1*eabc0478Schristos /* $NetBSD: refclock_irig.c,v 1.10 2024/08/18 20:47:18 christos Exp $ */ 2abb0f93cSkardel 3abb0f93cSkardel /* 4abb0f93cSkardel * refclock_irig - audio IRIG-B/E demodulator/decoder 5abb0f93cSkardel */ 6abb0f93cSkardel #ifdef HAVE_CONFIG_H 7abb0f93cSkardel #include <config.h> 8abb0f93cSkardel #endif 9abb0f93cSkardel 10abb0f93cSkardel #if defined(REFCLOCK) && defined(CLOCK_IRIG) 11abb0f93cSkardel 12abb0f93cSkardel #include "ntpd.h" 13abb0f93cSkardel #include "ntp_io.h" 14abb0f93cSkardel #include "ntp_refclock.h" 15abb0f93cSkardel #include "ntp_calendar.h" 16abb0f93cSkardel #include "ntp_stdlib.h" 17abb0f93cSkardel 18abb0f93cSkardel #include <stdio.h> 19abb0f93cSkardel #include <ctype.h> 20abb0f93cSkardel #include <math.h> 21abb0f93cSkardel #ifdef HAVE_SYS_IOCTL_H 22abb0f93cSkardel #include <sys/ioctl.h> 23abb0f93cSkardel #endif /* HAVE_SYS_IOCTL_H */ 24abb0f93cSkardel 25abb0f93cSkardel #include "audio.h" 26abb0f93cSkardel 27abb0f93cSkardel /* 28abb0f93cSkardel * Audio IRIG-B/E demodulator/decoder 29abb0f93cSkardel * 30abb0f93cSkardel * This driver synchronizes the computer time using data encoded in 31abb0f93cSkardel * IRIG-B/E signals commonly produced by GPS receivers and other timing 32abb0f93cSkardel * devices. The IRIG signal is an amplitude-modulated carrier with 33abb0f93cSkardel * pulse-width modulated data bits. For IRIG-B, the carrier frequency is 34abb0f93cSkardel * 1000 Hz and bit rate 100 b/s; for IRIG-E, the carrier frequenchy is 35abb0f93cSkardel * 100 Hz and bit rate 10 b/s. The driver automatically recognizes which 36abb0f93cSkardel & format is in use. 37abb0f93cSkardel * 38abb0f93cSkardel * The driver requires an audio codec or sound card with sampling rate 8 39abb0f93cSkardel * kHz and mu-law companding. This is the same standard as used by the 40abb0f93cSkardel * telephone industry and is supported by most hardware and operating 41abb0f93cSkardel * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this 42abb0f93cSkardel * implementation, only one audio driver and codec can be supported on a 43abb0f93cSkardel * single machine. 44abb0f93cSkardel * 45abb0f93cSkardel * The program processes 8000-Hz mu-law companded samples using separate 46abb0f93cSkardel * signal filters for IRIG-B and IRIG-E, a comb filter, envelope 47abb0f93cSkardel * detector and automatic threshold corrector. Cycle crossings relative 48abb0f93cSkardel * to the corrected slice level determine the width of each pulse and 49abb0f93cSkardel * its value - zero, one or position identifier. 50abb0f93cSkardel * 51abb0f93cSkardel * The data encode 20 BCD digits which determine the second, minute, 52abb0f93cSkardel * hour and day of the year and sometimes the year and synchronization 53abb0f93cSkardel * condition. The comb filter exponentially averages the corresponding 54abb0f93cSkardel * samples of successive baud intervals in order to reliably identify 55abb0f93cSkardel * the reference carrier cycle. A type-II phase-lock loop (PLL) performs 56abb0f93cSkardel * additional integration and interpolation to accurately determine the 57abb0f93cSkardel * zero crossing of that cycle, which determines the reference 58abb0f93cSkardel * timestamp. A pulse-width discriminator demodulates the data pulses, 59abb0f93cSkardel * which are then encoded as the BCD digits of the timecode. 60abb0f93cSkardel * 61abb0f93cSkardel * The timecode and reference timestamp are updated once each second 62abb0f93cSkardel * with IRIG-B (ten seconds with IRIG-E) and local clock offset samples 63abb0f93cSkardel * saved for later processing. At poll intervals of 64 s, the saved 64abb0f93cSkardel * samples are processed by a trimmed-mean filter and used to update the 65abb0f93cSkardel * system clock. 66abb0f93cSkardel * 67abb0f93cSkardel * An automatic gain control feature provides protection against 68abb0f93cSkardel * overdriven or underdriven input signal amplitudes. It is designed to 69abb0f93cSkardel * maintain adequate demodulator signal amplitude while avoiding 70abb0f93cSkardel * occasional noise spikes. In order to assure reliable capture, the 71abb0f93cSkardel * decompanded input signal amplitude must be greater than 100 units and 72abb0f93cSkardel * the codec sample frequency error less than 250 PPM (.025 percent). 73abb0f93cSkardel * 74abb0f93cSkardel * Monitor Data 75abb0f93cSkardel * 76abb0f93cSkardel * The timecode format used for debugging and data recording includes 77abb0f93cSkardel * data helpful in diagnosing problems with the IRIG signal and codec 78abb0f93cSkardel * connections. The driver produces one line for each timecode in the 79abb0f93cSkardel * following format: 80abb0f93cSkardel * 81abb0f93cSkardel * 00 00 98 23 19:26:52 2782 143 0.694 10 0.3 66.5 3094572411.00027 82abb0f93cSkardel * 83abb0f93cSkardel * If clockstats is enabled, the most recent line is written to the 84abb0f93cSkardel * clockstats file every 64 s. If verbose recording is enabled (fudge 85abb0f93cSkardel * flag 4) each line is written as generated. 86abb0f93cSkardel * 87abb0f93cSkardel * The first field containes the error flags in hex, where the hex bits 88abb0f93cSkardel * are interpreted as below. This is followed by the year of century, 89abb0f93cSkardel * day of year and time of day. Note that the time of day is for the 90abb0f93cSkardel * previous minute, not the current time. The status indicator and year 91abb0f93cSkardel * are not produced by some IRIG devices and appear as zeros. Following 92abb0f93cSkardel * these fields are the carrier amplitude (0-3000), codec gain (0-255), 93abb0f93cSkardel * modulation index (0-1), time constant (4-10), carrier phase error 94abb0f93cSkardel * +-.5) and carrier frequency error (PPM). The last field is the on- 95abb0f93cSkardel * time timestamp in NTP format. 96abb0f93cSkardel * 97abb0f93cSkardel * The error flags are defined as follows in hex: 98abb0f93cSkardel * 99abb0f93cSkardel * x01 Low signal. The carrier amplitude is less than 100 units. This 100abb0f93cSkardel * is usually the result of no signal or wrong input port. 101abb0f93cSkardel * x02 Frequency error. The codec frequency error is greater than 250 102abb0f93cSkardel * PPM. This may be due to wrong signal format or (rarely) 103abb0f93cSkardel * defective codec. 104abb0f93cSkardel * x04 Modulation error. The IRIG modulation index is less than 0.5. 105abb0f93cSkardel * This is usually the result of an overdriven codec, wrong signal 106abb0f93cSkardel * format or wrong input port. 107abb0f93cSkardel * x08 Frame synch error. The decoder frame does not match the IRIG 108abb0f93cSkardel * frame. This is usually the result of an overdriven codec, wrong 109abb0f93cSkardel * signal format or noisy IRIG signal. It may also be the result of 110abb0f93cSkardel * an IRIG signature check which indicates a failure of the IRIG 111abb0f93cSkardel * signal synchronization source. 112abb0f93cSkardel * x10 Data bit error. The data bit length is out of tolerance. This is 113abb0f93cSkardel * usually the result of an overdriven codec, wrong signal format 114abb0f93cSkardel * or noisy IRIG signal. 115abb0f93cSkardel * x20 Seconds numbering discrepancy. The decoder second does not match 116abb0f93cSkardel * the IRIG second. This is usually the result of an overdriven 117abb0f93cSkardel * codec, wrong signal format or noisy IRIG signal. 118abb0f93cSkardel * x40 Codec error (overrun). The machine is not fast enough to keep up 119abb0f93cSkardel * with the codec. 120abb0f93cSkardel * x80 Device status error (Spectracom). 121abb0f93cSkardel * 122abb0f93cSkardel * 123abb0f93cSkardel * Once upon a time, an UltrSPARC 30 and Solaris 2.7 kept the clock 124abb0f93cSkardel * within a few tens of microseconds relative to the IRIG-B signal. 125abb0f93cSkardel * Accuracy with IRIG-E was about ten times worse. Unfortunately, Sun 126abb0f93cSkardel * broke the 2.7 audio driver in 2.8, which has a 10-ms sawtooth 127abb0f93cSkardel * modulation. 128abb0f93cSkardel * 129abb0f93cSkardel * Unlike other drivers, which can have multiple instantiations, this 130abb0f93cSkardel * one supports only one. It does not seem likely that more than one 131abb0f93cSkardel * audio codec would be useful in a single machine. More than one would 132abb0f93cSkardel * probably chew up too much CPU time anyway. 133abb0f93cSkardel * 134abb0f93cSkardel * Fudge factors 135abb0f93cSkardel * 136abb0f93cSkardel * Fudge flag4 causes the dubugging output described above to be 137abb0f93cSkardel * recorded in the clockstats file. Fudge flag2 selects the audio input 138abb0f93cSkardel * port, where 0 is the mike port (default) and 1 is the line-in port. 139abb0f93cSkardel * It does not seem useful to select the compact disc player port. Fudge 140abb0f93cSkardel * flag3 enables audio monitoring of the input signal. For this purpose, 141abb0f93cSkardel * the monitor gain is set t a default value. Fudgetime2 is used as a 142abb0f93cSkardel * frequency vernier for broken codec sample frequency. 143abb0f93cSkardel * 144abb0f93cSkardel * Alarm codes 145abb0f93cSkardel * 146abb0f93cSkardel * CEVNT_BADTIME invalid date or time 147abb0f93cSkardel * CEVNT_TIMEOUT no IRIG data since last poll 148abb0f93cSkardel */ 149abb0f93cSkardel /* 150abb0f93cSkardel * Interface definitions 151abb0f93cSkardel */ 152abb0f93cSkardel #define DEVICE_AUDIO "/dev/audio" /* audio device name */ 153abb0f93cSkardel #define PRECISION (-17) /* precision assumed (about 10 us) */ 154abb0f93cSkardel #define REFID "IRIG" /* reference ID */ 155abb0f93cSkardel #define DESCRIPTION "Generic IRIG Audio Driver" /* WRU */ 156abb0f93cSkardel #define AUDIO_BUFSIZ 320 /* audio buffer size (40 ms) */ 157abb0f93cSkardel #define SECOND 8000 /* nominal sample rate (Hz) */ 158abb0f93cSkardel #define BAUD 80 /* samples per baud interval */ 159abb0f93cSkardel #define OFFSET 128 /* companded sample offset */ 160abb0f93cSkardel #define SIZE 256 /* decompanding table size */ 161abb0f93cSkardel #define CYCLE 8 /* samples per bit */ 162abb0f93cSkardel #define SUBFLD 10 /* bits per frame */ 163abb0f93cSkardel #define FIELD 100 /* bits per second */ 164abb0f93cSkardel #define MINTC 2 /* min PLL time constant */ 165abb0f93cSkardel #define MAXTC 10 /* max PLL time constant max */ 166abb0f93cSkardel #define MAXAMP 3000. /* maximum signal amplitude */ 167abb0f93cSkardel #define MINAMP 2000. /* minimum signal amplitude */ 168abb0f93cSkardel #define DRPOUT 100. /* dropout signal amplitude */ 169abb0f93cSkardel #define MODMIN 0.5 /* minimum modulation index */ 170abb0f93cSkardel #define MAXFREQ (250e-6 * SECOND) /* freq tolerance (.025%) */ 171abb0f93cSkardel 172abb0f93cSkardel /* 173abb0f93cSkardel * The on-time synchronization point is the positive-going zero crossing 174abb0f93cSkardel * of the first cycle of the second. The IIR baseband filter phase delay 175abb0f93cSkardel * is 1.03 ms for IRIG-B and 3.47 ms for IRIG-E. The fudge value 2.68 ms 176abb0f93cSkardel * due to the codec and other causes was determined by calibrating to a 177abb0f93cSkardel * PPS signal from a GPS receiver. 178abb0f93cSkardel * 179abb0f93cSkardel * The results with a 2.4-GHz P4 running FreeBSD 6.1 are generally 180abb0f93cSkardel * within .02 ms short-term with .02 ms jitter. The processor load due 181abb0f93cSkardel * to the driver is 0.51 percent. 182abb0f93cSkardel */ 183abb0f93cSkardel #define IRIG_B ((1.03 + 2.68) / 1000) /* IRIG-B system delay (s) */ 184abb0f93cSkardel #define IRIG_E ((3.47 + 2.68) / 1000) /* IRIG-E system delay (s) */ 185abb0f93cSkardel 186abb0f93cSkardel /* 187abb0f93cSkardel * Data bit definitions 188abb0f93cSkardel */ 189abb0f93cSkardel #define BIT0 0 /* zero */ 190abb0f93cSkardel #define BIT1 1 /* one */ 191abb0f93cSkardel #define BITP 2 /* position identifier */ 192abb0f93cSkardel 193abb0f93cSkardel /* 194abb0f93cSkardel * Error flags 195abb0f93cSkardel */ 196abb0f93cSkardel #define IRIG_ERR_AMP 0x01 /* low carrier amplitude */ 197abb0f93cSkardel #define IRIG_ERR_FREQ 0x02 /* frequency tolerance exceeded */ 198abb0f93cSkardel #define IRIG_ERR_MOD 0x04 /* low modulation index */ 199abb0f93cSkardel #define IRIG_ERR_SYNCH 0x08 /* frame synch error */ 200abb0f93cSkardel #define IRIG_ERR_DECODE 0x10 /* frame decoding error */ 201abb0f93cSkardel #define IRIG_ERR_CHECK 0x20 /* second numbering discrepancy */ 202abb0f93cSkardel #define IRIG_ERR_ERROR 0x40 /* codec error (overrun) */ 203abb0f93cSkardel #define IRIG_ERR_SIGERR 0x80 /* IRIG status error (Spectracom) */ 204abb0f93cSkardel 205abb0f93cSkardel static char hexchar[] = "0123456789abcdef"; 206abb0f93cSkardel 207abb0f93cSkardel /* 208abb0f93cSkardel * IRIG unit control structure 209abb0f93cSkardel */ 210abb0f93cSkardel struct irigunit { 211abb0f93cSkardel u_char timecode[2 * SUBFLD + 1]; /* timecode string */ 212abb0f93cSkardel l_fp timestamp; /* audio sample timestamp */ 213abb0f93cSkardel l_fp tick; /* audio sample increment */ 214abb0f93cSkardel l_fp refstamp; /* reference timestamp */ 215abb0f93cSkardel l_fp chrstamp; /* baud timestamp */ 216abb0f93cSkardel l_fp prvstamp; /* previous baud timestamp */ 217abb0f93cSkardel double integ[BAUD]; /* baud integrator */ 218abb0f93cSkardel double phase, freq; /* logical clock phase and frequency */ 219abb0f93cSkardel double zxing; /* phase detector integrator */ 220abb0f93cSkardel double yxing; /* cycle phase */ 221abb0f93cSkardel double exing; /* envelope phase */ 222abb0f93cSkardel double modndx; /* modulation index */ 223abb0f93cSkardel double irig_b; /* IRIG-B signal amplitude */ 224abb0f93cSkardel double irig_e; /* IRIG-E signal amplitude */ 225abb0f93cSkardel int errflg; /* error flags */ 226abb0f93cSkardel /* 227abb0f93cSkardel * Audio codec variables 228abb0f93cSkardel */ 229abb0f93cSkardel double comp[SIZE]; /* decompanding table */ 230abb0f93cSkardel double signal; /* peak signal for AGC */ 231abb0f93cSkardel int port; /* codec port */ 232abb0f93cSkardel int gain; /* codec gain */ 233abb0f93cSkardel int mongain; /* codec monitor gain */ 234abb0f93cSkardel int seccnt; /* second interval counter */ 235abb0f93cSkardel 236abb0f93cSkardel /* 237abb0f93cSkardel * RF variables 238abb0f93cSkardel */ 239abb0f93cSkardel double bpf[9]; /* IRIG-B filter shift register */ 240abb0f93cSkardel double lpf[5]; /* IRIG-E filter shift register */ 241abb0f93cSkardel double envmin, envmax; /* envelope min and max */ 242abb0f93cSkardel double slice; /* envelope slice level */ 243abb0f93cSkardel double intmin, intmax; /* integrated envelope min and max */ 244abb0f93cSkardel double maxsignal; /* integrated peak amplitude */ 245abb0f93cSkardel double noise; /* integrated noise amplitude */ 246abb0f93cSkardel double lastenv[CYCLE]; /* last cycle amplitudes */ 247abb0f93cSkardel double lastint[CYCLE]; /* last integrated cycle amplitudes */ 248abb0f93cSkardel double lastsig; /* last carrier sample */ 249abb0f93cSkardel double fdelay; /* filter delay */ 250abb0f93cSkardel int decim; /* sample decimation factor */ 251abb0f93cSkardel int envphase; /* envelope phase */ 252abb0f93cSkardel int envptr; /* envelope phase pointer */ 253abb0f93cSkardel int envsw; /* envelope state */ 254abb0f93cSkardel int envxing; /* envelope slice crossing */ 255abb0f93cSkardel int tc; /* time constant */ 256abb0f93cSkardel int tcount; /* time constant counter */ 257abb0f93cSkardel int badcnt; /* decimation interval counter */ 258abb0f93cSkardel 259abb0f93cSkardel /* 260abb0f93cSkardel * Decoder variables 261abb0f93cSkardel */ 262abb0f93cSkardel int pulse; /* cycle counter */ 263abb0f93cSkardel int cycles; /* carrier cycles */ 264abb0f93cSkardel int dcycles; /* data cycles */ 265abb0f93cSkardel int lastbit; /* last code element */ 266abb0f93cSkardel int second; /* previous second */ 267abb0f93cSkardel int bitcnt; /* bit count in frame */ 268abb0f93cSkardel int frmcnt; /* bit count in second */ 269abb0f93cSkardel int xptr; /* timecode pointer */ 270abb0f93cSkardel int bits; /* demodulated bits */ 271abb0f93cSkardel }; 272abb0f93cSkardel 273abb0f93cSkardel /* 274abb0f93cSkardel * Function prototypes 275abb0f93cSkardel */ 276abb0f93cSkardel static int irig_start (int, struct peer *); 277abb0f93cSkardel static void irig_shutdown (int, struct peer *); 278abb0f93cSkardel static void irig_receive (struct recvbuf *); 279abb0f93cSkardel static void irig_poll (int, struct peer *); 280abb0f93cSkardel 281abb0f93cSkardel /* 282abb0f93cSkardel * More function prototypes 283abb0f93cSkardel */ 284abb0f93cSkardel static void irig_base (struct peer *, double); 285abb0f93cSkardel static void irig_rf (struct peer *, double); 286abb0f93cSkardel static void irig_baud (struct peer *, int); 287abb0f93cSkardel static void irig_decode (struct peer *, int); 288abb0f93cSkardel static void irig_gain (struct peer *); 289abb0f93cSkardel 290abb0f93cSkardel /* 291abb0f93cSkardel * Transfer vector 292abb0f93cSkardel */ 293abb0f93cSkardel struct refclock refclock_irig = { 294abb0f93cSkardel irig_start, /* start up driver */ 295abb0f93cSkardel irig_shutdown, /* shut down driver */ 296abb0f93cSkardel irig_poll, /* transmit poll message */ 297abb0f93cSkardel noentry, /* not used (old irig_control) */ 298abb0f93cSkardel noentry, /* initialize driver (not used) */ 299abb0f93cSkardel noentry, /* not used (old irig_buginfo) */ 300abb0f93cSkardel NOFLAGS /* not used */ 301abb0f93cSkardel }; 302abb0f93cSkardel 303abb0f93cSkardel 304abb0f93cSkardel /* 305abb0f93cSkardel * irig_start - open the devices and initialize data for processing 306abb0f93cSkardel */ 307abb0f93cSkardel static int 308abb0f93cSkardel irig_start( 309abb0f93cSkardel int unit, /* instance number (used for PCM) */ 310abb0f93cSkardel struct peer *peer /* peer structure pointer */ 311abb0f93cSkardel ) 312abb0f93cSkardel { 313abb0f93cSkardel struct refclockproc *pp; 314abb0f93cSkardel struct irigunit *up; 315abb0f93cSkardel 316abb0f93cSkardel /* 317abb0f93cSkardel * Local variables 318abb0f93cSkardel */ 319abb0f93cSkardel int fd; /* file descriptor */ 320abb0f93cSkardel int i; /* index */ 321abb0f93cSkardel double step; /* codec adjustment */ 322abb0f93cSkardel 323abb0f93cSkardel /* 324abb0f93cSkardel * Open audio device 325abb0f93cSkardel */ 326abb0f93cSkardel fd = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit); 327abb0f93cSkardel if (fd < 0) 328abb0f93cSkardel return (0); 329abb0f93cSkardel #ifdef DEBUG 330abb0f93cSkardel if (debug) 331abb0f93cSkardel audio_show(); 332abb0f93cSkardel #endif 333abb0f93cSkardel 334abb0f93cSkardel /* 335abb0f93cSkardel * Allocate and initialize unit structure 336abb0f93cSkardel */ 3372950cc38Schristos up = emalloc_zero(sizeof(*up)); 338abb0f93cSkardel pp = peer->procptr; 339abb0f93cSkardel pp->io.clock_recv = irig_receive; 3402950cc38Schristos pp->io.srcclock = peer; 341abb0f93cSkardel pp->io.datalen = 0; 342abb0f93cSkardel pp->io.fd = fd; 343abb0f93cSkardel if (!io_addclock(&pp->io)) { 344f003fb54Skardel close(fd); 345f003fb54Skardel pp->io.fd = -1; 346abb0f93cSkardel free(up); 347abb0f93cSkardel return (0); 348abb0f93cSkardel } 3492950cc38Schristos pp->unitptr = up; 350abb0f93cSkardel 351abb0f93cSkardel /* 352abb0f93cSkardel * Initialize miscellaneous variables 353abb0f93cSkardel */ 354abb0f93cSkardel peer->precision = PRECISION; 355abb0f93cSkardel pp->clockdesc = DESCRIPTION; 356abb0f93cSkardel memcpy((char *)&pp->refid, REFID, 4); 357abb0f93cSkardel up->tc = MINTC; 358abb0f93cSkardel up->decim = 1; 359abb0f93cSkardel up->gain = 127; 360abb0f93cSkardel 361abb0f93cSkardel /* 362abb0f93cSkardel * The companded samples are encoded sign-magnitude. The table 363abb0f93cSkardel * contains all the 256 values in the interest of speed. 364abb0f93cSkardel */ 365abb0f93cSkardel up->comp[0] = up->comp[OFFSET] = 0.; 366abb0f93cSkardel up->comp[1] = 1; up->comp[OFFSET + 1] = -1.; 367abb0f93cSkardel up->comp[2] = 3; up->comp[OFFSET + 2] = -3.; 368abb0f93cSkardel step = 2.; 369abb0f93cSkardel for (i = 3; i < OFFSET; i++) { 370abb0f93cSkardel up->comp[i] = up->comp[i - 1] + step; 371abb0f93cSkardel up->comp[OFFSET + i] = -up->comp[i]; 372abb0f93cSkardel if (i % 16 == 0) 373abb0f93cSkardel step *= 2.; 374abb0f93cSkardel } 375abb0f93cSkardel DTOLFP(1. / SECOND, &up->tick); 376abb0f93cSkardel return (1); 377abb0f93cSkardel } 378abb0f93cSkardel 379abb0f93cSkardel 380abb0f93cSkardel /* 381abb0f93cSkardel * irig_shutdown - shut down the clock 382abb0f93cSkardel */ 383abb0f93cSkardel static void 384abb0f93cSkardel irig_shutdown( 385abb0f93cSkardel int unit, /* instance number (not used) */ 386abb0f93cSkardel struct peer *peer /* peer structure pointer */ 387abb0f93cSkardel ) 388abb0f93cSkardel { 389abb0f93cSkardel struct refclockproc *pp; 390abb0f93cSkardel struct irigunit *up; 391abb0f93cSkardel 392abb0f93cSkardel pp = peer->procptr; 3932950cc38Schristos up = pp->unitptr; 394f003fb54Skardel if (-1 != pp->io.fd) 395abb0f93cSkardel io_closeclock(&pp->io); 396f003fb54Skardel if (NULL != up) 397abb0f93cSkardel free(up); 398abb0f93cSkardel } 399abb0f93cSkardel 400abb0f93cSkardel 401abb0f93cSkardel /* 402abb0f93cSkardel * irig_receive - receive data from the audio device 403abb0f93cSkardel * 404abb0f93cSkardel * This routine reads input samples and adjusts the logical clock to 405abb0f93cSkardel * track the irig clock by dropping or duplicating codec samples. 406abb0f93cSkardel */ 407abb0f93cSkardel static void 408abb0f93cSkardel irig_receive( 409abb0f93cSkardel struct recvbuf *rbufp /* receive buffer structure pointer */ 410abb0f93cSkardel ) 411abb0f93cSkardel { 412abb0f93cSkardel struct peer *peer; 413abb0f93cSkardel struct refclockproc *pp; 414abb0f93cSkardel struct irigunit *up; 415abb0f93cSkardel 416abb0f93cSkardel /* 417abb0f93cSkardel * Local variables 418abb0f93cSkardel */ 419abb0f93cSkardel double sample; /* codec sample */ 420abb0f93cSkardel u_char *dpt; /* buffer pointer */ 421abb0f93cSkardel int bufcnt; /* buffer counter */ 422abb0f93cSkardel l_fp ltemp; /* l_fp temp */ 423abb0f93cSkardel 4242950cc38Schristos peer = rbufp->recv_peer; 425abb0f93cSkardel pp = peer->procptr; 4262950cc38Schristos up = pp->unitptr; 427abb0f93cSkardel 428abb0f93cSkardel /* 429abb0f93cSkardel * Main loop - read until there ain't no more. Note codec 430abb0f93cSkardel * samples are bit-inverted. 431abb0f93cSkardel */ 432abb0f93cSkardel DTOLFP((double)rbufp->recv_length / SECOND, <emp); 433abb0f93cSkardel L_SUB(&rbufp->recv_time, <emp); 434abb0f93cSkardel up->timestamp = rbufp->recv_time; 435abb0f93cSkardel dpt = rbufp->recv_buffer; 436abb0f93cSkardel for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) { 437abb0f93cSkardel sample = up->comp[~*dpt++ & 0xff]; 438abb0f93cSkardel 439abb0f93cSkardel /* 440abb0f93cSkardel * Variable frequency oscillator. The codec oscillator 441abb0f93cSkardel * runs at the nominal rate of 8000 samples per second, 442abb0f93cSkardel * or 125 us per sample. A frequency change of one unit 443abb0f93cSkardel * results in either duplicating or deleting one sample 444abb0f93cSkardel * per second, which results in a frequency change of 445abb0f93cSkardel * 125 PPM. 446abb0f93cSkardel */ 447abb0f93cSkardel up->phase += (up->freq + clock_codec) / SECOND; 448abb0f93cSkardel up->phase += pp->fudgetime2 / 1e6; 449abb0f93cSkardel if (up->phase >= .5) { 450abb0f93cSkardel up->phase -= 1.; 451abb0f93cSkardel } else if (up->phase < -.5) { 452abb0f93cSkardel up->phase += 1.; 453abb0f93cSkardel irig_rf(peer, sample); 454abb0f93cSkardel irig_rf(peer, sample); 455abb0f93cSkardel } else { 456abb0f93cSkardel irig_rf(peer, sample); 457abb0f93cSkardel } 458abb0f93cSkardel L_ADD(&up->timestamp, &up->tick); 459abb0f93cSkardel sample = fabs(sample); 460abb0f93cSkardel if (sample > up->signal) 461abb0f93cSkardel up->signal = sample; 462abb0f93cSkardel up->signal += (sample - up->signal) / 463abb0f93cSkardel 1000; 464abb0f93cSkardel 465abb0f93cSkardel /* 466abb0f93cSkardel * Once each second, determine the IRIG format and gain. 467abb0f93cSkardel */ 468abb0f93cSkardel up->seccnt = (up->seccnt + 1) % SECOND; 469abb0f93cSkardel if (up->seccnt == 0) { 470abb0f93cSkardel if (up->irig_b > up->irig_e) { 471abb0f93cSkardel up->decim = 1; 472abb0f93cSkardel up->fdelay = IRIG_B; 473abb0f93cSkardel } else { 474abb0f93cSkardel up->decim = 10; 475abb0f93cSkardel up->fdelay = IRIG_E; 476abb0f93cSkardel } 477abb0f93cSkardel up->irig_b = up->irig_e = 0; 478abb0f93cSkardel irig_gain(peer); 479abb0f93cSkardel 480abb0f93cSkardel } 481abb0f93cSkardel } 482abb0f93cSkardel 483abb0f93cSkardel /* 484abb0f93cSkardel * Set the input port and monitor gain for the next buffer. 485abb0f93cSkardel */ 486abb0f93cSkardel if (pp->sloppyclockflag & CLK_FLAG2) 487abb0f93cSkardel up->port = 2; 488abb0f93cSkardel else 489abb0f93cSkardel up->port = 1; 490abb0f93cSkardel if (pp->sloppyclockflag & CLK_FLAG3) 491abb0f93cSkardel up->mongain = MONGAIN; 492abb0f93cSkardel else 493abb0f93cSkardel up->mongain = 0; 494abb0f93cSkardel } 495abb0f93cSkardel 496abb0f93cSkardel 497abb0f93cSkardel /* 498abb0f93cSkardel * irig_rf - RF processing 499abb0f93cSkardel * 500abb0f93cSkardel * This routine filters the RF signal using a bandass filter for IRIG-B 501abb0f93cSkardel * and a lowpass filter for IRIG-E. In case of IRIG-E, the samples are 502abb0f93cSkardel * decimated by a factor of ten. Note that the codec filters function as 503abb0f93cSkardel * roofing filters to attenuate both the high and low ends of the 504abb0f93cSkardel * passband. IIR filter coefficients were determined using Matlab Signal 505abb0f93cSkardel * Processing Toolkit. 506abb0f93cSkardel */ 507abb0f93cSkardel static void 508abb0f93cSkardel irig_rf( 509abb0f93cSkardel struct peer *peer, /* peer structure pointer */ 510abb0f93cSkardel double sample /* current signal sample */ 511abb0f93cSkardel ) 512abb0f93cSkardel { 513abb0f93cSkardel struct refclockproc *pp; 514abb0f93cSkardel struct irigunit *up; 515abb0f93cSkardel 516abb0f93cSkardel /* 517abb0f93cSkardel * Local variables 518abb0f93cSkardel */ 519abb0f93cSkardel double irig_b, irig_e; /* irig filter outputs */ 520abb0f93cSkardel 521abb0f93cSkardel pp = peer->procptr; 5222950cc38Schristos up = pp->unitptr; 523abb0f93cSkardel 524abb0f93cSkardel /* 525abb0f93cSkardel * IRIG-B filter. Matlab 4th-order IIR elliptic, 800-1200 Hz 526abb0f93cSkardel * bandpass, 0.3 dB passband ripple, -50 dB stopband ripple, 527abb0f93cSkardel * phase delay 1.03 ms. 528abb0f93cSkardel */ 529abb0f93cSkardel irig_b = (up->bpf[8] = up->bpf[7]) * 6.505491e-001; 530abb0f93cSkardel irig_b += (up->bpf[7] = up->bpf[6]) * -3.875180e+000; 531abb0f93cSkardel irig_b += (up->bpf[6] = up->bpf[5]) * 1.151180e+001; 532abb0f93cSkardel irig_b += (up->bpf[5] = up->bpf[4]) * -2.141264e+001; 533abb0f93cSkardel irig_b += (up->bpf[4] = up->bpf[3]) * 2.712837e+001; 534abb0f93cSkardel irig_b += (up->bpf[3] = up->bpf[2]) * -2.384486e+001; 535abb0f93cSkardel irig_b += (up->bpf[2] = up->bpf[1]) * 1.427663e+001; 536abb0f93cSkardel irig_b += (up->bpf[1] = up->bpf[0]) * -5.352734e+000; 537abb0f93cSkardel up->bpf[0] = sample - irig_b; 538abb0f93cSkardel irig_b = up->bpf[0] * 4.952157e-003 539abb0f93cSkardel + up->bpf[1] * -2.055878e-002 540abb0f93cSkardel + up->bpf[2] * 4.401413e-002 541abb0f93cSkardel + up->bpf[3] * -6.558851e-002 542abb0f93cSkardel + up->bpf[4] * 7.462108e-002 543abb0f93cSkardel + up->bpf[5] * -6.558851e-002 544abb0f93cSkardel + up->bpf[6] * 4.401413e-002 545abb0f93cSkardel + up->bpf[7] * -2.055878e-002 546abb0f93cSkardel + up->bpf[8] * 4.952157e-003; 547abb0f93cSkardel up->irig_b += irig_b * irig_b; 548abb0f93cSkardel 549abb0f93cSkardel /* 550abb0f93cSkardel * IRIG-E filter. Matlab 4th-order IIR elliptic, 130-Hz lowpass, 551abb0f93cSkardel * 0.3 dB passband ripple, -50 dB stopband ripple, phase delay 552abb0f93cSkardel * 3.47 ms. 553abb0f93cSkardel */ 554abb0f93cSkardel irig_e = (up->lpf[4] = up->lpf[3]) * 8.694604e-001; 555abb0f93cSkardel irig_e += (up->lpf[3] = up->lpf[2]) * -3.589893e+000; 556abb0f93cSkardel irig_e += (up->lpf[2] = up->lpf[1]) * 5.570154e+000; 557abb0f93cSkardel irig_e += (up->lpf[1] = up->lpf[0]) * -3.849667e+000; 558abb0f93cSkardel up->lpf[0] = sample - irig_e; 559abb0f93cSkardel irig_e = up->lpf[0] * 3.215696e-003 560abb0f93cSkardel + up->lpf[1] * -1.174951e-002 561abb0f93cSkardel + up->lpf[2] * 1.712074e-002 562abb0f93cSkardel + up->lpf[3] * -1.174951e-002 563abb0f93cSkardel + up->lpf[4] * 3.215696e-003; 564abb0f93cSkardel up->irig_e += irig_e * irig_e; 565abb0f93cSkardel 566abb0f93cSkardel /* 567abb0f93cSkardel * Decimate by a factor of either 1 (IRIG-B) or 10 (IRIG-E). 568abb0f93cSkardel */ 569abb0f93cSkardel up->badcnt = (up->badcnt + 1) % up->decim; 570abb0f93cSkardel if (up->badcnt == 0) { 571abb0f93cSkardel if (up->decim == 1) 572abb0f93cSkardel irig_base(peer, irig_b); 573abb0f93cSkardel else 574abb0f93cSkardel irig_base(peer, irig_e); 575abb0f93cSkardel } 576abb0f93cSkardel } 577abb0f93cSkardel 578abb0f93cSkardel /* 579abb0f93cSkardel * irig_base - baseband processing 580abb0f93cSkardel * 581abb0f93cSkardel * This routine processes the baseband signal and demodulates the AM 582abb0f93cSkardel * carrier using a synchronous detector. It then synchronizes to the 583abb0f93cSkardel * data frame at the baud rate and decodes the width-modulated data 584abb0f93cSkardel * pulses. 585abb0f93cSkardel */ 586abb0f93cSkardel static void 587abb0f93cSkardel irig_base( 588abb0f93cSkardel struct peer *peer, /* peer structure pointer */ 589abb0f93cSkardel double sample /* current signal sample */ 590abb0f93cSkardel ) 591abb0f93cSkardel { 592abb0f93cSkardel struct refclockproc *pp; 593abb0f93cSkardel struct irigunit *up; 594abb0f93cSkardel 595abb0f93cSkardel /* 596abb0f93cSkardel * Local variables 597abb0f93cSkardel */ 598abb0f93cSkardel double lope; /* integrator output */ 599abb0f93cSkardel double env; /* envelope detector output */ 600abb0f93cSkardel double dtemp; 601abb0f93cSkardel int carphase; /* carrier phase */ 602abb0f93cSkardel 603abb0f93cSkardel pp = peer->procptr; 6042950cc38Schristos up = pp->unitptr; 605abb0f93cSkardel 606abb0f93cSkardel /* 607abb0f93cSkardel * Synchronous baud integrator. Corresponding samples of current 608abb0f93cSkardel * and past baud intervals are integrated to refine the envelope 609abb0f93cSkardel * amplitude and phase estimate. We keep one cycle (1 ms) of the 610abb0f93cSkardel * raw data and one baud (10 ms) of the integrated data. 611abb0f93cSkardel */ 612abb0f93cSkardel up->envphase = (up->envphase + 1) % BAUD; 613abb0f93cSkardel up->integ[up->envphase] += (sample - up->integ[up->envphase]) / 614abb0f93cSkardel (5 * up->tc); 615abb0f93cSkardel lope = up->integ[up->envphase]; 616abb0f93cSkardel carphase = up->envphase % CYCLE; 617abb0f93cSkardel up->lastenv[carphase] = sample; 618abb0f93cSkardel up->lastint[carphase] = lope; 619abb0f93cSkardel 620abb0f93cSkardel /* 621abb0f93cSkardel * Phase detector. Find the negative-going zero crossing 622abb0f93cSkardel * relative to sample 4 in the 8-sample sycle. A phase change of 623abb0f93cSkardel * 360 degrees produces an output change of one unit. 624abb0f93cSkardel */ 625abb0f93cSkardel if (up->lastsig > 0 && lope <= 0) 626abb0f93cSkardel up->zxing += (double)(carphase - 4) / CYCLE; 627abb0f93cSkardel up->lastsig = lope; 628abb0f93cSkardel 629abb0f93cSkardel /* 630abb0f93cSkardel * End of the baud. Update signal/noise estimates and PLL 631abb0f93cSkardel * phase, frequency and time constant. 632abb0f93cSkardel */ 633abb0f93cSkardel if (up->envphase == 0) { 634abb0f93cSkardel up->maxsignal = up->intmax; up->noise = up->intmin; 635abb0f93cSkardel up->intmin = 1e6; up->intmax = -1e6; 636abb0f93cSkardel if (up->maxsignal < DRPOUT) 637abb0f93cSkardel up->errflg |= IRIG_ERR_AMP; 638abb0f93cSkardel if (up->maxsignal > 0) 639abb0f93cSkardel up->modndx = (up->maxsignal - up->noise) / 640abb0f93cSkardel up->maxsignal; 641abb0f93cSkardel else 642abb0f93cSkardel up->modndx = 0; 643abb0f93cSkardel if (up->modndx < MODMIN) 644abb0f93cSkardel up->errflg |= IRIG_ERR_MOD; 645abb0f93cSkardel if (up->errflg & (IRIG_ERR_AMP | IRIG_ERR_FREQ | 646abb0f93cSkardel IRIG_ERR_MOD | IRIG_ERR_SYNCH)) { 647abb0f93cSkardel up->tc = MINTC; 648abb0f93cSkardel up->tcount = 0; 649abb0f93cSkardel } 650abb0f93cSkardel 651abb0f93cSkardel /* 652abb0f93cSkardel * Update PLL phase and frequency. The PLL time constant 653abb0f93cSkardel * is set initially to stabilize the frequency within a 654abb0f93cSkardel * minute or two, then increases to the maximum. The 655abb0f93cSkardel * frequency is clamped so that the PLL capture range 656abb0f93cSkardel * cannot be exceeded. 657abb0f93cSkardel */ 658abb0f93cSkardel dtemp = up->zxing * up->decim / BAUD; 659abb0f93cSkardel up->yxing = dtemp; 660abb0f93cSkardel up->zxing = 0.; 661abb0f93cSkardel up->phase += dtemp / up->tc; 662abb0f93cSkardel up->freq += dtemp / (4. * up->tc * up->tc); 663abb0f93cSkardel if (up->freq > MAXFREQ) { 664abb0f93cSkardel up->freq = MAXFREQ; 665abb0f93cSkardel up->errflg |= IRIG_ERR_FREQ; 666abb0f93cSkardel } else if (up->freq < -MAXFREQ) { 667abb0f93cSkardel up->freq = -MAXFREQ; 668abb0f93cSkardel up->errflg |= IRIG_ERR_FREQ; 669abb0f93cSkardel } 670abb0f93cSkardel } 671abb0f93cSkardel 672abb0f93cSkardel /* 673abb0f93cSkardel * Synchronous demodulator. There are eight samples in the cycle 674abb0f93cSkardel * and ten cycles in the baud. Since the PLL has aligned the 675abb0f93cSkardel * negative-going zero crossing at sample 4, the maximum 676abb0f93cSkardel * amplitude is at sample 2 and minimum at sample 6. The 677abb0f93cSkardel * beginning of the data pulse is determined from the integrated 678abb0f93cSkardel * samples, while the end of the pulse is determined from the 679abb0f93cSkardel * raw samples. The raw data bits are demodulated relative to 680abb0f93cSkardel * the slice level and left-shifted in the decoding register. 681abb0f93cSkardel */ 682abb0f93cSkardel if (carphase != 7) 683abb0f93cSkardel return; 684abb0f93cSkardel 685abb0f93cSkardel lope = (up->lastint[2] - up->lastint[6]) / 2.; 686abb0f93cSkardel if (lope > up->intmax) 687abb0f93cSkardel up->intmax = lope; 688abb0f93cSkardel if (lope < up->intmin) 689abb0f93cSkardel up->intmin = lope; 690abb0f93cSkardel 691abb0f93cSkardel /* 692abb0f93cSkardel * Pulse code demodulator and reference timestamp. The decoder 693abb0f93cSkardel * looks for a sequence of ten bits; the first two bits must be 694abb0f93cSkardel * one, the last two bits must be zero. Frame synch is asserted 695abb0f93cSkardel * when three correct frames have been found. 696abb0f93cSkardel */ 697abb0f93cSkardel up->pulse = (up->pulse + 1) % 10; 698abb0f93cSkardel up->cycles <<= 1; 699abb0f93cSkardel if (lope >= (up->maxsignal + up->noise) / 2.) 700abb0f93cSkardel up->cycles |= 1; 701abb0f93cSkardel if ((up->cycles & 0x303c0f03) == 0x300c0300) { 702abb0f93cSkardel if (up->pulse != 0) 703abb0f93cSkardel up->errflg |= IRIG_ERR_SYNCH; 704abb0f93cSkardel up->pulse = 0; 705abb0f93cSkardel } 706abb0f93cSkardel 707abb0f93cSkardel /* 708abb0f93cSkardel * Assemble the baud and max/min to get the slice level for the 709abb0f93cSkardel * next baud. The slice level is based on the maximum over the 710abb0f93cSkardel * first two bits and the minimum over the last two bits, with 711abb0f93cSkardel * the slice level halfway between the maximum and minimum. 712abb0f93cSkardel */ 713abb0f93cSkardel env = (up->lastenv[2] - up->lastenv[6]) / 2.; 714abb0f93cSkardel up->dcycles <<= 1; 715abb0f93cSkardel if (env >= up->slice) 716abb0f93cSkardel up->dcycles |= 1; 717abb0f93cSkardel switch(up->pulse) { 718abb0f93cSkardel 719abb0f93cSkardel case 0: 720abb0f93cSkardel irig_baud(peer, up->dcycles); 721abb0f93cSkardel if (env < up->envmin) 722abb0f93cSkardel up->envmin = env; 723abb0f93cSkardel up->slice = (up->envmax + up->envmin) / 2; 724abb0f93cSkardel up->envmin = 1e6; up->envmax = -1e6; 725abb0f93cSkardel break; 726abb0f93cSkardel 727abb0f93cSkardel case 1: 728abb0f93cSkardel up->envmax = env; 729abb0f93cSkardel break; 730abb0f93cSkardel 731abb0f93cSkardel case 2: 732abb0f93cSkardel if (env > up->envmax) 733abb0f93cSkardel up->envmax = env; 734abb0f93cSkardel break; 735abb0f93cSkardel 736abb0f93cSkardel case 9: 737abb0f93cSkardel up->envmin = env; 738abb0f93cSkardel break; 739abb0f93cSkardel } 740abb0f93cSkardel } 741abb0f93cSkardel 742abb0f93cSkardel /* 743abb0f93cSkardel * irig_baud - update the PLL and decode the pulse-width signal 744abb0f93cSkardel */ 745abb0f93cSkardel static void 746abb0f93cSkardel irig_baud( 747abb0f93cSkardel struct peer *peer, /* peer structure pointer */ 748abb0f93cSkardel int bits /* decoded bits */ 749abb0f93cSkardel ) 750abb0f93cSkardel { 751abb0f93cSkardel struct refclockproc *pp; 752abb0f93cSkardel struct irigunit *up; 753abb0f93cSkardel double dtemp; 754abb0f93cSkardel l_fp ltemp; 755abb0f93cSkardel 756abb0f93cSkardel pp = peer->procptr; 7572950cc38Schristos up = pp->unitptr; 758abb0f93cSkardel 759abb0f93cSkardel /* 760abb0f93cSkardel * The PLL time constant starts out small, in order to 761abb0f93cSkardel * sustain a frequency tolerance of 250 PPM. It 762abb0f93cSkardel * gradually increases as the loop settles down. Note 763abb0f93cSkardel * that small wiggles are not believed, unless they 764abb0f93cSkardel * persist for lots of samples. 765abb0f93cSkardel */ 766abb0f93cSkardel up->exing = -up->yxing; 76739ea0713Sjoerg if (abs(up->envxing - up->envphase) <= 1) { 768abb0f93cSkardel up->tcount++; 769abb0f93cSkardel if (up->tcount > 20 * up->tc) { 770abb0f93cSkardel up->tc++; 771abb0f93cSkardel if (up->tc > MAXTC) 772abb0f93cSkardel up->tc = MAXTC; 773abb0f93cSkardel up->tcount = 0; 774abb0f93cSkardel up->envxing = up->envphase; 775abb0f93cSkardel } else { 776abb0f93cSkardel up->exing -= up->envxing - up->envphase; 777abb0f93cSkardel } 778abb0f93cSkardel } else { 779abb0f93cSkardel up->tcount = 0; 780abb0f93cSkardel up->envxing = up->envphase; 781abb0f93cSkardel } 782abb0f93cSkardel 783abb0f93cSkardel /* 784abb0f93cSkardel * Strike the baud timestamp as the positive zero crossing of 785abb0f93cSkardel * the first bit, accounting for the codec delay and filter 786abb0f93cSkardel * delay. 787abb0f93cSkardel */ 788abb0f93cSkardel up->prvstamp = up->chrstamp; 789abb0f93cSkardel dtemp = up->decim * (up->exing / SECOND) + up->fdelay; 790abb0f93cSkardel DTOLFP(dtemp, <emp); 791abb0f93cSkardel up->chrstamp = up->timestamp; 792abb0f93cSkardel L_SUB(&up->chrstamp, <emp); 793abb0f93cSkardel 794abb0f93cSkardel /* 795abb0f93cSkardel * The data bits are collected in ten-bit bauds. The first two 796abb0f93cSkardel * bits are not used. The resulting patterns represent runs of 797abb0f93cSkardel * 0-1 bits (0), 2-4 bits (1) and 5-7 bits (PI). The remaining 798abb0f93cSkardel * 8-bit run represents a soft error and is treated as 0. 799abb0f93cSkardel */ 800abb0f93cSkardel switch (up->dcycles & 0xff) { 801abb0f93cSkardel 802abb0f93cSkardel case 0x00: /* 0-1 bits (0) */ 803abb0f93cSkardel case 0x80: 804abb0f93cSkardel irig_decode(peer, BIT0); 805abb0f93cSkardel break; 806abb0f93cSkardel 807abb0f93cSkardel case 0xc0: /* 2-4 bits (1) */ 808abb0f93cSkardel case 0xe0: 809abb0f93cSkardel case 0xf0: 810abb0f93cSkardel irig_decode(peer, BIT1); 811abb0f93cSkardel break; 812abb0f93cSkardel 813abb0f93cSkardel case 0xf8: /* (5-7 bits (PI) */ 814abb0f93cSkardel case 0xfc: 815abb0f93cSkardel case 0xfe: 816abb0f93cSkardel irig_decode(peer, BITP); 817abb0f93cSkardel break; 818abb0f93cSkardel 819abb0f93cSkardel default: /* 8 bits (error) */ 820abb0f93cSkardel irig_decode(peer, BIT0); 821abb0f93cSkardel up->errflg |= IRIG_ERR_DECODE; 822abb0f93cSkardel } 823abb0f93cSkardel } 824abb0f93cSkardel 825abb0f93cSkardel 826abb0f93cSkardel /* 827abb0f93cSkardel * irig_decode - decode the data 828abb0f93cSkardel * 829abb0f93cSkardel * This routine assembles bauds into digits, digits into frames and 830abb0f93cSkardel * frames into the timecode fields. Bits can have values of zero, one 831abb0f93cSkardel * or position identifier. There are four bits per digit, ten digits per 832abb0f93cSkardel * frame and ten frames per second. 833abb0f93cSkardel */ 834abb0f93cSkardel static void 835abb0f93cSkardel irig_decode( 836abb0f93cSkardel struct peer *peer, /* peer structure pointer */ 837abb0f93cSkardel int bit /* data bit (0, 1 or 2) */ 838abb0f93cSkardel ) 839abb0f93cSkardel { 840abb0f93cSkardel struct refclockproc *pp; 841abb0f93cSkardel struct irigunit *up; 842abb0f93cSkardel 843abb0f93cSkardel /* 844abb0f93cSkardel * Local variables 845abb0f93cSkardel */ 846abb0f93cSkardel int syncdig; /* sync digit (Spectracom) */ 847f003fb54Skardel char sbs[6 + 1]; /* binary seconds since 0h */ 848f003fb54Skardel char spare[2 + 1]; /* mulligan digits */ 849abb0f93cSkardel int temp; 850abb0f93cSkardel 8512950cc38Schristos syncdig = 0; 852abb0f93cSkardel pp = peer->procptr; 8532950cc38Schristos up = pp->unitptr; 854abb0f93cSkardel 855abb0f93cSkardel /* 856abb0f93cSkardel * Assemble frame bits. 857abb0f93cSkardel */ 858abb0f93cSkardel up->bits >>= 1; 859abb0f93cSkardel if (bit == BIT1) { 860abb0f93cSkardel up->bits |= 0x200; 861abb0f93cSkardel } else if (bit == BITP && up->lastbit == BITP) { 862abb0f93cSkardel 863abb0f93cSkardel /* 864abb0f93cSkardel * Frame sync - two adjacent position identifiers, which 865abb0f93cSkardel * mark the beginning of the second. The reference time 866abb0f93cSkardel * is the beginning of the second position identifier, 867abb0f93cSkardel * so copy the character timestamp to the reference 868abb0f93cSkardel * timestamp. 869abb0f93cSkardel */ 870abb0f93cSkardel if (up->frmcnt != 1) 871abb0f93cSkardel up->errflg |= IRIG_ERR_SYNCH; 872abb0f93cSkardel up->frmcnt = 1; 873abb0f93cSkardel up->refstamp = up->prvstamp; 874abb0f93cSkardel } 875abb0f93cSkardel up->lastbit = bit; 876abb0f93cSkardel if (up->frmcnt % SUBFLD == 0) { 877abb0f93cSkardel 878abb0f93cSkardel /* 879abb0f93cSkardel * End of frame. Encode two hexadecimal digits in 880abb0f93cSkardel * little-endian timecode field. Note frame 1 is shifted 881abb0f93cSkardel * right one bit to account for the marker PI. 882abb0f93cSkardel */ 883abb0f93cSkardel temp = up->bits; 884abb0f93cSkardel if (up->frmcnt == 10) 885abb0f93cSkardel temp >>= 1; 886abb0f93cSkardel if (up->xptr >= 2) { 887abb0f93cSkardel up->timecode[--up->xptr] = hexchar[temp & 0xf]; 888abb0f93cSkardel up->timecode[--up->xptr] = hexchar[(temp >> 5) & 889abb0f93cSkardel 0xf]; 890abb0f93cSkardel } 891abb0f93cSkardel if (up->frmcnt == 0) { 892abb0f93cSkardel 893abb0f93cSkardel /* 894abb0f93cSkardel * End of second. Decode the timecode and wind 895abb0f93cSkardel * the clock. Not all IRIG generators have the 896abb0f93cSkardel * year; if so, it is nonzero after year 2000. 897abb0f93cSkardel * Not all have the hardware status bit; if so, 898abb0f93cSkardel * it is lit when the source is okay and dim 899abb0f93cSkardel * when bad. We watch this only if the year is 900abb0f93cSkardel * nonzero. Not all are configured for signature 901abb0f93cSkardel * control. If so, all BCD digits are set to 902abb0f93cSkardel * zero if the source is bad. In this case the 903abb0f93cSkardel * refclock_process() will reject the timecode 904abb0f93cSkardel * as invalid. 905abb0f93cSkardel */ 906abb0f93cSkardel up->xptr = 2 * SUBFLD; 907abb0f93cSkardel if (sscanf((char *)up->timecode, 908abb0f93cSkardel "%6s%2d%1d%2s%3d%2d%2d%2d", sbs, &pp->year, 909abb0f93cSkardel &syncdig, spare, &pp->day, &pp->hour, 910abb0f93cSkardel &pp->minute, &pp->second) != 8) 911abb0f93cSkardel pp->leap = LEAP_NOTINSYNC; 912abb0f93cSkardel else 913abb0f93cSkardel pp->leap = LEAP_NOWARNING; 914abb0f93cSkardel up->second = (up->second + up->decim) % 60; 915abb0f93cSkardel 916abb0f93cSkardel /* 917abb0f93cSkardel * Raise an alarm if the day field is zero, 918abb0f93cSkardel * which happens when signature control is 919abb0f93cSkardel * enabled and the device has lost 920abb0f93cSkardel * synchronization. Raise an alarm if the year 921abb0f93cSkardel * field is nonzero and the sync indicator is 922abb0f93cSkardel * zero, which happens when a Spectracom radio 923abb0f93cSkardel * has lost synchronization. Raise an alarm if 924abb0f93cSkardel * the expected second does not agree with the 925abb0f93cSkardel * decoded second, which happens with a garbled 926abb0f93cSkardel * IRIG signal. We are very particular. 927abb0f93cSkardel */ 928abb0f93cSkardel if (pp->day == 0 || (pp->year != 0 && syncdig == 929abb0f93cSkardel 0)) 930abb0f93cSkardel up->errflg |= IRIG_ERR_SIGERR; 931abb0f93cSkardel if (pp->second != up->second) 932abb0f93cSkardel up->errflg |= IRIG_ERR_CHECK; 933abb0f93cSkardel up->second = pp->second; 934abb0f93cSkardel 935abb0f93cSkardel /* 936abb0f93cSkardel * Wind the clock only if there are no errors 937abb0f93cSkardel * and the time constant has reached the 938abb0f93cSkardel * maximum. 939abb0f93cSkardel */ 940abb0f93cSkardel if (up->errflg == 0 && up->tc == MAXTC) { 941abb0f93cSkardel pp->lastref = pp->lastrec; 942abb0f93cSkardel pp->lastrec = up->refstamp; 943abb0f93cSkardel if (!refclock_process(pp)) 944abb0f93cSkardel refclock_report(peer, 945abb0f93cSkardel CEVNT_BADTIME); 946abb0f93cSkardel } 947f003fb54Skardel snprintf(pp->a_lastcode, sizeof(pp->a_lastcode), 948abb0f93cSkardel "%02x %02d %03d %02d:%02d:%02d %4.0f %3d %6.3f %2d %6.2f %6.1f %s", 949abb0f93cSkardel up->errflg, pp->year, pp->day, 950abb0f93cSkardel pp->hour, pp->minute, pp->second, 951abb0f93cSkardel up->maxsignal, up->gain, up->modndx, 952abb0f93cSkardel up->tc, up->exing * 1e6 / SECOND, up->freq * 953abb0f93cSkardel 1e6 / SECOND, ulfptoa(&pp->lastrec, 6)); 954abb0f93cSkardel pp->lencode = strlen(pp->a_lastcode); 955abb0f93cSkardel up->errflg = 0; 956abb0f93cSkardel if (pp->sloppyclockflag & CLK_FLAG4) { 957abb0f93cSkardel record_clock_stats(&peer->srcadr, 958abb0f93cSkardel pp->a_lastcode); 959abb0f93cSkardel #ifdef DEBUG 960abb0f93cSkardel if (debug) 961abb0f93cSkardel printf("irig %s\n", 962abb0f93cSkardel pp->a_lastcode); 963abb0f93cSkardel #endif /* DEBUG */ 964abb0f93cSkardel } 965abb0f93cSkardel } 966abb0f93cSkardel } 967abb0f93cSkardel up->frmcnt = (up->frmcnt + 1) % FIELD; 968abb0f93cSkardel } 969abb0f93cSkardel 970abb0f93cSkardel 971abb0f93cSkardel /* 972abb0f93cSkardel * irig_poll - called by the transmit procedure 973abb0f93cSkardel * 974abb0f93cSkardel * This routine sweeps up the timecode updates since the last poll. For 975abb0f93cSkardel * IRIG-B there should be at least 60 updates; for IRIG-E there should 976abb0f93cSkardel * be at least 6. If nothing is heard, a timeout event is declared. 977abb0f93cSkardel */ 978abb0f93cSkardel static void 979abb0f93cSkardel irig_poll( 980abb0f93cSkardel int unit, /* instance number (not used) */ 981abb0f93cSkardel struct peer *peer /* peer structure pointer */ 982abb0f93cSkardel ) 983abb0f93cSkardel { 984abb0f93cSkardel struct refclockproc *pp; 985abb0f93cSkardel 986abb0f93cSkardel pp = peer->procptr; 987abb0f93cSkardel 988abb0f93cSkardel if (pp->coderecv == pp->codeproc) { 989abb0f93cSkardel refclock_report(peer, CEVNT_TIMEOUT); 990abb0f93cSkardel return; 991abb0f93cSkardel 992abb0f93cSkardel } 993abb0f93cSkardel refclock_receive(peer); 994abb0f93cSkardel if (!(pp->sloppyclockflag & CLK_FLAG4)) { 995abb0f93cSkardel record_clock_stats(&peer->srcadr, pp->a_lastcode); 996abb0f93cSkardel #ifdef DEBUG 997abb0f93cSkardel if (debug) 998abb0f93cSkardel printf("irig %s\n", pp->a_lastcode); 999abb0f93cSkardel #endif /* DEBUG */ 1000abb0f93cSkardel } 1001abb0f93cSkardel pp->polls++; 1002abb0f93cSkardel 1003abb0f93cSkardel } 1004abb0f93cSkardel 1005abb0f93cSkardel 1006abb0f93cSkardel /* 1007abb0f93cSkardel * irig_gain - adjust codec gain 1008abb0f93cSkardel * 1009abb0f93cSkardel * This routine is called at the end of each second. It uses the AGC to 1010abb0f93cSkardel * bradket the maximum signal level between MINAMP and MAXAMP to avoid 1011abb0f93cSkardel * hunting. The routine also jiggles the input port and selectively 1012abb0f93cSkardel * mutes the monitor. 1013abb0f93cSkardel */ 1014abb0f93cSkardel static void 1015abb0f93cSkardel irig_gain( 1016abb0f93cSkardel struct peer *peer /* peer structure pointer */ 1017abb0f93cSkardel ) 1018abb0f93cSkardel { 1019abb0f93cSkardel struct refclockproc *pp; 1020abb0f93cSkardel struct irigunit *up; 1021abb0f93cSkardel 1022abb0f93cSkardel pp = peer->procptr; 10232950cc38Schristos up = pp->unitptr; 1024abb0f93cSkardel 1025abb0f93cSkardel /* 1026abb0f93cSkardel * Apparently, the codec uses only the high order bits of the 1027abb0f93cSkardel * gain control field. Thus, it may take awhile for changes to 1028abb0f93cSkardel * wiggle the hardware bits. 1029abb0f93cSkardel */ 1030abb0f93cSkardel if (up->maxsignal < MINAMP) { 1031abb0f93cSkardel up->gain += 4; 1032abb0f93cSkardel if (up->gain > MAXGAIN) 1033abb0f93cSkardel up->gain = MAXGAIN; 1034abb0f93cSkardel } else if (up->maxsignal > MAXAMP) { 1035abb0f93cSkardel up->gain -= 4; 1036abb0f93cSkardel if (up->gain < 0) 1037abb0f93cSkardel up->gain = 0; 1038abb0f93cSkardel } 1039abb0f93cSkardel audio_gain(up->gain, up->mongain, up->port); 1040abb0f93cSkardel } 1041abb0f93cSkardel 1042abb0f93cSkardel 1043abb0f93cSkardel #else 1044*eabc0478Schristos NONEMPTY_TRANSLATION_UNIT 1045abb0f93cSkardel #endif /* REFCLOCK */ 1046