xref: /netbsd-src/external/bsd/ntp/dist/util/ntp-keygen.c (revision eabc0478de71e4e011a5b4e0392741e01d491794)
1*eabc0478Schristos /*	$NetBSD: ntp-keygen.c,v 1.16 2024/08/18 20:47:27 christos Exp $	*/
2abb0f93cSkardel 
3abb0f93cSkardel /*
4abb0f93cSkardel  * Program to generate cryptographic keys for ntp clients and servers
5abb0f93cSkardel  *
6abb0f93cSkardel  * This program generates password encrypted data files for use with the
7abb0f93cSkardel  * Autokey security protocol and Network Time Protocol Version 4. Files
8abb0f93cSkardel  * are prefixed with a header giving the name and date of creation
9abb0f93cSkardel  * followed by a type-specific descriptive label and PEM-encoded data
10abb0f93cSkardel  * structure compatible with programs of the OpenSSL library.
11abb0f93cSkardel  *
12abb0f93cSkardel  * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
13abb0f93cSkardel  * <type> is the file type, <hostname> the generating host name and
14abb0f93cSkardel  * <filestamp> the generation time in NTP seconds. The NTP programs
15abb0f93cSkardel  * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
16abb0f93cSkardel  * association maintained by soft links. Following is a list of file
17abb0f93cSkardel  * types; the first line is the file name and the second link name.
18abb0f93cSkardel  *
19abb0f93cSkardel  * ntpkey_MD5key_<hostname>.<filestamp>
20abb0f93cSkardel  * 	MD5 (128-bit) keys used to compute message digests in symmetric
21abb0f93cSkardel  *	key cryptography
22abb0f93cSkardel  *
23abb0f93cSkardel  * ntpkey_RSAhost_<hostname>.<filestamp>
24abb0f93cSkardel  * ntpkey_host_<hostname>
25abb0f93cSkardel  *	RSA private/public host key pair used for public key signatures
26abb0f93cSkardel  *
27abb0f93cSkardel  * ntpkey_RSAsign_<hostname>.<filestamp>
28abb0f93cSkardel  * ntpkey_sign_<hostname>
29abb0f93cSkardel  *	RSA private/public sign key pair used for public key signatures
30abb0f93cSkardel  *
31abb0f93cSkardel  * ntpkey_DSAsign_<hostname>.<filestamp>
32abb0f93cSkardel  * ntpkey_sign_<hostname>
33abb0f93cSkardel  *	DSA Private/public sign key pair used for public key signatures
34abb0f93cSkardel  *
35abb0f93cSkardel  * Available digest/signature schemes
36abb0f93cSkardel  *
37abb0f93cSkardel  * RSA:	RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
38abb0f93cSkardel  * DSA:	DSA-SHA, DSA-SHA1
39abb0f93cSkardel  *
40abb0f93cSkardel  * ntpkey_XXXcert_<hostname>.<filestamp>
41abb0f93cSkardel  * ntpkey_cert_<hostname>
42abb0f93cSkardel  *	X509v3 certificate using RSA or DSA public keys and signatures.
43abb0f93cSkardel  *	XXX is a code identifying the message digest and signature
44abb0f93cSkardel  *	encryption algorithm
45abb0f93cSkardel  *
46abb0f93cSkardel  * Identity schemes. The key type par is used for the challenge; the key
47abb0f93cSkardel  * type key is used for the response.
48abb0f93cSkardel  *
49abb0f93cSkardel  * ntpkey_IFFkey_<groupname>.<filestamp>
50abb0f93cSkardel  * ntpkey_iffkey_<groupname>
51abb0f93cSkardel  *	Schnorr (IFF) identity parameters and keys
52abb0f93cSkardel  *
53abb0f93cSkardel  * ntpkey_GQkey_<groupname>.<filestamp>,
54abb0f93cSkardel  * ntpkey_gqkey_<groupname>
55abb0f93cSkardel  *	Guillou-Quisquater (GQ) identity parameters and keys
56abb0f93cSkardel  *
57abb0f93cSkardel  * ntpkey_MVkeyX_<groupname>.<filestamp>,
58abb0f93cSkardel  * ntpkey_mvkey_<groupname>
59abb0f93cSkardel  *	Mu-Varadharajan (MV) identity parameters and keys
60abb0f93cSkardel  *
61abb0f93cSkardel  * Note: Once in a while because of some statistical fluke this program
62abb0f93cSkardel  * fails to generate and verify some cryptographic data, as indicated by
63abb0f93cSkardel  * exit status -1. In this case simply run the program again. If the
64abb0f93cSkardel  * program does complete with exit code 0, the data are correct as
65abb0f93cSkardel  * verified.
66abb0f93cSkardel  *
67abb0f93cSkardel  * These cryptographic routines are characterized by the prime modulus
68abb0f93cSkardel  * size in bits. The default value of 512 bits is a compromise between
69abb0f93cSkardel  * cryptographic strength and computing time and is ordinarily
70abb0f93cSkardel  * considered adequate for this application. The routines have been
71abb0f93cSkardel  * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
72abb0f93cSkardel  * digest and signature encryption schemes work with sizes less than 512
73abb0f93cSkardel  * bits. The computing time for sizes greater than 2048 bits is
74abb0f93cSkardel  * prohibitive on all but the fastest processors. An UltraSPARC Blade
75abb0f93cSkardel  * 1000 took something over nine minutes to generate and verify the
76abb0f93cSkardel  * values with size 2048. An old SPARC IPC would take a week.
77abb0f93cSkardel  *
78abb0f93cSkardel  * The OpenSSL library used by this program expects a random seed file.
79abb0f93cSkardel  * As described in the OpenSSL documentation, the file name defaults to
80abb0f93cSkardel  * first the RANDFILE environment variable in the user's home directory
81abb0f93cSkardel  * and then .rnd in the user's home directory.
82abb0f93cSkardel  */
83abb0f93cSkardel #ifdef HAVE_CONFIG_H
84abb0f93cSkardel # include <config.h>
85abb0f93cSkardel #endif
86abb0f93cSkardel #include <string.h>
87abb0f93cSkardel #include <stdio.h>
88abb0f93cSkardel #include <stdlib.h>
89abb0f93cSkardel #include <unistd.h>
90abb0f93cSkardel #include <sys/stat.h>
91abb0f93cSkardel #include <sys/time.h>
92abb0f93cSkardel #include <sys/types.h>
932950cc38Schristos 
942950cc38Schristos #include "ntp.h"
95abb0f93cSkardel #include "ntp_random.h"
96abb0f93cSkardel #include "ntp_stdlib.h"
97abb0f93cSkardel #include "ntp_assert.h"
983123f114Skardel #include "ntp_libopts.h"
992950cc38Schristos #include "ntp_unixtime.h"
100abb0f93cSkardel #include "ntp-keygen-opts.h"
101abb0f93cSkardel 
102abb0f93cSkardel #ifdef OPENSSL
103ccc794f0Schristos #include "openssl/asn1.h"
104abb0f93cSkardel #include "openssl/bn.h"
105ccc794f0Schristos #include "openssl/crypto.h"
106abb0f93cSkardel #include "openssl/evp.h"
107abb0f93cSkardel #include "openssl/err.h"
108abb0f93cSkardel #include "openssl/rand.h"
109ccc794f0Schristos #include "openssl/opensslv.h"
110abb0f93cSkardel #include "openssl/pem.h"
111ccc794f0Schristos #include "openssl/x509.h"
112abb0f93cSkardel #include "openssl/x509v3.h"
113abb0f93cSkardel #include <openssl/objects.h>
11403cfe0ffSchristos #include "libssl_compat.h"
115abb0f93cSkardel #endif	/* OPENSSL */
116abb0f93cSkardel #include <ssl_applink.c>
117abb0f93cSkardel 
118e19314b7Schristos #define _UC(str)	((char *)(intptr_t)(str))
119abb0f93cSkardel /*
120abb0f93cSkardel  * Cryptodefines
121abb0f93cSkardel  */
122abb0f93cSkardel #define	MD5KEYS		10	/* number of keys generated of each type */
123abb0f93cSkardel #define	MD5SIZE		20	/* maximum key size */
1242950cc38Schristos #ifdef AUTOKEY
125abb0f93cSkardel #define	PLEN		512	/* default prime modulus size (bits) */
126*eabc0478Schristos #define	ILEN		512	/* default identity modulus size (bits) */
127abb0f93cSkardel #define	MVMAX		100	/* max MV parameters */
128abb0f93cSkardel 
129abb0f93cSkardel /*
130abb0f93cSkardel  * Strings used in X509v3 extension fields
131abb0f93cSkardel  */
132abb0f93cSkardel #define KEY_USAGE		"digitalSignature,keyCertSign"
133abb0f93cSkardel #define BASIC_CONSTRAINTS	"critical,CA:TRUE"
134abb0f93cSkardel #define EXT_KEY_PRIVATE		"private"
135abb0f93cSkardel #define EXT_KEY_TRUST		"trustRoot"
1362950cc38Schristos #endif	/* AUTOKEY */
137abb0f93cSkardel 
138abb0f93cSkardel /*
139abb0f93cSkardel  * Prototypes
140abb0f93cSkardel  */
141abb0f93cSkardel FILE	*fheader	(const char *, const char *, const char *);
142e19314b7Schristos int	gen_md5		(const char *);
1432950cc38Schristos void	followlink	(char *, size_t);
1442950cc38Schristos #ifdef AUTOKEY
145e19314b7Schristos EVP_PKEY *gen_rsa	(const char *);
146e19314b7Schristos EVP_PKEY *gen_dsa	(const char *);
147e19314b7Schristos EVP_PKEY *gen_iffkey	(const char *);
148e19314b7Schristos EVP_PKEY *gen_gqkey	(const char *);
149e19314b7Schristos EVP_PKEY *gen_mvkey	(const char *, EVP_PKEY **);
150abb0f93cSkardel void	gen_mvserv	(char *, EVP_PKEY **);
151e19314b7Schristos int	x509		(EVP_PKEY *, const EVP_MD *, char *, const char *,
152abb0f93cSkardel 			    char *);
153abb0f93cSkardel void	cb		(int, int, void *);
154e19314b7Schristos EVP_PKEY *genkey	(const char *, const char *);
155abb0f93cSkardel EVP_PKEY *readkey	(char *, char *, u_int *, EVP_PKEY **);
156abb0f93cSkardel void	writekey	(char *, char *, u_int *, EVP_PKEY **);
157abb0f93cSkardel u_long	asn2ntp		(ASN1_TIME *);
15803cfe0ffSchristos 
15903cfe0ffSchristos static DSA* genDsaParams(int, char*);
16003cfe0ffSchristos static RSA* genRsaKeyPair(int, char*);
16103cfe0ffSchristos 
1622950cc38Schristos #endif	/* AUTOKEY */
163abb0f93cSkardel 
164abb0f93cSkardel /*
165abb0f93cSkardel  * Program variables
166abb0f93cSkardel  */
167abb0f93cSkardel extern char *optarg;		/* command line argument */
168af12ab5eSchristos char	const *progname;
1692950cc38Schristos u_int	lifetime = DAYSPERYEAR;	/* certificate lifetime (days) */
170abb0f93cSkardel int	nkeys;			/* MV keys */
171abb0f93cSkardel time_t	epoch;			/* Unix epoch (seconds) since 1970 */
172abb0f93cSkardel u_int	fstamp;			/* NTP filestamp */
1732950cc38Schristos char	hostbuf[MAXHOSTNAME + 1];
1742950cc38Schristos char	*hostname = NULL;	/* host, used in cert filenames */
1752950cc38Schristos char	*groupname = NULL;	/* group name */
1762950cc38Schristos char	certnamebuf[2 * sizeof(hostbuf)];
1772950cc38Schristos char	*certname = NULL;	/* certificate subject/issuer name */
178abb0f93cSkardel char	*passwd1 = NULL;	/* input private key password */
179abb0f93cSkardel char	*passwd2 = NULL;	/* output private key password */
1802950cc38Schristos char	filename[MAXFILENAME + 1]; /* file name */
1812950cc38Schristos #ifdef AUTOKEY
1822950cc38Schristos u_int	modulus = PLEN;		/* prime modulus size (bits) */
1832950cc38Schristos u_int	modulus2 = ILEN;	/* identity modulus size (bits) */
184abb0f93cSkardel long	d0, d1, d2, d3;		/* callback counters */
1852950cc38Schristos const EVP_CIPHER * cipher = NULL;
1862950cc38Schristos #endif	/* AUTOKEY */
187abb0f93cSkardel 
188abb0f93cSkardel #ifdef SYS_WINNT
189abb0f93cSkardel BOOL init_randfile();
190abb0f93cSkardel 
191abb0f93cSkardel /*
1922950cc38Schristos  * Don't try to follow symbolic links on Windows.  Assume link == file.
193abb0f93cSkardel  */
194abb0f93cSkardel int
1952950cc38Schristos readlink(
1962950cc38Schristos 	char *	link,
1972950cc38Schristos 	char *	file,
1982950cc38Schristos 	int	len
1992950cc38Schristos 	)
200abb0f93cSkardel {
2018b8da087Schristos 	return (int)strlen(file); /* assume no overflow possible */
202abb0f93cSkardel }
203abb0f93cSkardel 
204abb0f93cSkardel /*
2052950cc38Schristos  * Don't try to create symbolic links on Windows, that is supported on
2062950cc38Schristos  * Vista and later only.  Instead, if CreateHardLink is available (XP
2072950cc38Schristos  * and later), hardlink the linkname to the original filename.  On
2082950cc38Schristos  * earlier systems, user must rename file to match expected link for
2092950cc38Schristos  * ntpd to find it.  To allow building a ntp-keygen.exe which loads on
2102950cc38Schristos  * Windows pre-XP, runtime link to CreateHardLinkA().
211abb0f93cSkardel  */
212abb0f93cSkardel int
2132950cc38Schristos symlink(
2142950cc38Schristos 	char *	filename,
2152950cc38Schristos 	char*	linkname
2162950cc38Schristos 	)
2172950cc38Schristos {
2182950cc38Schristos 	typedef BOOL (WINAPI *PCREATEHARDLINKA)(
2192950cc38Schristos 		__in LPCSTR	lpFileName,
2202950cc38Schristos 		__in LPCSTR	lpExistingFileName,
2212950cc38Schristos 		__reserved LPSECURITY_ATTRIBUTES lpSA
2222950cc38Schristos 		);
2232950cc38Schristos 	static PCREATEHARDLINKA pCreateHardLinkA;
2242950cc38Schristos 	static int		tried;
2252950cc38Schristos 	HMODULE			hDll;
2262950cc38Schristos 	FARPROC			pfn;
2272950cc38Schristos 	int			link_created;
2282950cc38Schristos 	int			saved_errno;
2292950cc38Schristos 
2302950cc38Schristos 	if (!tried) {
2312950cc38Schristos 		tried = TRUE;
2322950cc38Schristos 		hDll = LoadLibrary("kernel32");
2332950cc38Schristos 		pfn = GetProcAddress(hDll, "CreateHardLinkA");
2342950cc38Schristos 		pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
235abb0f93cSkardel 	}
2362950cc38Schristos 
2372950cc38Schristos 	if (NULL == pCreateHardLinkA) {
2382950cc38Schristos 		errno = ENOSYS;
2392950cc38Schristos 		return -1;
2402950cc38Schristos 	}
2412950cc38Schristos 
2422950cc38Schristos 	link_created = (*pCreateHardLinkA)(linkname, filename, NULL);
2432950cc38Schristos 
2442950cc38Schristos 	if (link_created)
2452950cc38Schristos 		return 0;
2462950cc38Schristos 
2472950cc38Schristos 	saved_errno = GetLastError();	/* yes we play loose */
2482950cc38Schristos 	mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
2492950cc38Schristos 		 linkname, filename);
2502950cc38Schristos 	errno = saved_errno;
2512950cc38Schristos 	return -1;
2522950cc38Schristos }
2532950cc38Schristos 
254abb0f93cSkardel void
255abb0f93cSkardel InitWin32Sockets() {
256abb0f93cSkardel 	WORD wVersionRequested;
257abb0f93cSkardel 	WSADATA wsaData;
258abb0f93cSkardel 	wVersionRequested = MAKEWORD(2,0);
259abb0f93cSkardel 	if (WSAStartup(wVersionRequested, &wsaData))
260abb0f93cSkardel 	{
261abb0f93cSkardel 		fprintf(stderr, "No useable winsock.dll\n");
262abb0f93cSkardel 		exit(1);
263abb0f93cSkardel 	}
264abb0f93cSkardel }
265abb0f93cSkardel #endif /* SYS_WINNT */
266abb0f93cSkardel 
2672950cc38Schristos 
2682950cc38Schristos /*
2692950cc38Schristos  * followlink() - replace filename with its target if symlink.
2702950cc38Schristos  *
271*eabc0478Schristos  * readlink() does not null-terminate the result.
2722950cc38Schristos  */
2732950cc38Schristos void
2742950cc38Schristos followlink(
2752950cc38Schristos 	char *	fname,
2762950cc38Schristos 	size_t	bufsiz
2772950cc38Schristos 	)
2782950cc38Schristos {
279*eabc0478Schristos 	ssize_t	len;
280*eabc0478Schristos 	char *	target;
2812950cc38Schristos 
282*eabc0478Schristos 	REQUIRE(bufsiz > 0 && bufsiz <= SSIZE_MAX);
2832950cc38Schristos 
284*eabc0478Schristos 	target = emalloc(bufsiz);
285*eabc0478Schristos 	len = readlink(fname, target, bufsiz);
2862950cc38Schristos 	if (len < 0) {
2872950cc38Schristos 		fname[0] = '\0';
2882950cc38Schristos 		return;
2892950cc38Schristos 	}
290*eabc0478Schristos 	if ((size_t)len > bufsiz - 1)
291*eabc0478Schristos 		len = bufsiz - 1;
292*eabc0478Schristos 	memcpy(fname, target, len);
293*eabc0478Schristos 	fname[len] = '\0';
294*eabc0478Schristos 	free(target);
2952950cc38Schristos }
2962950cc38Schristos 
2972950cc38Schristos 
298abb0f93cSkardel /*
299abb0f93cSkardel  * Main program
300abb0f93cSkardel  */
301abb0f93cSkardel int
302abb0f93cSkardel main(
303abb0f93cSkardel 	int	argc,		/* command line options */
304abb0f93cSkardel 	char	**argv
305abb0f93cSkardel 	)
306abb0f93cSkardel {
307abb0f93cSkardel 	struct timeval tv;	/* initialization vector */
308abb0f93cSkardel 	int	md5key = 0;	/* generate MD5 keys */
3092950cc38Schristos 	int	optct;		/* option count */
3102950cc38Schristos #ifdef AUTOKEY
311abb0f93cSkardel 	X509	*cert = NULL;	/* X509 certificate */
312abb0f93cSkardel 	EVP_PKEY *pkey_host = NULL; /* host key */
313abb0f93cSkardel 	EVP_PKEY *pkey_sign = NULL; /* sign key */
314abb0f93cSkardel 	EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
315abb0f93cSkardel 	EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
316abb0f93cSkardel 	EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
317abb0f93cSkardel 	EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
318abb0f93cSkardel 	int	hostkey = 0;	/* generate RSA keys */
319abb0f93cSkardel 	int	iffkey = 0;	/* generate IFF keys */
320abb0f93cSkardel 	int	gqkey = 0;	/* generate GQ keys */
321abb0f93cSkardel 	int	mvkey = 0;	/* update MV keys */
322abb0f93cSkardel 	int	mvpar = 0;	/* generate MV parameters */
323abb0f93cSkardel 	char	*sign = NULL;	/* sign key */
324abb0f93cSkardel 	EVP_PKEY *pkey = NULL;	/* temp key */
325abb0f93cSkardel 	const EVP_MD *ectx;	/* EVP digest */
326abb0f93cSkardel 	char	pathbuf[MAXFILENAME + 1];
327abb0f93cSkardel 	const char *scheme = NULL; /* digest/signature scheme */
3282950cc38Schristos 	const char *ciphername = NULL; /* to encrypt priv. key */
329e19314b7Schristos 	const char *exten = NULL;	/* private extension */
330abb0f93cSkardel 	char	*grpkey = NULL;	/* identity extension */
331abb0f93cSkardel 	int	nid;		/* X509 digest/signature scheme */
332abb0f93cSkardel 	FILE	*fstr = NULL;	/* file handle */
333abb0f93cSkardel 	char	groupbuf[MAXHOSTNAME + 1];
3342950cc38Schristos 	u_int	temp;
3352950cc38Schristos 	BIO *	bp;
3362950cc38Schristos 	int	i, cnt;
3372950cc38Schristos 	char *	ptr;
3382950cc38Schristos #endif	/* AUTOKEY */
339ccc794f0Schristos #ifdef OPENSSL
340ccc794f0Schristos 	const char *sslvtext;
341ccc794f0Schristos 	int sslvmatch;
342ccc794f0Schristos #endif /* OPENSSL */
343abb0f93cSkardel 
344abb0f93cSkardel 	progname = argv[0];
345abb0f93cSkardel 
346abb0f93cSkardel #ifdef SYS_WINNT
347abb0f93cSkardel 	/* Initialize before OpenSSL checks */
348abb0f93cSkardel 	InitWin32Sockets();
349abb0f93cSkardel 	if (!init_randfile())
350abb0f93cSkardel 		fprintf(stderr, "Unable to initialize .rnd file\n");
351abb0f93cSkardel 	ssl_applink();
352abb0f93cSkardel #endif
353abb0f93cSkardel 
354abb0f93cSkardel #ifdef OPENSSL
355abb0f93cSkardel 	ssl_check_version();
356abb0f93cSkardel #endif	/* OPENSSL */
357abb0f93cSkardel 
358ea66d795Schristos 	ntp_crypto_srandom();
359ea66d795Schristos 
360abb0f93cSkardel 	/*
361abb0f93cSkardel 	 * Process options, initialize host name and timestamp.
3622950cc38Schristos 	 * gethostname() won't null-terminate if hostname is exactly the
3632950cc38Schristos 	 * length provided for the buffer.
364abb0f93cSkardel 	 */
3652950cc38Schristos 	gethostname(hostbuf, sizeof(hostbuf) - 1);
3662950cc38Schristos 	hostbuf[COUNTOF(hostbuf) - 1] = '\0';
367abb0f93cSkardel 	hostname = hostbuf;
3682950cc38Schristos 	groupname = hostbuf;
3692950cc38Schristos 	passwd1 = hostbuf;
3702950cc38Schristos 	passwd2 = NULL;
3712950cc38Schristos 	GETTIMEOFDAY(&tv, NULL);
372abb0f93cSkardel 	epoch = tv.tv_sec;
3732950cc38Schristos 	fstamp = (u_int)(epoch + JAN_1970);
374abb0f93cSkardel 
3752950cc38Schristos 	optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
376af12ab5eSchristos 	argc -= optct;	// Just in case we care later.
377af12ab5eSchristos 	argv += optct;	// Just in case we care later.
3783123f114Skardel 
3793123f114Skardel #ifdef OPENSSL
380ccc794f0Schristos 	sslvtext = OpenSSL_version(OPENSSL_VERSION);
381ccc794f0Schristos 	sslvmatch = OpenSSL_version_num() == OPENSSL_VERSION_NUMBER;
382ccc794f0Schristos 	if (sslvmatch)
3833123f114Skardel 		fprintf(stderr, "Using OpenSSL version %s\n",
384ccc794f0Schristos 			sslvtext);
3853123f114Skardel 	else
3863123f114Skardel 		fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
387ccc794f0Schristos 			OPENSSL_VERSION_TEXT, sslvtext);
3883123f114Skardel #endif /* OPENSSL */
3893123f114Skardel 
3902950cc38Schristos 	debug = OPT_VALUE_SET_DEBUG_LEVEL;
3912950cc38Schristos 
392abb0f93cSkardel 	if (HAVE_OPT( MD5KEY ))
393abb0f93cSkardel 		md5key++;
3942950cc38Schristos #ifdef AUTOKEY
395ea66d795Schristos 	if (HAVE_OPT( PASSWORD ))
396ea66d795Schristos 		passwd1 = estrdup(OPT_ARG( PASSWORD ));
397abb0f93cSkardel 
398ea66d795Schristos 	if (HAVE_OPT( EXPORT_PASSWD ))
399ea66d795Schristos 		passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));
400abb0f93cSkardel 
401abb0f93cSkardel 	if (HAVE_OPT( HOST_KEY ))
402abb0f93cSkardel 		hostkey++;
403abb0f93cSkardel 
404abb0f93cSkardel 	if (HAVE_OPT( SIGN_KEY ))
4052950cc38Schristos 		sign = estrdup(OPT_ARG( SIGN_KEY ));
406abb0f93cSkardel 
407abb0f93cSkardel 	if (HAVE_OPT( GQ_PARAMS ))
408abb0f93cSkardel 		gqkey++;
409abb0f93cSkardel 
410abb0f93cSkardel 	if (HAVE_OPT( IFFKEY ))
411abb0f93cSkardel 		iffkey++;
412abb0f93cSkardel 
413abb0f93cSkardel 	if (HAVE_OPT( MV_PARAMS )) {
414*eabc0478Schristos 		mvkey++;			/* DLH are these two swapped? */
415abb0f93cSkardel 		nkeys = OPT_VALUE_MV_PARAMS;
416abb0f93cSkardel 	}
417abb0f93cSkardel 	if (HAVE_OPT( MV_KEYS )) {
418*eabc0478Schristos 		mvpar++;	/* not used! */	/* DLH are these two swapped? */
419abb0f93cSkardel 		nkeys = OPT_VALUE_MV_KEYS;
420abb0f93cSkardel 	}
4212950cc38Schristos 
4222950cc38Schristos 	if (HAVE_OPT( IMBITS ))
4232950cc38Schristos 		modulus2 = OPT_VALUE_IMBITS;
4242950cc38Schristos 
425abb0f93cSkardel 	if (HAVE_OPT( MODULUS ))
426abb0f93cSkardel 		modulus = OPT_VALUE_MODULUS;
427abb0f93cSkardel 
428abb0f93cSkardel 	if (HAVE_OPT( CERTIFICATE ))
429abb0f93cSkardel 		scheme = OPT_ARG( CERTIFICATE );
430abb0f93cSkardel 
4312950cc38Schristos 	if (HAVE_OPT( CIPHER ))
4322950cc38Schristos 		ciphername = OPT_ARG( CIPHER );
433abb0f93cSkardel 
4342950cc38Schristos 	if (HAVE_OPT( SUBJECT_NAME ))
4352950cc38Schristos 		hostname = estrdup(OPT_ARG( SUBJECT_NAME ));
4362950cc38Schristos 
4372950cc38Schristos 	if (HAVE_OPT( IDENT ))
4382950cc38Schristos 		groupname = estrdup(OPT_ARG( IDENT ));
4392950cc38Schristos 
4402950cc38Schristos 	if (HAVE_OPT( LIFETIME ))
4412950cc38Schristos 		lifetime = OPT_VALUE_LIFETIME;
442abb0f93cSkardel 
443abb0f93cSkardel 	if (HAVE_OPT( PVT_CERT ))
444abb0f93cSkardel 		exten = EXT_KEY_PRIVATE;
445abb0f93cSkardel 
446abb0f93cSkardel 	if (HAVE_OPT( TRUSTED_CERT ))
447abb0f93cSkardel 		exten = EXT_KEY_TRUST;
448abb0f93cSkardel 
449abb0f93cSkardel 	/*
4502950cc38Schristos 	 * Remove the group name from the hostname variable used
4512950cc38Schristos 	 * in host and sign certificate file names.
4522950cc38Schristos 	 */
4532950cc38Schristos 	if (hostname != hostbuf)
4542950cc38Schristos 		ptr = strchr(hostname, '@');
4552950cc38Schristos 	else
4562950cc38Schristos 		ptr = NULL;
4572950cc38Schristos 	if (ptr != NULL) {
4582950cc38Schristos 		*ptr = '\0';
4592950cc38Schristos 		groupname = estrdup(ptr + 1);
4602950cc38Schristos 		/* -s @group is equivalent to -i group, host unch. */
4612950cc38Schristos 		if (ptr == hostname)
4622950cc38Schristos 			hostname = hostbuf;
4632950cc38Schristos 	}
4642950cc38Schristos 
4652950cc38Schristos 	/*
4662950cc38Schristos 	 * Derive host certificate issuer/subject names from host name
4672950cc38Schristos 	 * and optional group.  If no groupname is provided, the issuer
4682950cc38Schristos 	 * and subject is the hostname with no '@group', and the
4692950cc38Schristos 	 * groupname variable is pointed to hostname for use in IFF, GQ,
4702950cc38Schristos 	 * and MV parameters file names.
4712950cc38Schristos 	 */
4722950cc38Schristos 	if (groupname == hostbuf) {
4732950cc38Schristos 		certname = hostname;
4742950cc38Schristos 	} else {
4752950cc38Schristos 		snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
4762950cc38Schristos 			 hostname, groupname);
4772950cc38Schristos 		certname = certnamebuf;
4782950cc38Schristos 	}
4792950cc38Schristos 
4802950cc38Schristos 	/*
481abb0f93cSkardel 	 * Seed random number generator and grow weeds.
482abb0f93cSkardel 	 */
483ccc794f0Schristos #if OPENSSL_VERSION_NUMBER < 0x10100000L
484abb0f93cSkardel 	ERR_load_crypto_strings();
485abb0f93cSkardel 	OpenSSL_add_all_algorithms();
486ccc794f0Schristos #endif /* OPENSSL_VERSION_NUMBER */
487abb0f93cSkardel 	if (!RAND_status()) {
4882950cc38Schristos 		if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
489abb0f93cSkardel 			fprintf(stderr, "RAND_file_name %s\n",
490abb0f93cSkardel 			    ERR_error_string(ERR_get_error(), NULL));
491abb0f93cSkardel 			exit (-1);
492abb0f93cSkardel 		}
493abb0f93cSkardel 		temp = RAND_load_file(pathbuf, -1);
494abb0f93cSkardel 		if (temp == 0) {
495abb0f93cSkardel 			fprintf(stderr,
496abb0f93cSkardel 			    "RAND_load_file %s not found or empty\n",
497abb0f93cSkardel 			    pathbuf);
498abb0f93cSkardel 			exit (-1);
499abb0f93cSkardel 		}
500abb0f93cSkardel 		fprintf(stderr,
501abb0f93cSkardel 		    "Random seed file %s %u bytes\n", pathbuf, temp);
502abb0f93cSkardel 		RAND_add(&epoch, sizeof(epoch), 4.0);
503abb0f93cSkardel 	}
5042950cc38Schristos #endif	/* AUTOKEY */
505abb0f93cSkardel 
506abb0f93cSkardel 	/*
5072950cc38Schristos 	 * Create new unencrypted MD5 keys file if requested. If this
5082950cc38Schristos 	 * option is selected, ignore all other options.
5092950cc38Schristos 	 */
5102950cc38Schristos 	if (md5key) {
5112950cc38Schristos 		gen_md5("md5");
5122950cc38Schristos 		exit (0);
5132950cc38Schristos 	}
5142950cc38Schristos 
5152950cc38Schristos #ifdef AUTOKEY
5162950cc38Schristos 	/*
517abb0f93cSkardel 	 * Load previous certificate if available.
518abb0f93cSkardel 	 */
5192950cc38Schristos 	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
520abb0f93cSkardel 	if ((fstr = fopen(filename, "r")) != NULL) {
521abb0f93cSkardel 		cert = PEM_read_X509(fstr, NULL, NULL, NULL);
522abb0f93cSkardel 		fclose(fstr);
523abb0f93cSkardel 	}
524abb0f93cSkardel 	if (cert != NULL) {
525abb0f93cSkardel 
526abb0f93cSkardel 		/*
527abb0f93cSkardel 		 * Extract subject name.
528abb0f93cSkardel 		 */
529abb0f93cSkardel 		X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
530abb0f93cSkardel 		    MAXFILENAME);
531abb0f93cSkardel 
532abb0f93cSkardel 		/*
533abb0f93cSkardel 		 * Extract digest/signature scheme.
534abb0f93cSkardel 		 */
535abb0f93cSkardel 		if (scheme == NULL) {
53603cfe0ffSchristos 			nid = X509_get_signature_nid(cert);
537abb0f93cSkardel 			scheme = OBJ_nid2sn(nid);
538abb0f93cSkardel 		}
539abb0f93cSkardel 
540abb0f93cSkardel 		/*
541abb0f93cSkardel 		 * If a key_usage extension field is present, determine
542abb0f93cSkardel 		 * whether this is a trusted or private certificate.
543abb0f93cSkardel 		 */
544abb0f93cSkardel 		if (exten == NULL) {
545abb0f93cSkardel 			ptr = strstr(groupbuf, "CN=");
546abb0f93cSkardel 			cnt = X509_get_ext_count(cert);
547abb0f93cSkardel 			for (i = 0; i < cnt; i++) {
54803cfe0ffSchristos 				X509_EXTENSION *ext;
54903cfe0ffSchristos 				ASN1_OBJECT *obj;
55003cfe0ffSchristos 
551abb0f93cSkardel 				ext = X509_get_ext(cert, i);
55203cfe0ffSchristos 				obj = X509_EXTENSION_get_object(ext);
55303cfe0ffSchristos 
55403cfe0ffSchristos 				if (OBJ_obj2nid(obj) ==
555abb0f93cSkardel 				    NID_ext_key_usage) {
556abb0f93cSkardel 					bp = BIO_new(BIO_s_mem());
557abb0f93cSkardel 					X509V3_EXT_print(bp, ext, 0, 0);
558abb0f93cSkardel 					BIO_gets(bp, pathbuf,
559abb0f93cSkardel 					    MAXFILENAME);
560abb0f93cSkardel 					BIO_free(bp);
561abb0f93cSkardel 					if (strcmp(pathbuf,
562abb0f93cSkardel 					    "Trust Root") == 0)
563abb0f93cSkardel 						exten = EXT_KEY_TRUST;
564abb0f93cSkardel 					else if (strcmp(pathbuf,
565abb0f93cSkardel 					    "Private") == 0)
566abb0f93cSkardel 						exten = EXT_KEY_PRIVATE;
5672950cc38Schristos 					certname = estrdup(ptr + 3);
568abb0f93cSkardel 				}
569abb0f93cSkardel 			}
570abb0f93cSkardel 		}
571abb0f93cSkardel 	}
572abb0f93cSkardel 	if (scheme == NULL)
573abb0f93cSkardel 		scheme = "RSA-MD5";
5742950cc38Schristos 	if (ciphername == NULL)
5752950cc38Schristos 		ciphername = "des-ede3-cbc";
5762950cc38Schristos 	cipher = EVP_get_cipherbyname(ciphername);
5772950cc38Schristos 	if (cipher == NULL) {
5782950cc38Schristos 		fprintf(stderr, "Unknown cipher %s\n", ciphername);
5792950cc38Schristos 		exit(-1);
5802950cc38Schristos 	}
581abb0f93cSkardel 	fprintf(stderr, "Using host %s group %s\n", hostname,
582abb0f93cSkardel 	    groupname);
583abb0f93cSkardel 
584abb0f93cSkardel 	/*
585abb0f93cSkardel 	 * Create a new encrypted RSA host key file if requested;
586abb0f93cSkardel 	 * otherwise, look for an existing host key file. If not found,
587abb0f93cSkardel 	 * create a new encrypted RSA host key file. If that fails, go
588abb0f93cSkardel 	 * no further.
589abb0f93cSkardel 	 */
590abb0f93cSkardel 	if (hostkey)
591abb0f93cSkardel 		pkey_host = genkey("RSA", "host");
592abb0f93cSkardel 	if (pkey_host == NULL) {
5932950cc38Schristos 		snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
594abb0f93cSkardel 		pkey_host = readkey(filename, passwd1, &fstamp, NULL);
595abb0f93cSkardel 		if (pkey_host != NULL) {
5962950cc38Schristos 			followlink(filename, sizeof(filename));
597abb0f93cSkardel 			fprintf(stderr, "Using host key %s\n",
598abb0f93cSkardel 			    filename);
599abb0f93cSkardel 		} else {
600abb0f93cSkardel 			pkey_host = genkey("RSA", "host");
601abb0f93cSkardel 		}
602abb0f93cSkardel 	}
603abb0f93cSkardel 	if (pkey_host == NULL) {
604abb0f93cSkardel 		fprintf(stderr, "Generating host key fails\n");
605abb0f93cSkardel 		exit(-1);
606abb0f93cSkardel 	}
607abb0f93cSkardel 
608abb0f93cSkardel 	/*
609abb0f93cSkardel 	 * Create new encrypted RSA or DSA sign keys file if requested;
610abb0f93cSkardel 	 * otherwise, look for an existing sign key file. If not found,
611abb0f93cSkardel 	 * use the host key instead.
612abb0f93cSkardel 	 */
613abb0f93cSkardel 	if (sign != NULL)
614abb0f93cSkardel 		pkey_sign = genkey(sign, "sign");
615abb0f93cSkardel 	if (pkey_sign == NULL) {
6162950cc38Schristos 		snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
6172950cc38Schristos 			 hostname);
618abb0f93cSkardel 		pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
619abb0f93cSkardel 		if (pkey_sign != NULL) {
6202950cc38Schristos 			followlink(filename, sizeof(filename));
621abb0f93cSkardel 			fprintf(stderr, "Using sign key %s\n",
622abb0f93cSkardel 			    filename);
6232950cc38Schristos 		} else {
624abb0f93cSkardel 			pkey_sign = pkey_host;
625abb0f93cSkardel 			fprintf(stderr, "Using host key as sign key\n");
626abb0f93cSkardel 		}
627abb0f93cSkardel 	}
628abb0f93cSkardel 
629abb0f93cSkardel 	/*
630abb0f93cSkardel 	 * Create new encrypted GQ server keys file if requested;
631abb0f93cSkardel 	 * otherwise, look for an exisiting file. If found, fetch the
632abb0f93cSkardel 	 * public key for the certificate.
633abb0f93cSkardel 	 */
634abb0f93cSkardel 	if (gqkey)
635abb0f93cSkardel 		pkey_gqkey = gen_gqkey("gqkey");
636abb0f93cSkardel 	if (pkey_gqkey == NULL) {
6372950cc38Schristos 		snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
6382950cc38Schristos 		    groupname);
639abb0f93cSkardel 		pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
640abb0f93cSkardel 		if (pkey_gqkey != NULL) {
6412950cc38Schristos 			followlink(filename, sizeof(filename));
642abb0f93cSkardel 			fprintf(stderr, "Using GQ parameters %s\n",
643abb0f93cSkardel 			    filename);
644abb0f93cSkardel 		}
645abb0f93cSkardel 	}
64603cfe0ffSchristos 	if (pkey_gqkey != NULL) {
64703cfe0ffSchristos 		RSA		*rsa;
64803cfe0ffSchristos 		const BIGNUM	*q;
64903cfe0ffSchristos 
650*eabc0478Schristos 		rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
65103cfe0ffSchristos 		RSA_get0_factors(rsa, NULL, &q);
65203cfe0ffSchristos 		grpkey = BN_bn2hex(q);
653*eabc0478Schristos 		RSA_free(rsa);
65403cfe0ffSchristos 	}
655abb0f93cSkardel 
656abb0f93cSkardel 	/*
657abb0f93cSkardel 	 * Write the nonencrypted GQ client parameters to the stdout
658abb0f93cSkardel 	 * stream. The parameter file is the server key file with the
659abb0f93cSkardel 	 * private key obscured.
660abb0f93cSkardel 	 */
661abb0f93cSkardel 	if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
662abb0f93cSkardel 		RSA	*rsa;
663abb0f93cSkardel 
6642950cc38Schristos 		snprintf(filename, sizeof(filename),
6652950cc38Schristos 		    "ntpkey_gqpar_%s.%u", groupname, fstamp);
666abb0f93cSkardel 		fprintf(stderr, "Writing GQ parameters %s to stdout\n",
667abb0f93cSkardel 		    filename);
668abb0f93cSkardel 		fprintf(stdout, "# %s\n# %s\n", filename,
669abb0f93cSkardel 		    ctime(&epoch));
670*eabc0478Schristos 		rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
67103cfe0ffSchristos 		RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()));
672abb0f93cSkardel 		pkey = EVP_PKEY_new();
673abb0f93cSkardel 		EVP_PKEY_assign_RSA(pkey, rsa);
6742950cc38Schristos 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
6752950cc38Schristos 		    NULL, NULL);
6762950cc38Schristos 		fflush(stdout);
677*eabc0478Schristos 		if (debug) {
678abb0f93cSkardel 			RSA_print_fp(stderr, rsa, 0);
679abb0f93cSkardel 		}
680*eabc0478Schristos 		EVP_PKEY_free(pkey);
681*eabc0478Schristos 		pkey = NULL;
682*eabc0478Schristos 		RSA_free(rsa);
683*eabc0478Schristos 	}
684abb0f93cSkardel 
685abb0f93cSkardel 	/*
686abb0f93cSkardel 	 * Write the encrypted GQ server keys to the stdout stream.
687abb0f93cSkardel 	 */
688abb0f93cSkardel 	if (pkey_gqkey != NULL && passwd2 != NULL) {
689abb0f93cSkardel 		RSA	*rsa;
690abb0f93cSkardel 
6912950cc38Schristos 		snprintf(filename, sizeof(filename),
6922950cc38Schristos 		    "ntpkey_gqkey_%s.%u", groupname, fstamp);
693abb0f93cSkardel 		fprintf(stderr, "Writing GQ keys %s to stdout\n",
694abb0f93cSkardel 		    filename);
695abb0f93cSkardel 		fprintf(stdout, "# %s\n# %s\n", filename,
696abb0f93cSkardel 		    ctime(&epoch));
697*eabc0478Schristos 		rsa = EVP_PKEY_get1_RSA(pkey_gqkey);
698abb0f93cSkardel 		pkey = EVP_PKEY_new();
699abb0f93cSkardel 		EVP_PKEY_assign_RSA(pkey, rsa);
7002950cc38Schristos 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
7012950cc38Schristos 		    NULL, passwd2);
7022950cc38Schristos 		fflush(stdout);
703*eabc0478Schristos 		if (debug) {
704abb0f93cSkardel 			RSA_print_fp(stderr, rsa, 0);
705abb0f93cSkardel 		}
706*eabc0478Schristos 		EVP_PKEY_free(pkey);
707*eabc0478Schristos 		pkey = NULL;
708*eabc0478Schristos 		RSA_free(rsa);
709*eabc0478Schristos 	}
710abb0f93cSkardel 
711abb0f93cSkardel 	/*
712abb0f93cSkardel 	 * Create new encrypted IFF server keys file if requested;
713abb0f93cSkardel 	 * otherwise, look for existing file.
714abb0f93cSkardel 	 */
715abb0f93cSkardel 	if (iffkey)
716abb0f93cSkardel 		pkey_iffkey = gen_iffkey("iffkey");
717abb0f93cSkardel 	if (pkey_iffkey == NULL) {
7182950cc38Schristos 		snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
7192950cc38Schristos 		    groupname);
720abb0f93cSkardel 		pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
721abb0f93cSkardel 		if (pkey_iffkey != NULL) {
7222950cc38Schristos 			followlink(filename, sizeof(filename));
723abb0f93cSkardel 			fprintf(stderr, "Using IFF keys %s\n",
724abb0f93cSkardel 			    filename);
725abb0f93cSkardel 		}
726abb0f93cSkardel 	}
727abb0f93cSkardel 
728abb0f93cSkardel 	/*
729abb0f93cSkardel 	 * Write the nonencrypted IFF client parameters to the stdout
730abb0f93cSkardel 	 * stream. The parameter file is the server key file with the
731abb0f93cSkardel 	 * private key obscured.
732abb0f93cSkardel 	 */
733abb0f93cSkardel 	if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
734abb0f93cSkardel 		DSA	*dsa;
735abb0f93cSkardel 
7362950cc38Schristos 		snprintf(filename, sizeof(filename),
7372950cc38Schristos 		    "ntpkey_iffpar_%s.%u", groupname, fstamp);
738abb0f93cSkardel 		fprintf(stderr, "Writing IFF parameters %s to stdout\n",
739abb0f93cSkardel 		    filename);
740abb0f93cSkardel 		fprintf(stdout, "# %s\n# %s\n", filename,
741abb0f93cSkardel 		    ctime(&epoch));
742*eabc0478Schristos 		dsa = EVP_PKEY_get1_DSA(pkey_iffkey);
74303cfe0ffSchristos 		DSA_set0_key(dsa, NULL, BN_dup(BN_value_one()));
744abb0f93cSkardel 		pkey = EVP_PKEY_new();
745abb0f93cSkardel 		EVP_PKEY_assign_DSA(pkey, dsa);
7462950cc38Schristos 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
7472950cc38Schristos 		    NULL, NULL);
7482950cc38Schristos 		fflush(stdout);
749*eabc0478Schristos 		if (debug) {
750abb0f93cSkardel 			DSA_print_fp(stderr, dsa, 0);
751abb0f93cSkardel 		}
752*eabc0478Schristos 		EVP_PKEY_free(pkey);
753*eabc0478Schristos 		pkey = NULL;
754*eabc0478Schristos 		DSA_free(dsa);
755*eabc0478Schristos 	}
756abb0f93cSkardel 
757abb0f93cSkardel 	/*
758abb0f93cSkardel 	 * Write the encrypted IFF server keys to the stdout stream.
759abb0f93cSkardel 	 */
760abb0f93cSkardel 	if (pkey_iffkey != NULL && passwd2 != NULL) {
761abb0f93cSkardel 		DSA	*dsa;
762abb0f93cSkardel 
7632950cc38Schristos 		snprintf(filename, sizeof(filename),
7642950cc38Schristos 		    "ntpkey_iffkey_%s.%u", groupname, fstamp);
765abb0f93cSkardel 		fprintf(stderr, "Writing IFF keys %s to stdout\n",
766abb0f93cSkardel 		    filename);
767abb0f93cSkardel 		fprintf(stdout, "# %s\n# %s\n", filename,
768abb0f93cSkardel 		    ctime(&epoch));
769*eabc0478Schristos 		dsa = EVP_PKEY_get1_DSA(pkey_iffkey);
770abb0f93cSkardel 		pkey = EVP_PKEY_new();
771abb0f93cSkardel 		EVP_PKEY_assign_DSA(pkey, dsa);
7722950cc38Schristos 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
7732950cc38Schristos 		    NULL, passwd2);
7742950cc38Schristos 		fflush(stdout);
775*eabc0478Schristos 		if (debug) {
776abb0f93cSkardel 			DSA_print_fp(stderr, dsa, 0);
777abb0f93cSkardel 		}
778*eabc0478Schristos 		EVP_PKEY_free(pkey);
779*eabc0478Schristos 		pkey = NULL;
780*eabc0478Schristos 		DSA_free(dsa);
781*eabc0478Schristos 	}
782abb0f93cSkardel 
783abb0f93cSkardel 	/*
784abb0f93cSkardel 	 * Create new encrypted MV trusted-authority keys file if
785abb0f93cSkardel 	 * requested; otherwise, look for existing keys file.
786abb0f93cSkardel 	 */
787abb0f93cSkardel 	if (mvkey)
788abb0f93cSkardel 		pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
789abb0f93cSkardel 	if (pkey_mvkey == NULL) {
7902950cc38Schristos 		snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
7912950cc38Schristos 		    groupname);
792abb0f93cSkardel 		pkey_mvkey = readkey(filename, passwd1, &fstamp,
793abb0f93cSkardel 		    pkey_mvpar);
794abb0f93cSkardel 		if (pkey_mvkey != NULL) {
7952950cc38Schristos 			followlink(filename, sizeof(filename));
796abb0f93cSkardel 			fprintf(stderr, "Using MV keys %s\n",
797abb0f93cSkardel 			    filename);
798abb0f93cSkardel 		}
799abb0f93cSkardel 	}
800abb0f93cSkardel 
801abb0f93cSkardel 	/*
802abb0f93cSkardel 	 * Write the nonencrypted MV client parameters to the stdout
803abb0f93cSkardel 	 * stream. For the moment, we always use the client parameters
804abb0f93cSkardel 	 * associated with client key 1.
805abb0f93cSkardel 	 */
806abb0f93cSkardel 	if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
8072950cc38Schristos 		snprintf(filename, sizeof(filename),
8082950cc38Schristos 		    "ntpkey_mvpar_%s.%u", groupname, fstamp);
809abb0f93cSkardel 		fprintf(stderr, "Writing MV parameters %s to stdout\n",
810abb0f93cSkardel 		    filename);
811abb0f93cSkardel 		fprintf(stdout, "# %s\n# %s\n", filename,
812abb0f93cSkardel 		    ctime(&epoch));
813abb0f93cSkardel 		pkey = pkey_mvpar[2];
8142950cc38Schristos 		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
8152950cc38Schristos 		    NULL, NULL);
8162950cc38Schristos 		fflush(stdout);
817*eabc0478Schristos 		if (debug) {
81803cfe0ffSchristos 			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
819abb0f93cSkardel 		}
820*eabc0478Schristos 	}
821abb0f93cSkardel 
822abb0f93cSkardel 	/*
823abb0f93cSkardel 	 * Write the encrypted MV server keys to the stdout stream.
824abb0f93cSkardel 	 */
825abb0f93cSkardel 	if (pkey_mvkey != NULL && passwd2 != NULL) {
8262950cc38Schristos 		snprintf(filename, sizeof(filename),
8272950cc38Schristos 		    "ntpkey_mvkey_%s.%u", groupname, fstamp);
828abb0f93cSkardel 		fprintf(stderr, "Writing MV keys %s to stdout\n",
829abb0f93cSkardel 		    filename);
830abb0f93cSkardel 		fprintf(stdout, "# %s\n# %s\n", filename,
831abb0f93cSkardel 		    ctime(&epoch));
832abb0f93cSkardel 		pkey = pkey_mvpar[1];
8332950cc38Schristos 		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
8342950cc38Schristos 		    NULL, passwd2);
8352950cc38Schristos 		fflush(stdout);
836*eabc0478Schristos 		if (debug) {
83703cfe0ffSchristos 			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
838abb0f93cSkardel 		}
839*eabc0478Schristos 	}
840abb0f93cSkardel 
841abb0f93cSkardel 	/*
8422950cc38Schristos 	 * Decode the digest/signature scheme and create the
8432950cc38Schristos 	 * certificate. Do this every time we run the program.
844abb0f93cSkardel 	 */
845abb0f93cSkardel 	ectx = EVP_get_digestbyname(scheme);
846abb0f93cSkardel 	if (ectx == NULL) {
847abb0f93cSkardel 		fprintf(stderr,
848abb0f93cSkardel 		    "Invalid digest/signature combination %s\n",
849abb0f93cSkardel 		    scheme);
850abb0f93cSkardel 		exit (-1);
851abb0f93cSkardel 	}
8522950cc38Schristos 	x509(pkey_sign, ectx, grpkey, exten, certname);
8532950cc38Schristos #endif	/* AUTOKEY */
854abb0f93cSkardel 	exit(0);
855abb0f93cSkardel }
856abb0f93cSkardel 
857abb0f93cSkardel 
858abb0f93cSkardel /*
859abb0f93cSkardel  * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
860abb0f93cSkardel  * if OpenSSL is around, generate random SHA1 keys compatible with
861abb0f93cSkardel  * symmetric key cryptography.
862abb0f93cSkardel  */
863abb0f93cSkardel int
864abb0f93cSkardel gen_md5(
865e19314b7Schristos 	const char *id		/* file name id */
866abb0f93cSkardel 	)
867abb0f93cSkardel {
868abb0f93cSkardel 	u_char	md5key[MD5SIZE + 1];	/* MD5 key */
869abb0f93cSkardel 	FILE	*str;
870abb0f93cSkardel 	int	i, j;
871abb0f93cSkardel #ifdef OPENSSL
872abb0f93cSkardel 	u_char	keystr[MD5SIZE];
873abb0f93cSkardel 	u_char	hexstr[2 * MD5SIZE + 1];
874abb0f93cSkardel 	u_char	hex[] = "0123456789abcdef";
875abb0f93cSkardel #endif	/* OPENSSL */
876abb0f93cSkardel 
877abb0f93cSkardel 	str = fheader("MD5key", id, groupname);
878abb0f93cSkardel 	for (i = 1; i <= MD5KEYS; i++) {
879abb0f93cSkardel 		for (j = 0; j < MD5SIZE; j++) {
8807476e6e4Schristos 			u_char temp;
881abb0f93cSkardel 
882abb0f93cSkardel 			while (1) {
883ea66d795Schristos 				int rc;
884ea66d795Schristos 
8857476e6e4Schristos 				rc = ntp_crypto_random_buf(
8867476e6e4Schristos 				    &temp, sizeof(temp));
887ea66d795Schristos 				if (-1 == rc) {
888ea66d795Schristos 					fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
889ea66d795Schristos 					exit (-1);
890ea66d795Schristos 				}
891abb0f93cSkardel 				if (temp == '#')
892abb0f93cSkardel 					continue;
893abb0f93cSkardel 
894abb0f93cSkardel 				if (temp > 0x20 && temp < 0x7f)
895abb0f93cSkardel 					break;
896abb0f93cSkardel 			}
8977476e6e4Schristos 			md5key[j] = temp;
898abb0f93cSkardel 		}
899abb0f93cSkardel 		md5key[j] = '\0';
900abb0f93cSkardel 		fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
901abb0f93cSkardel 		    md5key);
902abb0f93cSkardel 	}
903abb0f93cSkardel #ifdef OPENSSL
904abb0f93cSkardel 	for (i = 1; i <= MD5KEYS; i++) {
905abb0f93cSkardel 		RAND_bytes(keystr, 20);
906abb0f93cSkardel 		for (j = 0; j < MD5SIZE; j++) {
907abb0f93cSkardel 			hexstr[2 * j] = hex[keystr[j] >> 4];
908abb0f93cSkardel 			hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
909abb0f93cSkardel 		}
910abb0f93cSkardel 		hexstr[2 * MD5SIZE] = '\0';
911abb0f93cSkardel 		fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
912abb0f93cSkardel 		    hexstr);
913abb0f93cSkardel 	}
914abb0f93cSkardel #endif	/* OPENSSL */
915abb0f93cSkardel 	fclose(str);
916abb0f93cSkardel 	return (1);
917abb0f93cSkardel }
918abb0f93cSkardel 
919abb0f93cSkardel 
9202950cc38Schristos #ifdef AUTOKEY
921abb0f93cSkardel /*
922abb0f93cSkardel  * readkey - load cryptographic parameters and keys
923abb0f93cSkardel  *
924abb0f93cSkardel  * This routine loads a PEM-encoded file of given name and password and
925abb0f93cSkardel  * extracts the filestamp from the file name. It returns a pointer to
926abb0f93cSkardel  * the first key if valid, NULL if not.
927abb0f93cSkardel  */
928abb0f93cSkardel EVP_PKEY *			/* public/private key pair */
929abb0f93cSkardel readkey(
930abb0f93cSkardel 	char	*cp,		/* file name */
931abb0f93cSkardel 	char	*passwd,	/* password */
932abb0f93cSkardel 	u_int	*estamp,	/* file stamp */
933abb0f93cSkardel 	EVP_PKEY **evpars	/* parameter list pointer */
934abb0f93cSkardel 	)
935abb0f93cSkardel {
936abb0f93cSkardel 	FILE	*str;		/* file handle */
937abb0f93cSkardel 	EVP_PKEY *pkey = NULL;	/* public/private key */
938abb0f93cSkardel 	u_int	gstamp;		/* filestamp */
939abb0f93cSkardel 	char	linkname[MAXFILENAME]; /* filestamp buffer) */
940abb0f93cSkardel 	EVP_PKEY *parkey;
941abb0f93cSkardel 	char	*ptr;
942abb0f93cSkardel 	int	i;
943abb0f93cSkardel 
944abb0f93cSkardel 	/*
945abb0f93cSkardel 	 * Open the key file.
946abb0f93cSkardel 	 */
947abb0f93cSkardel 	str = fopen(cp, "r");
948abb0f93cSkardel 	if (str == NULL)
949abb0f93cSkardel 		return (NULL);
950abb0f93cSkardel 
951abb0f93cSkardel 	/*
952abb0f93cSkardel 	 * Read the filestamp, which is contained in the first line.
953abb0f93cSkardel 	 */
954abb0f93cSkardel 	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
955abb0f93cSkardel 		fprintf(stderr, "Empty key file %s\n", cp);
956abb0f93cSkardel 		fclose(str);
957abb0f93cSkardel 		return (NULL);
958abb0f93cSkardel 	}
959abb0f93cSkardel 	if ((ptr = strrchr(ptr, '.')) == NULL) {
960abb0f93cSkardel 		fprintf(stderr, "No filestamp found in %s\n", cp);
961abb0f93cSkardel 		fclose(str);
962abb0f93cSkardel 		return (NULL);
963abb0f93cSkardel 	}
964abb0f93cSkardel 	if (sscanf(++ptr, "%u", &gstamp) != 1) {
965abb0f93cSkardel 		fprintf(stderr, "Invalid filestamp found in %s\n", cp);
966abb0f93cSkardel 		fclose(str);
967abb0f93cSkardel 		return (NULL);
968abb0f93cSkardel 	}
969abb0f93cSkardel 
970abb0f93cSkardel 	/*
971abb0f93cSkardel 	 * Read and decrypt PEM-encoded private keys. The first one
972abb0f93cSkardel 	 * found is returned. If others are expected, add them to the
973abb0f93cSkardel 	 * parameter list.
974abb0f93cSkardel 	 */
975abb0f93cSkardel 	for (i = 0; i <= MVMAX - 1;) {
976abb0f93cSkardel 		parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
977abb0f93cSkardel 		if (evpars != NULL) {
978abb0f93cSkardel 			evpars[i++] = parkey;
979abb0f93cSkardel 			evpars[i] = NULL;
980abb0f93cSkardel 		}
981abb0f93cSkardel 		if (parkey == NULL)
982abb0f93cSkardel 			break;
983abb0f93cSkardel 
984abb0f93cSkardel 		if (pkey == NULL)
985abb0f93cSkardel 			pkey = parkey;
986abb0f93cSkardel 		if (debug) {
98703cfe0ffSchristos 			if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA)
98803cfe0ffSchristos 				DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey),
989abb0f93cSkardel 				    0);
99003cfe0ffSchristos 			else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA)
99103cfe0ffSchristos 				RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey),
992abb0f93cSkardel 				    0);
993abb0f93cSkardel 		}
994abb0f93cSkardel 	}
995abb0f93cSkardel 	fclose(str);
996abb0f93cSkardel 	if (pkey == NULL) {
997abb0f93cSkardel 		fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
998abb0f93cSkardel 		    cp, passwd, ERR_error_string(ERR_get_error(),
999abb0f93cSkardel 		    NULL));
1000abb0f93cSkardel 		exit (-1);
1001abb0f93cSkardel 	}
1002abb0f93cSkardel 	*estamp = gstamp;
1003abb0f93cSkardel 	return (pkey);
1004abb0f93cSkardel }
1005abb0f93cSkardel 
1006abb0f93cSkardel 
1007abb0f93cSkardel /*
1008abb0f93cSkardel  * Generate RSA public/private key pair
1009abb0f93cSkardel  */
1010abb0f93cSkardel EVP_PKEY *			/* public/private key pair */
1011abb0f93cSkardel gen_rsa(
1012e19314b7Schristos 	const char *id		/* file name id */
1013abb0f93cSkardel 	)
1014abb0f93cSkardel {
1015abb0f93cSkardel 	EVP_PKEY *pkey;		/* private key */
1016abb0f93cSkardel 	RSA	*rsa;		/* RSA parameters and key pair */
1017abb0f93cSkardel 	FILE	*str;
1018abb0f93cSkardel 
1019abb0f93cSkardel 	fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
102003cfe0ffSchristos 	rsa = genRsaKeyPair(modulus, _UC("RSA"));
1021abb0f93cSkardel 	fprintf(stderr, "\n");
1022abb0f93cSkardel 	if (rsa == NULL) {
1023abb0f93cSkardel 		fprintf(stderr, "RSA generate keys fails\n%s\n",
1024abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
1025abb0f93cSkardel 		return (NULL);
1026abb0f93cSkardel 	}
1027abb0f93cSkardel 
1028abb0f93cSkardel 	/*
1029abb0f93cSkardel 	 * For signature encryption it is not necessary that the RSA
1030abb0f93cSkardel 	 * parameters be strictly groomed and once in a while the
1031abb0f93cSkardel 	 * modulus turns out to be non-prime. Just for grins, we check
1032abb0f93cSkardel 	 * the primality.
1033abb0f93cSkardel 	 */
1034abb0f93cSkardel 	if (!RSA_check_key(rsa)) {
1035abb0f93cSkardel 		fprintf(stderr, "Invalid RSA key\n%s\n",
1036abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
1037abb0f93cSkardel 		RSA_free(rsa);
1038abb0f93cSkardel 		return (NULL);
1039abb0f93cSkardel 	}
1040abb0f93cSkardel 
1041abb0f93cSkardel 	/*
1042abb0f93cSkardel 	 * Write the RSA parameters and keys as a RSA private key
1043abb0f93cSkardel 	 * encoded in PEM.
1044abb0f93cSkardel 	 */
1045abb0f93cSkardel 	if (strcmp(id, "sign") == 0)
1046abb0f93cSkardel 		str = fheader("RSAsign", id, hostname);
1047abb0f93cSkardel 	else
1048abb0f93cSkardel 		str = fheader("RSAhost", id, hostname);
1049abb0f93cSkardel 	pkey = EVP_PKEY_new();
1050abb0f93cSkardel 	EVP_PKEY_assign_RSA(pkey, rsa);
10512950cc38Schristos 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1052abb0f93cSkardel 	    passwd1);
1053abb0f93cSkardel 	fclose(str);
1054abb0f93cSkardel 	if (debug)
1055abb0f93cSkardel 		RSA_print_fp(stderr, rsa, 0);
1056abb0f93cSkardel 	return (pkey);
1057abb0f93cSkardel }
1058abb0f93cSkardel 
1059abb0f93cSkardel 
1060abb0f93cSkardel /*
1061abb0f93cSkardel  * Generate DSA public/private key pair
1062abb0f93cSkardel  */
1063abb0f93cSkardel EVP_PKEY *			/* public/private key pair */
1064abb0f93cSkardel gen_dsa(
1065e19314b7Schristos 	const char *id		/* file name id */
1066abb0f93cSkardel 	)
1067abb0f93cSkardel {
1068abb0f93cSkardel 	EVP_PKEY *pkey;		/* private key */
1069abb0f93cSkardel 	DSA	*dsa;		/* DSA parameters */
1070abb0f93cSkardel 	FILE	*str;
1071abb0f93cSkardel 
1072abb0f93cSkardel 	/*
1073abb0f93cSkardel 	 * Generate DSA parameters.
1074abb0f93cSkardel 	 */
1075abb0f93cSkardel 	fprintf(stderr,
1076abb0f93cSkardel 	    "Generating DSA parameters (%d bits)...\n", modulus);
107703cfe0ffSchristos 	dsa = genDsaParams(modulus, _UC("DSA"));
1078abb0f93cSkardel 	fprintf(stderr, "\n");
1079abb0f93cSkardel 	if (dsa == NULL) {
1080abb0f93cSkardel 		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1081abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
1082abb0f93cSkardel 		return (NULL);
1083abb0f93cSkardel 	}
1084abb0f93cSkardel 
1085abb0f93cSkardel 	/*
1086abb0f93cSkardel 	 * Generate DSA keys.
1087abb0f93cSkardel 	 */
1088abb0f93cSkardel 	fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
1089abb0f93cSkardel 	if (!DSA_generate_key(dsa)) {
1090abb0f93cSkardel 		fprintf(stderr, "DSA generate keys fails\n%s\n",
1091abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
1092abb0f93cSkardel 		DSA_free(dsa);
1093abb0f93cSkardel 		return (NULL);
1094abb0f93cSkardel 	}
1095abb0f93cSkardel 
1096abb0f93cSkardel 	/*
1097abb0f93cSkardel 	 * Write the DSA parameters and keys as a DSA private key
1098abb0f93cSkardel 	 * encoded in PEM.
1099abb0f93cSkardel 	 */
1100abb0f93cSkardel 	str = fheader("DSAsign", id, hostname);
1101abb0f93cSkardel 	pkey = EVP_PKEY_new();
1102abb0f93cSkardel 	EVP_PKEY_assign_DSA(pkey, dsa);
11032950cc38Schristos 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1104abb0f93cSkardel 	    passwd1);
1105abb0f93cSkardel 	fclose(str);
1106abb0f93cSkardel 	if (debug)
1107abb0f93cSkardel 		DSA_print_fp(stderr, dsa, 0);
1108abb0f93cSkardel 	return (pkey);
1109abb0f93cSkardel }
1110abb0f93cSkardel 
1111abb0f93cSkardel 
1112abb0f93cSkardel /*
1113abb0f93cSkardel  ***********************************************************************
1114abb0f93cSkardel  *								       *
1115abb0f93cSkardel  * The following routines implement the Schnorr (IFF) identity scheme  *
1116abb0f93cSkardel  *								       *
1117abb0f93cSkardel  ***********************************************************************
1118abb0f93cSkardel  *
1119abb0f93cSkardel  * The Schnorr (IFF) identity scheme is intended for use when
1120abb0f93cSkardel  * certificates are generated by some other trusted certificate
1121abb0f93cSkardel  * authority and the certificate cannot be used to convey public
1122abb0f93cSkardel  * parameters. There are two kinds of files: encrypted server files that
1123abb0f93cSkardel  * contain private and public values and nonencrypted client files that
1124abb0f93cSkardel  * contain only public values. New generations of server files must be
1125abb0f93cSkardel  * securely transmitted to all servers of the group; client files can be
1126abb0f93cSkardel  * distributed by any means. The scheme is self contained and
1127abb0f93cSkardel  * independent of new generations of host keys, sign keys and
1128abb0f93cSkardel  * certificates.
1129abb0f93cSkardel  *
1130abb0f93cSkardel  * The IFF values hide in a DSA cuckoo structure which uses the same
1131abb0f93cSkardel  * parameters. The values are used by an identity scheme based on DSA
1132abb0f93cSkardel  * cryptography and described in Stimson p. 285. The p is a 512-bit
1133abb0f93cSkardel  * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
1134abb0f93cSkardel  * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
1135abb0f93cSkardel  * private random group key b (0 < b < q) and public key v = g^b, then
1136abb0f93cSkardel  * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
1137abb0f93cSkardel  * Alice challenges Bob to confirm identity using the protocol described
1138abb0f93cSkardel  * below.
1139abb0f93cSkardel  *
1140abb0f93cSkardel  * How it works
1141abb0f93cSkardel  *
1142abb0f93cSkardel  * The scheme goes like this. Both Alice and Bob have the public primes
1143abb0f93cSkardel  * p, q and generator g. The TA gives private key b to Bob and public
1144abb0f93cSkardel  * key v to Alice.
1145abb0f93cSkardel  *
1146abb0f93cSkardel  * Alice rolls new random challenge r (o < r < q) and sends to Bob in
1147abb0f93cSkardel  * the IFF request message. Bob rolls new random k (0 < k < q), then
1148abb0f93cSkardel  * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
1149abb0f93cSkardel  * to Alice in the response message. Besides making the response
1150abb0f93cSkardel  * shorter, the hash makes it effectivey impossible for an intruder to
1151abb0f93cSkardel  * solve for b by observing a number of these messages.
1152abb0f93cSkardel  *
1153abb0f93cSkardel  * Alice receives the response and computes g^y v^r mod p. After a bit
1154abb0f93cSkardel  * of algebra, this simplifies to g^k. If the hash of this result
1155abb0f93cSkardel  * matches hash(x), Alice knows that Bob has the group key b. The signed
1156abb0f93cSkardel  * response binds this knowledge to Bob's private key and the public key
1157abb0f93cSkardel  * previously received in his certificate.
1158abb0f93cSkardel  */
1159abb0f93cSkardel /*
1160abb0f93cSkardel  * Generate Schnorr (IFF) keys.
1161abb0f93cSkardel  */
1162abb0f93cSkardel EVP_PKEY *			/* DSA cuckoo nest */
1163abb0f93cSkardel gen_iffkey(
1164e19314b7Schristos 	const char *id		/* file name id */
1165abb0f93cSkardel 	)
1166abb0f93cSkardel {
1167abb0f93cSkardel 	EVP_PKEY *pkey;		/* private key */
1168abb0f93cSkardel 	DSA	*dsa;		/* DSA parameters */
1169abb0f93cSkardel 	BN_CTX	*ctx;		/* BN working space */
1170abb0f93cSkardel 	BIGNUM	*b, *r, *k, *u, *v, *w; /* BN temp */
1171abb0f93cSkardel 	FILE	*str;
1172abb0f93cSkardel 	u_int	temp;
117303cfe0ffSchristos 	const BIGNUM *p, *q, *g;
117403cfe0ffSchristos 	BIGNUM *pub_key, *priv_key;
1175abb0f93cSkardel 
1176abb0f93cSkardel 	/*
1177abb0f93cSkardel 	 * Generate DSA parameters for use as IFF parameters.
1178abb0f93cSkardel 	 */
1179abb0f93cSkardel 	fprintf(stderr, "Generating IFF keys (%d bits)...\n",
1180abb0f93cSkardel 	    modulus2);
118103cfe0ffSchristos 	dsa = genDsaParams(modulus2, _UC("IFF"));
1182abb0f93cSkardel 	fprintf(stderr, "\n");
1183abb0f93cSkardel 	if (dsa == NULL) {
1184abb0f93cSkardel 		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1185abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
118603cfe0ffSchristos 		return (NULL);
1187abb0f93cSkardel 	}
118803cfe0ffSchristos 	DSA_get0_pqg(dsa, &p, &q, &g);
1189abb0f93cSkardel 
1190abb0f93cSkardel 	/*
1191abb0f93cSkardel 	 * Generate the private and public keys. The DSA parameters and
1192abb0f93cSkardel 	 * private key are distributed to the servers, while all except
1193abb0f93cSkardel 	 * the private key are distributed to the clients.
1194abb0f93cSkardel 	 */
1195abb0f93cSkardel 	b = BN_new(); r = BN_new(); k = BN_new();
1196abb0f93cSkardel 	u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
119703cfe0ffSchristos 	BN_rand(b, BN_num_bits(q), -1, 0);	/* a */
119803cfe0ffSchristos 	BN_mod(b, b, q, ctx);
119903cfe0ffSchristos 	BN_sub(v, q, b);
120003cfe0ffSchristos 	BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */
120103cfe0ffSchristos 	BN_mod_exp(u, g, b, p, ctx);	/* g^b mod p */
120203cfe0ffSchristos 	BN_mod_mul(u, u, v, p, ctx);
1203abb0f93cSkardel 	temp = BN_is_one(u);
1204abb0f93cSkardel 	fprintf(stderr,
1205abb0f93cSkardel 	    "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
1206abb0f93cSkardel 	    "yes" : "no");
1207abb0f93cSkardel 	if (!temp) {
1208abb0f93cSkardel 		BN_free(b); BN_free(r); BN_free(k);
1209abb0f93cSkardel 		BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1210abb0f93cSkardel 		return (NULL);
1211abb0f93cSkardel 	}
121203cfe0ffSchristos 	pub_key = BN_dup(v);
121303cfe0ffSchristos 	priv_key = BN_dup(b);
121403cfe0ffSchristos 	DSA_set0_key(dsa, pub_key, priv_key);
1215abb0f93cSkardel 
1216abb0f93cSkardel 	/*
1217abb0f93cSkardel 	 * Here is a trial round of the protocol. First, Alice rolls
1218abb0f93cSkardel 	 * random nonce r mod q and sends it to Bob. She needs only
1219abb0f93cSkardel 	 * q from parameters.
1220abb0f93cSkardel 	 */
122103cfe0ffSchristos 	BN_rand(r, BN_num_bits(q), -1, 0);	/* r */
122203cfe0ffSchristos 	BN_mod(r, r, q, ctx);
1223abb0f93cSkardel 
1224abb0f93cSkardel 	/*
1225abb0f93cSkardel 	 * Bob rolls random nonce k mod q, computes y = k + b r mod q
1226abb0f93cSkardel 	 * and x = g^k mod p, then sends (y, x) to Alice. He needs
1227abb0f93cSkardel 	 * p, q and b from parameters and r from Alice.
1228abb0f93cSkardel 	 */
122903cfe0ffSchristos 	BN_rand(k, BN_num_bits(q), -1, 0);	/* k, 0 < k < q  */
123003cfe0ffSchristos 	BN_mod(k, k, q, ctx);
123103cfe0ffSchristos 	BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */
1232abb0f93cSkardel 	BN_add(v, v, k);
123303cfe0ffSchristos 	BN_mod(v, v, q, ctx);		/* y = k + b r mod q */
123403cfe0ffSchristos 	BN_mod_exp(u, g, k, p, ctx);	/* x = g^k mod p */
1235abb0f93cSkardel 
1236abb0f93cSkardel 	/*
1237abb0f93cSkardel 	 * Alice verifies x = g^y v^r to confirm that Bob has group key
1238abb0f93cSkardel 	 * b. She needs p, q, g from parameters, (y, x) from Bob and the
1239abb0f93cSkardel 	 * original r. We omit the detail here thatt only the hash of y
1240abb0f93cSkardel 	 * is sent.
1241abb0f93cSkardel 	 */
124203cfe0ffSchristos 	BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */
124303cfe0ffSchristos 	BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */
124403cfe0ffSchristos 	BN_mod_mul(v, w, v, p, ctx);	/* product mod p */
1245abb0f93cSkardel 	temp = BN_cmp(u, v);
1246abb0f93cSkardel 	fprintf(stderr,
1247abb0f93cSkardel 	    "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
1248abb0f93cSkardel 	    0 ? "yes" : "no");
1249abb0f93cSkardel 	BN_free(b); BN_free(r);	BN_free(k);
1250abb0f93cSkardel 	BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1251abb0f93cSkardel 	if (temp != 0) {
1252abb0f93cSkardel 		DSA_free(dsa);
1253abb0f93cSkardel 		return (NULL);
1254abb0f93cSkardel 	}
1255abb0f93cSkardel 
1256abb0f93cSkardel 	/*
1257abb0f93cSkardel 	 * Write the IFF keys as an encrypted DSA private key encoded in
1258abb0f93cSkardel 	 * PEM.
1259abb0f93cSkardel 	 *
1260abb0f93cSkardel 	 * p	modulus p
1261abb0f93cSkardel 	 * q	modulus q
1262abb0f93cSkardel 	 * g	generator g
1263abb0f93cSkardel 	 * priv_key b
1264abb0f93cSkardel 	 * public_key v
1265abb0f93cSkardel 	 * kinv	not used
1266abb0f93cSkardel 	 * r	not used
1267abb0f93cSkardel 	 */
1268abb0f93cSkardel 	str = fheader("IFFkey", id, groupname);
1269abb0f93cSkardel 	pkey = EVP_PKEY_new();
1270abb0f93cSkardel 	EVP_PKEY_assign_DSA(pkey, dsa);
12712950cc38Schristos 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1272abb0f93cSkardel 	    passwd1);
1273abb0f93cSkardel 	fclose(str);
1274abb0f93cSkardel 	if (debug)
1275abb0f93cSkardel 		DSA_print_fp(stderr, dsa, 0);
1276abb0f93cSkardel 	return (pkey);
1277abb0f93cSkardel }
1278abb0f93cSkardel 
1279abb0f93cSkardel 
1280abb0f93cSkardel /*
1281abb0f93cSkardel  ***********************************************************************
1282abb0f93cSkardel  *								       *
1283abb0f93cSkardel  * The following routines implement the Guillou-Quisquater (GQ)        *
1284abb0f93cSkardel  * identity scheme                                                     *
1285abb0f93cSkardel  *								       *
1286abb0f93cSkardel  ***********************************************************************
1287abb0f93cSkardel  *
1288abb0f93cSkardel  * The Guillou-Quisquater (GQ) identity scheme is intended for use when
1289abb0f93cSkardel  * the certificate can be used to convey public parameters. The scheme
1290abb0f93cSkardel  * uses a X509v3 certificate extension field do convey the public key of
1291abb0f93cSkardel  * a private key known only to servers. There are two kinds of files:
1292abb0f93cSkardel  * encrypted server files that contain private and public values and
1293abb0f93cSkardel  * nonencrypted client files that contain only public values. New
1294abb0f93cSkardel  * generations of server files must be securely transmitted to all
1295abb0f93cSkardel  * servers of the group; client files can be distributed by any means.
1296abb0f93cSkardel  * The scheme is self contained and independent of new generations of
1297abb0f93cSkardel  * host keys and sign keys. The scheme is self contained and independent
1298abb0f93cSkardel  * of new generations of host keys and sign keys.
1299abb0f93cSkardel  *
1300abb0f93cSkardel  * The GQ parameters hide in a RSA cuckoo structure which uses the same
1301abb0f93cSkardel  * parameters. The values are used by an identity scheme based on RSA
1302abb0f93cSkardel  * cryptography and described in Stimson p. 300 (with errors). The 512-
1303abb0f93cSkardel  * bit public modulus is n = p q, where p and q are secret large primes.
1304abb0f93cSkardel  * The TA rolls private random group key b as RSA exponent. These values
1305abb0f93cSkardel  * are known to all group members.
1306abb0f93cSkardel  *
1307abb0f93cSkardel  * When rolling new certificates, a server recomputes the private and
1308abb0f93cSkardel  * public keys. The private key u is a random roll, while the public key
1309abb0f93cSkardel  * is the inverse obscured by the group key v = (u^-1)^b. These values
1310abb0f93cSkardel  * replace the private and public keys normally generated by the RSA
1311abb0f93cSkardel  * scheme. Alice challenges Bob to confirm identity using the protocol
1312abb0f93cSkardel  * described below.
1313abb0f93cSkardel  *
1314abb0f93cSkardel  * How it works
1315abb0f93cSkardel  *
1316abb0f93cSkardel  * The scheme goes like this. Both Alice and Bob have the same modulus n
1317abb0f93cSkardel  * and some random b as the group key. These values are computed and
1318abb0f93cSkardel  * distributed in advance via secret means, although only the group key
1319abb0f93cSkardel  * b is truly secret. Each has a private random private key u and public
1320abb0f93cSkardel  * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
1321abb0f93cSkardel  * can regenerate the key pair from time to time without affecting
1322abb0f93cSkardel  * operations. The public key is conveyed on the certificate in an
1323abb0f93cSkardel  * extension field; the private key is never revealed.
1324abb0f93cSkardel  *
1325abb0f93cSkardel  * Alice rolls new random challenge r and sends to Bob in the GQ
1326abb0f93cSkardel  * request message. Bob rolls new random k, then computes y = k u^r mod
1327abb0f93cSkardel  * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
1328abb0f93cSkardel  * message. Besides making the response shorter, the hash makes it
1329abb0f93cSkardel  * effectivey impossible for an intruder to solve for b by observing
1330abb0f93cSkardel  * a number of these messages.
1331abb0f93cSkardel  *
1332abb0f93cSkardel  * Alice receives the response and computes y^b v^r mod n. After a bit
1333abb0f93cSkardel  * of algebra, this simplifies to k^b. If the hash of this result
1334abb0f93cSkardel  * matches hash(x), Alice knows that Bob has the group key b. The signed
1335abb0f93cSkardel  * response binds this knowledge to Bob's private key and the public key
1336abb0f93cSkardel  * previously received in his certificate.
1337abb0f93cSkardel  */
1338abb0f93cSkardel /*
1339abb0f93cSkardel  * Generate Guillou-Quisquater (GQ) parameters file.
1340abb0f93cSkardel  */
1341abb0f93cSkardel EVP_PKEY *			/* RSA cuckoo nest */
1342abb0f93cSkardel gen_gqkey(
1343e19314b7Schristos 	const char *id		/* file name id */
1344abb0f93cSkardel 	)
1345abb0f93cSkardel {
1346abb0f93cSkardel 	EVP_PKEY *pkey;		/* private key */
1347abb0f93cSkardel 	RSA	*rsa;		/* RSA parameters */
1348abb0f93cSkardel 	BN_CTX	*ctx;		/* BN working space */
1349abb0f93cSkardel 	BIGNUM	*u, *v, *g, *k, *r, *y; /* BN temps */
1350abb0f93cSkardel 	FILE	*str;
1351abb0f93cSkardel 	u_int	temp;
135203cfe0ffSchristos 	BIGNUM	*b;
135303cfe0ffSchristos 	const BIGNUM	*n;
1354abb0f93cSkardel 
1355abb0f93cSkardel 	/*
1356abb0f93cSkardel 	 * Generate RSA parameters for use as GQ parameters.
1357abb0f93cSkardel 	 */
1358abb0f93cSkardel 	fprintf(stderr,
1359abb0f93cSkardel 	    "Generating GQ parameters (%d bits)...\n",
1360abb0f93cSkardel 	     modulus2);
136103cfe0ffSchristos 	rsa = genRsaKeyPair(modulus2, _UC("GQ"));
1362abb0f93cSkardel 	fprintf(stderr, "\n");
1363abb0f93cSkardel 	if (rsa == NULL) {
1364abb0f93cSkardel 		fprintf(stderr, "RSA generate keys fails\n%s\n",
1365abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
1366abb0f93cSkardel 		return (NULL);
1367abb0f93cSkardel 	}
136803cfe0ffSchristos 	RSA_get0_key(rsa, &n, NULL, NULL);
13692950cc38Schristos 	u = BN_new(); v = BN_new(); g = BN_new();
13702950cc38Schristos 	k = BN_new(); r = BN_new(); y = BN_new();
137103cfe0ffSchristos 	b = BN_new();
1372abb0f93cSkardel 
1373abb0f93cSkardel 	/*
1374abb0f93cSkardel 	 * Generate the group key b, which is saved in the e member of
1375abb0f93cSkardel 	 * the RSA structure. The group key is transmitted to each group
1376abb0f93cSkardel 	 * member encrypted by the member private key.
1377abb0f93cSkardel 	 */
1378abb0f93cSkardel 	ctx = BN_CTX_new();
137903cfe0ffSchristos 	BN_rand(b, BN_num_bits(n), -1, 0); /* b */
138003cfe0ffSchristos 	BN_mod(b, b, n, ctx);
1381abb0f93cSkardel 
1382abb0f93cSkardel 	/*
1383abb0f93cSkardel 	 * When generating his certificate, Bob rolls random private key
1384abb0f93cSkardel 	 * u, then computes inverse v = u^-1.
1385abb0f93cSkardel 	 */
138603cfe0ffSchristos 	BN_rand(u, BN_num_bits(n), -1, 0); /* u */
138703cfe0ffSchristos 	BN_mod(u, u, n, ctx);
138803cfe0ffSchristos 	BN_mod_inverse(v, u, n, ctx);	/* u^-1 mod n */
138903cfe0ffSchristos 	BN_mod_mul(k, v, u, n, ctx);
1390abb0f93cSkardel 
1391abb0f93cSkardel 	/*
1392abb0f93cSkardel 	 * Bob computes public key v = (u^-1)^b, which is saved in an
1393abb0f93cSkardel 	 * extension field on his certificate. We check that u^b v =
1394abb0f93cSkardel 	 * 1 mod n.
1395abb0f93cSkardel 	 */
139603cfe0ffSchristos 	BN_mod_exp(v, v, b, n, ctx);
139703cfe0ffSchristos 	BN_mod_exp(g, u, b, n, ctx); /* u^b */
139803cfe0ffSchristos 	BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */
1399abb0f93cSkardel 	temp = BN_is_one(g);
1400abb0f93cSkardel 	fprintf(stderr,
1401abb0f93cSkardel 	    "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
1402abb0f93cSkardel 	    "no");
1403abb0f93cSkardel 	if (!temp) {
1404abb0f93cSkardel 		BN_free(u); BN_free(v);
1405abb0f93cSkardel 		BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1406abb0f93cSkardel 		BN_CTX_free(ctx);
1407abb0f93cSkardel 		RSA_free(rsa);
1408abb0f93cSkardel 		return (NULL);
1409abb0f93cSkardel 	}
141003cfe0ffSchristos 	/* setting 'u' and 'v' into a RSA object takes over ownership.
141103cfe0ffSchristos 	 * Since we use these values again, we have to pass in dupes,
141203cfe0ffSchristos 	 * or we'll corrupt the program!
141303cfe0ffSchristos 	 */
141403cfe0ffSchristos 	RSA_set0_factors(rsa, BN_dup(u), BN_dup(v));
1415abb0f93cSkardel 
1416abb0f93cSkardel 	/*
1417abb0f93cSkardel 	 * Here is a trial run of the protocol. First, Alice rolls
1418abb0f93cSkardel 	 * random nonce r mod n and sends it to Bob. She needs only n
1419abb0f93cSkardel 	 * from parameters.
1420abb0f93cSkardel 	 */
142103cfe0ffSchristos 	BN_rand(r, BN_num_bits(n), -1, 0);	/* r */
142203cfe0ffSchristos 	BN_mod(r, r, n, ctx);
1423abb0f93cSkardel 
1424abb0f93cSkardel 	/*
1425abb0f93cSkardel 	 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
1426abb0f93cSkardel 	 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
1427abb0f93cSkardel 	 * from parameters and r from Alice.
1428abb0f93cSkardel 	 */
142903cfe0ffSchristos 	BN_rand(k, BN_num_bits(n), -1, 0);	/* k */
143003cfe0ffSchristos 	BN_mod(k, k, n, ctx);
143103cfe0ffSchristos 	BN_mod_exp(y, u, r, n, ctx);	/* u^r mod n */
143203cfe0ffSchristos 	BN_mod_mul(y, k, y, n, ctx);	/* y = k u^r mod n */
143303cfe0ffSchristos 	BN_mod_exp(g, k, b, n, ctx);	/* g = k^b mod n */
1434abb0f93cSkardel 
1435abb0f93cSkardel 	/*
1436abb0f93cSkardel 	 * Alice verifies g = v^r y^b mod n to confirm that Bob has
1437abb0f93cSkardel 	 * private key u. She needs n, g from parameters, public key v =
1438abb0f93cSkardel 	 * (u^-1)^b from the certificate, (y, g) from Bob and the
1439abb0f93cSkardel 	 * original r. We omit the detaul here that only the hash of g
1440abb0f93cSkardel 	 * is sent.
1441abb0f93cSkardel 	 */
144203cfe0ffSchristos 	BN_mod_exp(v, v, r, n, ctx);	/* v^r mod n */
144303cfe0ffSchristos 	BN_mod_exp(y, y, b, n, ctx);	/* y^b mod n */
144403cfe0ffSchristos 	BN_mod_mul(y, v, y, n, ctx);	/* v^r y^b mod n */
1445abb0f93cSkardel 	temp = BN_cmp(y, g);
1446abb0f93cSkardel 	fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
1447abb0f93cSkardel 	    "yes" : "no");
1448abb0f93cSkardel 	BN_CTX_free(ctx); BN_free(u); BN_free(v);
1449abb0f93cSkardel 	BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1450abb0f93cSkardel 	if (temp != 0) {
1451abb0f93cSkardel 		RSA_free(rsa);
1452abb0f93cSkardel 		return (NULL);
1453abb0f93cSkardel 	}
1454abb0f93cSkardel 
1455abb0f93cSkardel 	/*
1456abb0f93cSkardel 	 * Write the GQ parameter file as an encrypted RSA private key
1457abb0f93cSkardel 	 * encoded in PEM.
1458abb0f93cSkardel 	 *
1459abb0f93cSkardel 	 * n	modulus n
1460abb0f93cSkardel 	 * e	group key b
1461abb0f93cSkardel 	 * d	not used
1462abb0f93cSkardel 	 * p	private key u
1463abb0f93cSkardel 	 * q	public key (u^-1)^b
1464abb0f93cSkardel 	 * dmp1	not used
1465abb0f93cSkardel 	 * dmq1	not used
1466abb0f93cSkardel 	 * iqmp	not used
1467abb0f93cSkardel 	 */
146803cfe0ffSchristos 	RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one()));
146903cfe0ffSchristos 	RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()),
147003cfe0ffSchristos 		BN_dup(BN_value_one()));
1471abb0f93cSkardel 	str = fheader("GQkey", id, groupname);
1472abb0f93cSkardel 	pkey = EVP_PKEY_new();
1473abb0f93cSkardel 	EVP_PKEY_assign_RSA(pkey, rsa);
14742950cc38Schristos 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1475abb0f93cSkardel 	    passwd1);
1476abb0f93cSkardel 	fclose(str);
1477abb0f93cSkardel 	if (debug)
1478abb0f93cSkardel 		RSA_print_fp(stderr, rsa, 0);
1479abb0f93cSkardel 	return (pkey);
1480abb0f93cSkardel }
1481abb0f93cSkardel 
1482abb0f93cSkardel 
1483abb0f93cSkardel /*
1484abb0f93cSkardel  ***********************************************************************
1485abb0f93cSkardel  *								       *
1486abb0f93cSkardel  * The following routines implement the Mu-Varadharajan (MV) identity  *
1487abb0f93cSkardel  * scheme                                                              *
1488abb0f93cSkardel  *								       *
1489abb0f93cSkardel  ***********************************************************************
1490abb0f93cSkardel  *
1491abb0f93cSkardel  * The Mu-Varadharajan (MV) cryptosystem was originally intended when
1492abb0f93cSkardel  * servers broadcast messages to clients, but clients never send
1493abb0f93cSkardel  * messages to servers. There is one encryption key for the server and a
1494abb0f93cSkardel  * separate decryption key for each client. It operated something like a
1495abb0f93cSkardel  * pay-per-view satellite broadcasting system where the session key is
1496abb0f93cSkardel  * encrypted by the broadcaster and the decryption keys are held in a
1497abb0f93cSkardel  * tamperproof set-top box.
1498abb0f93cSkardel  *
1499abb0f93cSkardel  * The MV parameters and private encryption key hide in a DSA cuckoo
1500abb0f93cSkardel  * structure which uses the same parameters, but generated in a
1501abb0f93cSkardel  * different way. The values are used in an encryption scheme similar to
1502abb0f93cSkardel  * El Gamal cryptography and a polynomial formed from the expansion of
1503abb0f93cSkardel  * product terms (x - x[j]), as described in Mu, Y., and V.
1504abb0f93cSkardel  * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
1505abb0f93cSkardel  * 223-231. The paper has significant errors and serious omissions.
1506abb0f93cSkardel  *
1507abb0f93cSkardel  * Let q be the product of n distinct primes s1[j] (j = 1...n), where
1508abb0f93cSkardel  * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1509abb0f93cSkardel  * that q and each s1[j] divide p - 1 and p has M = n * m + 1
1510abb0f93cSkardel  * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1511abb0f93cSkardel  * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
1512abb0f93cSkardel  * project into Zp* as exponents of g. Sometimes we have to compute an
1513abb0f93cSkardel  * inverse b^-1 of random b in Zq, but for that purpose we require
1514abb0f93cSkardel  * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
1515abb0f93cSkardel  * relatively small, like 30. These are the parameters of the scheme and
1516abb0f93cSkardel  * they are expensive to compute.
1517abb0f93cSkardel  *
1518abb0f93cSkardel  * We set up an instance of the scheme as follows. A set of random
1519abb0f93cSkardel  * values x[j] mod q (j = 1...n), are generated as the zeros of a
1520abb0f93cSkardel  * polynomial of order n. The product terms (x - x[j]) are expanded to
1521abb0f93cSkardel  * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
1522abb0f93cSkardel  * used as exponents of the generator g mod p to generate the private
1523abb0f93cSkardel  * encryption key A. The pair (gbar, ghat) of public server keys and the
1524abb0f93cSkardel  * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
1525abb0f93cSkardel  * to construct the decryption keys. The devil is in the details.
1526abb0f93cSkardel  *
1527abb0f93cSkardel  * This routine generates a private server encryption file including the
1528abb0f93cSkardel  * private encryption key E and partial decryption keys gbar and ghat.
1529abb0f93cSkardel  * It then generates public client decryption files including the public
1530abb0f93cSkardel  * keys xbar[j] and xhat[j] for each client j. The partial decryption
1531abb0f93cSkardel  * files are used to compute the inverse of E. These values are suitably
1532abb0f93cSkardel  * blinded so secrets are not revealed.
1533abb0f93cSkardel  *
1534abb0f93cSkardel  * The distinguishing characteristic of this scheme is the capability to
1535abb0f93cSkardel  * revoke keys. Included in the calculation of E, gbar and ghat is the
1536abb0f93cSkardel  * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
1537abb0f93cSkardel  * subsequently removed from the product and E, gbar and ghat
1538abb0f93cSkardel  * recomputed, the jth client will no longer be able to compute E^-1 and
1539abb0f93cSkardel  * thus unable to decrypt the messageblock.
1540abb0f93cSkardel  *
1541abb0f93cSkardel  * How it works
1542abb0f93cSkardel  *
15432950cc38Schristos  * The scheme goes like this. Bob has the server values (p, E, q,
15442950cc38Schristos  * gbar, ghat) and Alice has the client values (p, xbar, xhat).
1545abb0f93cSkardel  *
1546abb0f93cSkardel  * Alice rolls new random nonce r mod p and sends to Bob in the MV
1547abb0f93cSkardel  * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
1548abb0f93cSkardel  * mod p and sends (y, gbar^k, ghat^k) to Alice.
1549abb0f93cSkardel  *
1550abb0f93cSkardel  * Alice receives the response and computes the inverse (E^k)^-1 from
1551abb0f93cSkardel  * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
1552abb0f93cSkardel  * decrypts y and verifies it matches the original r. The signed
1553abb0f93cSkardel  * response binds this knowledge to Bob's private key and the public key
1554abb0f93cSkardel  * previously received in his certificate.
1555abb0f93cSkardel  */
1556abb0f93cSkardel EVP_PKEY *			/* DSA cuckoo nest */
1557abb0f93cSkardel gen_mvkey(
1558e19314b7Schristos 	const char *id,		/* file name id */
1559abb0f93cSkardel 	EVP_PKEY **evpars	/* parameter list pointer */
1560abb0f93cSkardel 	)
1561abb0f93cSkardel {
1562abb0f93cSkardel 	EVP_PKEY *pkey, *pkey1;	/* private keys */
1563abb0f93cSkardel 	DSA	*dsa, *dsa2, *sdsa; /* DSA parameters */
1564abb0f93cSkardel 	BN_CTX	*ctx;		/* BN working space */
1565abb0f93cSkardel 	BIGNUM	*a[MVMAX];	/* polynomial coefficient vector */
156603cfe0ffSchristos 	BIGNUM	*gs[MVMAX];	/* public key vector */
1567abb0f93cSkardel 	BIGNUM	*s1[MVMAX];	/* private enabling keys */
1568abb0f93cSkardel 	BIGNUM	*x[MVMAX];	/* polynomial zeros vector */
1569abb0f93cSkardel 	BIGNUM	*xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
1570abb0f93cSkardel 	BIGNUM	*b;		/* group key */
1571abb0f93cSkardel 	BIGNUM	*b1;		/* inverse group key */
1572abb0f93cSkardel 	BIGNUM	*s;		/* enabling key */
1573abb0f93cSkardel 	BIGNUM	*biga;		/* master encryption key */
1574abb0f93cSkardel 	BIGNUM	*bige;		/* session encryption key */
1575abb0f93cSkardel 	BIGNUM	*gbar, *ghat;	/* public key */
1576abb0f93cSkardel 	BIGNUM	*u, *v, *w;	/* BN scratch */
157703cfe0ffSchristos 	BIGNUM	*p, *q, *g, *priv_key, *pub_key;
1578abb0f93cSkardel 	int	i, j, n;
1579abb0f93cSkardel 	FILE	*str;
1580abb0f93cSkardel 	u_int	temp;
1581abb0f93cSkardel 
1582abb0f93cSkardel 	/*
1583abb0f93cSkardel 	 * Generate MV parameters.
1584abb0f93cSkardel 	 *
1585abb0f93cSkardel 	 * The object is to generate a multiplicative group Zp* modulo a
1586abb0f93cSkardel 	 * prime p and a subset Zq mod q, where q is the product of n
1587abb0f93cSkardel 	 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
1588abb0f93cSkardel 	 * first generate n m-bit primes, where the product n m is in
1589abb0f93cSkardel 	 * the order of 512 bits. One or more of these may have to be
1590abb0f93cSkardel 	 * replaced later. As a practical matter, it is tough to find
1591abb0f93cSkardel 	 * more than 31 distinct primes for 512 bits or 61 primes for
1592abb0f93cSkardel 	 * 1024 bits. The latter can take several hundred iterations
1593abb0f93cSkardel 	 * and several minutes on a Sun Blade 1000.
1594abb0f93cSkardel 	 */
1595abb0f93cSkardel 	n = nkeys;
1596abb0f93cSkardel 	fprintf(stderr,
1597abb0f93cSkardel 	    "Generating MV parameters for %d keys (%d bits)...\n", n,
1598abb0f93cSkardel 	    modulus2 / n);
1599abb0f93cSkardel 	ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
1600abb0f93cSkardel 	b = BN_new(); b1 = BN_new();
1601abb0f93cSkardel 	dsa = DSA_new();
160203cfe0ffSchristos 	p = BN_new(); q = BN_new(); g = BN_new();
160303cfe0ffSchristos 	priv_key = BN_new(); pub_key = BN_new();
1604abb0f93cSkardel 	temp = 0;
1605abb0f93cSkardel 	for (j = 1; j <= n; j++) {
1606abb0f93cSkardel 		s1[j] = BN_new();
1607abb0f93cSkardel 		while (1) {
160803cfe0ffSchristos 			BN_generate_prime_ex(s1[j], modulus2 / n, 0,
1609abb0f93cSkardel 					     NULL, NULL, NULL);
1610abb0f93cSkardel 			for (i = 1; i < j; i++) {
1611abb0f93cSkardel 				if (BN_cmp(s1[i], s1[j]) == 0)
1612abb0f93cSkardel 					break;
1613abb0f93cSkardel 			}
1614abb0f93cSkardel 			if (i == j)
1615abb0f93cSkardel 				break;
1616abb0f93cSkardel 			temp++;
1617abb0f93cSkardel 		}
1618abb0f93cSkardel 	}
1619abb0f93cSkardel 	fprintf(stderr, "Birthday keys regenerated %d\n", temp);
1620abb0f93cSkardel 
1621abb0f93cSkardel 	/*
1622abb0f93cSkardel 	 * Compute the modulus q as the product of the primes. Compute
1623abb0f93cSkardel 	 * the modulus p as 2 * q + 1 and test p for primality. If p
1624abb0f93cSkardel 	 * is composite, replace one of the primes with a new distinct
1625abb0f93cSkardel 	 * one and try again. Note that q will hardly be a secret since
1626abb0f93cSkardel 	 * we have to reveal p to servers, but not clients. However,
1627abb0f93cSkardel 	 * factoring q to find the primes should be adequately hard, as
1628abb0f93cSkardel 	 * this is the same problem considered hard in RSA. Question: is
1629abb0f93cSkardel 	 * it as hard to find n small prime factors totalling n bits as
1630abb0f93cSkardel 	 * it is to find two large prime factors totalling n bits?
1631abb0f93cSkardel 	 * Remember, the bad guy doesn't know n.
1632abb0f93cSkardel 	 */
1633abb0f93cSkardel 	temp = 0;
1634abb0f93cSkardel 	while (1) {
163503cfe0ffSchristos 		BN_one(q);
1636abb0f93cSkardel 		for (j = 1; j <= n; j++)
163703cfe0ffSchristos 			BN_mul(q, q, s1[j], ctx);
163803cfe0ffSchristos 		BN_copy(p, q);
163903cfe0ffSchristos 		BN_add(p, p, p);
164003cfe0ffSchristos 		BN_add_word(p, 1);
164103cfe0ffSchristos 		if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
1642abb0f93cSkardel 			break;
1643abb0f93cSkardel 
1644abb0f93cSkardel 		temp++;
1645abb0f93cSkardel 		j = temp % n + 1;
1646abb0f93cSkardel 		while (1) {
164703cfe0ffSchristos 			BN_generate_prime_ex(u, modulus2 / n, 0,
164803cfe0ffSchristos 					     NULL, NULL, NULL);
1649abb0f93cSkardel 			for (i = 1; i <= n; i++) {
1650abb0f93cSkardel 				if (BN_cmp(u, s1[i]) == 0)
1651abb0f93cSkardel 					break;
1652abb0f93cSkardel 			}
1653abb0f93cSkardel 			if (i > n)
1654abb0f93cSkardel 				break;
1655abb0f93cSkardel 		}
1656abb0f93cSkardel 		BN_copy(s1[j], u);
1657abb0f93cSkardel 	}
1658abb0f93cSkardel 	fprintf(stderr, "Defective keys regenerated %d\n", temp);
1659abb0f93cSkardel 
1660abb0f93cSkardel 	/*
1661abb0f93cSkardel 	 * Compute the generator g using a random roll such that
1662abb0f93cSkardel 	 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
1663abb0f93cSkardel 	 * q. This may take several iterations.
1664abb0f93cSkardel 	 */
166503cfe0ffSchristos 	BN_copy(v, p);
1666abb0f93cSkardel 	BN_sub_word(v, 1);
1667abb0f93cSkardel 	while (1) {
166803cfe0ffSchristos 		BN_rand(g, BN_num_bits(p) - 1, 0, 0);
166903cfe0ffSchristos 		BN_mod(g, g, p, ctx);
167003cfe0ffSchristos 		BN_gcd(u, g, v, ctx);
1671abb0f93cSkardel 		if (!BN_is_one(u))
1672abb0f93cSkardel 			continue;
1673abb0f93cSkardel 
167403cfe0ffSchristos 		BN_mod_exp(u, g, q, p, ctx);
1675abb0f93cSkardel 		if (BN_is_one(u))
1676abb0f93cSkardel 			break;
1677abb0f93cSkardel 	}
1678abb0f93cSkardel 
167903cfe0ffSchristos 	DSA_set0_pqg(dsa, p, q, g);
168003cfe0ffSchristos 
1681abb0f93cSkardel 	/*
1682abb0f93cSkardel 	 * Setup is now complete. Roll random polynomial roots x[j]
1683abb0f93cSkardel 	 * (j = 1...n) for all j. While it may not be strictly
1684abb0f93cSkardel 	 * necessary, Make sure each root has no factors in common with
1685abb0f93cSkardel 	 * q.
1686abb0f93cSkardel 	 */
1687abb0f93cSkardel 	fprintf(stderr,
1688abb0f93cSkardel 	    "Generating polynomial coefficients for %d roots (%d bits)\n",
168903cfe0ffSchristos 	    n, BN_num_bits(q));
1690abb0f93cSkardel 	for (j = 1; j <= n; j++) {
1691abb0f93cSkardel 		x[j] = BN_new();
1692abb0f93cSkardel 
1693abb0f93cSkardel 		while (1) {
169403cfe0ffSchristos 			BN_rand(x[j], BN_num_bits(q), 0, 0);
169503cfe0ffSchristos 			BN_mod(x[j], x[j], q, ctx);
169603cfe0ffSchristos 			BN_gcd(u, x[j], q, ctx);
1697abb0f93cSkardel 			if (BN_is_one(u))
1698abb0f93cSkardel 				break;
1699abb0f93cSkardel 		}
1700abb0f93cSkardel 	}
1701abb0f93cSkardel 
1702abb0f93cSkardel 	/*
1703abb0f93cSkardel 	 * Generate polynomial coefficients a[i] (i = 0...n) from the
1704abb0f93cSkardel 	 * expansion of root products (x - x[j]) mod q for all j. The
1705abb0f93cSkardel 	 * method is a present from Charlie Boncelet.
1706abb0f93cSkardel 	 */
1707abb0f93cSkardel 	for (i = 0; i <= n; i++) {
1708abb0f93cSkardel 		a[i] = BN_new();
1709abb0f93cSkardel 		BN_one(a[i]);
1710abb0f93cSkardel 	}
1711abb0f93cSkardel 	for (j = 1; j <= n; j++) {
1712abb0f93cSkardel 		BN_zero(w);
1713abb0f93cSkardel 		for (i = 0; i < j; i++) {
171403cfe0ffSchristos 			BN_copy(u, q);
171503cfe0ffSchristos 			BN_mod_mul(v, a[i], x[j], q, ctx);
1716abb0f93cSkardel 			BN_sub(u, u, v);
1717abb0f93cSkardel 			BN_add(u, u, w);
1718abb0f93cSkardel 			BN_copy(w, a[i]);
171903cfe0ffSchristos 			BN_mod(a[i], u, q, ctx);
1720abb0f93cSkardel 		}
1721abb0f93cSkardel 	}
1722abb0f93cSkardel 
1723abb0f93cSkardel 	/*
172403cfe0ffSchristos 	 * Generate gs[i] = g^a[i] mod p for all i and the generator g.
1725abb0f93cSkardel 	 */
1726abb0f93cSkardel 	for (i = 0; i <= n; i++) {
172703cfe0ffSchristos 		gs[i] = BN_new();
172803cfe0ffSchristos 		BN_mod_exp(gs[i], g, a[i], p, ctx);
1729abb0f93cSkardel 	}
1730abb0f93cSkardel 
1731abb0f93cSkardel 	/*
173203cfe0ffSchristos 	 * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
173303cfe0ffSchristos 	 * a[i] x[j]^i exponent is computed mod q, but the gs[i] is
1734abb0f93cSkardel 	 * computed mod p. also note the expression given in the paper
1735abb0f93cSkardel 	 * is incorrect.
1736abb0f93cSkardel 	 */
1737abb0f93cSkardel 	temp = 1;
1738abb0f93cSkardel 	for (j = 1; j <= n; j++) {
1739abb0f93cSkardel 		BN_one(u);
1740abb0f93cSkardel 		for (i = 0; i <= n; i++) {
1741abb0f93cSkardel 			BN_set_word(v, i);
174203cfe0ffSchristos 			BN_mod_exp(v, x[j], v, q, ctx);
174303cfe0ffSchristos 			BN_mod_mul(v, v, a[i], q, ctx);
174403cfe0ffSchristos 			BN_mod_exp(v, g, v, p, ctx);
174503cfe0ffSchristos 			BN_mod_mul(u, u, v, p, ctx);
1746abb0f93cSkardel 		}
1747abb0f93cSkardel 		if (!BN_is_one(u))
1748abb0f93cSkardel 			temp = 0;
1749abb0f93cSkardel 	}
1750abb0f93cSkardel 	fprintf(stderr,
175103cfe0ffSchristos 	    "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
1752abb0f93cSkardel 	    "yes" : "no");
1753abb0f93cSkardel 	if (!temp) {
1754abb0f93cSkardel 		return (NULL);
1755abb0f93cSkardel 	}
1756abb0f93cSkardel 
1757abb0f93cSkardel 	/*
1758abb0f93cSkardel 	 * Make private encryption key A. Keep it around for awhile,
1759abb0f93cSkardel 	 * since it is expensive to compute.
1760abb0f93cSkardel 	 */
1761abb0f93cSkardel 	biga = BN_new();
1762abb0f93cSkardel 
1763abb0f93cSkardel 	BN_one(biga);
1764abb0f93cSkardel 	for (j = 1; j <= n; j++) {
1765abb0f93cSkardel 		for (i = 0; i < n; i++) {
1766abb0f93cSkardel 			BN_set_word(v, i);
176703cfe0ffSchristos 			BN_mod_exp(v, x[j], v, q, ctx);
176803cfe0ffSchristos 			BN_mod_exp(v, gs[i], v, p, ctx);
176903cfe0ffSchristos 			BN_mod_mul(biga, biga, v, p, ctx);
1770abb0f93cSkardel 		}
1771abb0f93cSkardel 	}
1772abb0f93cSkardel 
1773abb0f93cSkardel 	/*
1774abb0f93cSkardel 	 * Roll private random group key b mod q (0 < b < q), where
1775abb0f93cSkardel 	 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
1776abb0f93cSkardel 	 * mod q. If b is changed, the client keys must be recomputed.
1777abb0f93cSkardel 	 */
1778abb0f93cSkardel 	while (1) {
177903cfe0ffSchristos 		BN_rand(b, BN_num_bits(q), 0, 0);
178003cfe0ffSchristos 		BN_mod(b, b, q, ctx);
178103cfe0ffSchristos 		BN_gcd(u, b, q, ctx);
1782abb0f93cSkardel 		if (BN_is_one(u))
1783abb0f93cSkardel 			break;
1784abb0f93cSkardel 	}
178503cfe0ffSchristos 	BN_mod_inverse(b1, b, q, ctx);
1786abb0f93cSkardel 
1787abb0f93cSkardel 	/*
1788abb0f93cSkardel 	 * Make private client keys (xbar[j], xhat[j]) for all j. Note
1789abb0f93cSkardel 	 * that the keys for the jth client do not s1[j] or the product
1790abb0f93cSkardel 	 * s1[j]) (j = 1...n) which is q by construction.
1791abb0f93cSkardel 	 *
1792abb0f93cSkardel 	 * Compute the factor w such that w s1[j] = s1[j] for all j. The
1793abb0f93cSkardel 	 * easy way to do this is to compute (q + s1[j]) / s1[j].
1794abb0f93cSkardel 	 * Exercise for the student: prove the remainder is always zero.
1795abb0f93cSkardel 	 */
1796abb0f93cSkardel 	for (j = 1; j <= n; j++) {
1797abb0f93cSkardel 		xbar[j] = BN_new(); xhat[j] = BN_new();
1798abb0f93cSkardel 
179903cfe0ffSchristos 		BN_add(w, q, s1[j]);
1800abb0f93cSkardel 		BN_div(w, u, w, s1[j], ctx);
1801abb0f93cSkardel 		BN_zero(xbar[j]);
1802abb0f93cSkardel 		BN_set_word(v, n);
1803abb0f93cSkardel 		for (i = 1; i <= n; i++) {
1804abb0f93cSkardel 			if (i == j)
1805abb0f93cSkardel 				continue;
18062950cc38Schristos 
180703cfe0ffSchristos 			BN_mod_exp(u, x[i], v, q, ctx);
1808abb0f93cSkardel 			BN_add(xbar[j], xbar[j], u);
1809abb0f93cSkardel 		}
181003cfe0ffSchristos 		BN_mod_mul(xbar[j], xbar[j], b1, q, ctx);
181103cfe0ffSchristos 		BN_mod_exp(xhat[j], x[j], v, q, ctx);
181203cfe0ffSchristos 		BN_mod_mul(xhat[j], xhat[j], w, q, ctx);
1813abb0f93cSkardel 	}
1814abb0f93cSkardel 
1815abb0f93cSkardel 	/*
1816abb0f93cSkardel 	 * We revoke client j by dividing q by s1[j]. The quotient
1817abb0f93cSkardel 	 * becomes the enabling key s. Note we always have to revoke
1818abb0f93cSkardel 	 * one key; otherwise, the plaintext and cryptotext would be
1819abb0f93cSkardel 	 * identical. For the present there are no provisions to revoke
1820abb0f93cSkardel 	 * additional keys, so we sail on with only token revocations.
1821abb0f93cSkardel 	 */
1822abb0f93cSkardel 	s = BN_new();
182303cfe0ffSchristos 	BN_copy(s, q);
1824abb0f93cSkardel 	BN_div(s, u, s, s1[n], ctx);
1825abb0f93cSkardel 
1826abb0f93cSkardel 	/*
1827abb0f93cSkardel 	 * For each combination of clients to be revoked, make private
1828abb0f93cSkardel 	 * encryption key E = A^s and partial decryption keys gbar = g^s
1829abb0f93cSkardel 	 * and ghat = g^(s b), all mod p. The servers use these keys to
1830abb0f93cSkardel 	 * compute the session encryption key and partial decryption
1831abb0f93cSkardel 	 * keys. These values must be regenerated if the enabling key is
1832abb0f93cSkardel 	 * changed.
1833abb0f93cSkardel 	 */
1834abb0f93cSkardel 	bige = BN_new(); gbar = BN_new(); ghat = BN_new();
183503cfe0ffSchristos 	BN_mod_exp(bige, biga, s, p, ctx);
183603cfe0ffSchristos 	BN_mod_exp(gbar, g, s, p, ctx);
183703cfe0ffSchristos 	BN_mod_mul(v, s, b, q, ctx);
183803cfe0ffSchristos 	BN_mod_exp(ghat, g, v, p, ctx);
1839abb0f93cSkardel 
1840abb0f93cSkardel 	/*
1841abb0f93cSkardel 	 * Notes: We produce the key media in three steps. The first
1842abb0f93cSkardel 	 * step is to generate the system parameters p, q, g, b, A and
1843abb0f93cSkardel 	 * the enabling keys s1[j]. Associated with each s1[j] are
1844abb0f93cSkardel 	 * parameters xbar[j] and xhat[j]. All of these parameters are
1845abb0f93cSkardel 	 * retained in a data structure protecteted by the trusted-agent
1846abb0f93cSkardel 	 * password. The p, xbar[j] and xhat[j] paremeters are
1847abb0f93cSkardel 	 * distributed to the j clients. When the client keys are to be
1848abb0f93cSkardel 	 * activated, the enabled keys are multipied together to form
1849abb0f93cSkardel 	 * the master enabling key s. This and the other parameters are
1850abb0f93cSkardel 	 * used to compute the server encryption key E and the partial
1851abb0f93cSkardel 	 * decryption keys gbar and ghat.
1852abb0f93cSkardel 	 *
1853abb0f93cSkardel 	 * In the identity exchange the client rolls random r and sends
1854abb0f93cSkardel 	 * it to the server. The server rolls random k, which is used
1855abb0f93cSkardel 	 * only once, then computes the session key E^k and partial
1856abb0f93cSkardel 	 * decryption keys gbar^k and ghat^k. The server sends the
1857abb0f93cSkardel 	 * encrypted r along with gbar^k and ghat^k to the client. The
1858abb0f93cSkardel 	 * client completes the decryption and verifies it matches r.
1859abb0f93cSkardel 	 */
1860abb0f93cSkardel 	/*
1861abb0f93cSkardel 	 * Write the MV trusted-agent parameters and keys as a DSA
1862abb0f93cSkardel 	 * private key encoded in PEM.
1863abb0f93cSkardel 	 *
1864abb0f93cSkardel 	 * p	modulus p
1865abb0f93cSkardel 	 * q	modulus q
1866abb0f93cSkardel 	 * g	generator g
1867abb0f93cSkardel 	 * priv_key A mod p
1868abb0f93cSkardel 	 * pub_key b mod q
1869abb0f93cSkardel 	 * (remaining values are not used)
1870abb0f93cSkardel 	 */
1871abb0f93cSkardel 	i = 0;
1872abb0f93cSkardel 	str = fheader("MVta", "mvta", groupname);
1873abb0f93cSkardel 	fprintf(stderr, "Generating MV trusted-authority keys\n");
187403cfe0ffSchristos 	BN_copy(priv_key, biga);
187503cfe0ffSchristos 	BN_copy(pub_key, b);
187603cfe0ffSchristos 	DSA_set0_key(dsa, pub_key, priv_key);
1877abb0f93cSkardel 	pkey = EVP_PKEY_new();
1878abb0f93cSkardel 	EVP_PKEY_assign_DSA(pkey, dsa);
18792950cc38Schristos 	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1880abb0f93cSkardel 	    passwd1);
1881abb0f93cSkardel 	evpars[i++] = pkey;
1882abb0f93cSkardel 	if (debug)
1883abb0f93cSkardel 		DSA_print_fp(stderr, dsa, 0);
1884abb0f93cSkardel 
1885abb0f93cSkardel 	/*
1886abb0f93cSkardel 	 * Append the MV server parameters and keys as a DSA key encoded
1887abb0f93cSkardel 	 * in PEM.
1888abb0f93cSkardel 	 *
1889abb0f93cSkardel 	 * p	modulus p
1890abb0f93cSkardel 	 * q	modulus q (used only when generating k)
1891abb0f93cSkardel 	 * g	bige
1892abb0f93cSkardel 	 * priv_key gbar
1893abb0f93cSkardel 	 * pub_key ghat
1894abb0f93cSkardel 	 * (remaining values are not used)
1895abb0f93cSkardel 	 */
1896abb0f93cSkardel 	fprintf(stderr, "Generating MV server keys\n");
1897abb0f93cSkardel 	dsa2 = DSA_new();
189803cfe0ffSchristos 	DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige));
189903cfe0ffSchristos 	DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar));
1900abb0f93cSkardel 	pkey1 = EVP_PKEY_new();
1901abb0f93cSkardel 	EVP_PKEY_assign_DSA(pkey1, dsa2);
19022950cc38Schristos 	PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
1903abb0f93cSkardel 	    passwd1);
1904abb0f93cSkardel 	evpars[i++] = pkey1;
1905abb0f93cSkardel 	if (debug)
1906abb0f93cSkardel 		DSA_print_fp(stderr, dsa2, 0);
1907abb0f93cSkardel 
1908abb0f93cSkardel 	/*
1909abb0f93cSkardel 	 * Append the MV client parameters for each client j as DSA keys
1910abb0f93cSkardel 	 * encoded in PEM.
1911abb0f93cSkardel 	 *
1912abb0f93cSkardel 	 * p	modulus p
1913abb0f93cSkardel 	 * priv_key xbar[j] mod q
1914abb0f93cSkardel 	 * pub_key xhat[j] mod q
1915abb0f93cSkardel 	 * (remaining values are not used)
1916abb0f93cSkardel 	 */
1917abb0f93cSkardel 	fprintf(stderr, "Generating %d MV client keys\n", n);
1918abb0f93cSkardel 	for (j = 1; j <= n; j++) {
1919abb0f93cSkardel 		sdsa = DSA_new();
192003cfe0ffSchristos 		DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()),
192103cfe0ffSchristos 			BN_dup(BN_value_one()));
192203cfe0ffSchristos 		DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j]));
1923abb0f93cSkardel 		pkey1 = EVP_PKEY_new();
1924abb0f93cSkardel 		EVP_PKEY_set1_DSA(pkey1, sdsa);
19252950cc38Schristos 		PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
1926abb0f93cSkardel 		    NULL, passwd1);
1927abb0f93cSkardel 		evpars[i++] = pkey1;
1928abb0f93cSkardel 		if (debug)
1929abb0f93cSkardel 			DSA_print_fp(stderr, sdsa, 0);
1930abb0f93cSkardel 
1931abb0f93cSkardel 		/*
193203cfe0ffSchristos 		 * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
1933abb0f93cSkardel 		 * are inverses of each other. We check that the product
1934abb0f93cSkardel 		 * is one for each client except the ones that have been
1935abb0f93cSkardel 		 * revoked.
1936abb0f93cSkardel 		 */
193703cfe0ffSchristos 		BN_mod_exp(v, gbar, xhat[j], p, ctx);
193803cfe0ffSchristos 		BN_mod_exp(u, ghat, xbar[j], p, ctx);
193903cfe0ffSchristos 		BN_mod_mul(u, u, v, p, ctx);
194003cfe0ffSchristos 		BN_mod_mul(u, u, bige, p, ctx);
1941abb0f93cSkardel 		if (!BN_is_one(u)) {
1942abb0f93cSkardel 			fprintf(stderr, "Revoke key %d\n", j);
1943abb0f93cSkardel 			continue;
1944abb0f93cSkardel 		}
1945abb0f93cSkardel 	}
1946abb0f93cSkardel 	evpars[i++] = NULL;
1947abb0f93cSkardel 	fclose(str);
1948abb0f93cSkardel 
1949abb0f93cSkardel 	/*
1950abb0f93cSkardel 	 * Free the countries.
1951abb0f93cSkardel 	 */
1952abb0f93cSkardel 	for (i = 0; i <= n; i++) {
195303cfe0ffSchristos 		BN_free(a[i]); BN_free(gs[i]);
1954abb0f93cSkardel 	}
1955abb0f93cSkardel 	for (j = 1; j <= n; j++) {
1956abb0f93cSkardel 		BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
1957abb0f93cSkardel 		BN_free(s1[j]);
1958abb0f93cSkardel 	}
1959abb0f93cSkardel 	return (pkey);
1960abb0f93cSkardel }
1961abb0f93cSkardel 
1962abb0f93cSkardel 
1963abb0f93cSkardel /*
1964abb0f93cSkardel  * Generate X509v3 certificate.
1965abb0f93cSkardel  *
1966abb0f93cSkardel  * The certificate consists of the version number, serial number,
1967abb0f93cSkardel  * validity interval, issuer name, subject name and public key. For a
1968abb0f93cSkardel  * self-signed certificate, the issuer name is the same as the subject
1969abb0f93cSkardel  * name and these items are signed using the subject private key. The
1970abb0f93cSkardel  * validity interval extends from the current time to the same time one
1971abb0f93cSkardel  * year hence. For NTP purposes, it is convenient to use the NTP seconds
1972abb0f93cSkardel  * of the current time as the serial number.
1973abb0f93cSkardel  */
1974abb0f93cSkardel int
1975abb0f93cSkardel x509	(
19762950cc38Schristos 	EVP_PKEY *pkey,		/* signing key */
19772950cc38Schristos 	const EVP_MD *md,	/* signature/digest scheme */
1978abb0f93cSkardel 	char	*gqpub,		/* identity extension (hex string) */
1979e19314b7Schristos 	const char *exten,	/* private cert extension */
19802950cc38Schristos 	char	*name		/* subject/issuer name */
1981abb0f93cSkardel 	)
1982abb0f93cSkardel {
1983abb0f93cSkardel 	X509	*cert;		/* X509 certificate */
1984abb0f93cSkardel 	X509_NAME *subj;	/* distinguished (common) name */
1985abb0f93cSkardel 	X509_EXTENSION *ex;	/* X509v3 extension */
1986abb0f93cSkardel 	FILE	*str;		/* file handle */
1987abb0f93cSkardel 	ASN1_INTEGER *serial;	/* serial number */
1988abb0f93cSkardel 	const char *id;		/* digest/signature scheme name */
1989abb0f93cSkardel 	char	pathbuf[MAXFILENAME + 1];
1990abb0f93cSkardel 
1991abb0f93cSkardel 	/*
1992abb0f93cSkardel 	 * Generate X509 self-signed certificate.
1993abb0f93cSkardel 	 *
1994abb0f93cSkardel 	 * Set the certificate serial to the NTP seconds for grins. Set
1995abb0f93cSkardel 	 * the version to 3. Set the initial validity to the current
1996abb0f93cSkardel 	 * time and the finalvalidity one year hence.
1997abb0f93cSkardel 	 */
199803cfe0ffSchristos  	id = OBJ_nid2sn(EVP_MD_pkey_type(md));
1999abb0f93cSkardel 	fprintf(stderr, "Generating new certificate %s %s\n", name, id);
2000abb0f93cSkardel 	cert = X509_new();
2001abb0f93cSkardel 	X509_set_version(cert, 2L);
2002abb0f93cSkardel 	serial = ASN1_INTEGER_new();
2003abb0f93cSkardel 	ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
2004abb0f93cSkardel 	X509_set_serialNumber(cert, serial);
2005abb0f93cSkardel 	ASN1_INTEGER_free(serial);
2006ccc794f0Schristos 	X509_time_adj(X509_getm_notBefore(cert), 0L, &epoch);
2007ccc794f0Schristos 	X509_time_adj(X509_getm_notAfter(cert), lifetime * SECSPERDAY, &epoch);
2008abb0f93cSkardel 	subj = X509_get_subject_name(cert);
2009abb0f93cSkardel 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
20108b8da087Schristos 	    (u_char *)name, -1, -1, 0);
2011abb0f93cSkardel 	subj = X509_get_issuer_name(cert);
2012abb0f93cSkardel 	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
20138b8da087Schristos 	    (u_char *)name, -1, -1, 0);
2014abb0f93cSkardel 	if (!X509_set_pubkey(cert, pkey)) {
20152950cc38Schristos 		fprintf(stderr, "Assign certificate signing key fails\n%s\n",
2016abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
2017abb0f93cSkardel 		X509_free(cert);
2018abb0f93cSkardel 		return (0);
2019abb0f93cSkardel 	}
2020abb0f93cSkardel 
2021abb0f93cSkardel 	/*
2022abb0f93cSkardel 	 * Add X509v3 extensions if present. These represent the minimum
2023abb0f93cSkardel 	 * set defined in RFC3280 less the certificate_policy extension,
2024abb0f93cSkardel 	 * which is seriously obfuscated in OpenSSL.
2025abb0f93cSkardel 	 */
2026abb0f93cSkardel 	/*
2027abb0f93cSkardel 	 * The basic_constraints extension CA:TRUE allows servers to
2028abb0f93cSkardel 	 * sign client certficitates.
2029abb0f93cSkardel 	 */
2030abb0f93cSkardel 	fprintf(stderr, "%s: %s\n", LN_basic_constraints,
2031abb0f93cSkardel 	    BASIC_CONSTRAINTS);
2032abb0f93cSkardel 	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
2033e19314b7Schristos 	    _UC(BASIC_CONSTRAINTS));
2034abb0f93cSkardel 	if (!X509_add_ext(cert, ex, -1)) {
2035abb0f93cSkardel 		fprintf(stderr, "Add extension field fails\n%s\n",
2036abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
2037abb0f93cSkardel 		return (0);
2038abb0f93cSkardel 	}
2039abb0f93cSkardel 	X509_EXTENSION_free(ex);
2040abb0f93cSkardel 
2041abb0f93cSkardel 	/*
2042abb0f93cSkardel 	 * The key_usage extension designates the purposes the key can
2043abb0f93cSkardel 	 * be used for.
2044abb0f93cSkardel 	 */
2045abb0f93cSkardel 	fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
2046e19314b7Schristos 	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
2047abb0f93cSkardel 	if (!X509_add_ext(cert, ex, -1)) {
2048abb0f93cSkardel 		fprintf(stderr, "Add extension field fails\n%s\n",
2049abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
2050abb0f93cSkardel 		return (0);
2051abb0f93cSkardel 	}
2052abb0f93cSkardel 	X509_EXTENSION_free(ex);
2053abb0f93cSkardel 	/*
2054abb0f93cSkardel 	 * The subject_key_identifier is used for the GQ public key.
2055abb0f93cSkardel 	 * This should not be controversial.
2056abb0f93cSkardel 	 */
2057abb0f93cSkardel 	if (gqpub != NULL) {
2058abb0f93cSkardel 		fprintf(stderr, "%s\n", LN_subject_key_identifier);
2059abb0f93cSkardel 		ex = X509V3_EXT_conf_nid(NULL, NULL,
2060abb0f93cSkardel 		    NID_subject_key_identifier, gqpub);
2061abb0f93cSkardel 		if (!X509_add_ext(cert, ex, -1)) {
2062abb0f93cSkardel 			fprintf(stderr,
2063abb0f93cSkardel 			    "Add extension field fails\n%s\n",
2064abb0f93cSkardel 			    ERR_error_string(ERR_get_error(), NULL));
2065abb0f93cSkardel 			return (0);
2066abb0f93cSkardel 		}
2067abb0f93cSkardel 		X509_EXTENSION_free(ex);
2068abb0f93cSkardel 	}
2069abb0f93cSkardel 
2070abb0f93cSkardel 	/*
2071abb0f93cSkardel 	 * The extended key usage extension is used for special purpose
2072abb0f93cSkardel 	 * here. The semantics probably do not conform to the designer's
2073abb0f93cSkardel 	 * intent and will likely change in future.
2074abb0f93cSkardel 	 *
2075abb0f93cSkardel 	 * "trustRoot" designates a root authority
2076abb0f93cSkardel 	 * "private" designates a private certificate
2077abb0f93cSkardel 	 */
2078abb0f93cSkardel 	if (exten != NULL) {
2079abb0f93cSkardel 		fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
2080abb0f93cSkardel 		ex = X509V3_EXT_conf_nid(NULL, NULL,
2081e19314b7Schristos 		    NID_ext_key_usage, _UC(exten));
2082abb0f93cSkardel 		if (!X509_add_ext(cert, ex, -1)) {
2083abb0f93cSkardel 			fprintf(stderr,
2084abb0f93cSkardel 			    "Add extension field fails\n%s\n",
2085abb0f93cSkardel 			    ERR_error_string(ERR_get_error(), NULL));
2086abb0f93cSkardel 			return (0);
2087abb0f93cSkardel 		}
2088abb0f93cSkardel 		X509_EXTENSION_free(ex);
2089abb0f93cSkardel 	}
2090abb0f93cSkardel 
2091abb0f93cSkardel 	/*
2092abb0f93cSkardel 	 * Sign and verify.
2093abb0f93cSkardel 	 */
2094abb0f93cSkardel 	X509_sign(cert, pkey, md);
20953123f114Skardel 	if (X509_verify(cert, pkey) <= 0) {
2096abb0f93cSkardel 		fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
2097abb0f93cSkardel 		    ERR_error_string(ERR_get_error(), NULL));
2098abb0f93cSkardel 		X509_free(cert);
2099abb0f93cSkardel 		return (0);
2100abb0f93cSkardel 	}
2101abb0f93cSkardel 
2102abb0f93cSkardel 	/*
2103abb0f93cSkardel 	 * Write the certificate encoded in PEM.
2104abb0f93cSkardel 	 */
21052950cc38Schristos 	snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
2106abb0f93cSkardel 	str = fheader(pathbuf, "cert", hostname);
2107abb0f93cSkardel 	PEM_write_X509(str, cert);
2108abb0f93cSkardel 	fclose(str);
2109abb0f93cSkardel 	if (debug)
2110abb0f93cSkardel 		X509_print_fp(stderr, cert);
2111abb0f93cSkardel 	X509_free(cert);
2112abb0f93cSkardel 	return (1);
2113abb0f93cSkardel }
2114abb0f93cSkardel 
2115abb0f93cSkardel #if 0	/* asn2ntp is used only with commercial certificates */
2116abb0f93cSkardel /*
2117abb0f93cSkardel  * asn2ntp - convert ASN1_TIME time structure to NTP time
2118abb0f93cSkardel  */
2119abb0f93cSkardel u_long
2120abb0f93cSkardel asn2ntp	(
2121abb0f93cSkardel 	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
2122abb0f93cSkardel 	)
2123abb0f93cSkardel {
2124abb0f93cSkardel 	char	*v;		/* pointer to ASN1_TIME string */
2125abb0f93cSkardel 	struct	tm tm;		/* time decode structure time */
2126abb0f93cSkardel 
2127abb0f93cSkardel 	/*
2128abb0f93cSkardel 	 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
2129abb0f93cSkardel 	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2130abb0f93cSkardel 	 * SS fiels start with zero and the Z character should be 'Z'
2131abb0f93cSkardel 	 * for UTC. Also note that years less than 50 map to years
2132abb0f93cSkardel 	 * greater than 100. Dontcha love ASN.1?
2133abb0f93cSkardel 	 */
2134abb0f93cSkardel 	if (asn1time->length > 13)
2135abb0f93cSkardel 		return (-1);
2136abb0f93cSkardel 	v = (char *)asn1time->data;
2137abb0f93cSkardel 	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2138abb0f93cSkardel 	if (tm.tm_year < 50)
2139abb0f93cSkardel 		tm.tm_year += 100;
2140abb0f93cSkardel 	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2141abb0f93cSkardel 	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2142abb0f93cSkardel 	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2143abb0f93cSkardel 	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2144abb0f93cSkardel 	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2145abb0f93cSkardel 	tm.tm_wday = 0;
2146abb0f93cSkardel 	tm.tm_yday = 0;
2147abb0f93cSkardel 	tm.tm_isdst = 0;
2148abb0f93cSkardel 	return (mktime(&tm) + JAN_1970);
2149abb0f93cSkardel }
2150abb0f93cSkardel #endif
2151abb0f93cSkardel 
2152abb0f93cSkardel /*
2153abb0f93cSkardel  * Callback routine
2154abb0f93cSkardel  */
2155abb0f93cSkardel void
2156abb0f93cSkardel cb	(
2157abb0f93cSkardel 	int	n1,		/* arg 1 */
2158abb0f93cSkardel 	int	n2,		/* arg 2 */
2159abb0f93cSkardel 	void	*chr		/* arg 3 */
2160abb0f93cSkardel 	)
2161abb0f93cSkardel {
2162abb0f93cSkardel 	switch (n1) {
2163abb0f93cSkardel 	case 0:
2164abb0f93cSkardel 		d0++;
2165abb0f93cSkardel 		fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
2166abb0f93cSkardel 		    d0);
2167abb0f93cSkardel 		break;
2168abb0f93cSkardel 	case 1:
2169abb0f93cSkardel 		d1++;
2170abb0f93cSkardel 		fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
2171abb0f93cSkardel 		    n2, d1);
2172abb0f93cSkardel 		break;
2173abb0f93cSkardel 	case 2:
2174abb0f93cSkardel 		d2++;
2175abb0f93cSkardel 		fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
2176abb0f93cSkardel 		    n1, n2, d2);
2177abb0f93cSkardel 		break;
2178abb0f93cSkardel 	case 3:
2179abb0f93cSkardel 		d3++;
2180abb0f93cSkardel 		fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
2181abb0f93cSkardel 		    (char *)chr, n1, n2, d3);
2182abb0f93cSkardel 		break;
2183abb0f93cSkardel 	}
2184abb0f93cSkardel }
2185abb0f93cSkardel 
2186abb0f93cSkardel 
2187abb0f93cSkardel /*
2188abb0f93cSkardel  * Generate key
2189abb0f93cSkardel  */
2190abb0f93cSkardel EVP_PKEY *			/* public/private key pair */
2191abb0f93cSkardel genkey(
2192e19314b7Schristos 	const char *type,	/* key type (RSA or DSA) */
2193e19314b7Schristos 	const char *id		/* file name id */
2194abb0f93cSkardel 	)
2195abb0f93cSkardel {
2196abb0f93cSkardel 	if (type == NULL)
2197abb0f93cSkardel 		return (NULL);
2198abb0f93cSkardel 	if (strcmp(type, "RSA") == 0)
2199abb0f93cSkardel 		return (gen_rsa(id));
2200abb0f93cSkardel 
2201abb0f93cSkardel 	else if (strcmp(type, "DSA") == 0)
2202abb0f93cSkardel 		return (gen_dsa(id));
2203abb0f93cSkardel 
2204abb0f93cSkardel 	fprintf(stderr, "Invalid %s key type %s\n", id, type);
2205abb0f93cSkardel 	return (NULL);
2206abb0f93cSkardel }
220703cfe0ffSchristos 
220803cfe0ffSchristos static RSA*
220903cfe0ffSchristos genRsaKeyPair(
221003cfe0ffSchristos 	int	bits,
221103cfe0ffSchristos 	char *	what
221203cfe0ffSchristos 	)
221303cfe0ffSchristos {
221403cfe0ffSchristos 	RSA *		rsa = RSA_new();
221503cfe0ffSchristos 	BN_GENCB *	gcb = BN_GENCB_new();
221603cfe0ffSchristos 	BIGNUM *	bne = BN_new();
221703cfe0ffSchristos 
221803cfe0ffSchristos 	if (gcb)
221903cfe0ffSchristos 		BN_GENCB_set_old(gcb, cb, what);
222003cfe0ffSchristos 	if (bne)
222103cfe0ffSchristos 		BN_set_word(bne, 65537);
222203cfe0ffSchristos 	if (!(rsa && gcb && bne && RSA_generate_key_ex(
222303cfe0ffSchristos 		      rsa, bits, bne, gcb)))
222403cfe0ffSchristos 	{
222503cfe0ffSchristos 		RSA_free(rsa);
222603cfe0ffSchristos 		rsa = NULL;
222703cfe0ffSchristos 	}
222803cfe0ffSchristos 	BN_GENCB_free(gcb);
222903cfe0ffSchristos 	BN_free(bne);
223003cfe0ffSchristos 	return rsa;
223103cfe0ffSchristos }
223203cfe0ffSchristos 
223303cfe0ffSchristos static DSA*
223403cfe0ffSchristos genDsaParams(
223503cfe0ffSchristos 	int	bits,
223603cfe0ffSchristos 	char *	what
223703cfe0ffSchristos 	)
223803cfe0ffSchristos {
223903cfe0ffSchristos 
224003cfe0ffSchristos 	DSA *		dsa = DSA_new();
224103cfe0ffSchristos 	BN_GENCB *	gcb = BN_GENCB_new();
224203cfe0ffSchristos 	u_char		seed[20];
224303cfe0ffSchristos 
224403cfe0ffSchristos 	if (gcb)
224503cfe0ffSchristos 		BN_GENCB_set_old(gcb, cb, what);
224603cfe0ffSchristos 	RAND_bytes(seed, sizeof(seed));
224703cfe0ffSchristos 	if (!(dsa && gcb && DSA_generate_parameters_ex(
224803cfe0ffSchristos 		      dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))
224903cfe0ffSchristos 	{
225003cfe0ffSchristos 		DSA_free(dsa);
225103cfe0ffSchristos 		dsa = NULL;
225203cfe0ffSchristos 	}
225303cfe0ffSchristos 	BN_GENCB_free(gcb);
225403cfe0ffSchristos 	return dsa;
225503cfe0ffSchristos }
225603cfe0ffSchristos 
22572950cc38Schristos #endif	/* AUTOKEY */
2258abb0f93cSkardel 
2259abb0f93cSkardel 
2260abb0f93cSkardel /*
2261abb0f93cSkardel  * Generate file header and link
2262abb0f93cSkardel  */
2263abb0f93cSkardel FILE *
2264abb0f93cSkardel fheader	(
2265abb0f93cSkardel 	const char *file,	/* file name id */
2266abb0f93cSkardel 	const char *ulink,	/* linkname */
2267abb0f93cSkardel 	const char *owner	/* owner name */
2268abb0f93cSkardel 	)
2269abb0f93cSkardel {
2270abb0f93cSkardel 	FILE	*str;		/* file handle */
2271abb0f93cSkardel 	char	linkname[MAXFILENAME]; /* link name */
2272abb0f93cSkardel 	int	temp;
22737476e6e4Schristos #ifdef HAVE_UMASK
22747476e6e4Schristos         mode_t  orig_umask;
22757476e6e4Schristos #endif
2276abb0f93cSkardel 
22772950cc38Schristos 	snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
22782950cc38Schristos 	    owner, fstamp);
22797476e6e4Schristos #ifdef HAVE_UMASK
22807476e6e4Schristos         orig_umask = umask( S_IWGRP | S_IRWXO );
22817476e6e4Schristos         str = fopen(filename, "w");
22827476e6e4Schristos         (void) umask(orig_umask);
22837476e6e4Schristos #else
22847476e6e4Schristos         str = fopen(filename, "w");
22857476e6e4Schristos #endif
22867476e6e4Schristos 	if (str == NULL) {
2287abb0f93cSkardel 		perror("Write");
2288abb0f93cSkardel 		exit (-1);
2289abb0f93cSkardel 	}
22907476e6e4Schristos         if (strcmp(ulink, "md5") == 0) {
22917476e6e4Schristos           strcpy(linkname,"ntp.keys");
22927476e6e4Schristos         } else {
22932950cc38Schristos           snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
22942950cc38Schristos                    hostname);
22957476e6e4Schristos         }
22962950cc38Schristos 	(void)remove(linkname);		/* The symlink() line below matters */
2297abb0f93cSkardel 	temp = symlink(filename, linkname);
2298abb0f93cSkardel 	if (temp < 0)
2299abb0f93cSkardel 		perror(file);
2300abb0f93cSkardel 	fprintf(stderr, "Generating new %s file and link\n", ulink);
2301abb0f93cSkardel 	fprintf(stderr, "%s->%s\n", linkname, filename);
2302abb0f93cSkardel 	fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
2303abb0f93cSkardel 	return (str);
2304abb0f93cSkardel }
2305