1*eabc0478Schristos /* $NetBSD: refclock_heath.c,v 1.10 2024/08/18 20:47:18 christos Exp $ */ 2abb0f93cSkardel 3abb0f93cSkardel /* 4abb0f93cSkardel * refclock_heath - clock driver for Heath GC-1000 5abb0f93cSkardel * (but no longer the GC-1001 Model II, which apparently never worked) 6abb0f93cSkardel */ 7abb0f93cSkardel 8abb0f93cSkardel #ifdef HAVE_CONFIG_H 9abb0f93cSkardel # include <config.h> 10abb0f93cSkardel #endif 11abb0f93cSkardel 12abb0f93cSkardel #if defined(REFCLOCK) && defined(CLOCK_HEATH) 13abb0f93cSkardel 14abb0f93cSkardel #include "ntpd.h" 15abb0f93cSkardel #include "ntp_io.h" 16abb0f93cSkardel #include "ntp_refclock.h" 17abb0f93cSkardel #include "ntp_stdlib.h" 18abb0f93cSkardel 19abb0f93cSkardel #include <stdio.h> 20abb0f93cSkardel #include <ctype.h> 21abb0f93cSkardel 22abb0f93cSkardel #ifdef HAVE_SYS_IOCTL_H 23abb0f93cSkardel # include <sys/ioctl.h> 24abb0f93cSkardel #endif /* not HAVE_SYS_IOCTL_H */ 25abb0f93cSkardel 26abb0f93cSkardel /* 27abb0f93cSkardel * This driver supports the Heath GC-1000 Most Accurate Clock, with 28abb0f93cSkardel * RS232C Output Accessory. This is a WWV/WWVH receiver somewhat less 29abb0f93cSkardel * robust than other supported receivers. Its claimed accuracy is 100 ms 30abb0f93cSkardel * when actually synchronized to the broadcast signal, but this doesn't 31abb0f93cSkardel * happen even most of the time, due to propagation conditions, ambient 32abb0f93cSkardel * noise sources, etc. When not synchronized, the accuracy is at the 33abb0f93cSkardel * whim of the internal clock oscillator, which can wander into the 34abb0f93cSkardel * sunset without warning. Since the indicated precision is 100 ms, 35abb0f93cSkardel * expect a host synchronized only to this thing to wander to and fro, 36abb0f93cSkardel * occasionally being rudely stepped when the offset exceeds the default 37abb0f93cSkardel * clock_max of 128 ms. 38abb0f93cSkardel * 39abb0f93cSkardel * There were two GC-1000 versions supported by this driver. The original 40abb0f93cSkardel * GC-1000 with RS-232 output first appeared in 1983, but dissapeared 41abb0f93cSkardel * from the market a few years later. The GC-1001 II with RS-232 output 42abb0f93cSkardel * first appeared circa 1990, but apparently is no longer manufactured. 43abb0f93cSkardel * The two models differ considerably, both in interface and commands. 44abb0f93cSkardel * The GC-1000 has a pseudo-bipolar timecode output triggered by a RTS 45abb0f93cSkardel * transition. The timecode includes both the day of year and time of 46abb0f93cSkardel * day. The GC-1001 II has a true bipolar output and a complement of 47abb0f93cSkardel * single character commands. The timecode includes only the time of 48abb0f93cSkardel * day. 49abb0f93cSkardel * 50abb0f93cSkardel * The GC-1001 II was apparently never tested and, based on a Coverity 51abb0f93cSkardel * scan, apparently never worked [Bug 689]. Related code has been disabled. 52abb0f93cSkardel * 53abb0f93cSkardel * GC-1000 54abb0f93cSkardel * 55abb0f93cSkardel * The internal DIPswitches should be set to operate in MANUAL mode. The 56abb0f93cSkardel * external DIPswitches should be set to GMT and 24-hour format. 57abb0f93cSkardel * 58abb0f93cSkardel * In MANUAL mode the clock responds to a rising edge of the request to 59abb0f93cSkardel * send (RTS) modem control line by sending the timecode. Therefore, it 60abb0f93cSkardel * is necessary that the operating system implement the TIOCMBIC and 61abb0f93cSkardel * TIOCMBIS ioctl system calls and TIOCM_RTS control bit. Present 62abb0f93cSkardel * restrictions require the use of a POSIX-compatible programming 63abb0f93cSkardel * interface, although other interfaces may work as well. 64abb0f93cSkardel * 65abb0f93cSkardel * A simple hardware modification to the clock can be made which 66abb0f93cSkardel * prevents the clock hearing the request to send (RTS) if the HI SPEC 67abb0f93cSkardel * lamp is out. Route the HISPEC signal to the tone decoder board pin 68abb0f93cSkardel * 19, from the display, pin 19. Isolate pin 19 of the decoder board 69abb0f93cSkardel * first, but maintain connection with pin 10. Also isolate pin 38 of 70abb0f93cSkardel * the CPU on the tone board, and use half an added 7400 to gate the 71abb0f93cSkardel * original signal to pin 38 with that from pin 19. 72abb0f93cSkardel * 73abb0f93cSkardel * The clock message consists of 23 ASCII printing characters in the 74abb0f93cSkardel * following format: 75abb0f93cSkardel * 76abb0f93cSkardel * hh:mm:ss.f AM dd/mm/yr<cr> 77abb0f93cSkardel * 78abb0f93cSkardel * hh:mm:ss.f = hours, minutes, seconds 79abb0f93cSkardel * f = deciseconds ('?' when out of spec) 80abb0f93cSkardel * AM/PM/bb = blank in 24-hour mode 81abb0f93cSkardel * dd/mm/yr = day, month, year 82abb0f93cSkardel * 83abb0f93cSkardel * The alarm condition is indicated by '?', rather than a digit, at f. 84abb0f93cSkardel * Note that 0?:??:??.? is displayed before synchronization is first 85abb0f93cSkardel * established and hh:mm:ss.? once synchronization is established and 86abb0f93cSkardel * then lost again for about a day. 87abb0f93cSkardel * 88abb0f93cSkardel * GC-1001 II 89abb0f93cSkardel * 90abb0f93cSkardel * Commands consist of a single letter and are case sensitive. When 91abb0f93cSkardel * enterred in lower case, a description of the action performed is 92abb0f93cSkardel * displayed. When enterred in upper case the action is performed. 93abb0f93cSkardel * Following is a summary of descriptions as displayed by the clock: 94abb0f93cSkardel * 95abb0f93cSkardel * The clock responds with a command The 'A' command returns an ASCII 96abb0f93cSkardel * local time string: HH:MM:SS.T xx<CR>, where 97abb0f93cSkardel * 98abb0f93cSkardel * HH = hours 99abb0f93cSkardel * MM = minutes 100abb0f93cSkardel * SS = seconds 101abb0f93cSkardel * T = tenths-of-seconds 102abb0f93cSkardel * xx = 'AM', 'PM', or ' ' 103abb0f93cSkardel * <CR> = carriage return 104abb0f93cSkardel * 105abb0f93cSkardel * The 'D' command returns 24 pairs of bytes containing the variable 106abb0f93cSkardel * divisor value at the end of each of the previous 24 hours. This 107abb0f93cSkardel * allows the timebase trimming process to be observed. UTC hour 00 is 108abb0f93cSkardel * always returned first. The first byte of each pair is the high byte 109abb0f93cSkardel * of (variable divisor * 16); the second byte is the low byte of 110abb0f93cSkardel * (variable divisor * 16). For example, the byte pair 3C 10 would be 111abb0f93cSkardel * returned for a divisor of 03C1 hex (961 decimal). 112abb0f93cSkardel * 113abb0f93cSkardel * The 'I' command returns: | TH | TL | ER | DH | DL | U1 | I1 | I2 | , 114abb0f93cSkardel * where 115abb0f93cSkardel * 116abb0f93cSkardel * TH = minutes since timebase last trimmed (high byte) 117abb0f93cSkardel * TL = minutes since timebase last trimmed (low byte) 118abb0f93cSkardel * ER = last accumulated error in 1.25 ms increments 119abb0f93cSkardel * DH = high byte of (current variable divisor * 16) 120abb0f93cSkardel * DL = low byte of (current variable divisor * 16) 121abb0f93cSkardel * U1 = UT1 offset (/.1 s): | + | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 122abb0f93cSkardel * I1 = information byte 1: | W | C | D | I | U | T | Z | 1 | , 123abb0f93cSkardel * where 124abb0f93cSkardel * 125abb0f93cSkardel * W = set by WWV(H) 126abb0f93cSkardel * C = CAPTURE LED on 127abb0f93cSkardel * D = TRIM DN LED on 128abb0f93cSkardel * I = HI SPEC LED on 129abb0f93cSkardel * U = TRIM UP LED on 130abb0f93cSkardel * T = DST switch on 131abb0f93cSkardel * Z = UTC switch on 132abb0f93cSkardel * 1 = UT1 switch on 133abb0f93cSkardel * 134abb0f93cSkardel * I2 = information byte 2: | 8 | 8 | 4 | 2 | 1 | D | d | S | , 135abb0f93cSkardel * where 136abb0f93cSkardel * 137abb0f93cSkardel * 8, 8, 4, 2, 1 = TIME ZONE switch settings 138abb0f93cSkardel * D = DST bit (#55) in last-received frame 139abb0f93cSkardel * d = DST bit (#2) in last-received frame 140abb0f93cSkardel * S = clock is in simulation mode 141abb0f93cSkardel * 142abb0f93cSkardel * The 'P' command returns 24 bytes containing the number of frames 143abb0f93cSkardel * received without error during UTC hours 00 through 23, providing an 144abb0f93cSkardel * indication of hourly propagation. These bytes are updated each hour 145abb0f93cSkardel * to reflect the previous 24 hour period. UTC hour 00 is always 146abb0f93cSkardel * returned first. 147abb0f93cSkardel * 148abb0f93cSkardel * The 'T' command returns the UTC time: | HH | MM | SS | T0 | , where 149abb0f93cSkardel * HH = tens-of-hours and hours (packed BCD) 150abb0f93cSkardel * MM = tens-of-minutes and minutes (packed BCD) 151abb0f93cSkardel * SS = tens-of-seconds and seconds (packed BCD) 152abb0f93cSkardel * T = tenths-of-seconds (BCD) 153abb0f93cSkardel * 154abb0f93cSkardel * Fudge Factors 155abb0f93cSkardel * 156abb0f93cSkardel * A fudge time1 value of .04 s appears to center the clock offset 157abb0f93cSkardel * residuals. The fudge time2 parameter is the local time offset east of 158abb0f93cSkardel * Greenwich, which depends on DST. Sorry about that, but the clock 159abb0f93cSkardel * gives no hint on what the DIPswitches say. 160abb0f93cSkardel */ 161abb0f93cSkardel 162abb0f93cSkardel /* 163abb0f93cSkardel * Interface definitions 164abb0f93cSkardel */ 165abb0f93cSkardel #define DEVICE "/dev/heath%d" /* device name and unit */ 166abb0f93cSkardel #define PRECISION (-4) /* precision assumed (about 100 ms) */ 167abb0f93cSkardel #define REFID "WWV\0" /* reference ID */ 168abb0f93cSkardel #define DESCRIPTION "Heath GC-1000 Most Accurate Clock" /* WRU */ 169abb0f93cSkardel 170abb0f93cSkardel #define LENHEATH1 23 /* min timecode length */ 171abb0f93cSkardel #if 0 /* BUG 689 */ 172abb0f93cSkardel #define LENHEATH2 13 /* min timecode length */ 173abb0f93cSkardel #endif 174abb0f93cSkardel 175abb0f93cSkardel /* 176abb0f93cSkardel * Tables to compute the ddd of year form icky dd/mm timecode. Viva la 177abb0f93cSkardel * leap. 178abb0f93cSkardel */ 179abb0f93cSkardel static int day1tab[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; 180abb0f93cSkardel static int day2tab[] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; 181abb0f93cSkardel 182abb0f93cSkardel /* 183abb0f93cSkardel * Baud rate table. The GC-1000 supports 1200, 2400 and 4800; the 184abb0f93cSkardel * GC-1001 II supports only 9600. 185abb0f93cSkardel */ 186abb0f93cSkardel static int speed[] = {B1200, B2400, B4800, B9600}; 187abb0f93cSkardel 188abb0f93cSkardel /* 189abb0f93cSkardel * Function prototypes 190abb0f93cSkardel */ 191abb0f93cSkardel static int heath_start (int, struct peer *); 192abb0f93cSkardel static void heath_shutdown (int, struct peer *); 193abb0f93cSkardel static void heath_receive (struct recvbuf *); 194abb0f93cSkardel static void heath_poll (int, struct peer *); 195abb0f93cSkardel 196abb0f93cSkardel /* 197abb0f93cSkardel * Transfer vector 198abb0f93cSkardel */ 199abb0f93cSkardel struct refclock refclock_heath = { 200abb0f93cSkardel heath_start, /* start up driver */ 201abb0f93cSkardel heath_shutdown, /* shut down driver */ 202abb0f93cSkardel heath_poll, /* transmit poll message */ 203abb0f93cSkardel noentry, /* not used (old heath_control) */ 204abb0f93cSkardel noentry, /* initialize driver */ 205abb0f93cSkardel noentry, /* not used (old heath_buginfo) */ 206abb0f93cSkardel NOFLAGS /* not used */ 207abb0f93cSkardel }; 208abb0f93cSkardel 209abb0f93cSkardel 210abb0f93cSkardel /* 211abb0f93cSkardel * heath_start - open the devices and initialize data for processing 212abb0f93cSkardel */ 213abb0f93cSkardel static int 214abb0f93cSkardel heath_start( 215abb0f93cSkardel int unit, 216abb0f93cSkardel struct peer *peer 217abb0f93cSkardel ) 218abb0f93cSkardel { 219abb0f93cSkardel struct refclockproc *pp; 220abb0f93cSkardel int fd; 221abb0f93cSkardel char device[20]; 222abb0f93cSkardel 223abb0f93cSkardel /* 224abb0f93cSkardel * Open serial port 225abb0f93cSkardel */ 2263123f114Skardel snprintf(device, sizeof(device), DEVICE, unit); 227*eabc0478Schristos fd = refclock_open(&peer->srcadr, device, speed[peer->ttl & 0x3], 2282950cc38Schristos LDISC_REMOTE); 2292950cc38Schristos if (fd <= 0) 230abb0f93cSkardel return (0); 231abb0f93cSkardel pp = peer->procptr; 232abb0f93cSkardel pp->io.clock_recv = heath_receive; 2332950cc38Schristos pp->io.srcclock = peer; 234abb0f93cSkardel pp->io.datalen = 0; 235abb0f93cSkardel pp->io.fd = fd; 236abb0f93cSkardel if (!io_addclock(&pp->io)) { 2373123f114Skardel close(fd); 2383123f114Skardel pp->io.fd = -1; 239abb0f93cSkardel return (0); 240abb0f93cSkardel } 241abb0f93cSkardel 242abb0f93cSkardel /* 243abb0f93cSkardel * Initialize miscellaneous variables 244abb0f93cSkardel */ 245abb0f93cSkardel peer->precision = PRECISION; 246abb0f93cSkardel pp->clockdesc = DESCRIPTION; 2473123f114Skardel memcpy(&pp->refid, REFID, 4); 248abb0f93cSkardel return (1); 249abb0f93cSkardel } 250abb0f93cSkardel 251abb0f93cSkardel 252abb0f93cSkardel /* 253abb0f93cSkardel * heath_shutdown - shut down the clock 254abb0f93cSkardel */ 255abb0f93cSkardel static void 256abb0f93cSkardel heath_shutdown( 257abb0f93cSkardel int unit, 258abb0f93cSkardel struct peer *peer 259abb0f93cSkardel ) 260abb0f93cSkardel { 261abb0f93cSkardel struct refclockproc *pp; 262abb0f93cSkardel 263abb0f93cSkardel pp = peer->procptr; 2643123f114Skardel if (-1 != pp->io.fd) 265abb0f93cSkardel io_closeclock(&pp->io); 266abb0f93cSkardel } 267abb0f93cSkardel 268abb0f93cSkardel 269abb0f93cSkardel /* 270abb0f93cSkardel * heath_receive - receive data from the serial interface 271abb0f93cSkardel */ 272abb0f93cSkardel static void 273abb0f93cSkardel heath_receive( 274abb0f93cSkardel struct recvbuf *rbufp 275abb0f93cSkardel ) 276abb0f93cSkardel { 277abb0f93cSkardel struct refclockproc *pp; 278abb0f93cSkardel struct peer *peer; 279abb0f93cSkardel l_fp trtmp; 280abb0f93cSkardel int month, day; 281abb0f93cSkardel int i; 282abb0f93cSkardel char dsec, a[5]; 283abb0f93cSkardel 284abb0f93cSkardel /* 285abb0f93cSkardel * Initialize pointers and read the timecode and timestamp 286abb0f93cSkardel */ 2872950cc38Schristos peer = rbufp->recv_peer; 288abb0f93cSkardel pp = peer->procptr; 289abb0f93cSkardel pp->lencode = refclock_gtlin(rbufp, pp->a_lastcode, BMAX, 290abb0f93cSkardel &trtmp); 291abb0f93cSkardel 292abb0f93cSkardel /* 293abb0f93cSkardel * We get down to business, check the timecode format and decode 294abb0f93cSkardel * its contents. If the timecode has invalid length or is not in 295abb0f93cSkardel * proper format, we declare bad format and exit. 296abb0f93cSkardel */ 297abb0f93cSkardel switch (pp->lencode) { 298abb0f93cSkardel 299abb0f93cSkardel /* 300abb0f93cSkardel * GC-1000 timecode format: "hh:mm:ss.f AM mm/dd/yy" 301abb0f93cSkardel * GC-1001 II timecode format: "hh:mm:ss.f " 302abb0f93cSkardel */ 303abb0f93cSkardel case LENHEATH1: 304abb0f93cSkardel if (sscanf(pp->a_lastcode, 305abb0f93cSkardel "%2d:%2d:%2d.%c%5c%2d/%2d/%2d", &pp->hour, 306abb0f93cSkardel &pp->minute, &pp->second, &dsec, a, &month, &day, 307abb0f93cSkardel &pp->year) != 8) { 308abb0f93cSkardel refclock_report(peer, CEVNT_BADREPLY); 309abb0f93cSkardel return; 310abb0f93cSkardel } 311abb0f93cSkardel break; 312abb0f93cSkardel 313abb0f93cSkardel #if 0 /* BUG 689 */ 314abb0f93cSkardel /* 315abb0f93cSkardel * GC-1001 II timecode format: "hh:mm:ss.f " 316abb0f93cSkardel */ 317abb0f93cSkardel case LENHEATH2: 318abb0f93cSkardel if (sscanf(pp->a_lastcode, "%2d:%2d:%2d.%c", &pp->hour, 319abb0f93cSkardel &pp->minute, &pp->second, &dsec) != 4) { 320abb0f93cSkardel refclock_report(peer, CEVNT_BADREPLY); 321abb0f93cSkardel return; 322abb0f93cSkardel } else { 323abb0f93cSkardel struct tm *tm_time_p; 324abb0f93cSkardel time_t now; 325abb0f93cSkardel 326abb0f93cSkardel time(&now); /* we should grab 'now' earlier */ 327abb0f93cSkardel tm_time_p = gmtime(&now); 328abb0f93cSkardel /* 329abb0f93cSkardel * There is a window of time around midnight 330abb0f93cSkardel * where this will Do The Wrong Thing. 331abb0f93cSkardel */ 332abb0f93cSkardel if (tm_time_p) { 333abb0f93cSkardel month = tm_time_p->tm_mon + 1; 334abb0f93cSkardel day = tm_time_p->tm_mday; 335abb0f93cSkardel } else { 336abb0f93cSkardel refclock_report(peer, CEVNT_FAULT); 337abb0f93cSkardel return; 338abb0f93cSkardel } 339abb0f93cSkardel } 340abb0f93cSkardel break; 341abb0f93cSkardel #endif 342abb0f93cSkardel 343abb0f93cSkardel default: 344abb0f93cSkardel refclock_report(peer, CEVNT_BADREPLY); 345abb0f93cSkardel return; 346abb0f93cSkardel } 347abb0f93cSkardel 348abb0f93cSkardel /* 349abb0f93cSkardel * We determine the day of the year from the DIPswitches. This 350abb0f93cSkardel * should be fixed, since somebody might forget to set them. 351abb0f93cSkardel * Someday this hazard will be fixed by a fiendish scheme that 352abb0f93cSkardel * looks at the timecode and year the radio shows, then computes 353abb0f93cSkardel * the residue of the seconds mod the seconds in a leap cycle. 354abb0f93cSkardel * If in the third year of that cycle and the third and later 355abb0f93cSkardel * months of that year, add one to the day. Then, correct the 356abb0f93cSkardel * timecode accordingly. Icky pooh. This bit of nonsense could 357abb0f93cSkardel * be avoided if the engineers had been required to write a 358abb0f93cSkardel * device driver before finalizing the timecode format. 359abb0f93cSkardel */ 360abb0f93cSkardel if (month < 1 || month > 12 || day < 1) { 361abb0f93cSkardel refclock_report(peer, CEVNT_BADTIME); 362abb0f93cSkardel return; 363abb0f93cSkardel } 364abb0f93cSkardel if (pp->year % 4) { 365abb0f93cSkardel if (day > day1tab[month - 1]) { 366abb0f93cSkardel refclock_report(peer, CEVNT_BADTIME); 367abb0f93cSkardel return; 368abb0f93cSkardel } 369abb0f93cSkardel for (i = 0; i < month - 1; i++) 370abb0f93cSkardel day += day1tab[i]; 371abb0f93cSkardel } else { 372abb0f93cSkardel if (day > day2tab[month - 1]) { 373abb0f93cSkardel refclock_report(peer, CEVNT_BADTIME); 374abb0f93cSkardel return; 375abb0f93cSkardel } 376abb0f93cSkardel for (i = 0; i < month - 1; i++) 377abb0f93cSkardel day += day2tab[i]; 378abb0f93cSkardel } 379abb0f93cSkardel pp->day = day; 380abb0f93cSkardel 381abb0f93cSkardel /* 382abb0f93cSkardel * Determine synchronization and last update 383abb0f93cSkardel */ 38410afd409Schristos if (!isdigit((unsigned char)dsec)) 385abb0f93cSkardel pp->leap = LEAP_NOTINSYNC; 386abb0f93cSkardel else { 387abb0f93cSkardel pp->nsec = (dsec - '0') * 100000000; 388abb0f93cSkardel pp->leap = LEAP_NOWARNING; 389abb0f93cSkardel } 390abb0f93cSkardel if (!refclock_process(pp)) 391abb0f93cSkardel refclock_report(peer, CEVNT_BADTIME); 392abb0f93cSkardel } 393abb0f93cSkardel 394abb0f93cSkardel 395abb0f93cSkardel /* 396abb0f93cSkardel * heath_poll - called by the transmit procedure 397abb0f93cSkardel */ 398abb0f93cSkardel static void 399abb0f93cSkardel heath_poll( 400abb0f93cSkardel int unit, 401abb0f93cSkardel struct peer *peer 402abb0f93cSkardel ) 403abb0f93cSkardel { 404abb0f93cSkardel struct refclockproc *pp; 405abb0f93cSkardel int bits = TIOCM_RTS; 406abb0f93cSkardel 407abb0f93cSkardel /* 408abb0f93cSkardel * At each poll we check for timeout and toggle the RTS modem 409abb0f93cSkardel * control line, then take a timestamp. Presumably, this is the 410abb0f93cSkardel * event the radio captures to generate the timecode. 411abb0f93cSkardel * Apparently, the radio takes about a second to make up its 412abb0f93cSkardel * mind to send a timecode, so the receive timestamp is 413abb0f93cSkardel * worthless. 414abb0f93cSkardel */ 415abb0f93cSkardel pp = peer->procptr; 416abb0f93cSkardel 417abb0f93cSkardel /* 418abb0f93cSkardel * We toggle the RTS modem control lead (GC-1000) and sent a T 419abb0f93cSkardel * (GC-1001 II) to kick a timecode loose from the radio. This 420abb0f93cSkardel * code works only for POSIX and SYSV interfaces. With bsd you 421abb0f93cSkardel * are on your own. We take a timestamp between the up and down 422abb0f93cSkardel * edges to lengthen the pulse, which should be about 50 usec on 423abb0f93cSkardel * a Sun IPC. With hotshot CPUs, the pulse might get too short. 424abb0f93cSkardel * Later. 425abb0f93cSkardel * 426abb0f93cSkardel * Bug 689: Even though we no longer support the GC-1001 II, 427abb0f93cSkardel * I'm leaving the 'T' write in for timing purposes. 428abb0f93cSkardel */ 429abb0f93cSkardel if (ioctl(pp->io.fd, TIOCMBIC, (char *)&bits) < 0) 430abb0f93cSkardel refclock_report(peer, CEVNT_FAULT); 431abb0f93cSkardel get_systime(&pp->lastrec); 432*eabc0478Schristos if (refclock_write(peer, "T", 1, "T") != 1) 433abb0f93cSkardel refclock_report(peer, CEVNT_FAULT); 434abb0f93cSkardel ioctl(pp->io.fd, TIOCMBIS, (char *)&bits); 435abb0f93cSkardel if (pp->coderecv == pp->codeproc) { 436abb0f93cSkardel refclock_report(peer, CEVNT_TIMEOUT); 437abb0f93cSkardel return; 438abb0f93cSkardel } 439abb0f93cSkardel pp->lastref = pp->lastrec; 440abb0f93cSkardel refclock_receive(peer); 441abb0f93cSkardel record_clock_stats(&peer->srcadr, pp->a_lastcode); 442abb0f93cSkardel #ifdef DEBUG 443abb0f93cSkardel if (debug) 444abb0f93cSkardel printf("heath: timecode %d %s\n", pp->lencode, 445abb0f93cSkardel pp->a_lastcode); 446abb0f93cSkardel #endif 447abb0f93cSkardel pp->polls++; 448abb0f93cSkardel } 449abb0f93cSkardel 450abb0f93cSkardel #else 451*eabc0478Schristos NONEMPTY_TRANSLATION_UNIT 452abb0f93cSkardel #endif /* REFCLOCK */ 453