xref: /netbsd-src/external/bsd/jemalloc.old/dist/test/unit/smoothstep.c (revision 8e33eff89e26cf71871ead62f0d5063e1313c33a)
1*8e33eff8Schristos #include "test/jemalloc_test.h"
2*8e33eff8Schristos 
3*8e33eff8Schristos static const uint64_t smoothstep_tab[] = {
4*8e33eff8Schristos #define STEP(step, h, x, y)			\
5*8e33eff8Schristos 	h,
6*8e33eff8Schristos 	SMOOTHSTEP
7*8e33eff8Schristos #undef STEP
8*8e33eff8Schristos };
9*8e33eff8Schristos 
10*8e33eff8Schristos TEST_BEGIN(test_smoothstep_integral) {
11*8e33eff8Schristos 	uint64_t sum, min, max;
12*8e33eff8Schristos 	unsigned i;
13*8e33eff8Schristos 
14*8e33eff8Schristos 	/*
15*8e33eff8Schristos 	 * The integral of smoothstep in the [0..1] range equals 1/2.  Verify
16*8e33eff8Schristos 	 * that the fixed point representation's integral is no more than
17*8e33eff8Schristos 	 * rounding error distant from 1/2.  Regarding rounding, each table
18*8e33eff8Schristos 	 * element is rounded down to the nearest fixed point value, so the
19*8e33eff8Schristos 	 * integral may be off by as much as SMOOTHSTEP_NSTEPS ulps.
20*8e33eff8Schristos 	 */
21*8e33eff8Schristos 	sum = 0;
22*8e33eff8Schristos 	for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) {
23*8e33eff8Schristos 		sum += smoothstep_tab[i];
24*8e33eff8Schristos 	}
25*8e33eff8Schristos 
26*8e33eff8Schristos 	max = (KQU(1) << (SMOOTHSTEP_BFP-1)) * (SMOOTHSTEP_NSTEPS+1);
27*8e33eff8Schristos 	min = max - SMOOTHSTEP_NSTEPS;
28*8e33eff8Schristos 
29*8e33eff8Schristos 	assert_u64_ge(sum, min,
30*8e33eff8Schristos 	    "Integral too small, even accounting for truncation");
31*8e33eff8Schristos 	assert_u64_le(sum, max, "Integral exceeds 1/2");
32*8e33eff8Schristos 	if (false) {
33*8e33eff8Schristos 		malloc_printf("%"FMTu64" ulps under 1/2 (limit %d)\n",
34*8e33eff8Schristos 		    max - sum, SMOOTHSTEP_NSTEPS);
35*8e33eff8Schristos 	}
36*8e33eff8Schristos }
37*8e33eff8Schristos TEST_END
38*8e33eff8Schristos 
39*8e33eff8Schristos TEST_BEGIN(test_smoothstep_monotonic) {
40*8e33eff8Schristos 	uint64_t prev_h;
41*8e33eff8Schristos 	unsigned i;
42*8e33eff8Schristos 
43*8e33eff8Schristos 	/*
44*8e33eff8Schristos 	 * The smoothstep function is monotonic in [0..1], i.e. its slope is
45*8e33eff8Schristos 	 * non-negative.  In practice we want to parametrize table generation
46*8e33eff8Schristos 	 * such that piecewise slope is greater than zero, but do not require
47*8e33eff8Schristos 	 * that here.
48*8e33eff8Schristos 	 */
49*8e33eff8Schristos 	prev_h = 0;
50*8e33eff8Schristos 	for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) {
51*8e33eff8Schristos 		uint64_t h = smoothstep_tab[i];
52*8e33eff8Schristos 		assert_u64_ge(h, prev_h, "Piecewise non-monotonic, i=%u", i);
53*8e33eff8Schristos 		prev_h = h;
54*8e33eff8Schristos 	}
55*8e33eff8Schristos 	assert_u64_eq(smoothstep_tab[SMOOTHSTEP_NSTEPS-1],
56*8e33eff8Schristos 	    (KQU(1) << SMOOTHSTEP_BFP), "Last step must equal 1");
57*8e33eff8Schristos }
58*8e33eff8Schristos TEST_END
59*8e33eff8Schristos 
60*8e33eff8Schristos TEST_BEGIN(test_smoothstep_slope) {
61*8e33eff8Schristos 	uint64_t prev_h, prev_delta;
62*8e33eff8Schristos 	unsigned i;
63*8e33eff8Schristos 
64*8e33eff8Schristos 	/*
65*8e33eff8Schristos 	 * The smoothstep slope strictly increases until x=0.5, and then
66*8e33eff8Schristos 	 * strictly decreases until x=1.0.  Verify the slightly weaker
67*8e33eff8Schristos 	 * requirement of monotonicity, so that inadequate table precision does
68*8e33eff8Schristos 	 * not cause false test failures.
69*8e33eff8Schristos 	 */
70*8e33eff8Schristos 	prev_h = 0;
71*8e33eff8Schristos 	prev_delta = 0;
72*8e33eff8Schristos 	for (i = 0; i < SMOOTHSTEP_NSTEPS / 2 + SMOOTHSTEP_NSTEPS % 2; i++) {
73*8e33eff8Schristos 		uint64_t h = smoothstep_tab[i];
74*8e33eff8Schristos 		uint64_t delta = h - prev_h;
75*8e33eff8Schristos 		assert_u64_ge(delta, prev_delta,
76*8e33eff8Schristos 		    "Slope must monotonically increase in 0.0 <= x <= 0.5, "
77*8e33eff8Schristos 		    "i=%u", i);
78*8e33eff8Schristos 		prev_h = h;
79*8e33eff8Schristos 		prev_delta = delta;
80*8e33eff8Schristos 	}
81*8e33eff8Schristos 
82*8e33eff8Schristos 	prev_h = KQU(1) << SMOOTHSTEP_BFP;
83*8e33eff8Schristos 	prev_delta = 0;
84*8e33eff8Schristos 	for (i = SMOOTHSTEP_NSTEPS-1; i >= SMOOTHSTEP_NSTEPS / 2; i--) {
85*8e33eff8Schristos 		uint64_t h = smoothstep_tab[i];
86*8e33eff8Schristos 		uint64_t delta = prev_h - h;
87*8e33eff8Schristos 		assert_u64_ge(delta, prev_delta,
88*8e33eff8Schristos 		    "Slope must monotonically decrease in 0.5 <= x <= 1.0, "
89*8e33eff8Schristos 		    "i=%u", i);
90*8e33eff8Schristos 		prev_h = h;
91*8e33eff8Schristos 		prev_delta = delta;
92*8e33eff8Schristos 	}
93*8e33eff8Schristos }
94*8e33eff8Schristos TEST_END
95*8e33eff8Schristos 
96*8e33eff8Schristos int
97*8e33eff8Schristos main(void) {
98*8e33eff8Schristos 	return test(
99*8e33eff8Schristos 	    test_smoothstep_integral,
100*8e33eff8Schristos 	    test_smoothstep_monotonic,
101*8e33eff8Schristos 	    test_smoothstep_slope);
102*8e33eff8Schristos }
103