1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the CodeGenDAGPatterns class, which is used to read and 10 // represent the patterns present in a .td file for instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenDAGPatterns.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include <algorithm> 29 #include <cstdio> 30 #include <iterator> 31 #include <set> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "dag-patterns" 35 36 static inline bool isIntegerOrPtr(MVT VT) { 37 return VT.isInteger() || VT == MVT::iPTR; 38 } 39 static inline bool isFloatingPoint(MVT VT) { 40 return VT.isFloatingPoint(); 41 } 42 static inline bool isVector(MVT VT) { 43 return VT.isVector(); 44 } 45 static inline bool isScalar(MVT VT) { 46 return !VT.isVector(); 47 } 48 49 template <typename Predicate> 50 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 51 bool Erased = false; 52 // It is ok to iterate over MachineValueTypeSet and remove elements from it 53 // at the same time. 54 for (MVT T : S) { 55 if (!P(T)) 56 continue; 57 Erased = true; 58 S.erase(T); 59 } 60 return Erased; 61 } 62 63 // --- TypeSetByHwMode 64 65 // This is a parameterized type-set class. For each mode there is a list 66 // of types that are currently possible for a given tree node. Type 67 // inference will apply to each mode separately. 68 69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 70 for (const ValueTypeByHwMode &VVT : VTList) { 71 insert(VVT); 72 AddrSpaces.push_back(VVT.PtrAddrSpace); 73 } 74 } 75 76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 77 for (const auto &I : *this) { 78 if (I.second.size() > 1) 79 return false; 80 if (!AllowEmpty && I.second.empty()) 81 return false; 82 } 83 return true; 84 } 85 86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 87 assert(isValueTypeByHwMode(true) && 88 "The type set has multiple types for at least one HW mode"); 89 ValueTypeByHwMode VVT; 90 auto ASI = AddrSpaces.begin(); 91 92 for (const auto &I : *this) { 93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 94 VVT.getOrCreateTypeForMode(I.first, T); 95 if (ASI != AddrSpaces.end()) 96 VVT.PtrAddrSpace = *ASI++; 97 } 98 return VVT; 99 } 100 101 bool TypeSetByHwMode::isPossible() const { 102 for (const auto &I : *this) 103 if (!I.second.empty()) 104 return true; 105 return false; 106 } 107 108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 109 bool Changed = false; 110 bool ContainsDefault = false; 111 MVT DT = MVT::Other; 112 113 SmallDenseSet<unsigned, 4> Modes; 114 for (const auto &P : VVT) { 115 unsigned M = P.first; 116 Modes.insert(M); 117 // Make sure there exists a set for each specific mode from VVT. 118 Changed |= getOrCreate(M).insert(P.second).second; 119 // Cache VVT's default mode. 120 if (DefaultMode == M) { 121 ContainsDefault = true; 122 DT = P.second; 123 } 124 } 125 126 // If VVT has a default mode, add the corresponding type to all 127 // modes in "this" that do not exist in VVT. 128 if (ContainsDefault) 129 for (auto &I : *this) 130 if (!Modes.count(I.first)) 131 Changed |= I.second.insert(DT).second; 132 133 return Changed; 134 } 135 136 // Constrain the type set to be the intersection with VTS. 137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 138 bool Changed = false; 139 if (hasDefault()) { 140 for (const auto &I : VTS) { 141 unsigned M = I.first; 142 if (M == DefaultMode || hasMode(M)) 143 continue; 144 Map.insert({M, Map.at(DefaultMode)}); 145 Changed = true; 146 } 147 } 148 149 for (auto &I : *this) { 150 unsigned M = I.first; 151 SetType &S = I.second; 152 if (VTS.hasMode(M) || VTS.hasDefault()) { 153 Changed |= intersect(I.second, VTS.get(M)); 154 } else if (!S.empty()) { 155 S.clear(); 156 Changed = true; 157 } 158 } 159 return Changed; 160 } 161 162 template <typename Predicate> 163 bool TypeSetByHwMode::constrain(Predicate P) { 164 bool Changed = false; 165 for (auto &I : *this) 166 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 167 return Changed; 168 } 169 170 template <typename Predicate> 171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 172 assert(empty()); 173 for (const auto &I : VTS) { 174 SetType &S = getOrCreate(I.first); 175 for (auto J : I.second) 176 if (P(J)) 177 S.insert(J); 178 } 179 return !empty(); 180 } 181 182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 183 SmallVector<unsigned, 4> Modes; 184 Modes.reserve(Map.size()); 185 186 for (const auto &I : *this) 187 Modes.push_back(I.first); 188 if (Modes.empty()) { 189 OS << "{}"; 190 return; 191 } 192 array_pod_sort(Modes.begin(), Modes.end()); 193 194 OS << '{'; 195 for (unsigned M : Modes) { 196 OS << ' ' << getModeName(M) << ':'; 197 writeToStream(get(M), OS); 198 } 199 OS << " }"; 200 } 201 202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 203 SmallVector<MVT, 4> Types(S.begin(), S.end()); 204 array_pod_sort(Types.begin(), Types.end()); 205 206 OS << '['; 207 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 208 OS << ValueTypeByHwMode::getMVTName(Types[i]); 209 if (i != e-1) 210 OS << ' '; 211 } 212 OS << ']'; 213 } 214 215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 216 // The isSimple call is much quicker than hasDefault - check this first. 217 bool IsSimple = isSimple(); 218 bool VTSIsSimple = VTS.isSimple(); 219 if (IsSimple && VTSIsSimple) 220 return *begin() == *VTS.begin(); 221 222 // Speedup: We have a default if the set is simple. 223 bool HaveDefault = IsSimple || hasDefault(); 224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault(); 225 if (HaveDefault != VTSHaveDefault) 226 return false; 227 228 SmallDenseSet<unsigned, 4> Modes; 229 for (auto &I : *this) 230 Modes.insert(I.first); 231 for (const auto &I : VTS) 232 Modes.insert(I.first); 233 234 if (HaveDefault) { 235 // Both sets have default mode. 236 for (unsigned M : Modes) { 237 if (get(M) != VTS.get(M)) 238 return false; 239 } 240 } else { 241 // Neither set has default mode. 242 for (unsigned M : Modes) { 243 // If there is no default mode, an empty set is equivalent to not having 244 // the corresponding mode. 245 bool NoModeThis = !hasMode(M) || get(M).empty(); 246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 247 if (NoModeThis != NoModeVTS) 248 return false; 249 if (!NoModeThis) 250 if (get(M) != VTS.get(M)) 251 return false; 252 } 253 } 254 255 return true; 256 } 257 258 namespace llvm { 259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 260 T.writeToStream(OS); 261 return OS; 262 } 263 } 264 265 LLVM_DUMP_METHOD 266 void TypeSetByHwMode::dump() const { 267 dbgs() << *this << '\n'; 268 } 269 270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 271 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 272 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 273 274 if (OutP == InP) 275 return berase_if(Out, Int); 276 277 // Compute the intersection of scalars separately to account for only 278 // one set containing iPTR. 279 // The itersection of iPTR with a set of integer scalar types that does not 280 // include iPTR will result in the most specific scalar type: 281 // - iPTR is more specific than any set with two elements or more 282 // - iPTR is less specific than any single integer scalar type. 283 // For example 284 // { iPTR } * { i32 } -> { i32 } 285 // { iPTR } * { i32 i64 } -> { iPTR } 286 // and 287 // { iPTR i32 } * { i32 } -> { i32 } 288 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 289 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 290 291 // Compute the difference between the two sets in such a way that the 292 // iPTR is in the set that is being subtracted. This is to see if there 293 // are any extra scalars in the set without iPTR that are not in the 294 // set containing iPTR. Then the iPTR could be considered a "wildcard" 295 // matching these scalars. If there is only one such scalar, it would 296 // replace the iPTR, if there are more, the iPTR would be retained. 297 SetType Diff; 298 if (InP) { 299 Diff = Out; 300 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 301 // Pre-remove these elements and rely only on InP/OutP to determine 302 // whether a change has been made. 303 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 304 } else { 305 Diff = In; 306 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 307 Out.erase(MVT::iPTR); 308 } 309 310 // The actual intersection. 311 bool Changed = berase_if(Out, Int); 312 unsigned NumD = Diff.size(); 313 if (NumD == 0) 314 return Changed; 315 316 if (NumD == 1) { 317 Out.insert(*Diff.begin()); 318 // This is a change only if Out was the one with iPTR (which is now 319 // being replaced). 320 Changed |= OutP; 321 } else { 322 // Multiple elements from Out are now replaced with iPTR. 323 Out.insert(MVT::iPTR); 324 Changed |= !OutP; 325 } 326 return Changed; 327 } 328 329 bool TypeSetByHwMode::validate() const { 330 #ifndef NDEBUG 331 if (empty()) 332 return true; 333 bool AllEmpty = true; 334 for (const auto &I : *this) 335 AllEmpty &= I.second.empty(); 336 return !AllEmpty; 337 #endif 338 return true; 339 } 340 341 // --- TypeInfer 342 343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 344 const TypeSetByHwMode &In) { 345 ValidateOnExit _1(Out, *this); 346 In.validate(); 347 if (In.empty() || Out == In || TP.hasError()) 348 return false; 349 if (Out.empty()) { 350 Out = In; 351 return true; 352 } 353 354 bool Changed = Out.constrain(In); 355 if (Changed && Out.empty()) 356 TP.error("Type contradiction"); 357 358 return Changed; 359 } 360 361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 362 ValidateOnExit _1(Out, *this); 363 if (TP.hasError()) 364 return false; 365 assert(!Out.empty() && "cannot pick from an empty set"); 366 367 bool Changed = false; 368 for (auto &I : Out) { 369 TypeSetByHwMode::SetType &S = I.second; 370 if (S.size() <= 1) 371 continue; 372 MVT T = *S.begin(); // Pick the first element. 373 S.clear(); 374 S.insert(T); 375 Changed = true; 376 } 377 return Changed; 378 } 379 380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 381 ValidateOnExit _1(Out, *this); 382 if (TP.hasError()) 383 return false; 384 if (!Out.empty()) 385 return Out.constrain(isIntegerOrPtr); 386 387 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 388 } 389 390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 391 ValidateOnExit _1(Out, *this); 392 if (TP.hasError()) 393 return false; 394 if (!Out.empty()) 395 return Out.constrain(isFloatingPoint); 396 397 return Out.assign_if(getLegalTypes(), isFloatingPoint); 398 } 399 400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 401 ValidateOnExit _1(Out, *this); 402 if (TP.hasError()) 403 return false; 404 if (!Out.empty()) 405 return Out.constrain(isScalar); 406 407 return Out.assign_if(getLegalTypes(), isScalar); 408 } 409 410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 411 ValidateOnExit _1(Out, *this); 412 if (TP.hasError()) 413 return false; 414 if (!Out.empty()) 415 return Out.constrain(isVector); 416 417 return Out.assign_if(getLegalTypes(), isVector); 418 } 419 420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 421 ValidateOnExit _1(Out, *this); 422 if (TP.hasError() || !Out.empty()) 423 return false; 424 425 Out = getLegalTypes(); 426 return true; 427 } 428 429 template <typename Iter, typename Pred, typename Less> 430 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 431 if (B == E) 432 return E; 433 Iter Min = E; 434 for (Iter I = B; I != E; ++I) { 435 if (!P(*I)) 436 continue; 437 if (Min == E || L(*I, *Min)) 438 Min = I; 439 } 440 return Min; 441 } 442 443 template <typename Iter, typename Pred, typename Less> 444 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 445 if (B == E) 446 return E; 447 Iter Max = E; 448 for (Iter I = B; I != E; ++I) { 449 if (!P(*I)) 450 continue; 451 if (Max == E || L(*Max, *I)) 452 Max = I; 453 } 454 return Max; 455 } 456 457 /// Make sure that for each type in Small, there exists a larger type in Big. 458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 459 TypeSetByHwMode &Big) { 460 ValidateOnExit _1(Small, *this), _2(Big, *this); 461 if (TP.hasError()) 462 return false; 463 bool Changed = false; 464 465 if (Small.empty()) 466 Changed |= EnforceAny(Small); 467 if (Big.empty()) 468 Changed |= EnforceAny(Big); 469 470 assert(Small.hasDefault() && Big.hasDefault()); 471 472 std::vector<unsigned> Modes = union_modes(Small, Big); 473 474 // 1. Only allow integer or floating point types and make sure that 475 // both sides are both integer or both floating point. 476 // 2. Make sure that either both sides have vector types, or neither 477 // of them does. 478 for (unsigned M : Modes) { 479 TypeSetByHwMode::SetType &S = Small.get(M); 480 TypeSetByHwMode::SetType &B = Big.get(M); 481 482 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 483 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 484 Changed |= berase_if(S, NotInt) | 485 berase_if(B, NotInt); 486 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 487 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 488 Changed |= berase_if(S, NotFP) | 489 berase_if(B, NotFP); 490 } else if (S.empty() || B.empty()) { 491 Changed = !S.empty() || !B.empty(); 492 S.clear(); 493 B.clear(); 494 } else { 495 TP.error("Incompatible types"); 496 return Changed; 497 } 498 499 if (none_of(S, isVector) || none_of(B, isVector)) { 500 Changed |= berase_if(S, isVector) | 501 berase_if(B, isVector); 502 } 503 } 504 505 auto LT = [](MVT A, MVT B) -> bool { 506 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 507 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 508 A.getSizeInBits() < B.getSizeInBits()); 509 }; 510 auto LE = [<](MVT A, MVT B) -> bool { 511 // This function is used when removing elements: when a vector is compared 512 // to a non-vector, it should return false (to avoid removal). 513 if (A.isVector() != B.isVector()) 514 return false; 515 516 return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 517 A.getSizeInBits() == B.getSizeInBits()); 518 }; 519 520 for (unsigned M : Modes) { 521 TypeSetByHwMode::SetType &S = Small.get(M); 522 TypeSetByHwMode::SetType &B = Big.get(M); 523 // MinS = min scalar in Small, remove all scalars from Big that are 524 // smaller-or-equal than MinS. 525 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 526 if (MinS != S.end()) 527 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 528 529 // MaxS = max scalar in Big, remove all scalars from Small that are 530 // larger than MaxS. 531 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 532 if (MaxS != B.end()) 533 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 534 535 // MinV = min vector in Small, remove all vectors from Big that are 536 // smaller-or-equal than MinV. 537 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 538 if (MinV != S.end()) 539 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 540 541 // MaxV = max vector in Big, remove all vectors from Small that are 542 // larger than MaxV. 543 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 544 if (MaxV != B.end()) 545 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 546 } 547 548 return Changed; 549 } 550 551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 552 /// for each type U in Elem, U is a scalar type. 553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 554 /// type T in Vec, such that U is the element type of T. 555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 556 TypeSetByHwMode &Elem) { 557 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 558 if (TP.hasError()) 559 return false; 560 bool Changed = false; 561 562 if (Vec.empty()) 563 Changed |= EnforceVector(Vec); 564 if (Elem.empty()) 565 Changed |= EnforceScalar(Elem); 566 567 for (unsigned M : union_modes(Vec, Elem)) { 568 TypeSetByHwMode::SetType &V = Vec.get(M); 569 TypeSetByHwMode::SetType &E = Elem.get(M); 570 571 Changed |= berase_if(V, isScalar); // Scalar = !vector 572 Changed |= berase_if(E, isVector); // Vector = !scalar 573 assert(!V.empty() && !E.empty()); 574 575 SmallSet<MVT,4> VT, ST; 576 // Collect element types from the "vector" set. 577 for (MVT T : V) 578 VT.insert(T.getVectorElementType()); 579 // Collect scalar types from the "element" set. 580 for (MVT T : E) 581 ST.insert(T); 582 583 // Remove from V all (vector) types whose element type is not in S. 584 Changed |= berase_if(V, [&ST](MVT T) -> bool { 585 return !ST.count(T.getVectorElementType()); 586 }); 587 // Remove from E all (scalar) types, for which there is no corresponding 588 // type in V. 589 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 590 } 591 592 return Changed; 593 } 594 595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 596 const ValueTypeByHwMode &VVT) { 597 TypeSetByHwMode Tmp(VVT); 598 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 599 return EnforceVectorEltTypeIs(Vec, Tmp); 600 } 601 602 /// Ensure that for each type T in Sub, T is a vector type, and there 603 /// exists a type U in Vec such that U is a vector type with the same 604 /// element type as T and at least as many elements as T. 605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 606 TypeSetByHwMode &Sub) { 607 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 608 if (TP.hasError()) 609 return false; 610 611 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 612 auto IsSubVec = [](MVT B, MVT P) -> bool { 613 if (!B.isVector() || !P.isVector()) 614 return false; 615 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 616 // but until there are obvious use-cases for this, keep the 617 // types separate. 618 if (B.isScalableVector() != P.isScalableVector()) 619 return false; 620 if (B.getVectorElementType() != P.getVectorElementType()) 621 return false; 622 return B.getVectorNumElements() < P.getVectorNumElements(); 623 }; 624 625 /// Return true if S has no element (vector type) that T is a sub-vector of, 626 /// i.e. has the same element type as T and more elements. 627 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 628 for (const auto &I : S) 629 if (IsSubVec(T, I)) 630 return false; 631 return true; 632 }; 633 634 /// Return true if S has no element (vector type) that T is a super-vector 635 /// of, i.e. has the same element type as T and fewer elements. 636 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 637 for (const auto &I : S) 638 if (IsSubVec(I, T)) 639 return false; 640 return true; 641 }; 642 643 bool Changed = false; 644 645 if (Vec.empty()) 646 Changed |= EnforceVector(Vec); 647 if (Sub.empty()) 648 Changed |= EnforceVector(Sub); 649 650 for (unsigned M : union_modes(Vec, Sub)) { 651 TypeSetByHwMode::SetType &S = Sub.get(M); 652 TypeSetByHwMode::SetType &V = Vec.get(M); 653 654 Changed |= berase_if(S, isScalar); 655 656 // Erase all types from S that are not sub-vectors of a type in V. 657 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 658 659 // Erase all types from V that are not super-vectors of a type in S. 660 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 661 } 662 663 return Changed; 664 } 665 666 /// 1. Ensure that V has a scalar type iff W has a scalar type. 667 /// 2. Ensure that for each vector type T in V, there exists a vector 668 /// type U in W, such that T and U have the same number of elements. 669 /// 3. Ensure that for each vector type U in W, there exists a vector 670 /// type T in V, such that T and U have the same number of elements 671 /// (reverse of 2). 672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 673 ValidateOnExit _1(V, *this), _2(W, *this); 674 if (TP.hasError()) 675 return false; 676 677 bool Changed = false; 678 if (V.empty()) 679 Changed |= EnforceAny(V); 680 if (W.empty()) 681 Changed |= EnforceAny(W); 682 683 // An actual vector type cannot have 0 elements, so we can treat scalars 684 // as zero-length vectors. This way both vectors and scalars can be 685 // processed identically. 686 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 687 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 688 }; 689 690 for (unsigned M : union_modes(V, W)) { 691 TypeSetByHwMode::SetType &VS = V.get(M); 692 TypeSetByHwMode::SetType &WS = W.get(M); 693 694 SmallSet<unsigned,2> VN, WN; 695 for (MVT T : VS) 696 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 697 for (MVT T : WS) 698 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 699 700 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 701 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 702 } 703 return Changed; 704 } 705 706 /// 1. Ensure that for each type T in A, there exists a type U in B, 707 /// such that T and U have equal size in bits. 708 /// 2. Ensure that for each type U in B, there exists a type T in A 709 /// such that T and U have equal size in bits (reverse of 1). 710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 711 ValidateOnExit _1(A, *this), _2(B, *this); 712 if (TP.hasError()) 713 return false; 714 bool Changed = false; 715 if (A.empty()) 716 Changed |= EnforceAny(A); 717 if (B.empty()) 718 Changed |= EnforceAny(B); 719 720 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 721 return !Sizes.count(T.getSizeInBits()); 722 }; 723 724 for (unsigned M : union_modes(A, B)) { 725 TypeSetByHwMode::SetType &AS = A.get(M); 726 TypeSetByHwMode::SetType &BS = B.get(M); 727 SmallSet<unsigned,2> AN, BN; 728 729 for (MVT T : AS) 730 AN.insert(T.getSizeInBits()); 731 for (MVT T : BS) 732 BN.insert(T.getSizeInBits()); 733 734 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 735 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 736 } 737 738 return Changed; 739 } 740 741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 742 ValidateOnExit _1(VTS, *this); 743 const TypeSetByHwMode &Legal = getLegalTypes(); 744 assert(Legal.isDefaultOnly() && "Default-mode only expected"); 745 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode); 746 747 for (auto &I : VTS) 748 expandOverloads(I.second, LegalTypes); 749 } 750 751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 752 const TypeSetByHwMode::SetType &Legal) { 753 std::set<MVT> Ovs; 754 for (MVT T : Out) { 755 if (!T.isOverloaded()) 756 continue; 757 758 Ovs.insert(T); 759 // MachineValueTypeSet allows iteration and erasing. 760 Out.erase(T); 761 } 762 763 for (MVT Ov : Ovs) { 764 switch (Ov.SimpleTy) { 765 case MVT::iPTRAny: 766 Out.insert(MVT::iPTR); 767 return; 768 case MVT::iAny: 769 for (MVT T : MVT::integer_valuetypes()) 770 if (Legal.count(T)) 771 Out.insert(T); 772 for (MVT T : MVT::integer_fixedlen_vector_valuetypes()) 773 if (Legal.count(T)) 774 Out.insert(T); 775 for (MVT T : MVT::integer_scalable_vector_valuetypes()) 776 if (Legal.count(T)) 777 Out.insert(T); 778 return; 779 case MVT::fAny: 780 for (MVT T : MVT::fp_valuetypes()) 781 if (Legal.count(T)) 782 Out.insert(T); 783 for (MVT T : MVT::fp_fixedlen_vector_valuetypes()) 784 if (Legal.count(T)) 785 Out.insert(T); 786 for (MVT T : MVT::fp_scalable_vector_valuetypes()) 787 if (Legal.count(T)) 788 Out.insert(T); 789 return; 790 case MVT::vAny: 791 for (MVT T : MVT::vector_valuetypes()) 792 if (Legal.count(T)) 793 Out.insert(T); 794 return; 795 case MVT::Any: 796 for (MVT T : MVT::all_valuetypes()) 797 if (Legal.count(T)) 798 Out.insert(T); 799 return; 800 default: 801 break; 802 } 803 } 804 } 805 806 const TypeSetByHwMode &TypeInfer::getLegalTypes() { 807 if (!LegalTypesCached) { 808 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode); 809 // Stuff all types from all modes into the default mode. 810 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 811 for (const auto &I : LTS) 812 LegalTypes.insert(I.second); 813 LegalTypesCached = true; 814 } 815 assert(LegalCache.isDefaultOnly() && "Default-mode only expected"); 816 return LegalCache; 817 } 818 819 #ifndef NDEBUG 820 TypeInfer::ValidateOnExit::~ValidateOnExit() { 821 if (Infer.Validate && !VTS.validate()) { 822 dbgs() << "Type set is empty for each HW mode:\n" 823 "possible type contradiction in the pattern below " 824 "(use -print-records with llvm-tblgen to see all " 825 "expanded records).\n"; 826 Infer.TP.dump(); 827 llvm_unreachable(nullptr); 828 } 829 } 830 #endif 831 832 833 //===----------------------------------------------------------------------===// 834 // ScopedName Implementation 835 //===----------------------------------------------------------------------===// 836 837 bool ScopedName::operator==(const ScopedName &o) const { 838 return Scope == o.Scope && Identifier == o.Identifier; 839 } 840 841 bool ScopedName::operator!=(const ScopedName &o) const { 842 return !(*this == o); 843 } 844 845 846 //===----------------------------------------------------------------------===// 847 // TreePredicateFn Implementation 848 //===----------------------------------------------------------------------===// 849 850 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 851 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 852 assert( 853 (!hasPredCode() || !hasImmCode()) && 854 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 855 } 856 857 bool TreePredicateFn::hasPredCode() const { 858 return isLoad() || isStore() || isAtomic() || 859 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 860 } 861 862 std::string TreePredicateFn::getPredCode() const { 863 std::string Code = ""; 864 865 if (!isLoad() && !isStore() && !isAtomic()) { 866 Record *MemoryVT = getMemoryVT(); 867 868 if (MemoryVT) 869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 870 "MemoryVT requires IsLoad or IsStore"); 871 } 872 873 if (!isLoad() && !isStore()) { 874 if (isUnindexed()) 875 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 876 "IsUnindexed requires IsLoad or IsStore"); 877 878 Record *ScalarMemoryVT = getScalarMemoryVT(); 879 880 if (ScalarMemoryVT) 881 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 882 "ScalarMemoryVT requires IsLoad or IsStore"); 883 } 884 885 if (isLoad() + isStore() + isAtomic() > 1) 886 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 887 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 888 889 if (isLoad()) { 890 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 891 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 892 getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr && 893 getMinAlignment() < 1) 894 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 895 "IsLoad cannot be used by itself"); 896 } else { 897 if (isNonExtLoad()) 898 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 899 "IsNonExtLoad requires IsLoad"); 900 if (isAnyExtLoad()) 901 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 902 "IsAnyExtLoad requires IsLoad"); 903 if (isSignExtLoad()) 904 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 905 "IsSignExtLoad requires IsLoad"); 906 if (isZeroExtLoad()) 907 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 908 "IsZeroExtLoad requires IsLoad"); 909 } 910 911 if (isStore()) { 912 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 913 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr && 914 getAddressSpaces() == nullptr && getMinAlignment() < 1) 915 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 916 "IsStore cannot be used by itself"); 917 } else { 918 if (isNonTruncStore()) 919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 920 "IsNonTruncStore requires IsStore"); 921 if (isTruncStore()) 922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 923 "IsTruncStore requires IsStore"); 924 } 925 926 if (isAtomic()) { 927 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 928 getAddressSpaces() == nullptr && 929 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 930 !isAtomicOrderingAcquireRelease() && 931 !isAtomicOrderingSequentiallyConsistent() && 932 !isAtomicOrderingAcquireOrStronger() && 933 !isAtomicOrderingReleaseOrStronger() && 934 !isAtomicOrderingWeakerThanAcquire() && 935 !isAtomicOrderingWeakerThanRelease()) 936 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 937 "IsAtomic cannot be used by itself"); 938 } else { 939 if (isAtomicOrderingMonotonic()) 940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 941 "IsAtomicOrderingMonotonic requires IsAtomic"); 942 if (isAtomicOrderingAcquire()) 943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 944 "IsAtomicOrderingAcquire requires IsAtomic"); 945 if (isAtomicOrderingRelease()) 946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 947 "IsAtomicOrderingRelease requires IsAtomic"); 948 if (isAtomicOrderingAcquireRelease()) 949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 950 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 951 if (isAtomicOrderingSequentiallyConsistent()) 952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 953 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 954 if (isAtomicOrderingAcquireOrStronger()) 955 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 956 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 957 if (isAtomicOrderingReleaseOrStronger()) 958 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 959 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 960 if (isAtomicOrderingWeakerThanAcquire()) 961 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 962 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 963 } 964 965 if (isLoad() || isStore() || isAtomic()) { 966 if (ListInit *AddressSpaces = getAddressSpaces()) { 967 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n" 968 " if ("; 969 970 bool First = true; 971 for (Init *Val : AddressSpaces->getValues()) { 972 if (First) 973 First = false; 974 else 975 Code += " && "; 976 977 IntInit *IntVal = dyn_cast<IntInit>(Val); 978 if (!IntVal) { 979 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 980 "AddressSpaces element must be integer"); 981 } 982 983 Code += "AddrSpace != " + utostr(IntVal->getValue()); 984 } 985 986 Code += ")\nreturn false;\n"; 987 } 988 989 int64_t MinAlign = getMinAlignment(); 990 if (MinAlign > 0) { 991 Code += "if (cast<MemSDNode>(N)->getAlignment() < "; 992 Code += utostr(MinAlign); 993 Code += ")\nreturn false;\n"; 994 } 995 996 Record *MemoryVT = getMemoryVT(); 997 998 if (MemoryVT) 999 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" + 1000 MemoryVT->getName() + ") return false;\n") 1001 .str(); 1002 } 1003 1004 if (isAtomic() && isAtomicOrderingMonotonic()) 1005 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1006 "AtomicOrdering::Monotonic) return false;\n"; 1007 if (isAtomic() && isAtomicOrderingAcquire()) 1008 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1009 "AtomicOrdering::Acquire) return false;\n"; 1010 if (isAtomic() && isAtomicOrderingRelease()) 1011 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1012 "AtomicOrdering::Release) return false;\n"; 1013 if (isAtomic() && isAtomicOrderingAcquireRelease()) 1014 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1015 "AtomicOrdering::AcquireRelease) return false;\n"; 1016 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 1017 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 1018 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 1019 1020 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 1021 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1022 "return false;\n"; 1023 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 1024 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1025 "return false;\n"; 1026 1027 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 1028 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1029 "return false;\n"; 1030 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 1031 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 1032 "return false;\n"; 1033 1034 if (isLoad() || isStore()) { 1035 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 1036 1037 if (isUnindexed()) 1038 Code += ("if (cast<" + SDNodeName + 1039 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 1040 "return false;\n") 1041 .str(); 1042 1043 if (isLoad()) { 1044 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 1045 isZeroExtLoad()) > 1) 1046 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1047 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 1048 "IsZeroExtLoad are mutually exclusive"); 1049 if (isNonExtLoad()) 1050 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 1051 "ISD::NON_EXTLOAD) return false;\n"; 1052 if (isAnyExtLoad()) 1053 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1054 "return false;\n"; 1055 if (isSignExtLoad()) 1056 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1057 "return false;\n"; 1058 if (isZeroExtLoad()) 1059 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1060 "return false;\n"; 1061 } else { 1062 if ((isNonTruncStore() + isTruncStore()) > 1) 1063 PrintFatalError( 1064 getOrigPatFragRecord()->getRecord()->getLoc(), 1065 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1066 if (isNonTruncStore()) 1067 Code += 1068 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1069 if (isTruncStore()) 1070 Code += 1071 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1072 } 1073 1074 Record *ScalarMemoryVT = getScalarMemoryVT(); 1075 1076 if (ScalarMemoryVT) 1077 Code += ("if (cast<" + SDNodeName + 1078 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1079 ScalarMemoryVT->getName() + ") return false;\n") 1080 .str(); 1081 } 1082 1083 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 1084 1085 Code += PredicateCode; 1086 1087 if (PredicateCode.empty() && !Code.empty()) 1088 Code += "return true;\n"; 1089 1090 return Code; 1091 } 1092 1093 bool TreePredicateFn::hasImmCode() const { 1094 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1095 } 1096 1097 std::string TreePredicateFn::getImmCode() const { 1098 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1099 } 1100 1101 bool TreePredicateFn::immCodeUsesAPInt() const { 1102 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1103 } 1104 1105 bool TreePredicateFn::immCodeUsesAPFloat() const { 1106 bool Unset; 1107 // The return value will be false when IsAPFloat is unset. 1108 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1109 Unset); 1110 } 1111 1112 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1113 bool Value) const { 1114 bool Unset; 1115 bool Result = 1116 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1117 if (Unset) 1118 return false; 1119 return Result == Value; 1120 } 1121 bool TreePredicateFn::usesOperands() const { 1122 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true); 1123 } 1124 bool TreePredicateFn::isLoad() const { 1125 return isPredefinedPredicateEqualTo("IsLoad", true); 1126 } 1127 bool TreePredicateFn::isStore() const { 1128 return isPredefinedPredicateEqualTo("IsStore", true); 1129 } 1130 bool TreePredicateFn::isAtomic() const { 1131 return isPredefinedPredicateEqualTo("IsAtomic", true); 1132 } 1133 bool TreePredicateFn::isUnindexed() const { 1134 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1135 } 1136 bool TreePredicateFn::isNonExtLoad() const { 1137 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1138 } 1139 bool TreePredicateFn::isAnyExtLoad() const { 1140 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1141 } 1142 bool TreePredicateFn::isSignExtLoad() const { 1143 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1144 } 1145 bool TreePredicateFn::isZeroExtLoad() const { 1146 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1147 } 1148 bool TreePredicateFn::isNonTruncStore() const { 1149 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1150 } 1151 bool TreePredicateFn::isTruncStore() const { 1152 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1153 } 1154 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1155 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1156 } 1157 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1158 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1159 } 1160 bool TreePredicateFn::isAtomicOrderingRelease() const { 1161 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1162 } 1163 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1164 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1165 } 1166 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1167 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1168 true); 1169 } 1170 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1171 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1172 } 1173 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1174 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1175 } 1176 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1177 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1178 } 1179 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1180 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1181 } 1182 Record *TreePredicateFn::getMemoryVT() const { 1183 Record *R = getOrigPatFragRecord()->getRecord(); 1184 if (R->isValueUnset("MemoryVT")) 1185 return nullptr; 1186 return R->getValueAsDef("MemoryVT"); 1187 } 1188 1189 ListInit *TreePredicateFn::getAddressSpaces() const { 1190 Record *R = getOrigPatFragRecord()->getRecord(); 1191 if (R->isValueUnset("AddressSpaces")) 1192 return nullptr; 1193 return R->getValueAsListInit("AddressSpaces"); 1194 } 1195 1196 int64_t TreePredicateFn::getMinAlignment() const { 1197 Record *R = getOrigPatFragRecord()->getRecord(); 1198 if (R->isValueUnset("MinAlignment")) 1199 return 0; 1200 return R->getValueAsInt("MinAlignment"); 1201 } 1202 1203 Record *TreePredicateFn::getScalarMemoryVT() const { 1204 Record *R = getOrigPatFragRecord()->getRecord(); 1205 if (R->isValueUnset("ScalarMemoryVT")) 1206 return nullptr; 1207 return R->getValueAsDef("ScalarMemoryVT"); 1208 } 1209 bool TreePredicateFn::hasGISelPredicateCode() const { 1210 return !PatFragRec->getRecord() 1211 ->getValueAsString("GISelPredicateCode") 1212 .empty(); 1213 } 1214 std::string TreePredicateFn::getGISelPredicateCode() const { 1215 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"); 1216 } 1217 1218 StringRef TreePredicateFn::getImmType() const { 1219 if (immCodeUsesAPInt()) 1220 return "const APInt &"; 1221 if (immCodeUsesAPFloat()) 1222 return "const APFloat &"; 1223 return "int64_t"; 1224 } 1225 1226 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1227 if (immCodeUsesAPInt()) 1228 return "APInt"; 1229 else if (immCodeUsesAPFloat()) 1230 return "APFloat"; 1231 return "I64"; 1232 } 1233 1234 /// isAlwaysTrue - Return true if this is a noop predicate. 1235 bool TreePredicateFn::isAlwaysTrue() const { 1236 return !hasPredCode() && !hasImmCode(); 1237 } 1238 1239 /// Return the name to use in the generated code to reference this, this is 1240 /// "Predicate_foo" if from a pattern fragment "foo". 1241 std::string TreePredicateFn::getFnName() const { 1242 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1243 } 1244 1245 /// getCodeToRunOnSDNode - Return the code for the function body that 1246 /// evaluates this predicate. The argument is expected to be in "Node", 1247 /// not N. This handles casting and conversion to a concrete node type as 1248 /// appropriate. 1249 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1250 // Handle immediate predicates first. 1251 std::string ImmCode = getImmCode(); 1252 if (!ImmCode.empty()) { 1253 if (isLoad()) 1254 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1255 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1256 if (isStore()) 1257 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1258 "IsStore cannot be used with ImmLeaf or its subclasses"); 1259 if (isUnindexed()) 1260 PrintFatalError( 1261 getOrigPatFragRecord()->getRecord()->getLoc(), 1262 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1263 if (isNonExtLoad()) 1264 PrintFatalError( 1265 getOrigPatFragRecord()->getRecord()->getLoc(), 1266 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1267 if (isAnyExtLoad()) 1268 PrintFatalError( 1269 getOrigPatFragRecord()->getRecord()->getLoc(), 1270 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1271 if (isSignExtLoad()) 1272 PrintFatalError( 1273 getOrigPatFragRecord()->getRecord()->getLoc(), 1274 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1275 if (isZeroExtLoad()) 1276 PrintFatalError( 1277 getOrigPatFragRecord()->getRecord()->getLoc(), 1278 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1279 if (isNonTruncStore()) 1280 PrintFatalError( 1281 getOrigPatFragRecord()->getRecord()->getLoc(), 1282 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1283 if (isTruncStore()) 1284 PrintFatalError( 1285 getOrigPatFragRecord()->getRecord()->getLoc(), 1286 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1287 if (getMemoryVT()) 1288 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1289 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1290 if (getScalarMemoryVT()) 1291 PrintFatalError( 1292 getOrigPatFragRecord()->getRecord()->getLoc(), 1293 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1294 1295 std::string Result = (" " + getImmType() + " Imm = ").str(); 1296 if (immCodeUsesAPFloat()) 1297 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1298 else if (immCodeUsesAPInt()) 1299 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1300 else 1301 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1302 return Result + ImmCode; 1303 } 1304 1305 // Handle arbitrary node predicates. 1306 assert(hasPredCode() && "Don't have any predicate code!"); 1307 StringRef ClassName; 1308 if (PatFragRec->getOnlyTree()->isLeaf()) 1309 ClassName = "SDNode"; 1310 else { 1311 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1312 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1313 } 1314 std::string Result; 1315 if (ClassName == "SDNode") 1316 Result = " SDNode *N = Node;\n"; 1317 else 1318 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1319 1320 return (Twine(Result) + " (void)N;\n" + getPredCode()).str(); 1321 } 1322 1323 //===----------------------------------------------------------------------===// 1324 // PatternToMatch implementation 1325 // 1326 1327 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) { 1328 if (!P->isLeaf()) 1329 return false; 1330 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue()); 1331 if (!DI) 1332 return false; 1333 1334 Record *R = DI->getDef(); 1335 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV"; 1336 } 1337 1338 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1339 /// patterns before small ones. This is used to determine the size of a 1340 /// pattern. 1341 static unsigned getPatternSize(const TreePatternNode *P, 1342 const CodeGenDAGPatterns &CGP) { 1343 unsigned Size = 3; // The node itself. 1344 // If the root node is a ConstantSDNode, increases its size. 1345 // e.g. (set R32:$dst, 0). 1346 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1347 Size += 2; 1348 1349 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1350 Size += AM->getComplexity(); 1351 // We don't want to count any children twice, so return early. 1352 return Size; 1353 } 1354 1355 // If this node has some predicate function that must match, it adds to the 1356 // complexity of this node. 1357 if (!P->getPredicateCalls().empty()) 1358 ++Size; 1359 1360 // Count children in the count if they are also nodes. 1361 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1362 const TreePatternNode *Child = P->getChild(i); 1363 if (!Child->isLeaf() && Child->getNumTypes()) { 1364 const TypeSetByHwMode &T0 = Child->getExtType(0); 1365 // At this point, all variable type sets should be simple, i.e. only 1366 // have a default mode. 1367 if (T0.getMachineValueType() != MVT::Other) { 1368 Size += getPatternSize(Child, CGP); 1369 continue; 1370 } 1371 } 1372 if (Child->isLeaf()) { 1373 if (isa<IntInit>(Child->getLeafValue())) 1374 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1375 else if (Child->getComplexPatternInfo(CGP)) 1376 Size += getPatternSize(Child, CGP); 1377 else if (isImmAllOnesAllZerosMatch(Child)) 1378 Size += 4; // Matches a build_vector(+3) and a predicate (+1). 1379 else if (!Child->getPredicateCalls().empty()) 1380 ++Size; 1381 } 1382 } 1383 1384 return Size; 1385 } 1386 1387 /// Compute the complexity metric for the input pattern. This roughly 1388 /// corresponds to the number of nodes that are covered. 1389 int PatternToMatch:: 1390 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1391 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1392 } 1393 1394 /// getPredicateCheck - Return a single string containing all of this 1395 /// pattern's predicates concatenated with "&&" operators. 1396 /// 1397 std::string PatternToMatch::getPredicateCheck() const { 1398 SmallVector<const Predicate*,4> PredList; 1399 for (const Predicate &P : Predicates) { 1400 if (!P.getCondString().empty()) 1401 PredList.push_back(&P); 1402 } 1403 llvm::sort(PredList, deref<std::less<>>()); 1404 1405 std::string Check; 1406 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1407 if (i != 0) 1408 Check += " && "; 1409 Check += '(' + PredList[i]->getCondString() + ')'; 1410 } 1411 return Check; 1412 } 1413 1414 //===----------------------------------------------------------------------===// 1415 // SDTypeConstraint implementation 1416 // 1417 1418 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1419 OperandNo = R->getValueAsInt("OperandNum"); 1420 1421 if (R->isSubClassOf("SDTCisVT")) { 1422 ConstraintType = SDTCisVT; 1423 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1424 for (const auto &P : VVT) 1425 if (P.second == MVT::isVoid) 1426 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1427 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1428 ConstraintType = SDTCisPtrTy; 1429 } else if (R->isSubClassOf("SDTCisInt")) { 1430 ConstraintType = SDTCisInt; 1431 } else if (R->isSubClassOf("SDTCisFP")) { 1432 ConstraintType = SDTCisFP; 1433 } else if (R->isSubClassOf("SDTCisVec")) { 1434 ConstraintType = SDTCisVec; 1435 } else if (R->isSubClassOf("SDTCisSameAs")) { 1436 ConstraintType = SDTCisSameAs; 1437 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1438 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1439 ConstraintType = SDTCisVTSmallerThanOp; 1440 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1441 R->getValueAsInt("OtherOperandNum"); 1442 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1443 ConstraintType = SDTCisOpSmallerThanOp; 1444 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1445 R->getValueAsInt("BigOperandNum"); 1446 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1447 ConstraintType = SDTCisEltOfVec; 1448 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1449 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1450 ConstraintType = SDTCisSubVecOfVec; 1451 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1452 R->getValueAsInt("OtherOpNum"); 1453 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1454 ConstraintType = SDTCVecEltisVT; 1455 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1456 for (const auto &P : VVT) { 1457 MVT T = P.second; 1458 if (T.isVector()) 1459 PrintFatalError(R->getLoc(), 1460 "Cannot use vector type as SDTCVecEltisVT"); 1461 if (!T.isInteger() && !T.isFloatingPoint()) 1462 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1463 "as SDTCVecEltisVT"); 1464 } 1465 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1466 ConstraintType = SDTCisSameNumEltsAs; 1467 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1468 R->getValueAsInt("OtherOperandNum"); 1469 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1470 ConstraintType = SDTCisSameSizeAs; 1471 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1472 R->getValueAsInt("OtherOperandNum"); 1473 } else { 1474 PrintFatalError(R->getLoc(), 1475 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1476 } 1477 } 1478 1479 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1480 /// N, and the result number in ResNo. 1481 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1482 const SDNodeInfo &NodeInfo, 1483 unsigned &ResNo) { 1484 unsigned NumResults = NodeInfo.getNumResults(); 1485 if (OpNo < NumResults) { 1486 ResNo = OpNo; 1487 return N; 1488 } 1489 1490 OpNo -= NumResults; 1491 1492 if (OpNo >= N->getNumChildren()) { 1493 std::string S; 1494 raw_string_ostream OS(S); 1495 OS << "Invalid operand number in type constraint " 1496 << (OpNo+NumResults) << " "; 1497 N->print(OS); 1498 PrintFatalError(OS.str()); 1499 } 1500 1501 return N->getChild(OpNo); 1502 } 1503 1504 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1505 /// constraint to the nodes operands. This returns true if it makes a 1506 /// change, false otherwise. If a type contradiction is found, flag an error. 1507 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1508 const SDNodeInfo &NodeInfo, 1509 TreePattern &TP) const { 1510 if (TP.hasError()) 1511 return false; 1512 1513 unsigned ResNo = 0; // The result number being referenced. 1514 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1515 TypeInfer &TI = TP.getInfer(); 1516 1517 switch (ConstraintType) { 1518 case SDTCisVT: 1519 // Operand must be a particular type. 1520 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1521 case SDTCisPtrTy: 1522 // Operand must be same as target pointer type. 1523 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1524 case SDTCisInt: 1525 // Require it to be one of the legal integer VTs. 1526 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1527 case SDTCisFP: 1528 // Require it to be one of the legal fp VTs. 1529 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1530 case SDTCisVec: 1531 // Require it to be one of the legal vector VTs. 1532 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1533 case SDTCisSameAs: { 1534 unsigned OResNo = 0; 1535 TreePatternNode *OtherNode = 1536 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1537 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1538 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1539 } 1540 case SDTCisVTSmallerThanOp: { 1541 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1542 // have an integer type that is smaller than the VT. 1543 if (!NodeToApply->isLeaf() || 1544 !isa<DefInit>(NodeToApply->getLeafValue()) || 1545 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1546 ->isSubClassOf("ValueType")) { 1547 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1548 return false; 1549 } 1550 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1551 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1552 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1553 TypeSetByHwMode TypeListTmp(VVT); 1554 1555 unsigned OResNo = 0; 1556 TreePatternNode *OtherNode = 1557 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1558 OResNo); 1559 1560 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1561 } 1562 case SDTCisOpSmallerThanOp: { 1563 unsigned BResNo = 0; 1564 TreePatternNode *BigOperand = 1565 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1566 BResNo); 1567 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1568 BigOperand->getExtType(BResNo)); 1569 } 1570 case SDTCisEltOfVec: { 1571 unsigned VResNo = 0; 1572 TreePatternNode *VecOperand = 1573 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1574 VResNo); 1575 // Filter vector types out of VecOperand that don't have the right element 1576 // type. 1577 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1578 NodeToApply->getExtType(ResNo)); 1579 } 1580 case SDTCisSubVecOfVec: { 1581 unsigned VResNo = 0; 1582 TreePatternNode *BigVecOperand = 1583 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1584 VResNo); 1585 1586 // Filter vector types out of BigVecOperand that don't have the 1587 // right subvector type. 1588 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1589 NodeToApply->getExtType(ResNo)); 1590 } 1591 case SDTCVecEltisVT: { 1592 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1593 } 1594 case SDTCisSameNumEltsAs: { 1595 unsigned OResNo = 0; 1596 TreePatternNode *OtherNode = 1597 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1598 N, NodeInfo, OResNo); 1599 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1600 NodeToApply->getExtType(ResNo)); 1601 } 1602 case SDTCisSameSizeAs: { 1603 unsigned OResNo = 0; 1604 TreePatternNode *OtherNode = 1605 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1606 N, NodeInfo, OResNo); 1607 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1608 NodeToApply->getExtType(ResNo)); 1609 } 1610 } 1611 llvm_unreachable("Invalid ConstraintType!"); 1612 } 1613 1614 // Update the node type to match an instruction operand or result as specified 1615 // in the ins or outs lists on the instruction definition. Return true if the 1616 // type was actually changed. 1617 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1618 Record *Operand, 1619 TreePattern &TP) { 1620 // The 'unknown' operand indicates that types should be inferred from the 1621 // context. 1622 if (Operand->isSubClassOf("unknown_class")) 1623 return false; 1624 1625 // The Operand class specifies a type directly. 1626 if (Operand->isSubClassOf("Operand")) { 1627 Record *R = Operand->getValueAsDef("Type"); 1628 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1629 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1630 } 1631 1632 // PointerLikeRegClass has a type that is determined at runtime. 1633 if (Operand->isSubClassOf("PointerLikeRegClass")) 1634 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1635 1636 // Both RegisterClass and RegisterOperand operands derive their types from a 1637 // register class def. 1638 Record *RC = nullptr; 1639 if (Operand->isSubClassOf("RegisterClass")) 1640 RC = Operand; 1641 else if (Operand->isSubClassOf("RegisterOperand")) 1642 RC = Operand->getValueAsDef("RegClass"); 1643 1644 assert(RC && "Unknown operand type"); 1645 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1646 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1647 } 1648 1649 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1650 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1651 if (!TP.getInfer().isConcrete(Types[i], true)) 1652 return true; 1653 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1654 if (getChild(i)->ContainsUnresolvedType(TP)) 1655 return true; 1656 return false; 1657 } 1658 1659 bool TreePatternNode::hasProperTypeByHwMode() const { 1660 for (const TypeSetByHwMode &S : Types) 1661 if (!S.isDefaultOnly()) 1662 return true; 1663 for (const TreePatternNodePtr &C : Children) 1664 if (C->hasProperTypeByHwMode()) 1665 return true; 1666 return false; 1667 } 1668 1669 bool TreePatternNode::hasPossibleType() const { 1670 for (const TypeSetByHwMode &S : Types) 1671 if (!S.isPossible()) 1672 return false; 1673 for (const TreePatternNodePtr &C : Children) 1674 if (!C->hasPossibleType()) 1675 return false; 1676 return true; 1677 } 1678 1679 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1680 for (TypeSetByHwMode &S : Types) { 1681 S.makeSimple(Mode); 1682 // Check if the selected mode had a type conflict. 1683 if (S.get(DefaultMode).empty()) 1684 return false; 1685 } 1686 for (const TreePatternNodePtr &C : Children) 1687 if (!C->setDefaultMode(Mode)) 1688 return false; 1689 return true; 1690 } 1691 1692 //===----------------------------------------------------------------------===// 1693 // SDNodeInfo implementation 1694 // 1695 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1696 EnumName = R->getValueAsString("Opcode"); 1697 SDClassName = R->getValueAsString("SDClass"); 1698 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1699 NumResults = TypeProfile->getValueAsInt("NumResults"); 1700 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1701 1702 // Parse the properties. 1703 Properties = parseSDPatternOperatorProperties(R); 1704 1705 // Parse the type constraints. 1706 std::vector<Record*> ConstraintList = 1707 TypeProfile->getValueAsListOfDefs("Constraints"); 1708 for (Record *R : ConstraintList) 1709 TypeConstraints.emplace_back(R, CGH); 1710 } 1711 1712 /// getKnownType - If the type constraints on this node imply a fixed type 1713 /// (e.g. all stores return void, etc), then return it as an 1714 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1715 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1716 unsigned NumResults = getNumResults(); 1717 assert(NumResults <= 1 && 1718 "We only work with nodes with zero or one result so far!"); 1719 assert(ResNo == 0 && "Only handles single result nodes so far"); 1720 1721 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1722 // Make sure that this applies to the correct node result. 1723 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1724 continue; 1725 1726 switch (Constraint.ConstraintType) { 1727 default: break; 1728 case SDTypeConstraint::SDTCisVT: 1729 if (Constraint.VVT.isSimple()) 1730 return Constraint.VVT.getSimple().SimpleTy; 1731 break; 1732 case SDTypeConstraint::SDTCisPtrTy: 1733 return MVT::iPTR; 1734 } 1735 } 1736 return MVT::Other; 1737 } 1738 1739 //===----------------------------------------------------------------------===// 1740 // TreePatternNode implementation 1741 // 1742 1743 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1744 if (Operator->getName() == "set" || 1745 Operator->getName() == "implicit") 1746 return 0; // All return nothing. 1747 1748 if (Operator->isSubClassOf("Intrinsic")) 1749 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1750 1751 if (Operator->isSubClassOf("SDNode")) 1752 return CDP.getSDNodeInfo(Operator).getNumResults(); 1753 1754 if (Operator->isSubClassOf("PatFrags")) { 1755 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1756 // the forward reference case where one pattern fragment references another 1757 // before it is processed. 1758 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) { 1759 // The number of results of a fragment with alternative records is the 1760 // maximum number of results across all alternatives. 1761 unsigned NumResults = 0; 1762 for (auto T : PFRec->getTrees()) 1763 NumResults = std::max(NumResults, T->getNumTypes()); 1764 return NumResults; 1765 } 1766 1767 ListInit *LI = Operator->getValueAsListInit("Fragments"); 1768 assert(LI && "Invalid Fragment"); 1769 unsigned NumResults = 0; 1770 for (Init *I : LI->getValues()) { 1771 Record *Op = nullptr; 1772 if (DagInit *Dag = dyn_cast<DagInit>(I)) 1773 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator())) 1774 Op = DI->getDef(); 1775 assert(Op && "Invalid Fragment"); 1776 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP)); 1777 } 1778 return NumResults; 1779 } 1780 1781 if (Operator->isSubClassOf("Instruction")) { 1782 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1783 1784 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1785 1786 // Subtract any defaulted outputs. 1787 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1788 Record *OperandNode = InstInfo.Operands[i].Rec; 1789 1790 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1791 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1792 --NumDefsToAdd; 1793 } 1794 1795 // Add on one implicit def if it has a resolvable type. 1796 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1797 ++NumDefsToAdd; 1798 return NumDefsToAdd; 1799 } 1800 1801 if (Operator->isSubClassOf("SDNodeXForm")) 1802 return 1; // FIXME: Generalize SDNodeXForm 1803 1804 if (Operator->isSubClassOf("ValueType")) 1805 return 1; // A type-cast of one result. 1806 1807 if (Operator->isSubClassOf("ComplexPattern")) 1808 return 1; 1809 1810 errs() << *Operator; 1811 PrintFatalError("Unhandled node in GetNumNodeResults"); 1812 } 1813 1814 void TreePatternNode::print(raw_ostream &OS) const { 1815 if (isLeaf()) 1816 OS << *getLeafValue(); 1817 else 1818 OS << '(' << getOperator()->getName(); 1819 1820 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1821 OS << ':'; 1822 getExtType(i).writeToStream(OS); 1823 } 1824 1825 if (!isLeaf()) { 1826 if (getNumChildren() != 0) { 1827 OS << " "; 1828 getChild(0)->print(OS); 1829 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1830 OS << ", "; 1831 getChild(i)->print(OS); 1832 } 1833 } 1834 OS << ")"; 1835 } 1836 1837 for (const TreePredicateCall &Pred : PredicateCalls) { 1838 OS << "<<P:"; 1839 if (Pred.Scope) 1840 OS << Pred.Scope << ":"; 1841 OS << Pred.Fn.getFnName() << ">>"; 1842 } 1843 if (TransformFn) 1844 OS << "<<X:" << TransformFn->getName() << ">>"; 1845 if (!getName().empty()) 1846 OS << ":$" << getName(); 1847 1848 for (const ScopedName &Name : NamesAsPredicateArg) 1849 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier(); 1850 } 1851 void TreePatternNode::dump() const { 1852 print(errs()); 1853 } 1854 1855 /// isIsomorphicTo - Return true if this node is recursively 1856 /// isomorphic to the specified node. For this comparison, the node's 1857 /// entire state is considered. The assigned name is ignored, since 1858 /// nodes with differing names are considered isomorphic. However, if 1859 /// the assigned name is present in the dependent variable set, then 1860 /// the assigned name is considered significant and the node is 1861 /// isomorphic if the names match. 1862 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1863 const MultipleUseVarSet &DepVars) const { 1864 if (N == this) return true; 1865 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1866 getPredicateCalls() != N->getPredicateCalls() || 1867 getTransformFn() != N->getTransformFn()) 1868 return false; 1869 1870 if (isLeaf()) { 1871 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1872 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1873 return ((DI->getDef() == NDI->getDef()) 1874 && (DepVars.find(getName()) == DepVars.end() 1875 || getName() == N->getName())); 1876 } 1877 } 1878 return getLeafValue() == N->getLeafValue(); 1879 } 1880 1881 if (N->getOperator() != getOperator() || 1882 N->getNumChildren() != getNumChildren()) return false; 1883 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1884 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1885 return false; 1886 return true; 1887 } 1888 1889 /// clone - Make a copy of this tree and all of its children. 1890 /// 1891 TreePatternNodePtr TreePatternNode::clone() const { 1892 TreePatternNodePtr New; 1893 if (isLeaf()) { 1894 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes()); 1895 } else { 1896 std::vector<TreePatternNodePtr> CChildren; 1897 CChildren.reserve(Children.size()); 1898 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1899 CChildren.push_back(getChild(i)->clone()); 1900 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren), 1901 getNumTypes()); 1902 } 1903 New->setName(getName()); 1904 New->setNamesAsPredicateArg(getNamesAsPredicateArg()); 1905 New->Types = Types; 1906 New->setPredicateCalls(getPredicateCalls()); 1907 New->setTransformFn(getTransformFn()); 1908 return New; 1909 } 1910 1911 /// RemoveAllTypes - Recursively strip all the types of this tree. 1912 void TreePatternNode::RemoveAllTypes() { 1913 // Reset to unknown type. 1914 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1915 if (isLeaf()) return; 1916 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1917 getChild(i)->RemoveAllTypes(); 1918 } 1919 1920 1921 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1922 /// with actual values specified by ArgMap. 1923 void TreePatternNode::SubstituteFormalArguments( 1924 std::map<std::string, TreePatternNodePtr> &ArgMap) { 1925 if (isLeaf()) return; 1926 1927 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1928 TreePatternNode *Child = getChild(i); 1929 if (Child->isLeaf()) { 1930 Init *Val = Child->getLeafValue(); 1931 // Note that, when substituting into an output pattern, Val might be an 1932 // UnsetInit. 1933 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1934 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1935 // We found a use of a formal argument, replace it with its value. 1936 TreePatternNodePtr NewChild = ArgMap[Child->getName()]; 1937 assert(NewChild && "Couldn't find formal argument!"); 1938 assert((Child->getPredicateCalls().empty() || 1939 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1940 "Non-empty child predicate clobbered!"); 1941 setChild(i, std::move(NewChild)); 1942 } 1943 } else { 1944 getChild(i)->SubstituteFormalArguments(ArgMap); 1945 } 1946 } 1947 } 1948 1949 1950 /// InlinePatternFragments - If this pattern refers to any pattern 1951 /// fragments, return the set of inlined versions (this can be more than 1952 /// one if a PatFrags record has multiple alternatives). 1953 void TreePatternNode::InlinePatternFragments( 1954 TreePatternNodePtr T, TreePattern &TP, 1955 std::vector<TreePatternNodePtr> &OutAlternatives) { 1956 1957 if (TP.hasError()) 1958 return; 1959 1960 if (isLeaf()) { 1961 OutAlternatives.push_back(T); // nothing to do. 1962 return; 1963 } 1964 1965 Record *Op = getOperator(); 1966 1967 if (!Op->isSubClassOf("PatFrags")) { 1968 if (getNumChildren() == 0) { 1969 OutAlternatives.push_back(T); 1970 return; 1971 } 1972 1973 // Recursively inline children nodes. 1974 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives; 1975 ChildAlternatives.resize(getNumChildren()); 1976 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1977 TreePatternNodePtr Child = getChildShared(i); 1978 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]); 1979 // If there are no alternatives for any child, there are no 1980 // alternatives for this expression as whole. 1981 if (ChildAlternatives[i].empty()) 1982 return; 1983 1984 for (auto NewChild : ChildAlternatives[i]) 1985 assert((Child->getPredicateCalls().empty() || 1986 NewChild->getPredicateCalls() == Child->getPredicateCalls()) && 1987 "Non-empty child predicate clobbered!"); 1988 } 1989 1990 // The end result is an all-pairs construction of the resultant pattern. 1991 std::vector<unsigned> Idxs; 1992 Idxs.resize(ChildAlternatives.size()); 1993 bool NotDone; 1994 do { 1995 // Create the variant and add it to the output list. 1996 std::vector<TreePatternNodePtr> NewChildren; 1997 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i) 1998 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]); 1999 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 2000 getOperator(), std::move(NewChildren), getNumTypes()); 2001 2002 // Copy over properties. 2003 R->setName(getName()); 2004 R->setNamesAsPredicateArg(getNamesAsPredicateArg()); 2005 R->setPredicateCalls(getPredicateCalls()); 2006 R->setTransformFn(getTransformFn()); 2007 for (unsigned i = 0, e = getNumTypes(); i != e; ++i) 2008 R->setType(i, getExtType(i)); 2009 for (unsigned i = 0, e = getNumResults(); i != e; ++i) 2010 R->setResultIndex(i, getResultIndex(i)); 2011 2012 // Register alternative. 2013 OutAlternatives.push_back(R); 2014 2015 // Increment indices to the next permutation by incrementing the 2016 // indices from last index backward, e.g., generate the sequence 2017 // [0, 0], [0, 1], [1, 0], [1, 1]. 2018 int IdxsIdx; 2019 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 2020 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size()) 2021 Idxs[IdxsIdx] = 0; 2022 else 2023 break; 2024 } 2025 NotDone = (IdxsIdx >= 0); 2026 } while (NotDone); 2027 2028 return; 2029 } 2030 2031 // Otherwise, we found a reference to a fragment. First, look up its 2032 // TreePattern record. 2033 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 2034 2035 // Verify that we are passing the right number of operands. 2036 if (Frag->getNumArgs() != Children.size()) { 2037 TP.error("'" + Op->getName() + "' fragment requires " + 2038 Twine(Frag->getNumArgs()) + " operands!"); 2039 return; 2040 } 2041 2042 TreePredicateFn PredFn(Frag); 2043 unsigned Scope = 0; 2044 if (TreePredicateFn(Frag).usesOperands()) 2045 Scope = TP.getDAGPatterns().allocateScope(); 2046 2047 // Compute the map of formal to actual arguments. 2048 std::map<std::string, TreePatternNodePtr> ArgMap; 2049 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) { 2050 TreePatternNodePtr Child = getChildShared(i); 2051 if (Scope != 0) { 2052 Child = Child->clone(); 2053 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i))); 2054 } 2055 ArgMap[Frag->getArgName(i)] = Child; 2056 } 2057 2058 // Loop over all fragment alternatives. 2059 for (auto Alternative : Frag->getTrees()) { 2060 TreePatternNodePtr FragTree = Alternative->clone(); 2061 2062 if (!PredFn.isAlwaysTrue()) 2063 FragTree->addPredicateCall(PredFn, Scope); 2064 2065 // Resolve formal arguments to their actual value. 2066 if (Frag->getNumArgs()) 2067 FragTree->SubstituteFormalArguments(ArgMap); 2068 2069 // Transfer types. Note that the resolved alternative may have fewer 2070 // (but not more) results than the PatFrags node. 2071 FragTree->setName(getName()); 2072 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i) 2073 FragTree->UpdateNodeType(i, getExtType(i), TP); 2074 2075 // Transfer in the old predicates. 2076 for (const TreePredicateCall &Pred : getPredicateCalls()) 2077 FragTree->addPredicateCall(Pred); 2078 2079 // The fragment we inlined could have recursive inlining that is needed. See 2080 // if there are any pattern fragments in it and inline them as needed. 2081 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives); 2082 } 2083 } 2084 2085 /// getImplicitType - Check to see if the specified record has an implicit 2086 /// type which should be applied to it. This will infer the type of register 2087 /// references from the register file information, for example. 2088 /// 2089 /// When Unnamed is set, return the type of a DAG operand with no name, such as 2090 /// the F8RC register class argument in: 2091 /// 2092 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 2093 /// 2094 /// When Unnamed is false, return the type of a named DAG operand such as the 2095 /// GPR:$src operand above. 2096 /// 2097 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 2098 bool NotRegisters, 2099 bool Unnamed, 2100 TreePattern &TP) { 2101 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2102 2103 // Check to see if this is a register operand. 2104 if (R->isSubClassOf("RegisterOperand")) { 2105 assert(ResNo == 0 && "Regoperand ref only has one result!"); 2106 if (NotRegisters) 2107 return TypeSetByHwMode(); // Unknown. 2108 Record *RegClass = R->getValueAsDef("RegClass"); 2109 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2110 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 2111 } 2112 2113 // Check to see if this is a register or a register class. 2114 if (R->isSubClassOf("RegisterClass")) { 2115 assert(ResNo == 0 && "Regclass ref only has one result!"); 2116 // An unnamed register class represents itself as an i32 immediate, for 2117 // example on a COPY_TO_REGCLASS instruction. 2118 if (Unnamed) 2119 return TypeSetByHwMode(MVT::i32); 2120 2121 // In a named operand, the register class provides the possible set of 2122 // types. 2123 if (NotRegisters) 2124 return TypeSetByHwMode(); // Unknown. 2125 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2126 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 2127 } 2128 2129 if (R->isSubClassOf("PatFrags")) { 2130 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 2131 // Pattern fragment types will be resolved when they are inlined. 2132 return TypeSetByHwMode(); // Unknown. 2133 } 2134 2135 if (R->isSubClassOf("Register")) { 2136 assert(ResNo == 0 && "Registers only produce one result!"); 2137 if (NotRegisters) 2138 return TypeSetByHwMode(); // Unknown. 2139 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 2140 return TypeSetByHwMode(T.getRegisterVTs(R)); 2141 } 2142 2143 if (R->isSubClassOf("SubRegIndex")) { 2144 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 2145 return TypeSetByHwMode(MVT::i32); 2146 } 2147 2148 if (R->isSubClassOf("ValueType")) { 2149 assert(ResNo == 0 && "This node only has one result!"); 2150 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 2151 // 2152 // (sext_inreg GPR:$src, i16) 2153 // ~~~ 2154 if (Unnamed) 2155 return TypeSetByHwMode(MVT::Other); 2156 // With a name, the ValueType simply provides the type of the named 2157 // variable. 2158 // 2159 // (sext_inreg i32:$src, i16) 2160 // ~~~~~~~~ 2161 if (NotRegisters) 2162 return TypeSetByHwMode(); // Unknown. 2163 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2164 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 2165 } 2166 2167 if (R->isSubClassOf("CondCode")) { 2168 assert(ResNo == 0 && "This node only has one result!"); 2169 // Using a CondCodeSDNode. 2170 return TypeSetByHwMode(MVT::Other); 2171 } 2172 2173 if (R->isSubClassOf("ComplexPattern")) { 2174 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2175 if (NotRegisters) 2176 return TypeSetByHwMode(); // Unknown. 2177 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2178 } 2179 if (R->isSubClassOf("PointerLikeRegClass")) { 2180 assert(ResNo == 0 && "Regclass can only have one result!"); 2181 TypeSetByHwMode VTS(MVT::iPTR); 2182 TP.getInfer().expandOverloads(VTS); 2183 return VTS; 2184 } 2185 2186 if (R->getName() == "node" || R->getName() == "srcvalue" || 2187 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" || 2188 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") { 2189 // Placeholder. 2190 return TypeSetByHwMode(); // Unknown. 2191 } 2192 2193 if (R->isSubClassOf("Operand")) { 2194 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2195 Record *T = R->getValueAsDef("Type"); 2196 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2197 } 2198 2199 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2200 return TypeSetByHwMode(MVT::Other); 2201 } 2202 2203 2204 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2205 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2206 const CodeGenIntrinsic *TreePatternNode:: 2207 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2208 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2209 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2210 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2211 return nullptr; 2212 2213 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2214 return &CDP.getIntrinsicInfo(IID); 2215 } 2216 2217 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2218 /// return the ComplexPattern information, otherwise return null. 2219 const ComplexPattern * 2220 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2221 Record *Rec; 2222 if (isLeaf()) { 2223 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2224 if (!DI) 2225 return nullptr; 2226 Rec = DI->getDef(); 2227 } else 2228 Rec = getOperator(); 2229 2230 if (!Rec->isSubClassOf("ComplexPattern")) 2231 return nullptr; 2232 return &CGP.getComplexPattern(Rec); 2233 } 2234 2235 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2236 // A ComplexPattern specifically declares how many results it fills in. 2237 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2238 return CP->getNumOperands(); 2239 2240 // If MIOperandInfo is specified, that gives the count. 2241 if (isLeaf()) { 2242 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2243 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2244 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2245 if (MIOps->getNumArgs()) 2246 return MIOps->getNumArgs(); 2247 } 2248 } 2249 2250 // Otherwise there is just one result. 2251 return 1; 2252 } 2253 2254 /// NodeHasProperty - Return true if this node has the specified property. 2255 bool TreePatternNode::NodeHasProperty(SDNP Property, 2256 const CodeGenDAGPatterns &CGP) const { 2257 if (isLeaf()) { 2258 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2259 return CP->hasProperty(Property); 2260 2261 return false; 2262 } 2263 2264 if (Property != SDNPHasChain) { 2265 // The chain proprety is already present on the different intrinsic node 2266 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2267 // on the intrinsic. Anything else is specific to the individual intrinsic. 2268 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2269 return Int->hasProperty(Property); 2270 } 2271 2272 if (!Operator->isSubClassOf("SDPatternOperator")) 2273 return false; 2274 2275 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2276 } 2277 2278 2279 2280 2281 /// TreeHasProperty - Return true if any node in this tree has the specified 2282 /// property. 2283 bool TreePatternNode::TreeHasProperty(SDNP Property, 2284 const CodeGenDAGPatterns &CGP) const { 2285 if (NodeHasProperty(Property, CGP)) 2286 return true; 2287 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2288 if (getChild(i)->TreeHasProperty(Property, CGP)) 2289 return true; 2290 return false; 2291 } 2292 2293 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2294 /// commutative intrinsic. 2295 bool 2296 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2297 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2298 return Int->isCommutative; 2299 return false; 2300 } 2301 2302 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2303 if (!N->isLeaf()) 2304 return N->getOperator()->isSubClassOf(Class); 2305 2306 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2307 if (DI && DI->getDef()->isSubClassOf(Class)) 2308 return true; 2309 2310 return false; 2311 } 2312 2313 static void emitTooManyOperandsError(TreePattern &TP, 2314 StringRef InstName, 2315 unsigned Expected, 2316 unsigned Actual) { 2317 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2318 " operands but expected only " + Twine(Expected) + "!"); 2319 } 2320 2321 static void emitTooFewOperandsError(TreePattern &TP, 2322 StringRef InstName, 2323 unsigned Actual) { 2324 TP.error("Instruction '" + InstName + 2325 "' expects more than the provided " + Twine(Actual) + " operands!"); 2326 } 2327 2328 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2329 /// this node and its children in the tree. This returns true if it makes a 2330 /// change, false otherwise. If a type contradiction is found, flag an error. 2331 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2332 if (TP.hasError()) 2333 return false; 2334 2335 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2336 if (isLeaf()) { 2337 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2338 // If it's a regclass or something else known, include the type. 2339 bool MadeChange = false; 2340 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2341 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2342 NotRegisters, 2343 !hasName(), TP), TP); 2344 return MadeChange; 2345 } 2346 2347 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2348 assert(Types.size() == 1 && "Invalid IntInit"); 2349 2350 // Int inits are always integers. :) 2351 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2352 2353 if (!TP.getInfer().isConcrete(Types[0], false)) 2354 return MadeChange; 2355 2356 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2357 for (auto &P : VVT) { 2358 MVT::SimpleValueType VT = P.second.SimpleTy; 2359 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2360 continue; 2361 unsigned Size = MVT(VT).getSizeInBits(); 2362 // Make sure that the value is representable for this type. 2363 if (Size >= 32) 2364 continue; 2365 // Check that the value doesn't use more bits than we have. It must 2366 // either be a sign- or zero-extended equivalent of the original. 2367 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2368 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2369 SignBitAndAbove == 1) 2370 continue; 2371 2372 TP.error("Integer value '" + Twine(II->getValue()) + 2373 "' is out of range for type '" + getEnumName(VT) + "'!"); 2374 break; 2375 } 2376 return MadeChange; 2377 } 2378 2379 return false; 2380 } 2381 2382 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2383 bool MadeChange = false; 2384 2385 // Apply the result type to the node. 2386 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2387 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2388 2389 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2390 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2391 2392 if (getNumChildren() != NumParamVTs + 1) { 2393 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2394 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2395 return false; 2396 } 2397 2398 // Apply type info to the intrinsic ID. 2399 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2400 2401 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2402 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2403 2404 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2405 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2406 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2407 } 2408 return MadeChange; 2409 } 2410 2411 if (getOperator()->isSubClassOf("SDNode")) { 2412 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2413 2414 // Check that the number of operands is sane. Negative operands -> varargs. 2415 if (NI.getNumOperands() >= 0 && 2416 getNumChildren() != (unsigned)NI.getNumOperands()) { 2417 TP.error(getOperator()->getName() + " node requires exactly " + 2418 Twine(NI.getNumOperands()) + " operands!"); 2419 return false; 2420 } 2421 2422 bool MadeChange = false; 2423 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2424 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2425 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2426 return MadeChange; 2427 } 2428 2429 if (getOperator()->isSubClassOf("Instruction")) { 2430 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2431 CodeGenInstruction &InstInfo = 2432 CDP.getTargetInfo().getInstruction(getOperator()); 2433 2434 bool MadeChange = false; 2435 2436 // Apply the result types to the node, these come from the things in the 2437 // (outs) list of the instruction. 2438 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2439 Inst.getNumResults()); 2440 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2441 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2442 2443 // If the instruction has implicit defs, we apply the first one as a result. 2444 // FIXME: This sucks, it should apply all implicit defs. 2445 if (!InstInfo.ImplicitDefs.empty()) { 2446 unsigned ResNo = NumResultsToAdd; 2447 2448 // FIXME: Generalize to multiple possible types and multiple possible 2449 // ImplicitDefs. 2450 MVT::SimpleValueType VT = 2451 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2452 2453 if (VT != MVT::Other) 2454 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2455 } 2456 2457 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2458 // be the same. 2459 if (getOperator()->getName() == "INSERT_SUBREG") { 2460 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2461 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2462 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2463 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2464 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2465 // variadic. 2466 2467 unsigned NChild = getNumChildren(); 2468 if (NChild < 3) { 2469 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2470 return false; 2471 } 2472 2473 if (NChild % 2 == 0) { 2474 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2475 return false; 2476 } 2477 2478 if (!isOperandClass(getChild(0), "RegisterClass")) { 2479 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2480 return false; 2481 } 2482 2483 for (unsigned I = 1; I < NChild; I += 2) { 2484 TreePatternNode *SubIdxChild = getChild(I + 1); 2485 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2486 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2487 Twine(I + 1) + "!"); 2488 return false; 2489 } 2490 } 2491 } 2492 2493 // If one or more operands with a default value appear at the end of the 2494 // formal operand list for an instruction, we allow them to be overridden 2495 // by optional operands provided in the pattern. 2496 // 2497 // But if an operand B without a default appears at any point after an 2498 // operand A with a default, then we don't allow A to be overridden, 2499 // because there would be no way to specify whether the next operand in 2500 // the pattern was intended to override A or skip it. 2501 unsigned NonOverridableOperands = Inst.getNumOperands(); 2502 while (NonOverridableOperands > 0 && 2503 CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1))) 2504 --NonOverridableOperands; 2505 2506 unsigned ChildNo = 0; 2507 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2508 Record *OperandNode = Inst.getOperand(i); 2509 2510 // If the operand has a default value, do we use it? We must use the 2511 // default if we've run out of children of the pattern DAG to consume, 2512 // or if the operand is followed by a non-defaulted one. 2513 if (CDP.operandHasDefault(OperandNode) && 2514 (i < NonOverridableOperands || ChildNo >= getNumChildren())) 2515 continue; 2516 2517 // If we have run out of child nodes and there _isn't_ a default 2518 // value we can use for the next operand, give an error. 2519 if (ChildNo >= getNumChildren()) { 2520 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2521 return false; 2522 } 2523 2524 TreePatternNode *Child = getChild(ChildNo++); 2525 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2526 2527 // If the operand has sub-operands, they may be provided by distinct 2528 // child patterns, so attempt to match each sub-operand separately. 2529 if (OperandNode->isSubClassOf("Operand")) { 2530 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2531 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2532 // But don't do that if the whole operand is being provided by 2533 // a single ComplexPattern-related Operand. 2534 2535 if (Child->getNumMIResults(CDP) < NumArgs) { 2536 // Match first sub-operand against the child we already have. 2537 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2538 MadeChange |= 2539 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2540 2541 // And the remaining sub-operands against subsequent children. 2542 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2543 if (ChildNo >= getNumChildren()) { 2544 emitTooFewOperandsError(TP, getOperator()->getName(), 2545 getNumChildren()); 2546 return false; 2547 } 2548 Child = getChild(ChildNo++); 2549 2550 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2551 MadeChange |= 2552 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2553 } 2554 continue; 2555 } 2556 } 2557 } 2558 2559 // If we didn't match by pieces above, attempt to match the whole 2560 // operand now. 2561 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2562 } 2563 2564 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2565 emitTooManyOperandsError(TP, getOperator()->getName(), 2566 ChildNo, getNumChildren()); 2567 return false; 2568 } 2569 2570 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2571 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2572 return MadeChange; 2573 } 2574 2575 if (getOperator()->isSubClassOf("ComplexPattern")) { 2576 bool MadeChange = false; 2577 2578 for (unsigned i = 0; i < getNumChildren(); ++i) 2579 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2580 2581 return MadeChange; 2582 } 2583 2584 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2585 2586 // Node transforms always take one operand. 2587 if (getNumChildren() != 1) { 2588 TP.error("Node transform '" + getOperator()->getName() + 2589 "' requires one operand!"); 2590 return false; 2591 } 2592 2593 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2594 return MadeChange; 2595 } 2596 2597 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2598 /// RHS of a commutative operation, not the on LHS. 2599 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2600 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2601 return true; 2602 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2603 return true; 2604 return false; 2605 } 2606 2607 2608 /// canPatternMatch - If it is impossible for this pattern to match on this 2609 /// target, fill in Reason and return false. Otherwise, return true. This is 2610 /// used as a sanity check for .td files (to prevent people from writing stuff 2611 /// that can never possibly work), and to prevent the pattern permuter from 2612 /// generating stuff that is useless. 2613 bool TreePatternNode::canPatternMatch(std::string &Reason, 2614 const CodeGenDAGPatterns &CDP) { 2615 if (isLeaf()) return true; 2616 2617 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2618 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2619 return false; 2620 2621 // If this is an intrinsic, handle cases that would make it not match. For 2622 // example, if an operand is required to be an immediate. 2623 if (getOperator()->isSubClassOf("Intrinsic")) { 2624 // TODO: 2625 return true; 2626 } 2627 2628 if (getOperator()->isSubClassOf("ComplexPattern")) 2629 return true; 2630 2631 // If this node is a commutative operator, check that the LHS isn't an 2632 // immediate. 2633 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2634 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2635 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2636 // Scan all of the operands of the node and make sure that only the last one 2637 // is a constant node, unless the RHS also is. 2638 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2639 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2640 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2641 if (OnlyOnRHSOfCommutative(getChild(i))) { 2642 Reason="Immediate value must be on the RHS of commutative operators!"; 2643 return false; 2644 } 2645 } 2646 } 2647 2648 return true; 2649 } 2650 2651 //===----------------------------------------------------------------------===// 2652 // TreePattern implementation 2653 // 2654 2655 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2656 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2657 isInputPattern(isInput), HasError(false), 2658 Infer(*this) { 2659 for (Init *I : RawPat->getValues()) 2660 Trees.push_back(ParseTreePattern(I, "")); 2661 } 2662 2663 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2664 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2665 isInputPattern(isInput), HasError(false), 2666 Infer(*this) { 2667 Trees.push_back(ParseTreePattern(Pat, "")); 2668 } 2669 2670 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 2671 CodeGenDAGPatterns &cdp) 2672 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false), 2673 Infer(*this) { 2674 Trees.push_back(Pat); 2675 } 2676 2677 void TreePattern::error(const Twine &Msg) { 2678 if (HasError) 2679 return; 2680 dump(); 2681 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2682 HasError = true; 2683 } 2684 2685 void TreePattern::ComputeNamedNodes() { 2686 for (TreePatternNodePtr &Tree : Trees) 2687 ComputeNamedNodes(Tree.get()); 2688 } 2689 2690 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2691 if (!N->getName().empty()) 2692 NamedNodes[N->getName()].push_back(N); 2693 2694 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2695 ComputeNamedNodes(N->getChild(i)); 2696 } 2697 2698 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit, 2699 StringRef OpName) { 2700 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2701 Record *R = DI->getDef(); 2702 2703 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2704 // TreePatternNode of its own. For example: 2705 /// (foo GPR, imm) -> (foo GPR, (imm)) 2706 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags")) 2707 return ParseTreePattern( 2708 DagInit::get(DI, nullptr, 2709 std::vector<std::pair<Init*, StringInit*> >()), 2710 OpName); 2711 2712 // Input argument? 2713 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1); 2714 if (R->getName() == "node" && !OpName.empty()) { 2715 if (OpName.empty()) 2716 error("'node' argument requires a name to match with operand list"); 2717 Args.push_back(OpName); 2718 } 2719 2720 Res->setName(OpName); 2721 return Res; 2722 } 2723 2724 // ?:$name or just $name. 2725 if (isa<UnsetInit>(TheInit)) { 2726 if (OpName.empty()) 2727 error("'?' argument requires a name to match with operand list"); 2728 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1); 2729 Args.push_back(OpName); 2730 Res->setName(OpName); 2731 return Res; 2732 } 2733 2734 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) { 2735 if (!OpName.empty()) 2736 error("Constant int or bit argument should not have a name!"); 2737 if (isa<BitInit>(TheInit)) 2738 TheInit = TheInit->convertInitializerTo(IntRecTy::get()); 2739 return std::make_shared<TreePatternNode>(TheInit, 1); 2740 } 2741 2742 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2743 // Turn this into an IntInit. 2744 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2745 if (!II || !isa<IntInit>(II)) 2746 error("Bits value must be constants!"); 2747 return ParseTreePattern(II, OpName); 2748 } 2749 2750 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2751 if (!Dag) { 2752 TheInit->print(errs()); 2753 error("Pattern has unexpected init kind!"); 2754 } 2755 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2756 if (!OpDef) error("Pattern has unexpected operator type!"); 2757 Record *Operator = OpDef->getDef(); 2758 2759 if (Operator->isSubClassOf("ValueType")) { 2760 // If the operator is a ValueType, then this must be "type cast" of a leaf 2761 // node. 2762 if (Dag->getNumArgs() != 1) 2763 error("Type cast only takes one operand!"); 2764 2765 TreePatternNodePtr New = 2766 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0)); 2767 2768 // Apply the type cast. 2769 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2770 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2771 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2772 2773 if (!OpName.empty()) 2774 error("ValueType cast should not have a name!"); 2775 return New; 2776 } 2777 2778 // Verify that this is something that makes sense for an operator. 2779 if (!Operator->isSubClassOf("PatFrags") && 2780 !Operator->isSubClassOf("SDNode") && 2781 !Operator->isSubClassOf("Instruction") && 2782 !Operator->isSubClassOf("SDNodeXForm") && 2783 !Operator->isSubClassOf("Intrinsic") && 2784 !Operator->isSubClassOf("ComplexPattern") && 2785 Operator->getName() != "set" && 2786 Operator->getName() != "implicit") 2787 error("Unrecognized node '" + Operator->getName() + "'!"); 2788 2789 // Check to see if this is something that is illegal in an input pattern. 2790 if (isInputPattern) { 2791 if (Operator->isSubClassOf("Instruction") || 2792 Operator->isSubClassOf("SDNodeXForm")) 2793 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2794 } else { 2795 if (Operator->isSubClassOf("Intrinsic")) 2796 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2797 2798 if (Operator->isSubClassOf("SDNode") && 2799 Operator->getName() != "imm" && 2800 Operator->getName() != "timm" && 2801 Operator->getName() != "fpimm" && 2802 Operator->getName() != "tglobaltlsaddr" && 2803 Operator->getName() != "tconstpool" && 2804 Operator->getName() != "tjumptable" && 2805 Operator->getName() != "tframeindex" && 2806 Operator->getName() != "texternalsym" && 2807 Operator->getName() != "tblockaddress" && 2808 Operator->getName() != "tglobaladdr" && 2809 Operator->getName() != "bb" && 2810 Operator->getName() != "vt" && 2811 Operator->getName() != "mcsym") 2812 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2813 } 2814 2815 std::vector<TreePatternNodePtr> Children; 2816 2817 // Parse all the operands. 2818 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2819 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2820 2821 // Get the actual number of results before Operator is converted to an intrinsic 2822 // node (which is hard-coded to have either zero or one result). 2823 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2824 2825 // If the operator is an intrinsic, then this is just syntactic sugar for 2826 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2827 // convert the intrinsic name to a number. 2828 if (Operator->isSubClassOf("Intrinsic")) { 2829 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2830 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2831 2832 // If this intrinsic returns void, it must have side-effects and thus a 2833 // chain. 2834 if (Int.IS.RetVTs.empty()) 2835 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2836 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects) 2837 // Has side-effects, requires chain. 2838 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2839 else // Otherwise, no chain. 2840 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2841 2842 Children.insert(Children.begin(), 2843 std::make_shared<TreePatternNode>(IntInit::get(IID), 1)); 2844 } 2845 2846 if (Operator->isSubClassOf("ComplexPattern")) { 2847 for (unsigned i = 0; i < Children.size(); ++i) { 2848 TreePatternNodePtr Child = Children[i]; 2849 2850 if (Child->getName().empty()) 2851 error("All arguments to a ComplexPattern must be named"); 2852 2853 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2854 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2855 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2856 auto OperandId = std::make_pair(Operator, i); 2857 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2858 if (PrevOp != ComplexPatternOperands.end()) { 2859 if (PrevOp->getValue() != OperandId) 2860 error("All ComplexPattern operands must appear consistently: " 2861 "in the same order in just one ComplexPattern instance."); 2862 } else 2863 ComplexPatternOperands[Child->getName()] = OperandId; 2864 } 2865 } 2866 2867 TreePatternNodePtr Result = 2868 std::make_shared<TreePatternNode>(Operator, std::move(Children), 2869 NumResults); 2870 Result->setName(OpName); 2871 2872 if (Dag->getName()) { 2873 assert(Result->getName().empty()); 2874 Result->setName(Dag->getNameStr()); 2875 } 2876 return Result; 2877 } 2878 2879 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2880 /// will never match in favor of something obvious that will. This is here 2881 /// strictly as a convenience to target authors because it allows them to write 2882 /// more type generic things and have useless type casts fold away. 2883 /// 2884 /// This returns true if any change is made. 2885 static bool SimplifyTree(TreePatternNodePtr &N) { 2886 if (N->isLeaf()) 2887 return false; 2888 2889 // If we have a bitconvert with a resolved type and if the source and 2890 // destination types are the same, then the bitconvert is useless, remove it. 2891 if (N->getOperator()->getName() == "bitconvert" && 2892 N->getExtType(0).isValueTypeByHwMode(false) && 2893 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2894 N->getName().empty()) { 2895 N = N->getChildShared(0); 2896 SimplifyTree(N); 2897 return true; 2898 } 2899 2900 // Walk all children. 2901 bool MadeChange = false; 2902 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2903 TreePatternNodePtr Child = N->getChildShared(i); 2904 MadeChange |= SimplifyTree(Child); 2905 N->setChild(i, std::move(Child)); 2906 } 2907 return MadeChange; 2908 } 2909 2910 2911 2912 /// InferAllTypes - Infer/propagate as many types throughout the expression 2913 /// patterns as possible. Return true if all types are inferred, false 2914 /// otherwise. Flags an error if a type contradiction is found. 2915 bool TreePattern:: 2916 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2917 if (NamedNodes.empty()) 2918 ComputeNamedNodes(); 2919 2920 bool MadeChange = true; 2921 while (MadeChange) { 2922 MadeChange = false; 2923 for (TreePatternNodePtr &Tree : Trees) { 2924 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2925 MadeChange |= SimplifyTree(Tree); 2926 } 2927 2928 // If there are constraints on our named nodes, apply them. 2929 for (auto &Entry : NamedNodes) { 2930 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2931 2932 // If we have input named node types, propagate their types to the named 2933 // values here. 2934 if (InNamedTypes) { 2935 if (!InNamedTypes->count(Entry.getKey())) { 2936 error("Node '" + std::string(Entry.getKey()) + 2937 "' in output pattern but not input pattern"); 2938 return true; 2939 } 2940 2941 const SmallVectorImpl<TreePatternNode*> &InNodes = 2942 InNamedTypes->find(Entry.getKey())->second; 2943 2944 // The input types should be fully resolved by now. 2945 for (TreePatternNode *Node : Nodes) { 2946 // If this node is a register class, and it is the root of the pattern 2947 // then we're mapping something onto an input register. We allow 2948 // changing the type of the input register in this case. This allows 2949 // us to match things like: 2950 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2951 if (Node == Trees[0].get() && Node->isLeaf()) { 2952 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2953 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2954 DI->getDef()->isSubClassOf("RegisterOperand"))) 2955 continue; 2956 } 2957 2958 assert(Node->getNumTypes() == 1 && 2959 InNodes[0]->getNumTypes() == 1 && 2960 "FIXME: cannot name multiple result nodes yet"); 2961 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2962 *this); 2963 } 2964 } 2965 2966 // If there are multiple nodes with the same name, they must all have the 2967 // same type. 2968 if (Entry.second.size() > 1) { 2969 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2970 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2971 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2972 "FIXME: cannot name multiple result nodes yet"); 2973 2974 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2975 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2976 } 2977 } 2978 } 2979 } 2980 2981 bool HasUnresolvedTypes = false; 2982 for (const TreePatternNodePtr &Tree : Trees) 2983 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2984 return !HasUnresolvedTypes; 2985 } 2986 2987 void TreePattern::print(raw_ostream &OS) const { 2988 OS << getRecord()->getName(); 2989 if (!Args.empty()) { 2990 OS << "(" << Args[0]; 2991 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2992 OS << ", " << Args[i]; 2993 OS << ")"; 2994 } 2995 OS << ": "; 2996 2997 if (Trees.size() > 1) 2998 OS << "[\n"; 2999 for (const TreePatternNodePtr &Tree : Trees) { 3000 OS << "\t"; 3001 Tree->print(OS); 3002 OS << "\n"; 3003 } 3004 3005 if (Trees.size() > 1) 3006 OS << "]\n"; 3007 } 3008 3009 void TreePattern::dump() const { print(errs()); } 3010 3011 //===----------------------------------------------------------------------===// 3012 // CodeGenDAGPatterns implementation 3013 // 3014 3015 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 3016 PatternRewriterFn PatternRewriter) 3017 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 3018 PatternRewriter(PatternRewriter) { 3019 3020 Intrinsics = CodeGenIntrinsicTable(Records, false); 3021 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 3022 ParseNodeInfo(); 3023 ParseNodeTransforms(); 3024 ParseComplexPatterns(); 3025 ParsePatternFragments(); 3026 ParseDefaultOperands(); 3027 ParseInstructions(); 3028 ParsePatternFragments(/*OutFrags*/true); 3029 ParsePatterns(); 3030 3031 // Break patterns with parameterized types into a series of patterns, 3032 // where each one has a fixed type and is predicated on the conditions 3033 // of the associated HW mode. 3034 ExpandHwModeBasedTypes(); 3035 3036 // Generate variants. For example, commutative patterns can match 3037 // multiple ways. Add them to PatternsToMatch as well. 3038 GenerateVariants(); 3039 3040 // Infer instruction flags. For example, we can detect loads, 3041 // stores, and side effects in many cases by examining an 3042 // instruction's pattern. 3043 InferInstructionFlags(); 3044 3045 // Verify that instruction flags match the patterns. 3046 VerifyInstructionFlags(); 3047 } 3048 3049 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 3050 Record *N = Records.getDef(Name); 3051 if (!N || !N->isSubClassOf("SDNode")) 3052 PrintFatalError("Error getting SDNode '" + Name + "'!"); 3053 3054 return N; 3055 } 3056 3057 // Parse all of the SDNode definitions for the target, populating SDNodes. 3058 void CodeGenDAGPatterns::ParseNodeInfo() { 3059 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 3060 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 3061 3062 while (!Nodes.empty()) { 3063 Record *R = Nodes.back(); 3064 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 3065 Nodes.pop_back(); 3066 } 3067 3068 // Get the builtin intrinsic nodes. 3069 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 3070 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 3071 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 3072 } 3073 3074 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 3075 /// map, and emit them to the file as functions. 3076 void CodeGenDAGPatterns::ParseNodeTransforms() { 3077 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 3078 while (!Xforms.empty()) { 3079 Record *XFormNode = Xforms.back(); 3080 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 3081 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 3082 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 3083 3084 Xforms.pop_back(); 3085 } 3086 } 3087 3088 void CodeGenDAGPatterns::ParseComplexPatterns() { 3089 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 3090 while (!AMs.empty()) { 3091 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 3092 AMs.pop_back(); 3093 } 3094 } 3095 3096 3097 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 3098 /// file, building up the PatternFragments map. After we've collected them all, 3099 /// inline fragments together as necessary, so that there are no references left 3100 /// inside a pattern fragment to a pattern fragment. 3101 /// 3102 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 3103 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags"); 3104 3105 // First step, parse all of the fragments. 3106 for (Record *Frag : Fragments) { 3107 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3108 continue; 3109 3110 ListInit *LI = Frag->getValueAsListInit("Fragments"); 3111 TreePattern *P = 3112 (PatternFragments[Frag] = std::make_unique<TreePattern>( 3113 Frag, LI, !Frag->isSubClassOf("OutPatFrag"), 3114 *this)).get(); 3115 3116 // Validate the argument list, converting it to set, to discard duplicates. 3117 std::vector<std::string> &Args = P->getArgList(); 3118 // Copy the args so we can take StringRefs to them. 3119 auto ArgsCopy = Args; 3120 SmallDenseSet<StringRef, 4> OperandsSet; 3121 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 3122 3123 if (OperandsSet.count("")) 3124 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 3125 3126 // Parse the operands list. 3127 DagInit *OpsList = Frag->getValueAsDag("Operands"); 3128 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 3129 // Special cases: ops == outs == ins. Different names are used to 3130 // improve readability. 3131 if (!OpsOp || 3132 (OpsOp->getDef()->getName() != "ops" && 3133 OpsOp->getDef()->getName() != "outs" && 3134 OpsOp->getDef()->getName() != "ins")) 3135 P->error("Operands list should start with '(ops ... '!"); 3136 3137 // Copy over the arguments. 3138 Args.clear(); 3139 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 3140 if (!isa<DefInit>(OpsList->getArg(j)) || 3141 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 3142 P->error("Operands list should all be 'node' values."); 3143 if (!OpsList->getArgName(j)) 3144 P->error("Operands list should have names for each operand!"); 3145 StringRef ArgNameStr = OpsList->getArgNameStr(j); 3146 if (!OperandsSet.count(ArgNameStr)) 3147 P->error("'" + ArgNameStr + 3148 "' does not occur in pattern or was multiply specified!"); 3149 OperandsSet.erase(ArgNameStr); 3150 Args.push_back(ArgNameStr); 3151 } 3152 3153 if (!OperandsSet.empty()) 3154 P->error("Operands list does not contain an entry for operand '" + 3155 *OperandsSet.begin() + "'!"); 3156 3157 // If there is a node transformation corresponding to this, keep track of 3158 // it. 3159 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3160 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3161 for (auto T : P->getTrees()) 3162 T->setTransformFn(Transform); 3163 } 3164 3165 // Now that we've parsed all of the tree fragments, do a closure on them so 3166 // that there are not references to PatFrags left inside of them. 3167 for (Record *Frag : Fragments) { 3168 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3169 continue; 3170 3171 TreePattern &ThePat = *PatternFragments[Frag]; 3172 ThePat.InlinePatternFragments(); 3173 3174 // Infer as many types as possible. Don't worry about it if we don't infer 3175 // all of them, some may depend on the inputs of the pattern. Also, don't 3176 // validate type sets; validation may cause spurious failures e.g. if a 3177 // fragment needs floating-point types but the current target does not have 3178 // any (this is only an error if that fragment is ever used!). 3179 { 3180 TypeInfer::SuppressValidation SV(ThePat.getInfer()); 3181 ThePat.InferAllTypes(); 3182 ThePat.resetError(); 3183 } 3184 3185 // If debugging, print out the pattern fragment result. 3186 LLVM_DEBUG(ThePat.dump()); 3187 } 3188 } 3189 3190 void CodeGenDAGPatterns::ParseDefaultOperands() { 3191 std::vector<Record*> DefaultOps; 3192 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3193 3194 // Find some SDNode. 3195 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3196 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3197 3198 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3199 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3200 3201 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3202 // SomeSDnode so that we can parse this. 3203 std::vector<std::pair<Init*, StringInit*> > Ops; 3204 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3205 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3206 DefaultInfo->getArgName(op))); 3207 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3208 3209 // Create a TreePattern to parse this. 3210 TreePattern P(DefaultOps[i], DI, false, *this); 3211 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3212 3213 // Copy the operands over into a DAGDefaultOperand. 3214 DAGDefaultOperand DefaultOpInfo; 3215 3216 const TreePatternNodePtr &T = P.getTree(0); 3217 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3218 TreePatternNodePtr TPN = T->getChildShared(op); 3219 while (TPN->ApplyTypeConstraints(P, false)) 3220 /* Resolve all types */; 3221 3222 if (TPN->ContainsUnresolvedType(P)) { 3223 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3224 DefaultOps[i]->getName() + 3225 "' doesn't have a concrete type!"); 3226 } 3227 DefaultOpInfo.DefaultOps.push_back(std::move(TPN)); 3228 } 3229 3230 // Insert it into the DefaultOperands map so we can find it later. 3231 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3232 } 3233 } 3234 3235 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3236 /// instruction input. Return true if this is a real use. 3237 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat, 3238 std::map<std::string, TreePatternNodePtr> &InstInputs) { 3239 // No name -> not interesting. 3240 if (Pat->getName().empty()) { 3241 if (Pat->isLeaf()) { 3242 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3243 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3244 DI->getDef()->isSubClassOf("RegisterOperand"))) 3245 I.error("Input " + DI->getDef()->getName() + " must be named!"); 3246 } 3247 return false; 3248 } 3249 3250 Record *Rec; 3251 if (Pat->isLeaf()) { 3252 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3253 if (!DI) 3254 I.error("Input $" + Pat->getName() + " must be an identifier!"); 3255 Rec = DI->getDef(); 3256 } else { 3257 Rec = Pat->getOperator(); 3258 } 3259 3260 // SRCVALUE nodes are ignored. 3261 if (Rec->getName() == "srcvalue") 3262 return false; 3263 3264 TreePatternNodePtr &Slot = InstInputs[Pat->getName()]; 3265 if (!Slot) { 3266 Slot = Pat; 3267 return true; 3268 } 3269 Record *SlotRec; 3270 if (Slot->isLeaf()) { 3271 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3272 } else { 3273 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3274 SlotRec = Slot->getOperator(); 3275 } 3276 3277 // Ensure that the inputs agree if we've already seen this input. 3278 if (Rec != SlotRec) 3279 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3280 // Ensure that the types can agree as well. 3281 Slot->UpdateNodeType(0, Pat->getExtType(0), I); 3282 Pat->UpdateNodeType(0, Slot->getExtType(0), I); 3283 if (Slot->getExtTypes() != Pat->getExtTypes()) 3284 I.error("All $" + Pat->getName() + " inputs must agree with each other"); 3285 return true; 3286 } 3287 3288 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3289 /// part of "I", the instruction), computing the set of inputs and outputs of 3290 /// the pattern. Report errors if we see anything naughty. 3291 void CodeGenDAGPatterns::FindPatternInputsAndOutputs( 3292 TreePattern &I, TreePatternNodePtr Pat, 3293 std::map<std::string, TreePatternNodePtr> &InstInputs, 3294 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3295 &InstResults, 3296 std::vector<Record *> &InstImpResults) { 3297 3298 // The instruction pattern still has unresolved fragments. For *named* 3299 // nodes we must resolve those here. This may not result in multiple 3300 // alternatives. 3301 if (!Pat->getName().empty()) { 3302 TreePattern SrcPattern(I.getRecord(), Pat, true, *this); 3303 SrcPattern.InlinePatternFragments(); 3304 SrcPattern.InferAllTypes(); 3305 Pat = SrcPattern.getOnlyTree(); 3306 } 3307 3308 if (Pat->isLeaf()) { 3309 bool isUse = HandleUse(I, Pat, InstInputs); 3310 if (!isUse && Pat->getTransformFn()) 3311 I.error("Cannot specify a transform function for a non-input value!"); 3312 return; 3313 } 3314 3315 if (Pat->getOperator()->getName() == "implicit") { 3316 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3317 TreePatternNode *Dest = Pat->getChild(i); 3318 if (!Dest->isLeaf()) 3319 I.error("implicitly defined value should be a register!"); 3320 3321 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3322 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3323 I.error("implicitly defined value should be a register!"); 3324 InstImpResults.push_back(Val->getDef()); 3325 } 3326 return; 3327 } 3328 3329 if (Pat->getOperator()->getName() != "set") { 3330 // If this is not a set, verify that the children nodes are not void typed, 3331 // and recurse. 3332 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3333 if (Pat->getChild(i)->getNumTypes() == 0) 3334 I.error("Cannot have void nodes inside of patterns!"); 3335 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs, 3336 InstResults, InstImpResults); 3337 } 3338 3339 // If this is a non-leaf node with no children, treat it basically as if 3340 // it were a leaf. This handles nodes like (imm). 3341 bool isUse = HandleUse(I, Pat, InstInputs); 3342 3343 if (!isUse && Pat->getTransformFn()) 3344 I.error("Cannot specify a transform function for a non-input value!"); 3345 return; 3346 } 3347 3348 // Otherwise, this is a set, validate and collect instruction results. 3349 if (Pat->getNumChildren() == 0) 3350 I.error("set requires operands!"); 3351 3352 if (Pat->getTransformFn()) 3353 I.error("Cannot specify a transform function on a set node!"); 3354 3355 // Check the set destinations. 3356 unsigned NumDests = Pat->getNumChildren()-1; 3357 for (unsigned i = 0; i != NumDests; ++i) { 3358 TreePatternNodePtr Dest = Pat->getChildShared(i); 3359 // For set destinations we also must resolve fragments here. 3360 TreePattern DestPattern(I.getRecord(), Dest, false, *this); 3361 DestPattern.InlinePatternFragments(); 3362 DestPattern.InferAllTypes(); 3363 Dest = DestPattern.getOnlyTree(); 3364 3365 if (!Dest->isLeaf()) 3366 I.error("set destination should be a register!"); 3367 3368 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3369 if (!Val) { 3370 I.error("set destination should be a register!"); 3371 continue; 3372 } 3373 3374 if (Val->getDef()->isSubClassOf("RegisterClass") || 3375 Val->getDef()->isSubClassOf("ValueType") || 3376 Val->getDef()->isSubClassOf("RegisterOperand") || 3377 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3378 if (Dest->getName().empty()) 3379 I.error("set destination must have a name!"); 3380 if (InstResults.count(Dest->getName())) 3381 I.error("cannot set '" + Dest->getName() + "' multiple times"); 3382 InstResults[Dest->getName()] = Dest; 3383 } else if (Val->getDef()->isSubClassOf("Register")) { 3384 InstImpResults.push_back(Val->getDef()); 3385 } else { 3386 I.error("set destination should be a register!"); 3387 } 3388 } 3389 3390 // Verify and collect info from the computation. 3391 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs, 3392 InstResults, InstImpResults); 3393 } 3394 3395 //===----------------------------------------------------------------------===// 3396 // Instruction Analysis 3397 //===----------------------------------------------------------------------===// 3398 3399 class InstAnalyzer { 3400 const CodeGenDAGPatterns &CDP; 3401 public: 3402 bool hasSideEffects; 3403 bool mayStore; 3404 bool mayLoad; 3405 bool isBitcast; 3406 bool isVariadic; 3407 bool hasChain; 3408 3409 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3410 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3411 isBitcast(false), isVariadic(false), hasChain(false) {} 3412 3413 void Analyze(const PatternToMatch &Pat) { 3414 const TreePatternNode *N = Pat.getSrcPattern(); 3415 AnalyzeNode(N); 3416 // These properties are detected only on the root node. 3417 isBitcast = IsNodeBitcast(N); 3418 } 3419 3420 private: 3421 bool IsNodeBitcast(const TreePatternNode *N) const { 3422 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3423 return false; 3424 3425 if (N->isLeaf()) 3426 return false; 3427 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf()) 3428 return false; 3429 3430 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 3431 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3432 return false; 3433 return OpInfo.getEnumName() == "ISD::BITCAST"; 3434 } 3435 3436 public: 3437 void AnalyzeNode(const TreePatternNode *N) { 3438 if (N->isLeaf()) { 3439 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3440 Record *LeafRec = DI->getDef(); 3441 // Handle ComplexPattern leaves. 3442 if (LeafRec->isSubClassOf("ComplexPattern")) { 3443 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3444 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3445 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3446 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3447 } 3448 } 3449 return; 3450 } 3451 3452 // Analyze children. 3453 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3454 AnalyzeNode(N->getChild(i)); 3455 3456 // Notice properties of the node. 3457 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3458 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3459 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3460 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3461 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true; 3462 3463 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3464 // If this is an intrinsic, analyze it. 3465 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3466 mayLoad = true;// These may load memory. 3467 3468 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3469 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3470 3471 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3472 IntInfo->hasSideEffects) 3473 // ReadWriteMem intrinsics can have other strange effects. 3474 hasSideEffects = true; 3475 } 3476 } 3477 3478 }; 3479 3480 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3481 const InstAnalyzer &PatInfo, 3482 Record *PatDef) { 3483 bool Error = false; 3484 3485 // Remember where InstInfo got its flags. 3486 if (InstInfo.hasUndefFlags()) 3487 InstInfo.InferredFrom = PatDef; 3488 3489 // Check explicitly set flags for consistency. 3490 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3491 !InstInfo.hasSideEffects_Unset) { 3492 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3493 // the pattern has no side effects. That could be useful for div/rem 3494 // instructions that may trap. 3495 if (!InstInfo.hasSideEffects) { 3496 Error = true; 3497 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3498 Twine(InstInfo.hasSideEffects)); 3499 } 3500 } 3501 3502 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3503 Error = true; 3504 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3505 Twine(InstInfo.mayStore)); 3506 } 3507 3508 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3509 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3510 // Some targets translate immediates to loads. 3511 if (!InstInfo.mayLoad) { 3512 Error = true; 3513 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3514 Twine(InstInfo.mayLoad)); 3515 } 3516 } 3517 3518 // Transfer inferred flags. 3519 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3520 InstInfo.mayStore |= PatInfo.mayStore; 3521 InstInfo.mayLoad |= PatInfo.mayLoad; 3522 3523 // These flags are silently added without any verification. 3524 // FIXME: To match historical behavior of TableGen, for now add those flags 3525 // only when we're inferring from the primary instruction pattern. 3526 if (PatDef->isSubClassOf("Instruction")) { 3527 InstInfo.isBitcast |= PatInfo.isBitcast; 3528 InstInfo.hasChain |= PatInfo.hasChain; 3529 InstInfo.hasChain_Inferred = true; 3530 } 3531 3532 // Don't infer isVariadic. This flag means something different on SDNodes and 3533 // instructions. For example, a CALL SDNode is variadic because it has the 3534 // call arguments as operands, but a CALL instruction is not variadic - it 3535 // has argument registers as implicit, not explicit uses. 3536 3537 return Error; 3538 } 3539 3540 /// hasNullFragReference - Return true if the DAG has any reference to the 3541 /// null_frag operator. 3542 static bool hasNullFragReference(DagInit *DI) { 3543 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3544 if (!OpDef) return false; 3545 Record *Operator = OpDef->getDef(); 3546 3547 // If this is the null fragment, return true. 3548 if (Operator->getName() == "null_frag") return true; 3549 // If any of the arguments reference the null fragment, return true. 3550 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3551 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3552 if (Arg && hasNullFragReference(Arg)) 3553 return true; 3554 } 3555 3556 return false; 3557 } 3558 3559 /// hasNullFragReference - Return true if any DAG in the list references 3560 /// the null_frag operator. 3561 static bool hasNullFragReference(ListInit *LI) { 3562 for (Init *I : LI->getValues()) { 3563 DagInit *DI = dyn_cast<DagInit>(I); 3564 assert(DI && "non-dag in an instruction Pattern list?!"); 3565 if (hasNullFragReference(DI)) 3566 return true; 3567 } 3568 return false; 3569 } 3570 3571 /// Get all the instructions in a tree. 3572 static void 3573 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3574 if (Tree->isLeaf()) 3575 return; 3576 if (Tree->getOperator()->isSubClassOf("Instruction")) 3577 Instrs.push_back(Tree->getOperator()); 3578 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3579 getInstructionsInTree(Tree->getChild(i), Instrs); 3580 } 3581 3582 /// Check the class of a pattern leaf node against the instruction operand it 3583 /// represents. 3584 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3585 Record *Leaf) { 3586 if (OI.Rec == Leaf) 3587 return true; 3588 3589 // Allow direct value types to be used in instruction set patterns. 3590 // The type will be checked later. 3591 if (Leaf->isSubClassOf("ValueType")) 3592 return true; 3593 3594 // Patterns can also be ComplexPattern instances. 3595 if (Leaf->isSubClassOf("ComplexPattern")) 3596 return true; 3597 3598 return false; 3599 } 3600 3601 void CodeGenDAGPatterns::parseInstructionPattern( 3602 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3603 3604 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3605 3606 // Parse the instruction. 3607 TreePattern I(CGI.TheDef, Pat, true, *this); 3608 3609 // InstInputs - Keep track of all of the inputs of the instruction, along 3610 // with the record they are declared as. 3611 std::map<std::string, TreePatternNodePtr> InstInputs; 3612 3613 // InstResults - Keep track of all the virtual registers that are 'set' 3614 // in the instruction, including what reg class they are. 3615 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 3616 InstResults; 3617 3618 std::vector<Record*> InstImpResults; 3619 3620 // Verify that the top-level forms in the instruction are of void type, and 3621 // fill in the InstResults map. 3622 SmallString<32> TypesString; 3623 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) { 3624 TypesString.clear(); 3625 TreePatternNodePtr Pat = I.getTree(j); 3626 if (Pat->getNumTypes() != 0) { 3627 raw_svector_ostream OS(TypesString); 3628 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3629 if (k > 0) 3630 OS << ", "; 3631 Pat->getExtType(k).writeToStream(OS); 3632 } 3633 I.error("Top-level forms in instruction pattern should have" 3634 " void types, has types " + 3635 OS.str()); 3636 } 3637 3638 // Find inputs and outputs, and verify the structure of the uses/defs. 3639 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3640 InstImpResults); 3641 } 3642 3643 // Now that we have inputs and outputs of the pattern, inspect the operands 3644 // list for the instruction. This determines the order that operands are 3645 // added to the machine instruction the node corresponds to. 3646 unsigned NumResults = InstResults.size(); 3647 3648 // Parse the operands list from the (ops) list, validating it. 3649 assert(I.getArgList().empty() && "Args list should still be empty here!"); 3650 3651 // Check that all of the results occur first in the list. 3652 std::vector<Record*> Results; 3653 std::vector<unsigned> ResultIndices; 3654 SmallVector<TreePatternNodePtr, 2> ResNodes; 3655 for (unsigned i = 0; i != NumResults; ++i) { 3656 if (i == CGI.Operands.size()) { 3657 const std::string &OpName = 3658 std::find_if(InstResults.begin(), InstResults.end(), 3659 [](const std::pair<std::string, TreePatternNodePtr> &P) { 3660 return P.second; 3661 }) 3662 ->first; 3663 3664 I.error("'" + OpName + "' set but does not appear in operand list!"); 3665 } 3666 3667 const std::string &OpName = CGI.Operands[i].Name; 3668 3669 // Check that it exists in InstResults. 3670 auto InstResultIter = InstResults.find(OpName); 3671 if (InstResultIter == InstResults.end() || !InstResultIter->second) 3672 I.error("Operand $" + OpName + " does not exist in operand list!"); 3673 3674 TreePatternNodePtr RNode = InstResultIter->second; 3675 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3676 ResNodes.push_back(std::move(RNode)); 3677 if (!R) 3678 I.error("Operand $" + OpName + " should be a set destination: all " 3679 "outputs must occur before inputs in operand list!"); 3680 3681 if (!checkOperandClass(CGI.Operands[i], R)) 3682 I.error("Operand $" + OpName + " class mismatch!"); 3683 3684 // Remember the return type. 3685 Results.push_back(CGI.Operands[i].Rec); 3686 3687 // Remember the result index. 3688 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter)); 3689 3690 // Okay, this one checks out. 3691 InstResultIter->second = nullptr; 3692 } 3693 3694 // Loop over the inputs next. 3695 std::vector<TreePatternNodePtr> ResultNodeOperands; 3696 std::vector<Record*> Operands; 3697 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3698 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3699 const std::string &OpName = Op.Name; 3700 if (OpName.empty()) 3701 I.error("Operand #" + Twine(i) + " in operands list has no name!"); 3702 3703 if (!InstInputs.count(OpName)) { 3704 // If this is an operand with a DefaultOps set filled in, we can ignore 3705 // this. When we codegen it, we will do so as always executed. 3706 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3707 // Does it have a non-empty DefaultOps field? If so, ignore this 3708 // operand. 3709 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3710 continue; 3711 } 3712 I.error("Operand $" + OpName + 3713 " does not appear in the instruction pattern"); 3714 } 3715 TreePatternNodePtr InVal = InstInputs[OpName]; 3716 InstInputs.erase(OpName); // It occurred, remove from map. 3717 3718 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3719 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3720 if (!checkOperandClass(Op, InRec)) 3721 I.error("Operand $" + OpName + "'s register class disagrees" 3722 " between the operand and pattern"); 3723 } 3724 Operands.push_back(Op.Rec); 3725 3726 // Construct the result for the dest-pattern operand list. 3727 TreePatternNodePtr OpNode = InVal->clone(); 3728 3729 // No predicate is useful on the result. 3730 OpNode->clearPredicateCalls(); 3731 3732 // Promote the xform function to be an explicit node if set. 3733 if (Record *Xform = OpNode->getTransformFn()) { 3734 OpNode->setTransformFn(nullptr); 3735 std::vector<TreePatternNodePtr> Children; 3736 Children.push_back(OpNode); 3737 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children), 3738 OpNode->getNumTypes()); 3739 } 3740 3741 ResultNodeOperands.push_back(std::move(OpNode)); 3742 } 3743 3744 if (!InstInputs.empty()) 3745 I.error("Input operand $" + InstInputs.begin()->first + 3746 " occurs in pattern but not in operands list!"); 3747 3748 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>( 3749 I.getRecord(), std::move(ResultNodeOperands), 3750 GetNumNodeResults(I.getRecord(), *this)); 3751 // Copy fully inferred output node types to instruction result pattern. 3752 for (unsigned i = 0; i != NumResults; ++i) { 3753 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3754 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3755 ResultPattern->setResultIndex(i, ResultIndices[i]); 3756 } 3757 3758 // FIXME: Assume only the first tree is the pattern. The others are clobber 3759 // nodes. 3760 TreePatternNodePtr Pattern = I.getTree(0); 3761 TreePatternNodePtr SrcPattern; 3762 if (Pattern->getOperator()->getName() == "set") { 3763 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3764 } else{ 3765 // Not a set (store or something?) 3766 SrcPattern = Pattern; 3767 } 3768 3769 // Create and insert the instruction. 3770 // FIXME: InstImpResults should not be part of DAGInstruction. 3771 Record *R = I.getRecord(); 3772 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R), 3773 std::forward_as_tuple(Results, Operands, InstImpResults, 3774 SrcPattern, ResultPattern)); 3775 3776 LLVM_DEBUG(I.dump()); 3777 } 3778 3779 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3780 /// any fragments involved. This populates the Instructions list with fully 3781 /// resolved instructions. 3782 void CodeGenDAGPatterns::ParseInstructions() { 3783 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3784 3785 for (Record *Instr : Instrs) { 3786 ListInit *LI = nullptr; 3787 3788 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3789 LI = Instr->getValueAsListInit("Pattern"); 3790 3791 // If there is no pattern, only collect minimal information about the 3792 // instruction for its operand list. We have to assume that there is one 3793 // result, as we have no detailed info. A pattern which references the 3794 // null_frag operator is as-if no pattern were specified. Normally this 3795 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3796 // null_frag. 3797 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3798 std::vector<Record*> Results; 3799 std::vector<Record*> Operands; 3800 3801 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3802 3803 if (InstInfo.Operands.size() != 0) { 3804 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3805 Results.push_back(InstInfo.Operands[j].Rec); 3806 3807 // The rest are inputs. 3808 for (unsigned j = InstInfo.Operands.NumDefs, 3809 e = InstInfo.Operands.size(); j < e; ++j) 3810 Operands.push_back(InstInfo.Operands[j].Rec); 3811 } 3812 3813 // Create and insert the instruction. 3814 std::vector<Record*> ImpResults; 3815 Instructions.insert(std::make_pair(Instr, 3816 DAGInstruction(Results, Operands, ImpResults))); 3817 continue; // no pattern. 3818 } 3819 3820 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3821 parseInstructionPattern(CGI, LI, Instructions); 3822 } 3823 3824 // If we can, convert the instructions to be patterns that are matched! 3825 for (auto &Entry : Instructions) { 3826 Record *Instr = Entry.first; 3827 DAGInstruction &TheInst = Entry.second; 3828 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern(); 3829 TreePatternNodePtr ResultPattern = TheInst.getResultPattern(); 3830 3831 if (SrcPattern && ResultPattern) { 3832 TreePattern Pattern(Instr, SrcPattern, true, *this); 3833 TreePattern Result(Instr, ResultPattern, false, *this); 3834 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults()); 3835 } 3836 } 3837 } 3838 3839 typedef std::pair<TreePatternNode *, unsigned> NameRecord; 3840 3841 static void FindNames(TreePatternNode *P, 3842 std::map<std::string, NameRecord> &Names, 3843 TreePattern *PatternTop) { 3844 if (!P->getName().empty()) { 3845 NameRecord &Rec = Names[P->getName()]; 3846 // If this is the first instance of the name, remember the node. 3847 if (Rec.second++ == 0) 3848 Rec.first = P; 3849 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3850 PatternTop->error("repetition of value: $" + P->getName() + 3851 " where different uses have different types!"); 3852 } 3853 3854 if (!P->isLeaf()) { 3855 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3856 FindNames(P->getChild(i), Names, PatternTop); 3857 } 3858 } 3859 3860 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3861 std::vector<Predicate> Preds; 3862 for (Init *I : L->getValues()) { 3863 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3864 Preds.push_back(Pred->getDef()); 3865 else 3866 llvm_unreachable("Non-def on the list"); 3867 } 3868 3869 // Sort so that different orders get canonicalized to the same string. 3870 llvm::sort(Preds); 3871 return Preds; 3872 } 3873 3874 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3875 PatternToMatch &&PTM) { 3876 // Do some sanity checking on the pattern we're about to match. 3877 std::string Reason; 3878 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3879 PrintWarning(Pattern->getRecord()->getLoc(), 3880 Twine("Pattern can never match: ") + Reason); 3881 return; 3882 } 3883 3884 // If the source pattern's root is a complex pattern, that complex pattern 3885 // must specify the nodes it can potentially match. 3886 if (const ComplexPattern *CP = 3887 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3888 if (CP->getRootNodes().empty()) 3889 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3890 " could match"); 3891 3892 3893 // Find all of the named values in the input and output, ensure they have the 3894 // same type. 3895 std::map<std::string, NameRecord> SrcNames, DstNames; 3896 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3897 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3898 3899 // Scan all of the named values in the destination pattern, rejecting them if 3900 // they don't exist in the input pattern. 3901 for (const auto &Entry : DstNames) { 3902 if (SrcNames[Entry.first].first == nullptr) 3903 Pattern->error("Pattern has input without matching name in output: $" + 3904 Entry.first); 3905 } 3906 3907 // Scan all of the named values in the source pattern, rejecting them if the 3908 // name isn't used in the dest, and isn't used to tie two values together. 3909 for (const auto &Entry : SrcNames) 3910 if (DstNames[Entry.first].first == nullptr && 3911 SrcNames[Entry.first].second == 1) 3912 Pattern->error("Pattern has dead named input: $" + Entry.first); 3913 3914 PatternsToMatch.push_back(PTM); 3915 } 3916 3917 void CodeGenDAGPatterns::InferInstructionFlags() { 3918 ArrayRef<const CodeGenInstruction*> Instructions = 3919 Target.getInstructionsByEnumValue(); 3920 3921 unsigned Errors = 0; 3922 3923 // Try to infer flags from all patterns in PatternToMatch. These include 3924 // both the primary instruction patterns (which always come first) and 3925 // patterns defined outside the instruction. 3926 for (const PatternToMatch &PTM : ptms()) { 3927 // We can only infer from single-instruction patterns, otherwise we won't 3928 // know which instruction should get the flags. 3929 SmallVector<Record*, 8> PatInstrs; 3930 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3931 if (PatInstrs.size() != 1) 3932 continue; 3933 3934 // Get the single instruction. 3935 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3936 3937 // Only infer properties from the first pattern. We'll verify the others. 3938 if (InstInfo.InferredFrom) 3939 continue; 3940 3941 InstAnalyzer PatInfo(*this); 3942 PatInfo.Analyze(PTM); 3943 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3944 } 3945 3946 if (Errors) 3947 PrintFatalError("pattern conflicts"); 3948 3949 // If requested by the target, guess any undefined properties. 3950 if (Target.guessInstructionProperties()) { 3951 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3952 CodeGenInstruction *InstInfo = 3953 const_cast<CodeGenInstruction *>(Instructions[i]); 3954 if (InstInfo->InferredFrom) 3955 continue; 3956 // The mayLoad and mayStore flags default to false. 3957 // Conservatively assume hasSideEffects if it wasn't explicit. 3958 if (InstInfo->hasSideEffects_Unset) 3959 InstInfo->hasSideEffects = true; 3960 } 3961 return; 3962 } 3963 3964 // Complain about any flags that are still undefined. 3965 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3966 CodeGenInstruction *InstInfo = 3967 const_cast<CodeGenInstruction *>(Instructions[i]); 3968 if (InstInfo->InferredFrom) 3969 continue; 3970 if (InstInfo->hasSideEffects_Unset) 3971 PrintError(InstInfo->TheDef->getLoc(), 3972 "Can't infer hasSideEffects from patterns"); 3973 if (InstInfo->mayStore_Unset) 3974 PrintError(InstInfo->TheDef->getLoc(), 3975 "Can't infer mayStore from patterns"); 3976 if (InstInfo->mayLoad_Unset) 3977 PrintError(InstInfo->TheDef->getLoc(), 3978 "Can't infer mayLoad from patterns"); 3979 } 3980 } 3981 3982 3983 /// Verify instruction flags against pattern node properties. 3984 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3985 unsigned Errors = 0; 3986 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3987 const PatternToMatch &PTM = *I; 3988 SmallVector<Record*, 8> Instrs; 3989 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3990 if (Instrs.empty()) 3991 continue; 3992 3993 // Count the number of instructions with each flag set. 3994 unsigned NumSideEffects = 0; 3995 unsigned NumStores = 0; 3996 unsigned NumLoads = 0; 3997 for (const Record *Instr : Instrs) { 3998 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3999 NumSideEffects += InstInfo.hasSideEffects; 4000 NumStores += InstInfo.mayStore; 4001 NumLoads += InstInfo.mayLoad; 4002 } 4003 4004 // Analyze the source pattern. 4005 InstAnalyzer PatInfo(*this); 4006 PatInfo.Analyze(PTM); 4007 4008 // Collect error messages. 4009 SmallVector<std::string, 4> Msgs; 4010 4011 // Check for missing flags in the output. 4012 // Permit extra flags for now at least. 4013 if (PatInfo.hasSideEffects && !NumSideEffects) 4014 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 4015 4016 // Don't verify store flags on instructions with side effects. At least for 4017 // intrinsics, side effects implies mayStore. 4018 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 4019 Msgs.push_back("pattern may store, but mayStore isn't set"); 4020 4021 // Similarly, mayStore implies mayLoad on intrinsics. 4022 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 4023 Msgs.push_back("pattern may load, but mayLoad isn't set"); 4024 4025 // Print error messages. 4026 if (Msgs.empty()) 4027 continue; 4028 ++Errors; 4029 4030 for (const std::string &Msg : Msgs) 4031 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 4032 (Instrs.size() == 1 ? 4033 "instruction" : "output instructions")); 4034 // Provide the location of the relevant instruction definitions. 4035 for (const Record *Instr : Instrs) { 4036 if (Instr != PTM.getSrcRecord()) 4037 PrintError(Instr->getLoc(), "defined here"); 4038 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 4039 if (InstInfo.InferredFrom && 4040 InstInfo.InferredFrom != InstInfo.TheDef && 4041 InstInfo.InferredFrom != PTM.getSrcRecord()) 4042 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 4043 } 4044 } 4045 if (Errors) 4046 PrintFatalError("Errors in DAG patterns"); 4047 } 4048 4049 /// Given a pattern result with an unresolved type, see if we can find one 4050 /// instruction with an unresolved result type. Force this result type to an 4051 /// arbitrary element if it's possible types to converge results. 4052 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 4053 if (N->isLeaf()) 4054 return false; 4055 4056 // Analyze children. 4057 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4058 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 4059 return true; 4060 4061 if (!N->getOperator()->isSubClassOf("Instruction")) 4062 return false; 4063 4064 // If this type is already concrete or completely unknown we can't do 4065 // anything. 4066 TypeInfer &TI = TP.getInfer(); 4067 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 4068 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 4069 continue; 4070 4071 // Otherwise, force its type to an arbitrary choice. 4072 if (TI.forceArbitrary(N->getExtType(i))) 4073 return true; 4074 } 4075 4076 return false; 4077 } 4078 4079 // Promote xform function to be an explicit node wherever set. 4080 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) { 4081 if (Record *Xform = N->getTransformFn()) { 4082 N->setTransformFn(nullptr); 4083 std::vector<TreePatternNodePtr> Children; 4084 Children.push_back(PromoteXForms(N)); 4085 return std::make_shared<TreePatternNode>(Xform, std::move(Children), 4086 N->getNumTypes()); 4087 } 4088 4089 if (!N->isLeaf()) 4090 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4091 TreePatternNodePtr Child = N->getChildShared(i); 4092 N->setChild(i, PromoteXForms(Child)); 4093 } 4094 return N; 4095 } 4096 4097 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef, 4098 TreePattern &Pattern, TreePattern &Result, 4099 const std::vector<Record *> &InstImpResults) { 4100 4101 // Inline pattern fragments and expand multiple alternatives. 4102 Pattern.InlinePatternFragments(); 4103 Result.InlinePatternFragments(); 4104 4105 if (Result.getNumTrees() != 1) 4106 Result.error("Cannot use multi-alternative fragments in result pattern!"); 4107 4108 // Infer types. 4109 bool IterateInference; 4110 bool InferredAllPatternTypes, InferredAllResultTypes; 4111 do { 4112 // Infer as many types as possible. If we cannot infer all of them, we 4113 // can never do anything with this pattern: report it to the user. 4114 InferredAllPatternTypes = 4115 Pattern.InferAllTypes(&Pattern.getNamedNodesMap()); 4116 4117 // Infer as many types as possible. If we cannot infer all of them, we 4118 // can never do anything with this pattern: report it to the user. 4119 InferredAllResultTypes = 4120 Result.InferAllTypes(&Pattern.getNamedNodesMap()); 4121 4122 IterateInference = false; 4123 4124 // Apply the type of the result to the source pattern. This helps us 4125 // resolve cases where the input type is known to be a pointer type (which 4126 // is considered resolved), but the result knows it needs to be 32- or 4127 // 64-bits. Infer the other way for good measure. 4128 for (auto T : Pattern.getTrees()) 4129 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(), 4130 T->getNumTypes()); 4131 i != e; ++i) { 4132 IterateInference |= T->UpdateNodeType( 4133 i, Result.getOnlyTree()->getExtType(i), Result); 4134 IterateInference |= Result.getOnlyTree()->UpdateNodeType( 4135 i, T->getExtType(i), Result); 4136 } 4137 4138 // If our iteration has converged and the input pattern's types are fully 4139 // resolved but the result pattern is not fully resolved, we may have a 4140 // situation where we have two instructions in the result pattern and 4141 // the instructions require a common register class, but don't care about 4142 // what actual MVT is used. This is actually a bug in our modelling: 4143 // output patterns should have register classes, not MVTs. 4144 // 4145 // In any case, to handle this, we just go through and disambiguate some 4146 // arbitrary types to the result pattern's nodes. 4147 if (!IterateInference && InferredAllPatternTypes && 4148 !InferredAllResultTypes) 4149 IterateInference = 4150 ForceArbitraryInstResultType(Result.getTree(0).get(), Result); 4151 } while (IterateInference); 4152 4153 // Verify that we inferred enough types that we can do something with the 4154 // pattern and result. If these fire the user has to add type casts. 4155 if (!InferredAllPatternTypes) 4156 Pattern.error("Could not infer all types in pattern!"); 4157 if (!InferredAllResultTypes) { 4158 Pattern.dump(); 4159 Result.error("Could not infer all types in pattern result!"); 4160 } 4161 4162 // Promote xform function to be an explicit node wherever set. 4163 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree()); 4164 4165 TreePattern Temp(Result.getRecord(), DstShared, false, *this); 4166 Temp.InferAllTypes(); 4167 4168 ListInit *Preds = TheDef->getValueAsListInit("Predicates"); 4169 int Complexity = TheDef->getValueAsInt("AddedComplexity"); 4170 4171 if (PatternRewriter) 4172 PatternRewriter(&Pattern); 4173 4174 // A pattern may end up with an "impossible" type, i.e. a situation 4175 // where all types have been eliminated for some node in this pattern. 4176 // This could occur for intrinsics that only make sense for a specific 4177 // value type, and use a specific register class. If, for some mode, 4178 // that register class does not accept that type, the type inference 4179 // will lead to a contradiction, which is not an error however, but 4180 // a sign that this pattern will simply never match. 4181 if (Temp.getOnlyTree()->hasPossibleType()) 4182 for (auto T : Pattern.getTrees()) 4183 if (T->hasPossibleType()) 4184 AddPatternToMatch(&Pattern, 4185 PatternToMatch(TheDef, makePredList(Preds), 4186 T, Temp.getOnlyTree(), 4187 InstImpResults, Complexity, 4188 TheDef->getID())); 4189 } 4190 4191 void CodeGenDAGPatterns::ParsePatterns() { 4192 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 4193 4194 for (Record *CurPattern : Patterns) { 4195 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 4196 4197 // If the pattern references the null_frag, there's nothing to do. 4198 if (hasNullFragReference(Tree)) 4199 continue; 4200 4201 TreePattern Pattern(CurPattern, Tree, true, *this); 4202 4203 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 4204 if (LI->empty()) continue; // no pattern. 4205 4206 // Parse the instruction. 4207 TreePattern Result(CurPattern, LI, false, *this); 4208 4209 if (Result.getNumTrees() != 1) 4210 Result.error("Cannot handle instructions producing instructions " 4211 "with temporaries yet!"); 4212 4213 // Validate that the input pattern is correct. 4214 std::map<std::string, TreePatternNodePtr> InstInputs; 4215 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>> 4216 InstResults; 4217 std::vector<Record*> InstImpResults; 4218 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j) 4219 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs, 4220 InstResults, InstImpResults); 4221 4222 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults); 4223 } 4224 } 4225 4226 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4227 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4228 for (const auto &I : VTS) 4229 Modes.insert(I.first); 4230 4231 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4232 collectModes(Modes, N->getChild(i)); 4233 } 4234 4235 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4236 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4237 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4238 std::vector<PatternToMatch> Copy = PatternsToMatch; 4239 PatternsToMatch.clear(); 4240 4241 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) { 4242 TreePatternNodePtr NewSrc = P.SrcPattern->clone(); 4243 TreePatternNodePtr NewDst = P.DstPattern->clone(); 4244 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4245 return; 4246 } 4247 4248 std::vector<Predicate> Preds = P.Predicates; 4249 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4250 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4251 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc), 4252 std::move(NewDst), P.getDstRegs(), 4253 P.getAddedComplexity(), Record::getNewUID(), 4254 Mode); 4255 }; 4256 4257 for (PatternToMatch &P : Copy) { 4258 TreePatternNodePtr SrcP = nullptr, DstP = nullptr; 4259 if (P.SrcPattern->hasProperTypeByHwMode()) 4260 SrcP = P.SrcPattern; 4261 if (P.DstPattern->hasProperTypeByHwMode()) 4262 DstP = P.DstPattern; 4263 if (!SrcP && !DstP) { 4264 PatternsToMatch.push_back(P); 4265 continue; 4266 } 4267 4268 std::set<unsigned> Modes; 4269 if (SrcP) 4270 collectModes(Modes, SrcP.get()); 4271 if (DstP) 4272 collectModes(Modes, DstP.get()); 4273 4274 // The predicate for the default mode needs to be constructed for each 4275 // pattern separately. 4276 // Since not all modes must be present in each pattern, if a mode m is 4277 // absent, then there is no point in constructing a check for m. If such 4278 // a check was created, it would be equivalent to checking the default 4279 // mode, except not all modes' predicates would be a part of the checking 4280 // code. The subsequently generated check for the default mode would then 4281 // have the exact same patterns, but a different predicate code. To avoid 4282 // duplicated patterns with different predicate checks, construct the 4283 // default check as a negation of all predicates that are actually present 4284 // in the source/destination patterns. 4285 std::vector<Predicate> DefaultPred; 4286 4287 for (unsigned M : Modes) { 4288 if (M == DefaultMode) 4289 continue; 4290 if (ModeChecks.find(M) != ModeChecks.end()) 4291 continue; 4292 4293 // Fill the map entry for this mode. 4294 const HwMode &HM = CGH.getMode(M); 4295 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4296 4297 // Add negations of the HM's predicates to the default predicate. 4298 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4299 } 4300 4301 for (unsigned M : Modes) { 4302 if (M == DefaultMode) 4303 continue; 4304 AppendPattern(P, M); 4305 } 4306 4307 bool HasDefault = Modes.count(DefaultMode); 4308 if (HasDefault) 4309 AppendPattern(P, DefaultMode); 4310 } 4311 } 4312 4313 /// Dependent variable map for CodeGenDAGPattern variant generation 4314 typedef StringMap<int> DepVarMap; 4315 4316 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4317 if (N->isLeaf()) { 4318 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4319 DepMap[N->getName()]++; 4320 } else { 4321 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4322 FindDepVarsOf(N->getChild(i), DepMap); 4323 } 4324 } 4325 4326 /// Find dependent variables within child patterns 4327 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4328 DepVarMap depcounts; 4329 FindDepVarsOf(N, depcounts); 4330 for (const auto &Pair : depcounts) { 4331 if (Pair.getValue() > 1) 4332 DepVars.insert(Pair.getKey()); 4333 } 4334 } 4335 4336 #ifndef NDEBUG 4337 /// Dump the dependent variable set: 4338 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4339 if (DepVars.empty()) { 4340 LLVM_DEBUG(errs() << "<empty set>"); 4341 } else { 4342 LLVM_DEBUG(errs() << "[ "); 4343 for (const auto &DepVar : DepVars) { 4344 LLVM_DEBUG(errs() << DepVar.getKey() << " "); 4345 } 4346 LLVM_DEBUG(errs() << "]"); 4347 } 4348 } 4349 #endif 4350 4351 4352 /// CombineChildVariants - Given a bunch of permutations of each child of the 4353 /// 'operator' node, put them together in all possible ways. 4354 static void CombineChildVariants( 4355 TreePatternNodePtr Orig, 4356 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants, 4357 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP, 4358 const MultipleUseVarSet &DepVars) { 4359 // Make sure that each operand has at least one variant to choose from. 4360 for (const auto &Variants : ChildVariants) 4361 if (Variants.empty()) 4362 return; 4363 4364 // The end result is an all-pairs construction of the resultant pattern. 4365 std::vector<unsigned> Idxs; 4366 Idxs.resize(ChildVariants.size()); 4367 bool NotDone; 4368 do { 4369 #ifndef NDEBUG 4370 LLVM_DEBUG(if (!Idxs.empty()) { 4371 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4372 for (unsigned Idx : Idxs) { 4373 errs() << Idx << " "; 4374 } 4375 errs() << "]\n"; 4376 }); 4377 #endif 4378 // Create the variant and add it to the output list. 4379 std::vector<TreePatternNodePtr> NewChildren; 4380 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4381 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4382 TreePatternNodePtr R = std::make_shared<TreePatternNode>( 4383 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes()); 4384 4385 // Copy over properties. 4386 R->setName(Orig->getName()); 4387 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg()); 4388 R->setPredicateCalls(Orig->getPredicateCalls()); 4389 R->setTransformFn(Orig->getTransformFn()); 4390 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4391 R->setType(i, Orig->getExtType(i)); 4392 4393 // If this pattern cannot match, do not include it as a variant. 4394 std::string ErrString; 4395 // Scan to see if this pattern has already been emitted. We can get 4396 // duplication due to things like commuting: 4397 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4398 // which are the same pattern. Ignore the dups. 4399 if (R->canPatternMatch(ErrString, CDP) && 4400 none_of(OutVariants, [&](TreePatternNodePtr Variant) { 4401 return R->isIsomorphicTo(Variant.get(), DepVars); 4402 })) 4403 OutVariants.push_back(R); 4404 4405 // Increment indices to the next permutation by incrementing the 4406 // indices from last index backward, e.g., generate the sequence 4407 // [0, 0], [0, 1], [1, 0], [1, 1]. 4408 int IdxsIdx; 4409 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4410 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4411 Idxs[IdxsIdx] = 0; 4412 else 4413 break; 4414 } 4415 NotDone = (IdxsIdx >= 0); 4416 } while (NotDone); 4417 } 4418 4419 /// CombineChildVariants - A helper function for binary operators. 4420 /// 4421 static void CombineChildVariants(TreePatternNodePtr Orig, 4422 const std::vector<TreePatternNodePtr> &LHS, 4423 const std::vector<TreePatternNodePtr> &RHS, 4424 std::vector<TreePatternNodePtr> &OutVariants, 4425 CodeGenDAGPatterns &CDP, 4426 const MultipleUseVarSet &DepVars) { 4427 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4428 ChildVariants.push_back(LHS); 4429 ChildVariants.push_back(RHS); 4430 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4431 } 4432 4433 static void 4434 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N, 4435 std::vector<TreePatternNodePtr> &Children) { 4436 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4437 Record *Operator = N->getOperator(); 4438 4439 // Only permit raw nodes. 4440 if (!N->getName().empty() || !N->getPredicateCalls().empty() || 4441 N->getTransformFn()) { 4442 Children.push_back(N); 4443 return; 4444 } 4445 4446 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4447 Children.push_back(N->getChildShared(0)); 4448 else 4449 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children); 4450 4451 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4452 Children.push_back(N->getChildShared(1)); 4453 else 4454 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children); 4455 } 4456 4457 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4458 /// the (potentially recursive) pattern by using algebraic laws. 4459 /// 4460 static void GenerateVariantsOf(TreePatternNodePtr N, 4461 std::vector<TreePatternNodePtr> &OutVariants, 4462 CodeGenDAGPatterns &CDP, 4463 const MultipleUseVarSet &DepVars) { 4464 // We cannot permute leaves or ComplexPattern uses. 4465 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4466 OutVariants.push_back(N); 4467 return; 4468 } 4469 4470 // Look up interesting info about the node. 4471 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4472 4473 // If this node is associative, re-associate. 4474 if (NodeInfo.hasProperty(SDNPAssociative)) { 4475 // Re-associate by pulling together all of the linked operators 4476 std::vector<TreePatternNodePtr> MaximalChildren; 4477 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4478 4479 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4480 // permutations. 4481 if (MaximalChildren.size() == 3) { 4482 // Find the variants of all of our maximal children. 4483 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants; 4484 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4485 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4486 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4487 4488 // There are only two ways we can permute the tree: 4489 // (A op B) op C and A op (B op C) 4490 // Within these forms, we can also permute A/B/C. 4491 4492 // Generate legal pair permutations of A/B/C. 4493 std::vector<TreePatternNodePtr> ABVariants; 4494 std::vector<TreePatternNodePtr> BAVariants; 4495 std::vector<TreePatternNodePtr> ACVariants; 4496 std::vector<TreePatternNodePtr> CAVariants; 4497 std::vector<TreePatternNodePtr> BCVariants; 4498 std::vector<TreePatternNodePtr> CBVariants; 4499 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4500 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4501 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4502 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4503 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4504 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4505 4506 // Combine those into the result: (x op x) op x 4507 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4508 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4509 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4510 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4511 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4512 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4513 4514 // Combine those into the result: x op (x op x) 4515 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4516 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4517 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4518 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4519 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4520 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4521 return; 4522 } 4523 } 4524 4525 // Compute permutations of all children. 4526 std::vector<std::vector<TreePatternNodePtr>> ChildVariants; 4527 ChildVariants.resize(N->getNumChildren()); 4528 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4529 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars); 4530 4531 // Build all permutations based on how the children were formed. 4532 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4533 4534 // If this node is commutative, consider the commuted order. 4535 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4536 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4537 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4538 "Commutative but doesn't have 2 children!"); 4539 // Don't count children which are actually register references. 4540 unsigned NC = 0; 4541 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4542 TreePatternNode *Child = N->getChild(i); 4543 if (Child->isLeaf()) 4544 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4545 Record *RR = DI->getDef(); 4546 if (RR->isSubClassOf("Register")) 4547 continue; 4548 } 4549 NC++; 4550 } 4551 // Consider the commuted order. 4552 if (isCommIntrinsic) { 4553 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4554 // operands are the commutative operands, and there might be more operands 4555 // after those. 4556 assert(NC >= 3 && 4557 "Commutative intrinsic should have at least 3 children!"); 4558 std::vector<std::vector<TreePatternNodePtr>> Variants; 4559 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id. 4560 Variants.push_back(std::move(ChildVariants[2])); 4561 Variants.push_back(std::move(ChildVariants[1])); 4562 for (unsigned i = 3; i != NC; ++i) 4563 Variants.push_back(std::move(ChildVariants[i])); 4564 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4565 } else if (NC == N->getNumChildren()) { 4566 std::vector<std::vector<TreePatternNodePtr>> Variants; 4567 Variants.push_back(std::move(ChildVariants[1])); 4568 Variants.push_back(std::move(ChildVariants[0])); 4569 for (unsigned i = 2; i != NC; ++i) 4570 Variants.push_back(std::move(ChildVariants[i])); 4571 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4572 } 4573 } 4574 } 4575 4576 4577 // GenerateVariants - Generate variants. For example, commutative patterns can 4578 // match multiple ways. Add them to PatternsToMatch as well. 4579 void CodeGenDAGPatterns::GenerateVariants() { 4580 LLVM_DEBUG(errs() << "Generating instruction variants.\n"); 4581 4582 // Loop over all of the patterns we've collected, checking to see if we can 4583 // generate variants of the instruction, through the exploitation of 4584 // identities. This permits the target to provide aggressive matching without 4585 // the .td file having to contain tons of variants of instructions. 4586 // 4587 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4588 // intentionally do not reconsider these. Any variants of added patterns have 4589 // already been added. 4590 // 4591 const unsigned NumOriginalPatterns = PatternsToMatch.size(); 4592 BitVector MatchedPatterns(NumOriginalPatterns); 4593 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns, 4594 BitVector(NumOriginalPatterns)); 4595 4596 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>> 4597 DepsAndVariants; 4598 std::map<unsigned, DepsAndVariants> PatternsWithVariants; 4599 4600 // Collect patterns with more than one variant. 4601 for (unsigned i = 0; i != NumOriginalPatterns; ++i) { 4602 MultipleUseVarSet DepVars; 4603 std::vector<TreePatternNodePtr> Variants; 4604 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4605 LLVM_DEBUG(errs() << "Dependent/multiply used variables: "); 4606 LLVM_DEBUG(DumpDepVars(DepVars)); 4607 LLVM_DEBUG(errs() << "\n"); 4608 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants, 4609 *this, DepVars); 4610 4611 assert(!Variants.empty() && "Must create at least original variant!"); 4612 if (Variants.size() == 1) // No additional variants for this pattern. 4613 continue; 4614 4615 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: "; 4616 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n"); 4617 4618 PatternsWithVariants[i] = std::make_pair(DepVars, Variants); 4619 4620 // Cache matching predicates. 4621 if (MatchedPatterns[i]) 4622 continue; 4623 4624 const std::vector<Predicate> &Predicates = 4625 PatternsToMatch[i].getPredicates(); 4626 4627 BitVector &Matches = MatchedPredicates[i]; 4628 MatchedPatterns.set(i); 4629 Matches.set(i); 4630 4631 // Don't test patterns that have already been cached - it won't match. 4632 for (unsigned p = 0; p != NumOriginalPatterns; ++p) 4633 if (!MatchedPatterns[p]) 4634 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates()); 4635 4636 // Copy this to all the matching patterns. 4637 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p)) 4638 if (p != (int)i) { 4639 MatchedPatterns.set(p); 4640 MatchedPredicates[p] = Matches; 4641 } 4642 } 4643 4644 for (auto it : PatternsWithVariants) { 4645 unsigned i = it.first; 4646 const MultipleUseVarSet &DepVars = it.second.first; 4647 const std::vector<TreePatternNodePtr> &Variants = it.second.second; 4648 4649 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4650 TreePatternNodePtr Variant = Variants[v]; 4651 BitVector &Matches = MatchedPredicates[i]; 4652 4653 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump(); 4654 errs() << "\n"); 4655 4656 // Scan to see if an instruction or explicit pattern already matches this. 4657 bool AlreadyExists = false; 4658 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4659 // Skip if the top level predicates do not match. 4660 if (!Matches[p]) 4661 continue; 4662 // Check to see if this variant already exists. 4663 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4664 DepVars)) { 4665 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4666 AlreadyExists = true; 4667 break; 4668 } 4669 } 4670 // If we already have it, ignore the variant. 4671 if (AlreadyExists) continue; 4672 4673 // Otherwise, add it to the list of patterns we have. 4674 PatternsToMatch.push_back(PatternToMatch( 4675 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4676 Variant, PatternsToMatch[i].getDstPatternShared(), 4677 PatternsToMatch[i].getDstRegs(), 4678 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4679 MatchedPredicates.push_back(Matches); 4680 4681 // Add a new match the same as this pattern. 4682 for (auto &P : MatchedPredicates) 4683 P.push_back(P[i]); 4684 } 4685 4686 LLVM_DEBUG(errs() << "\n"); 4687 } 4688 } 4689