's not necessary to know bitstream exact size, 1074*3117ece4Schristosit will be discovered and reported by the decoding process. 1075*3117ece4Schristos 1076*3117ece4SchristosThe bitstream starts by reporting on which scale it operates. 1077*3117ece4SchristosLet's `low4Bits` designate the lowest 4 bits of the first byte : 1078*3117ece4Schristos`Accuracy_Log = low4bits + 5`. 1079*3117ece4Schristos 1080*3117ece4SchristosThen follows each symbol value, from `0` to last present one. 1081*3117ece4SchristosThe number of bits used by each field is variable. 1082*3117ece4SchristosIt depends on : 1083*3117ece4Schristos 1084*3117ece4Schristos- Remaining probabilities + 1 : 1085*3117ece4Schristos __example__ : 1086*3117ece4Schristos Presuming an `Accuracy_Log` of 8, 1087*3117ece4Schristos and presuming 100 probabilities points have already been distributed, 1088*3117ece4Schristos the decoder may read any value from `0` to `256 - 100 + 1 == 157` (inclusive). 1089*3117ece4Schristos Therefore, it may read up to `log2sup(157) == 8` bits, where `log2sup(N)` 1090*3117ece4Schristos is the smallest integer `T` that satisfies `(1 << T) > N`. 1091*3117ece4Schristos 1092*3117ece4Schristos- Value decoded : small values use 1 less bit : 1093*3117ece4Schristos __example__ : 1094*3117ece4Schristos Presuming values from 0 to 157 (inclusive) are possible, 1095*3117ece4Schristos 255-157 = 98 values are remaining in an 8-bits field. 1096*3117ece4Schristos They are used this way : 1097*3117ece4Schristos first 98 values (hence from 0 to 97) use only 7 bits, 1098*3117ece4Schristos values from 98 to 157 use 8 bits. 1099*3117ece4Schristos This is achieved through this scheme : 1100*3117ece4Schristos 1101*3117ece4Schristos | Value read | Value decoded | Number of bits used | 1102*3117ece4Schristos | ---------- | ------------- | ------------------- | 1103*3117ece4Schristos | 0 - 97 | 0 - 97 | 7 | 1104*3117ece4Schristos | 98 - 127 | 98 - 127 | 8 | 1105*3117ece4Schristos | 128 - 225 | 0 - 97 | 7 | 1106*3117ece4Schristos | 226 - 255 | 128 - 157 | 8 | 1107*3117ece4Schristos 1108*3117ece4SchristosSymbols probabilities are read one by one, in order. 1109*3117ece4Schristos 1110*3117ece4SchristosProbability is obtained from Value decoded by following formula : 1111*3117ece4Schristos`Proba = value - 1` 1112*3117ece4Schristos 1113*3117ece4SchristosIt means value `0` becomes negative probability `-1`. 1114*3117ece4Schristos`-1` is a special probability, which means "less than 1". 1115*3117ece4SchristosIts effect on distribution table is described in the [next section]. 1116*3117ece4SchristosFor the purpose of calculating total allocated probability points, it counts as one. 1117*3117ece4Schristos 1118*3117ece4Schristos[next section]:#from-normalized-distribution-to-decoding-tables 1119*3117ece4Schristos 1120*3117ece4SchristosWhen a symbol has a __probability__ of `zero`, 1121*3117ece4Schristosit is followed by a 2-bits repeat flag. 1122*3117ece4SchristosThis repeat flag tells how many probabilities of zeroes follow the current one. 1123*3117ece4SchristosIt provides a number ranging from 0 to 3. 1124*3117ece4SchristosIf it is a 3, another 2-bits repeat flag follows, and so on. 1125*3117ece4Schristos 1126*3117ece4SchristosWhen last symbol reaches cumulated total of `1 << Accuracy_Log`, 1127*3117ece4Schristosdecoding is complete. 1128*3117ece4SchristosIf the last symbol makes cumulated total go above `1 << Accuracy_Log`, 1129*3117ece4Schristosdistribution is considered corrupted. 1130*3117ece4SchristosIf this process results in a non-zero probability for a value outside of the 1131*3117ece4Schristosvalid range of values that the FSE table is defined for, even if that value is 1132*3117ece4Schristosnot used, then the data is considered corrupted. 1133*3117ece4Schristos 1134*3117ece4SchristosThen the decoder can tell how many bytes were used in this process, 1135*3117ece4Schristosand how many symbols are present. 1136*3117ece4SchristosThe bitstream consumes a round number of bytes. 1137*3117ece4SchristosAny remaining bit within the last byte is just unused. 1138*3117ece4Schristos 1139*3117ece4Schristos#### From normalized distribution to decoding tables 1140*3117ece4Schristos 1141*3117ece4SchristosThe distribution of normalized probabilities is enough 1142*3117ece4Schristosto create a unique decoding table. 1143*3117ece4Schristos 1144*3117ece4SchristosIt follows the following build rule : 1145*3117ece4Schristos 1146*3117ece4SchristosThe table has a size of `Table_Size = 1 << Accuracy_Log`. 1147*3117ece4SchristosEach cell describes the symbol decoded, 1148*3117ece4Schristosand instructions to get the next state (`Number_of_Bits` and `Baseline`). 1149*3117ece4Schristos 1150*3117ece4SchristosSymbols are scanned in their natural order for "less than 1" probabilities. 1151*3117ece4SchristosSymbols with this probability are being attributed a single cell, 1152*3117ece4Schristosstarting from the end of the table and retreating. 1153*3117ece4SchristosThese symbols define a full state reset, reading `Accuracy_Log` bits. 1154*3117ece4Schristos 1155*3117ece4SchristosThen, all remaining symbols, sorted in natural order, are allocated cells. 1156*3117ece4SchristosStarting from symbol `0` (if it exists), and table position `0`, 1157*3117ece4Schristoseach symbol gets allocated as many cells as its probability. 1158*3117ece4SchristosCell allocation is spread, not linear : 1159*3117ece4Schristoseach successor position follows this rule : 1160*3117ece4Schristos 1161*3117ece4Schristos``` 1162*3117ece4Schristosposition += (tableSize>>1) + (tableSize>>3) + 3; 1163*3117ece4Schristosposition &= tableSize-1; 1164*3117ece4Schristos``` 1165*3117ece4Schristos 1166*3117ece4SchristosA position is skipped if already occupied by a "less than 1" probability symbol. 1167*3117ece4Schristos`position` does not reset between symbols, it simply iterates through 1168*3117ece4Schristoseach position in the table, switching to the next symbol when enough 1169*3117ece4Schristosstates have been allocated to the current one. 1170*3117ece4Schristos 1171*3117ece4SchristosThe process guarantees that the table is entirely filled. 1172*3117ece4SchristosEach cell corresponds to a state value, which contains the symbol being decoded. 1173*3117ece4Schristos 1174*3117ece4SchristosTo add the `Number_of_Bits` and `Baseline` required to retrieve next state, 1175*3117ece4Schristosit's first necessary to sort all occurrences of each symbol in state order. 1176*3117ece4SchristosLower states will need 1 more bit than higher ones. 1177*3117ece4SchristosThe process is repeated for each symbol. 1178*3117ece4Schristos 1179*3117ece4Schristos__Example__ : 1180*3117ece4SchristosPresuming a symbol has a probability of 5, 1181*3117ece4Schristosit receives 5 cells, corresponding to 5 state values. 1182*3117ece4SchristosThese state values are then sorted in natural order. 1183*3117ece4Schristos 1184*3117ece4SchristosNext power of 2 after 5 is 8. 1185*3117ece4SchristosSpace of probabilities must be divided into 8 equal parts. 1186*3117ece4SchristosPresuming the `Accuracy_Log` is 7, it defines a space of 128 states. 1187*3117ece4SchristosDivided by 8, each share is 16 large. 1188*3117ece4Schristos 1189*3117ece4SchristosIn order to reach 8 shares, 8-5=3 lowest states will count "double", 1190*3117ece4Schristosdoubling their shares (32 in width), hence requiring one more bit. 1191*3117ece4Schristos 1192*3117ece4SchristosBaseline is assigned starting from the higher states using fewer bits, 1193*3117ece4Schristosincreasing at each state, then resuming at the first state, 1194*3117ece4Schristoseach state takes its allocated width from Baseline. 1195*3117ece4Schristos 1196*3117ece4Schristos| state order | 0 | 1 | 2 | 3 | 4 | 1197*3117ece4Schristos| ---------------- | ----- | ----- | ------ | ---- | ------ | 1198*3117ece4Schristos| state value | 1 | 39 | 77 | 84 | 122 | 1199*3117ece4Schristos| width | 32 | 32 | 32 | 16 | 16 | 1200*3117ece4Schristos| `Number_of_Bits` | 5 | 5 | 5 | 4 | 4 | 1201*3117ece4Schristos| range number | 2 | 4 | 6 | 0 | 1 | 1202*3117ece4Schristos| `Baseline` | 32 | 64 | 96 | 0 | 16 | 1203*3117ece4Schristos| range | 32-63 | 64-95 | 96-127 | 0-15 | 16-31 | 1204*3117ece4Schristos 1205*3117ece4SchristosDuring decoding, the next state value is determined from current state value, 1206*3117ece4Schristosby reading the required `Number_of_Bits`, and adding the specified `Baseline`. 1207*3117ece4Schristos 1208*3117ece4SchristosSee [Appendix A] for the results of this process applied to the default distributions. 1209*3117ece4Schristos 1210*3117ece4Schristos[Appendix A]: #appendix-a---decoding-tables-for-predefined-codes 1211*3117ece4Schristos 1212*3117ece4Schristos 1213*3117ece4SchristosHuffman Coding 1214*3117ece4Schristos-------------- 1215*3117ece4SchristosZstandard Huffman-coded streams are read backwards, 1216*3117ece4Schristossimilar to the FSE bitstreams. 1217*3117ece4SchristosTherefore, to find the start of the bitstream, it is required to 1218*3117ece4Schristosknow the offset of the last byte of the Huffman-coded stream. 1219*3117ece4Schristos 1220*3117ece4SchristosAfter writing the last bit containing information, the compressor 1221*3117ece4Schristoswrites a single `1`-bit and then fills the byte with 0-7 `0` bits of 1222*3117ece4Schristospadding. The last byte of the compressed bitstream cannot be `0` for 1223*3117ece4Schristosthat reason. 1224*3117ece4Schristos 1225*3117ece4SchristosWhen decompressing, the last byte containing the padding is the first 1226*3117ece4Schristosbyte to read. The decompressor needs to skip 0-7 initial `0`-bits and 1227*3117ece4Schristosthe first `1`-bit it occurs. Afterwards, the useful part of the bitstream 1228*3117ece4Schristosbegins. 1229*3117ece4Schristos 1230*3117ece4SchristosThe bitstream contains Huffman-coded symbols in __little-endian__ order, 1231*3117ece4Schristoswith the codes defined by the method below. 1232*3117ece4Schristos 1233*3117ece4Schristos### Huffman Tree Description 1234*3117ece4Schristos 1235*3117ece4SchristosPrefix coding represents symbols from an a priori known alphabet 1236*3117ece4Schristosby bit sequences (codewords), one codeword for each symbol, 1237*3117ece4Schristosin a manner such that different symbols may be represented 1238*3117ece4Schristosby bit sequences of different lengths, 1239*3117ece4Schristosbut a parser can always parse an encoded string 1240*3117ece4Schristosunambiguously symbol-by-symbol. 1241*3117ece4Schristos 1242*3117ece4SchristosGiven an alphabet with known symbol frequencies, 1243*3117ece4Schristosthe Huffman algorithm allows the construction of an optimal prefix code 1244*3117ece4Schristosusing the fewest bits of any possible prefix codes for that alphabet. 1245*3117ece4Schristos 1246*3117ece4SchristosPrefix code must not exceed a maximum code length. 1247*3117ece4SchristosMore bits improve accuracy but cost more header size, 1248*3117ece4Schristosand require more memory or more complex decoding operations. 1249*3117ece4SchristosThis specification limits maximum code length to 11 bits. 1250*3117ece4Schristos 1251*3117ece4Schristos#### Representation 1252*3117ece4Schristos 1253*3117ece4SchristosAll literal values from zero (included) to last present one (excluded) 1254*3117ece4Schristosare represented by `Weight` with values from `0` to `Max_Number_of_Bits`. 1255*3117ece4SchristosTransformation from `Weight` to `Number_of_Bits` follows this formula : 1256*3117ece4Schristos``` 1257*3117ece4SchristosNumber_of_Bits = Weight ? (Max_Number_of_Bits + 1 - Weight) : 0 1258*3117ece4Schristos``` 1259*3117ece4SchristosWhen a literal value is not present, it receives a `Weight` of 0. 1260*3117ece4SchristosThe least frequent symbol receives a `Weight` of 1. 1261*3117ece4SchristosIf no literal has a `Weight` of 1, then the data is considered corrupted. 1262*3117ece4SchristosIf there are not at least two literals with non-zero `Weight`, then the data 1263*3117ece4Schristosis considered corrupted. 1264*3117ece4SchristosThe most frequent symbol receives a `Weight` anywhere between 1 and 11 (max). 1265*3117ece4SchristosThe last symbol's `Weight` is deduced from previously retrieved Weights, 1266*3117ece4Schristosby completing to the nearest power of 2. It's necessarily non 0. 1267*3117ece4SchristosIf it's not possible to reach a clean power of 2 with a single `Weight` value, 1268*3117ece4Schristosthe Huffman Tree Description is considered invalid. 1269*3117ece4SchristosThis final power of 2 gives `Max_Number_of_Bits`, the depth of the current tree. 1270*3117ece4Schristos`Max_Number_of_Bits` must be <= 11, 1271*3117ece4Schristosotherwise the representation is considered corrupted. 1272*3117ece4Schristos 1273*3117ece4Schristos__Example__ : 1274*3117ece4SchristosLet's presume the following Huffman tree must be described : 1275*3117ece4Schristos 1276*3117ece4Schristos| literal value | 0 | 1 | 2 | 3 | 4 | 5 | 1277*3117ece4Schristos| ---------------- | --- | --- | --- | --- | --- | --- | 1278*3117ece4Schristos| `Number_of_Bits` | 1 | 2 | 3 | 0 | 4 | 4 | 1279*3117ece4Schristos 1280*3117ece4SchristosThe tree depth is 4, since its longest elements uses 4 bits 1281*3117ece4Schristos(longest elements are the one with smallest frequency). 1282*3117ece4SchristosLiteral value `5` will not be listed, as it can be determined from previous values 0-4, 1283*3117ece4Schristosnor will values above `5` as they are all 0. 1284*3117ece4SchristosValues from `0` to `4` will be listed using `Weight` instead of `Number_of_Bits`. 1285*3117ece4SchristosWeight formula is : 1286*3117ece4Schristos``` 1287*3117ece4SchristosWeight = Number_of_Bits ? (Max_Number_of_Bits + 1 - Number_of_Bits) : 0 1288*3117ece4Schristos``` 1289*3117ece4SchristosIt gives the following series of weights : 1290*3117ece4Schristos 1291*3117ece4Schristos| literal value | 0 | 1 | 2 | 3 | 4 | 1292*3117ece4Schristos| ------------- | --- | --- | --- | --- | --- | 1293*3117ece4Schristos| `Weight` | 4 | 3 | 2 | 0 | 1 | 1294*3117ece4Schristos 1295*3117ece4SchristosThe decoder will do the inverse operation : 1296*3117ece4Schristoshaving collected weights of literal symbols from `0` to `4`, 1297*3117ece4Schristosit knows the last literal, `5`, is present with a non-zero `Weight`. 1298*3117ece4SchristosThe `Weight` of `5` can be determined by advancing to the next power of 2. 1299*3117ece4SchristosThe sum of `2^(Weight-1)` (excluding 0's) is : 1300*3117ece4Schristos`8 + 4 + 2 + 0 + 1 = 15`. 1301*3117ece4SchristosNearest larger power of 2 value is 16. 1302*3117ece4SchristosTherefore, `Max_Number_of_Bits = 4` and `Weight[5] = log_2(16 - 15) + 1 = 1`. 1303*3117ece4Schristos 1304*3117ece4Schristos#### Huffman Tree header 1305*3117ece4Schristos 1306*3117ece4SchristosThis is a single byte value (0-255), 1307*3117ece4Schristoswhich describes how the series of weights is encoded. 1308*3117ece4Schristos 1309*3117ece4Schristos- if `headerByte` < 128 : 1310*3117ece4Schristos the series of weights is compressed using FSE (see below). 1311*3117ece4Schristos The length of the FSE-compressed series is equal to `headerByte` (0-127). 1312*3117ece4Schristos 1313*3117ece4Schristos- if `headerByte` >= 128 : 1314*3117ece4Schristos + the series of weights uses a direct representation, 1315*3117ece4Schristos where each `Weight` is encoded directly as a 4 bits field (0-15). 1316*3117ece4Schristos + They are encoded forward, 2 weights to a byte, 1317*3117ece4Schristos first weight taking the top four bits and second one taking the bottom four. 1318*3117ece4Schristos * e.g. the following operations could be used to read the weights: 1319*3117ece4Schristos `Weight[0] = (Byte[0] >> 4), Weight[1] = (Byte[0] & 0xf)`, etc. 1320*3117ece4Schristos + The full representation occupies `Ceiling(Number_of_Weights/2)` bytes, 1321*3117ece4Schristos meaning it uses only full bytes even if `Number_of_Weights` is odd. 1322*3117ece4Schristos + `Number_of_Weights = headerByte - 127`. 1323*3117ece4Schristos * Note that maximum `Number_of_Weights` is 255-127 = 128, 1324*3117ece4Schristos therefore, only up to 128 `Weight` can be encoded using direct representation. 1325*3117ece4Schristos * Since the last non-zero `Weight` is _not_ encoded, 1326*3117ece4Schristos this scheme is compatible with alphabet sizes of up to 129 symbols, 1327*3117ece4Schristos hence including literal symbol 128. 1328*3117ece4Schristos * If any literal symbol > 128 has a non-zero `Weight`, 1329*3117ece4Schristos direct representation is not possible. 1330*3117ece4Schristos In such case, it's necessary to use FSE compression. 1331*3117ece4Schristos 1332*3117ece4Schristos 1333*3117ece4Schristos#### Finite State Entropy (FSE) compression of Huffman weights 1334*3117ece4Schristos 1335*3117ece4SchristosIn this case, the series of Huffman weights is compressed using FSE compression. 1336*3117ece4SchristosIt's a single bitstream with 2 interleaved states, 1337*3117ece4Schristossharing a single distribution table. 1338*3117ece4Schristos 1339*3117ece4SchristosTo decode an FSE bitstream, it is necessary to know its compressed size. 1340*3117ece4SchristosCompressed size is provided by `headerByte`. 1341*3117ece4SchristosIt's also necessary to know its _maximum possible_ decompressed size, 1342*3117ece4Schristoswhich is `255`, since literal values span from `0` to `255`, 1343*3117ece4Schristosand last symbol's `Weight` is not represented. 1344*3117ece4Schristos 1345*3117ece4SchristosAn FSE bitstream starts by a header, describing probabilities distribution. 1346*3117ece4SchristosIt will create a Decoding Table. 1347*3117ece4SchristosFor a list of Huffman weights, the maximum accuracy log is 6 bits. 1348*3117ece4SchristosFor more description see the [FSE header description](#fse-table-description) 1349*3117ece4Schristos 1350*3117ece4SchristosThe Huffman header compression uses 2 states, 1351*3117ece4Schristoswhich share the same FSE distribution table. 1352*3117ece4SchristosThe first state (`State1`) encodes the even indexed symbols, 1353*3117ece4Schristosand the second (`State2`) encodes the odd indexed symbols. 1354*3117ece4Schristos`State1` is initialized first, and then `State2`, and they take turns 1355*3117ece4Schristosdecoding a single symbol and updating their state. 1356*3117ece4SchristosFor more details on these FSE operations, see the [FSE section](#fse). 1357*3117ece4Schristos 1358*3117ece4SchristosThe number of symbols to decode is determined 1359*3117ece4Schristosby tracking bitStream overflow condition: 1360*3117ece4SchristosIf updating state after decoding a symbol would require more bits than 1361*3117ece4Schristosremain in the stream, it is assumed that extra bits are 0. Then, 1362*3117ece4Schristossymbols for each of the final states are decoded and the process is complete. 1363*3117ece4Schristos 1364*3117ece4SchristosIf this process would produce more weights than the maximum number of decoded 1365*3117ece4Schristosweights (255), then the data is considered corrupted. 1366*3117ece4Schristos 1367*3117ece4Schristos#### Conversion from weights to Huffman prefix codes 1368*3117ece4Schristos 1369*3117ece4SchristosAll present symbols shall now have a `Weight` value. 1370*3117ece4SchristosIt is possible to transform weights into `Number_of_Bits`, using this formula: 1371*3117ece4Schristos``` 1372*3117ece4SchristosNumber_of_Bits = (Weight>0) ? Max_Number_of_Bits + 1 - Weight : 0 1373*3117ece4Schristos``` 1374*3117ece4SchristosSymbols are sorted by `Weight`. 1375*3117ece4SchristosWithin same `Weight`, symbols keep natural sequential order. 1376*3117ece4SchristosSymbols with a `Weight` of zero are removed. 1377*3117ece4SchristosThen, starting from lowest `Weight`, prefix codes are distributed in sequential order. 1378*3117ece4Schristos 1379*3117ece4Schristos__Example__ : 1380*3117ece4SchristosLet's presume the following list of weights has been decoded : 1381*3117ece4Schristos 1382*3117ece4Schristos| Literal | 0 | 1 | 2 | 3 | 4 | 5 | 1383*3117ece4Schristos| -------- | --- | --- | --- | --- | --- | --- | 1384*3117ece4Schristos| `Weight` | 4 | 3 | 2 | 0 | 1 | 1 | 1385*3117ece4Schristos 1386*3117ece4SchristosSorted by weight and then natural sequential order, 1387*3117ece4Schristosit gives the following distribution : 1388*3117ece4Schristos 1389*3117ece4Schristos| Literal | 3 | 4 | 5 | 2 | 1 | 0 | 1390*3117ece4Schristos| ---------------- | --- | --- | --- | --- | --- | ---- | 1391*3117ece4Schristos| `Weight` | 0 | 1 | 1 | 2 | 3 | 4 | 1392*3117ece4Schristos| `Number_of_Bits` | 0 | 4 | 4 | 3 | 2 | 1 | 1393*3117ece4Schristos| prefix codes | N/A | 0000| 0001| 001 | 01 | 1 | 1394*3117ece4Schristos 1395*3117ece4Schristos### Huffman-coded Streams 1396*3117ece4Schristos 1397*3117ece4SchristosGiven a Huffman decoding table, 1398*3117ece4Schristosit's possible to decode a Huffman-coded stream. 1399*3117ece4Schristos 1400*3117ece4SchristosEach bitstream must be read _backward_, 1401*3117ece4Schristosthat is starting from the end down to the beginning. 1402*3117ece4SchristosTherefore it's necessary to know the size of each bitstream. 1403*3117ece4Schristos 1404*3117ece4SchristosIt's also necessary to know exactly which _bit_ is the last one. 1405*3117ece4SchristosThis is detected by a final bit flag : 1406*3117ece4Schristosthe highest bit of latest byte is a final-bit-flag. 1407*3117ece4SchristosConsequently, a last byte of `0` is not possible. 1408*3117ece4SchristosAnd the final-bit-flag itself is not part of the useful bitstream. 1409*3117ece4SchristosHence, the last byte contains between 0 and 7 useful bits. 1410*3117ece4Schristos 1411*3117ece4SchristosStarting from the end, 1412*3117ece4Schristosit's possible to read the bitstream in a __little-endian__ fashion, 1413*3117ece4Schristoskeeping track of already used bits. Since the bitstream is encoded in reverse 1414*3117ece4Schristosorder, starting from the end read symbols in forward order. 1415*3117ece4Schristos 1416*3117ece4SchristosFor example, if the literal sequence "0145" was encoded using above prefix code, 1417*3117ece4Schristosit would be encoded (in reverse order) as: 1418*3117ece4Schristos 1419*3117ece4Schristos|Symbol | 5 | 4 | 1 | 0 | Padding | 1420*3117ece4Schristos|--------|------|------|----|---|---------| 1421*3117ece4Schristos|Encoding|`0000`|`0001`|`01`|`1`| `00001` | 1422*3117ece4Schristos 1423*3117ece4SchristosResulting in following 2-bytes bitstream : 1424*3117ece4Schristos``` 1425*3117ece4Schristos00010000 00001101 1426*3117ece4Schristos``` 1427*3117ece4Schristos 1428*3117ece4SchristosHere is an alternative representation with the symbol codes separated by underscore: 1429*3117ece4Schristos``` 1430*3117ece4Schristos0001_0000 00001_1_01 1431*3117ece4Schristos``` 1432*3117ece4Schristos 1433*3117ece4SchristosReading highest `Max_Number_of_Bits` bits, 1434*3117ece4Schristosit's possible to compare extracted value to decoding table, 1435*3117ece4Schristosdetermining the symbol to decode and number of bits to discard. 1436*3117ece4Schristos 1437*3117ece4SchristosThe process continues up to reading the required number of symbols per stream. 1438*3117ece4SchristosIf a bitstream is not entirely and exactly consumed, 1439*3117ece4Schristoshence reaching exactly its beginning position with _all_ bits consumed, 1440*3117ece4Schristosthe decoding process is considered faulty. 1441*3117ece4Schristos 1442*3117ece4Schristos 1443*3117ece4SchristosDictionary Format 1444*3117ece4Schristos----------------- 1445*3117ece4Schristos 1446*3117ece4SchristosZstandard is compatible with "raw content" dictionaries, 1447*3117ece4Schristosfree of any format restriction, except that they must be at least 8 bytes. 1448*3117ece4SchristosThese dictionaries function as if they were just the `Content` part 1449*3117ece4Schristosof a formatted dictionary. 1450*3117ece4Schristos 1451*3117ece4SchristosBut dictionaries created by `zstd --train` follow a format, described here. 1452*3117ece4Schristos 1453*3117ece4Schristos__Pre-requisites__ : a dictionary has a size, 1454*3117ece4Schristos defined either by a buffer limit, or a file size. 1455*3117ece4Schristos 1456*3117ece4Schristos| `Magic_Number` | `Dictionary_ID` | `Entropy_Tables` | `Content` | 1457*3117ece4Schristos| -------------- | --------------- | ---------------- | --------- | 1458*3117ece4Schristos 1459*3117ece4Schristos__`Magic_Number`__ : 4 bytes ID, value 0xEC30A437, __little-endian__ format 1460*3117ece4Schristos 1461*3117ece4Schristos__`Dictionary_ID`__ : 4 bytes, stored in __little-endian__ format. 1462*3117ece4Schristos `Dictionary_ID` can be any value, except 0 (which means no `Dictionary_ID`). 1463*3117ece4Schristos It's used by decoders to check if they use the correct dictionary. 1464*3117ece4Schristos 1465*3117ece4Schristos_Reserved ranges :_ 1466*3117ece4SchristosIf the dictionary is going to be distributed in a public environment, 1467*3117ece4Schristosthe following ranges of `Dictionary_ID` are reserved for some future registrar 1468*3117ece4Schristosand shall not be used : 1469*3117ece4Schristos 1470*3117ece4Schristos - low range : <= 32767 1471*3117ece4Schristos - high range : >= (2^31) 1472*3117ece4Schristos 1473*3117ece4SchristosOutside of these ranges, any value of `Dictionary_ID` 1474*3117ece4Schristoswhich is both `>= 32768` and `< (1<<31)` can be used freely, 1475*3117ece4Schristoseven in public environment. 1476*3117ece4Schristos 1477*3117ece4Schristos 1478*3117ece4Schristos__`Entropy_Tables`__ : follow the same format as tables in [compressed blocks]. 1479*3117ece4Schristos See the relevant [FSE](#fse-table-description) 1480*3117ece4Schristos and [Huffman](#huffman-tree-description) sections for how to decode these tables. 1481*3117ece4Schristos They are stored in following order : 1482*3117ece4Schristos Huffman tables for literals, FSE table for offsets, 1483*3117ece4Schristos FSE table for match lengths, and FSE table for literals lengths. 1484*3117ece4Schristos These tables populate the Repeat Stats literals mode and 1485*3117ece4Schristos Repeat distribution mode for sequence decoding. 1486*3117ece4Schristos It's finally followed by 3 offset values, populating recent offsets (instead of using `{1,4,8}`), 1487*3117ece4Schristos stored in order, 4-bytes __little-endian__ each, for a total of 12 bytes. 1488*3117ece4Schristos Each recent offset must have a value <= dictionary content size, and cannot equal 0. 1489*3117ece4Schristos 1490*3117ece4Schristos__`Content`__ : The rest of the dictionary is its content. 1491*3117ece4Schristos The content act as a "past" in front of data to compress or decompress, 1492*3117ece4Schristos so it can be referenced in sequence commands. 1493*3117ece4Schristos As long as the amount of data decoded from this frame is less than or 1494*3117ece4Schristos equal to `Window_Size`, sequence commands may specify offsets longer 1495*3117ece4Schristos than the total length of decoded output so far to reference back to the 1496*3117ece4Schristos dictionary, even parts of the dictionary with offsets larger than `Window_Size`. 1497*3117ece4Schristos After the total output has surpassed `Window_Size` however, 1498*3117ece4Schristos this is no longer allowed and the dictionary is no longer accessible. 1499*3117ece4Schristos 1500*3117ece4Schristos[compressed blocks]: #the-format-of-compressed_block 1501*3117ece4Schristos 1502*3117ece4SchristosIf a dictionary is provided by an external source, 1503*3117ece4Schristosit should be loaded with great care, its content considered untrusted. 1504*3117ece4Schristos 1505*3117ece4Schristos 1506*3117ece4Schristos 1507*3117ece4SchristosAppendix A - Decoding tables for predefined codes 1508*3117ece4Schristos------------------------------------------------- 1509*3117ece4Schristos 1510*3117ece4SchristosThis appendix contains FSE decoding tables 1511*3117ece4Schristosfor the predefined literal length, match length, and offset codes. 1512*3117ece4SchristosThe tables have been constructed using the algorithm as given above in chapter 1513*3117ece4Schristos"from normalized distribution to decoding tables". 1514*3117ece4SchristosThe tables here can be used as examples 1515*3117ece4Schristosto crosscheck that an implementation build its decoding tables correctly. 1516*3117ece4Schristos 1517*3117ece4Schristos#### Literal Length Code: 1518*3117ece4Schristos 1519*3117ece4Schristos| State | Symbol | Number_Of_Bits | Base | 1520*3117ece4Schristos| ----- | ------ | -------------- | ---- | 1521*3117ece4Schristos| 0 | 0 | 4 | 0 | 1522*3117ece4Schristos| 1 | 0 | 4 | 16 | 1523*3117ece4Schristos| 2 | 1 | 5 | 32 | 1524*3117ece4Schristos| 3 | 3 | 5 | 0 | 1525*3117ece4Schristos| 4 | 4 | 5 | 0 | 1526*3117ece4Schristos| 5 | 6 | 5 | 0 | 1527*3117ece4Schristos| 6 | 7 | 5 | 0 | 1528*3117ece4Schristos| 7 | 9 | 5 | 0 | 1529*3117ece4Schristos| 8 | 10 | 5 | 0 | 1530*3117ece4Schristos| 9 | 12 | 5 | 0 | 1531*3117ece4Schristos| 10 | 14 | 6 | 0 | 1532*3117ece4Schristos| 11 | 16 | 5 | 0 | 1533*3117ece4Schristos| 12 | 18 | 5 | 0 | 1534*3117ece4Schristos| 13 | 19 | 5 | 0 | 1535*3117ece4Schristos| 14 | 21 | 5 | 0 | 1536*3117ece4Schristos| 15 | 22 | 5 | 0 | 1537*3117ece4Schristos| 16 | 24 | 5 | 0 | 1538*3117ece4Schristos| 17 | 25 | 5 | 32 | 1539*3117ece4Schristos| 18 | 26 | 5 | 0 | 1540*3117ece4Schristos| 19 | 27 | 6 | 0 | 1541*3117ece4Schristos| 20 | 29 | 6 | 0 | 1542*3117ece4Schristos| 21 | 31 | 6 | 0 | 1543*3117ece4Schristos| 22 | 0 | 4 | 32 | 1544*3117ece4Schristos| 23 | 1 | 4 | 0 | 1545*3117ece4Schristos| 24 | 2 | 5 | 0 | 1546*3117ece4Schristos| 25 | 4 | 5 | 32 | 1547*3117ece4Schristos| 26 | 5 | 5 | 0 | 1548*3117ece4Schristos| 27 | 7 | 5 | 32 | 1549*3117ece4Schristos| 28 | 8 | 5 | 0 | 1550*3117ece4Schristos| 29 | 10 | 5 | 32 | 1551*3117ece4Schristos| 30 | 11 | 5 | 0 | 1552*3117ece4Schristos| 31 | 13 | 6 | 0 | 1553*3117ece4Schristos| 32 | 16 | 5 | 32 | 1554*3117ece4Schristos| 33 | 17 | 5 | 0 | 1555*3117ece4Schristos| 34 | 19 | 5 | 32 | 1556*3117ece4Schristos| 35 | 20 | 5 | 0 | 1557*3117ece4Schristos| 36 | 22 | 5 | 32 | 1558*3117ece4Schristos| 37 | 23 | 5 | 0 | 1559*3117ece4Schristos| 38 | 25 | 4 | 0 | 1560*3117ece4Schristos| 39 | 25 | 4 | 16 | 1561*3117ece4Schristos| 40 | 26 | 5 | 32 | 1562*3117ece4Schristos| 41 | 28 | 6 | 0 | 1563*3117ece4Schristos| 42 | 30 | 6 | 0 | 1564*3117ece4Schristos| 43 | 0 | 4 | 48 | 1565*3117ece4Schristos| 44 | 1 | 4 | 16 | 1566*3117ece4Schristos| 45 | 2 | 5 | 32 | 1567*3117ece4Schristos| 46 | 3 | 5 | 32 | 1568*3117ece4Schristos| 47 | 5 | 5 | 32 | 1569*3117ece4Schristos| 48 | 6 | 5 | 32 | 1570*3117ece4Schristos| 49 | 8 | 5 | 32 | 1571*3117ece4Schristos| 50 | 9 | 5 | 32 | 1572*3117ece4Schristos| 51 | 11 | 5 | 32 | 1573*3117ece4Schristos| 52 | 12 | 5 | 32 | 1574*3117ece4Schristos| 53 | 15 | 6 | 0 | 1575*3117ece4Schristos| 54 | 17 | 5 | 32 | 1576*3117ece4Schristos| 55 | 18 | 5 | 32 | 1577*3117ece4Schristos| 56 | 20 | 5 | 32 | 1578*3117ece4Schristos| 57 | 21 | 5 | 32 | 1579*3117ece4Schristos| 58 | 23 | 5 | 32 | 1580*3117ece4Schristos| 59 | 24 | 5 | 32 | 1581*3117ece4Schristos| 60 | 35 | 6 | 0 | 1582*3117ece4Schristos| 61 | 34 | 6 | 0 | 1583*3117ece4Schristos| 62 | 33 | 6 | 0 | 1584*3117ece4Schristos| 63 | 32 | 6 | 0 | 1585*3117ece4Schristos 1586*3117ece4Schristos#### Match Length Code: 1587*3117ece4Schristos 1588*3117ece4Schristos| State | Symbol | Number_Of_Bits | Base | 1589*3117ece4Schristos| ----- | ------ | -------------- | ---- | 1590*3117ece4Schristos| 0 | 0 | 6 | 0 | 1591*3117ece4Schristos| 1 | 1 | 4 | 0 | 1592*3117ece4Schristos| 2 | 2 | 5 | 32 | 1593*3117ece4Schristos| 3 | 3 | 5 | 0 | 1594*3117ece4Schristos| 4 | 5 | 5 | 0 | 1595*3117ece4Schristos| 5 | 6 | 5 | 0 | 1596*3117ece4Schristos| 6 | 8 | 5 | 0 | 1597*3117ece4Schristos| 7 | 10 | 6 | 0 | 1598*3117ece4Schristos| 8 | 13 | 6 | 0 | 1599*3117ece4Schristos| 9 | 16 | 6 | 0 | 1600*3117ece4Schristos| 10 | 19 | 6 | 0 | 1601*3117ece4Schristos| 11 | 22 | 6 | 0 | 1602*3117ece4Schristos| 12 | 25 | 6 | 0 | 1603*3117ece4Schristos| 13 | 28 | 6 | 0 | 1604*3117ece4Schristos| 14 | 31 | 6 | 0 | 1605*3117ece4Schristos| 15 | 33 | 6 | 0 | 1606*3117ece4Schristos| 16 | 35 | 6 | 0 | 1607*3117ece4Schristos| 17 | 37 | 6 | 0 | 1608*3117ece4Schristos| 18 | 39 | 6 | 0 | 1609*3117ece4Schristos| 19 | 41 | 6 | 0 | 1610*3117ece4Schristos| 20 | 43 | 6 | 0 | 1611*3117ece4Schristos| 21 | 45 | 6 | 0 | 1612*3117ece4Schristos| 22 | 1 | 4 | 16 | 1613*3117ece4Schristos| 23 | 2 | 4 | 0 | 1614*3117ece4Schristos| 24 | 3 | 5 | 32 | 1615*3117ece4Schristos| 25 | 4 | 5 | 0 | 1616*3117ece4Schristos| 26 | 6 | 5 | 32 | 1617*3117ece4Schristos| 27 | 7 | 5 | 0 | 1618*3117ece4Schristos| 28 | 9 | 6 | 0 | 1619*3117ece4Schristos| 29 | 12 | 6 | 0 | 1620*3117ece4Schristos| 30 | 15 | 6 | 0 | 1621*3117ece4Schristos| 31 | 18 | 6 | 0 | 1622*3117ece4Schristos| 32 | 21 | 6 | 0 | 1623*3117ece4Schristos| 33 | 24 | 6 | 0 | 1624*3117ece4Schristos| 34 | 27 | 6 | 0 | 1625*3117ece4Schristos| 35 | 30 | 6 | 0 | 1626*3117ece4Schristos| 36 | 32 | 6 | 0 | 1627*3117ece4Schristos| 37 | 34 | 6 | 0 | 1628*3117ece4Schristos| 38 | 36 | 6 | 0 | 1629*3117ece4Schristos| 39 | 38 | 6 | 0 | 1630*3117ece4Schristos| 40 | 40 | 6 | 0 | 1631*3117ece4Schristos| 41 | 42 | 6 | 0 | 1632*3117ece4Schristos| 42 | 44 | 6 | 0 | 1633*3117ece4Schristos| 43 | 1 | 4 | 32 | 1634*3117ece4Schristos| 44 | 1 | 4 | 48 | 1635*3117ece4Schristos| 45 | 2 | 4 | 16 | 1636*3117ece4Schristos| 46 | 4 | 5 | 32 | 1637*3117ece4Schristos| 47 | 5 | 5 | 32 | 1638*3117ece4Schristos| 48 | 7 | 5 | 32 | 1639*3117ece4Schristos| 49 | 8 | 5 | 32 | 1640*3117ece4Schristos| 50 | 11 | 6 | 0 | 1641*3117ece4Schristos| 51 | 14 | 6 | 0 | 1642*3117ece4Schristos| 52 | 17 | 6 | 0 | 1643*3117ece4Schristos| 53 | 20 | 6 | 0 | 1644*3117ece4Schristos| 54 | 23 | 6 | 0 | 1645*3117ece4Schristos| 55 | 26 | 6 | 0 | 1646*3117ece4Schristos| 56 | 29 | 6 | 0 | 1647*3117ece4Schristos| 57 | 52 | 6 | 0 | 1648*3117ece4Schristos| 58 | 51 | 6 | 0 | 1649*3117ece4Schristos| 59 | 50 | 6 | 0 | 1650*3117ece4Schristos| 60 | 49 | 6 | 0 | 1651*3117ece4Schristos| 61 | 48 | 6 | 0 | 1652*3117ece4Schristos| 62 | 47 | 6 | 0 | 1653*3117ece4Schristos| 63 | 46 | 6 | 0 | 1654*3117ece4Schristos 1655*3117ece4Schristos#### Offset Code: 1656*3117ece4Schristos 1657*3117ece4Schristos| State | Symbol | Number_Of_Bits | Base | 1658*3117ece4Schristos| ----- | ------ | -------------- | ---- | 1659*3117ece4Schristos| 0 | 0 | 5 | 0 | 1660*3117ece4Schristos| 1 | 6 | 4 | 0 | 1661*3117ece4Schristos| 2 | 9 | 5 | 0 | 1662*3117ece4Schristos| 3 | 15 | 5 | 0 | 1663*3117ece4Schristos| 4 | 21 | 5 | 0 | 1664*3117ece4Schristos| 5 | 3 | 5 | 0 | 1665*3117ece4Schristos| 6 | 7 | 4 | 0 | 1666*3117ece4Schristos| 7 | 12 | 5 | 0 | 1667*3117ece4Schristos| 8 | 18 | 5 | 0 | 1668*3117ece4Schristos| 9 | 23 | 5 | 0 | 1669*3117ece4Schristos| 10 | 5 | 5 | 0 | 1670*3117ece4Schristos| 11 | 8 | 4 | 0 | 1671*3117ece4Schristos| 12 | 14 | 5 | 0 | 1672*3117ece4Schristos| 13 | 20 | 5 | 0 | 1673*3117ece4Schristos| 14 | 2 | 5 | 0 | 1674*3117ece4Schristos| 15 | 7 | 4 | 16 | 1675*3117ece4Schristos| 16 | 11 | 5 | 0 | 1676*3117ece4Schristos| 17 | 17 | 5 | 0 | 1677*3117ece4Schristos| 18 | 22 | 5 | 0 | 1678*3117ece4Schristos| 19 | 4 | 5 | 0 | 1679*3117ece4Schristos| 20 | 8 | 4 | 16 | 1680*3117ece4Schristos| 21 | 13 | 5 | 0 | 1681*3117ece4Schristos| 22 | 19 | 5 | 0 | 1682*3117ece4Schristos| 23 | 1 | 5 | 0 | 1683*3117ece4Schristos| 24 | 6 | 4 | 16 | 1684*3117ece4Schristos| 25 | 10 | 5 | 0 | 1685*3117ece4Schristos| 26 | 16 | 5 | 0 | 1686*3117ece4Schristos| 27 | 28 | 5 | 0 | 1687*3117ece4Schristos| 28 | 27 | 5 | 0 | 1688*3117ece4Schristos| 29 | 26 | 5 | 0 | 1689*3117ece4Schristos| 30 | 25 | 5 | 0 | 1690*3117ece4Schristos| 31 | 24 | 5 | 0 | 1691*3117ece4Schristos 1692*3117ece4Schristos 1693*3117ece4Schristos 1694*3117ece4SchristosAppendix B - Resources for implementers 1695*3117ece4Schristos------------------------------------------------- 1696*3117ece4Schristos 1697*3117ece4SchristosAn open source reference implementation is available on : 1698*3117ece4Schristoshttps://github.com/facebook/zstd 1699*3117ece4Schristos 1700*3117ece4SchristosThe project contains a frame generator, called [decodeCorpus], 1701*3117ece4Schristoswhich can be used by any 3rd-party implementation 1702*3117ece4Schristosto verify that a tested decoder is compliant with the specification. 1703*3117ece4Schristos 1704*3117ece4Schristos[decodeCorpus]: https://github.com/facebook/zstd/tree/v1.3.4/tests#decodecorpus---tool-to-generate-zstandard-frames-for-decoder-testing 1705*3117ece4Schristos 1706*3117ece4Schristos`decodeCorpus` generates random valid frames. 1707*3117ece4SchristosA compliant decoder should be able to decode them all, 1708*3117ece4Schristosor at least provide a meaningful error code explaining for which reason it cannot 1709*3117ece4Schristos(memory limit restrictions for example). 1710*3117ece4Schristos 1711*3117ece4Schristos 1712*3117ece4SchristosVersion changes 1713*3117ece4Schristos--------------- 1714*3117ece4Schristos- 0.4.0 : fixed imprecise behavior for nbSeq==0, detected by Igor Pavlov 1715*3117ece4Schristos- 0.3.9 : clarifications for Huffman-compressed literal sizes. 1716*3117ece4Schristos- 0.3.8 : clarifications for Huffman Blocks and Huffman Tree descriptions. 1717*3117ece4Schristos- 0.3.7 : clarifications for Repeat_Offsets, matching RFC8878 1718*3117ece4Schristos- 0.3.6 : clarifications for Dictionary_ID 1719*3117ece4Schristos- 0.3.5 : clarifications for Block_Maximum_Size 1720*3117ece4Schristos- 0.3.4 : clarifications for FSE decoding table 1721*3117ece4Schristos- 0.3.3 : clarifications for field Block_Size 1722*3117ece4Schristos- 0.3.2 : remove additional block size restriction on compressed blocks 1723*3117ece4Schristos- 0.3.1 : minor clarification regarding offset history update rules 1724*3117ece4Schristos- 0.3.0 : minor edits to match RFC8478 1725*3117ece4Schristos- 0.2.9 : clarifications for huffman weights direct representation, by Ulrich Kunitz 1726*3117ece4Schristos- 0.2.8 : clarifications for IETF RFC discuss 1727*3117ece4Schristos- 0.2.7 : clarifications from IETF RFC review, by Vijay Gurbani and Nick Terrell 1728*3117ece4Schristos- 0.2.6 : fixed an error in huffman example, by Ulrich Kunitz 1729*3117ece4Schristos- 0.2.5 : minor typos and clarifications 1730*3117ece4Schristos- 0.2.4 : section restructuring, by Sean Purcell 1731*3117ece4Schristos- 0.2.3 : clarified several details, by Sean Purcell 1732*3117ece4Schristos- 0.2.2 : added predefined codes, by Johannes Rudolph 1733*3117ece4Schristos- 0.2.1 : clarify field names, by Przemyslaw Skibinski 1734*3117ece4Schristos- 0.2.0 : numerous format adjustments for zstd v0.8+ 1735*3117ece4Schristos- 0.1.2 : limit Huffman tree depth to 11 bits 1736*3117ece4Schristos- 0.1.1 : reserved dictID ranges 1737*3117ece4Schristos- 0.1.0 : initial release 1738