xref: /netbsd-src/external/apache2/llvm/dist/llvm/utils/TableGen/CodeGenDAGPatterns.cpp (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "dag-patterns"
35 
36 static inline bool isIntegerOrPtr(MVT VT) {
37   return VT.isInteger() || VT == MVT::iPTR;
38 }
39 static inline bool isFloatingPoint(MVT VT) {
40   return VT.isFloatingPoint();
41 }
42 static inline bool isVector(MVT VT) {
43   return VT.isVector();
44 }
45 static inline bool isScalar(MVT VT) {
46   return !VT.isVector();
47 }
48 
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51   bool Erased = false;
52   // It is ok to iterate over MachineValueTypeSet and remove elements from it
53   // at the same time.
54   for (MVT T : S) {
55     if (!P(T))
56       continue;
57     Erased = true;
58     S.erase(T);
59   }
60   return Erased;
61 }
62 
63 // --- TypeSetByHwMode
64 
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
68 
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70   for (const ValueTypeByHwMode &VVT : VTList) {
71     insert(VVT);
72     AddrSpaces.push_back(VVT.PtrAddrSpace);
73   }
74 }
75 
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77   for (const auto &I : *this) {
78     if (I.second.size() > 1)
79       return false;
80     if (!AllowEmpty && I.second.empty())
81       return false;
82   }
83   return true;
84 }
85 
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87   assert(isValueTypeByHwMode(true) &&
88          "The type set has multiple types for at least one HW mode");
89   ValueTypeByHwMode VVT;
90   auto ASI = AddrSpaces.begin();
91 
92   for (const auto &I : *this) {
93     MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94     VVT.getOrCreateTypeForMode(I.first, T);
95     if (ASI != AddrSpaces.end())
96       VVT.PtrAddrSpace = *ASI++;
97   }
98   return VVT;
99 }
100 
101 bool TypeSetByHwMode::isPossible() const {
102   for (const auto &I : *this)
103     if (!I.second.empty())
104       return true;
105   return false;
106 }
107 
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109   bool Changed = false;
110   bool ContainsDefault = false;
111   MVT DT = MVT::Other;
112 
113   SmallDenseSet<unsigned, 4> Modes;
114   for (const auto &P : VVT) {
115     unsigned M = P.first;
116     Modes.insert(M);
117     // Make sure there exists a set for each specific mode from VVT.
118     Changed |= getOrCreate(M).insert(P.second).second;
119     // Cache VVT's default mode.
120     if (DefaultMode == M) {
121       ContainsDefault = true;
122       DT = P.second;
123     }
124   }
125 
126   // If VVT has a default mode, add the corresponding type to all
127   // modes in "this" that do not exist in VVT.
128   if (ContainsDefault)
129     for (auto &I : *this)
130       if (!Modes.count(I.first))
131         Changed |= I.second.insert(DT).second;
132 
133   return Changed;
134 }
135 
136 // Constrain the type set to be the intersection with VTS.
137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138   bool Changed = false;
139   if (hasDefault()) {
140     for (const auto &I : VTS) {
141       unsigned M = I.first;
142       if (M == DefaultMode || hasMode(M))
143         continue;
144       Map.insert({M, Map.at(DefaultMode)});
145       Changed = true;
146     }
147   }
148 
149   for (auto &I : *this) {
150     unsigned M = I.first;
151     SetType &S = I.second;
152     if (VTS.hasMode(M) || VTS.hasDefault()) {
153       Changed |= intersect(I.second, VTS.get(M));
154     } else if (!S.empty()) {
155       S.clear();
156       Changed = true;
157     }
158   }
159   return Changed;
160 }
161 
162 template <typename Predicate>
163 bool TypeSetByHwMode::constrain(Predicate P) {
164   bool Changed = false;
165   for (auto &I : *this)
166     Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167   return Changed;
168 }
169 
170 template <typename Predicate>
171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172   assert(empty());
173   for (const auto &I : VTS) {
174     SetType &S = getOrCreate(I.first);
175     for (auto J : I.second)
176       if (P(J))
177         S.insert(J);
178   }
179   return !empty();
180 }
181 
182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183   SmallVector<unsigned, 4> Modes;
184   Modes.reserve(Map.size());
185 
186   for (const auto &I : *this)
187     Modes.push_back(I.first);
188   if (Modes.empty()) {
189     OS << "{}";
190     return;
191   }
192   array_pod_sort(Modes.begin(), Modes.end());
193 
194   OS << '{';
195   for (unsigned M : Modes) {
196     OS << ' ' << getModeName(M) << ':';
197     writeToStream(get(M), OS);
198   }
199   OS << " }";
200 }
201 
202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203   SmallVector<MVT, 4> Types(S.begin(), S.end());
204   array_pod_sort(Types.begin(), Types.end());
205 
206   OS << '[';
207   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208     OS << ValueTypeByHwMode::getMVTName(Types[i]);
209     if (i != e-1)
210       OS << ' ';
211   }
212   OS << ']';
213 }
214 
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216   // The isSimple call is much quicker than hasDefault - check this first.
217   bool IsSimple = isSimple();
218   bool VTSIsSimple = VTS.isSimple();
219   if (IsSimple && VTSIsSimple)
220     return *begin() == *VTS.begin();
221 
222   // Speedup: We have a default if the set is simple.
223   bool HaveDefault = IsSimple || hasDefault();
224   bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225   if (HaveDefault != VTSHaveDefault)
226     return false;
227 
228   SmallDenseSet<unsigned, 4> Modes;
229   for (auto &I : *this)
230     Modes.insert(I.first);
231   for (const auto &I : VTS)
232     Modes.insert(I.first);
233 
234   if (HaveDefault) {
235     // Both sets have default mode.
236     for (unsigned M : Modes) {
237       if (get(M) != VTS.get(M))
238         return false;
239     }
240   } else {
241     // Neither set has default mode.
242     for (unsigned M : Modes) {
243       // If there is no default mode, an empty set is equivalent to not having
244       // the corresponding mode.
245       bool NoModeThis = !hasMode(M) || get(M).empty();
246       bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247       if (NoModeThis != NoModeVTS)
248         return false;
249       if (!NoModeThis)
250         if (get(M) != VTS.get(M))
251           return false;
252     }
253   }
254 
255   return true;
256 }
257 
258 namespace llvm {
259   raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260     T.writeToStream(OS);
261     return OS;
262   }
263 }
264 
265 LLVM_DUMP_METHOD
266 void TypeSetByHwMode::dump() const {
267   dbgs() << *this << '\n';
268 }
269 
270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271   bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272   auto Int = [&In](MVT T) -> bool { return !In.count(T); };
273 
274   if (OutP == InP)
275     return berase_if(Out, Int);
276 
277   // Compute the intersection of scalars separately to account for only
278   // one set containing iPTR.
279   // The itersection of iPTR with a set of integer scalar types that does not
280   // include iPTR will result in the most specific scalar type:
281   // - iPTR is more specific than any set with two elements or more
282   // - iPTR is less specific than any single integer scalar type.
283   // For example
284   // { iPTR } * { i32 }     -> { i32 }
285   // { iPTR } * { i32 i64 } -> { iPTR }
286   // and
287   // { iPTR i32 } * { i32 }          -> { i32 }
288   // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
289   // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
290 
291   // Compute the difference between the two sets in such a way that the
292   // iPTR is in the set that is being subtracted. This is to see if there
293   // are any extra scalars in the set without iPTR that are not in the
294   // set containing iPTR. Then the iPTR could be considered a "wildcard"
295   // matching these scalars. If there is only one such scalar, it would
296   // replace the iPTR, if there are more, the iPTR would be retained.
297   SetType Diff;
298   if (InP) {
299     Diff = Out;
300     berase_if(Diff, [&In](MVT T) { return In.count(T); });
301     // Pre-remove these elements and rely only on InP/OutP to determine
302     // whether a change has been made.
303     berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304   } else {
305     Diff = In;
306     berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307     Out.erase(MVT::iPTR);
308   }
309 
310   // The actual intersection.
311   bool Changed = berase_if(Out, Int);
312   unsigned NumD = Diff.size();
313   if (NumD == 0)
314     return Changed;
315 
316   if (NumD == 1) {
317     Out.insert(*Diff.begin());
318     // This is a change only if Out was the one with iPTR (which is now
319     // being replaced).
320     Changed |= OutP;
321   } else {
322     // Multiple elements from Out are now replaced with iPTR.
323     Out.insert(MVT::iPTR);
324     Changed |= !OutP;
325   }
326   return Changed;
327 }
328 
329 bool TypeSetByHwMode::validate() const {
330 #ifndef NDEBUG
331   if (empty())
332     return true;
333   bool AllEmpty = true;
334   for (const auto &I : *this)
335     AllEmpty &= I.second.empty();
336   return !AllEmpty;
337 #endif
338   return true;
339 }
340 
341 // --- TypeInfer
342 
343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344                                 const TypeSetByHwMode &In) {
345   ValidateOnExit _1(Out, *this);
346   In.validate();
347   if (In.empty() || Out == In || TP.hasError())
348     return false;
349   if (Out.empty()) {
350     Out = In;
351     return true;
352   }
353 
354   bool Changed = Out.constrain(In);
355   if (Changed && Out.empty())
356     TP.error("Type contradiction");
357 
358   return Changed;
359 }
360 
361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362   ValidateOnExit _1(Out, *this);
363   if (TP.hasError())
364     return false;
365   assert(!Out.empty() && "cannot pick from an empty set");
366 
367   bool Changed = false;
368   for (auto &I : Out) {
369     TypeSetByHwMode::SetType &S = I.second;
370     if (S.size() <= 1)
371       continue;
372     MVT T = *S.begin(); // Pick the first element.
373     S.clear();
374     S.insert(T);
375     Changed = true;
376   }
377   return Changed;
378 }
379 
380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381   ValidateOnExit _1(Out, *this);
382   if (TP.hasError())
383     return false;
384   if (!Out.empty())
385     return Out.constrain(isIntegerOrPtr);
386 
387   return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
388 }
389 
390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391   ValidateOnExit _1(Out, *this);
392   if (TP.hasError())
393     return false;
394   if (!Out.empty())
395     return Out.constrain(isFloatingPoint);
396 
397   return Out.assign_if(getLegalTypes(), isFloatingPoint);
398 }
399 
400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401   ValidateOnExit _1(Out, *this);
402   if (TP.hasError())
403     return false;
404   if (!Out.empty())
405     return Out.constrain(isScalar);
406 
407   return Out.assign_if(getLegalTypes(), isScalar);
408 }
409 
410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411   ValidateOnExit _1(Out, *this);
412   if (TP.hasError())
413     return false;
414   if (!Out.empty())
415     return Out.constrain(isVector);
416 
417   return Out.assign_if(getLegalTypes(), isVector);
418 }
419 
420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421   ValidateOnExit _1(Out, *this);
422   if (TP.hasError() || !Out.empty())
423     return false;
424 
425   Out = getLegalTypes();
426   return true;
427 }
428 
429 template <typename Iter, typename Pred, typename Less>
430 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431   if (B == E)
432     return E;
433   Iter Min = E;
434   for (Iter I = B; I != E; ++I) {
435     if (!P(*I))
436       continue;
437     if (Min == E || L(*I, *Min))
438       Min = I;
439   }
440   return Min;
441 }
442 
443 template <typename Iter, typename Pred, typename Less>
444 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445   if (B == E)
446     return E;
447   Iter Max = E;
448   for (Iter I = B; I != E; ++I) {
449     if (!P(*I))
450       continue;
451     if (Max == E || L(*Max, *I))
452       Max = I;
453   }
454   return Max;
455 }
456 
457 /// Make sure that for each type in Small, there exists a larger type in Big.
458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459                                    TypeSetByHwMode &Big) {
460   ValidateOnExit _1(Small, *this), _2(Big, *this);
461   if (TP.hasError())
462     return false;
463   bool Changed = false;
464 
465   if (Small.empty())
466     Changed |= EnforceAny(Small);
467   if (Big.empty())
468     Changed |= EnforceAny(Big);
469 
470   assert(Small.hasDefault() && Big.hasDefault());
471 
472   std::vector<unsigned> Modes = union_modes(Small, Big);
473 
474   // 1. Only allow integer or floating point types and make sure that
475   //    both sides are both integer or both floating point.
476   // 2. Make sure that either both sides have vector types, or neither
477   //    of them does.
478   for (unsigned M : Modes) {
479     TypeSetByHwMode::SetType &S = Small.get(M);
480     TypeSetByHwMode::SetType &B = Big.get(M);
481 
482     if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483       auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484       Changed |= berase_if(S, NotInt) |
485                  berase_if(B, NotInt);
486     } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487       auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488       Changed |= berase_if(S, NotFP) |
489                  berase_if(B, NotFP);
490     } else if (S.empty() || B.empty()) {
491       Changed = !S.empty() || !B.empty();
492       S.clear();
493       B.clear();
494     } else {
495       TP.error("Incompatible types");
496       return Changed;
497     }
498 
499     if (none_of(S, isVector) || none_of(B, isVector)) {
500       Changed |= berase_if(S, isVector) |
501                  berase_if(B, isVector);
502     }
503   }
504 
505   auto LT = [](MVT A, MVT B) -> bool {
506     return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507            (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508             A.getSizeInBits() < B.getSizeInBits());
509   };
510   auto LE = [&LT](MVT A, MVT B) -> bool {
511     // This function is used when removing elements: when a vector is compared
512     // to a non-vector, it should return false (to avoid removal).
513     if (A.isVector() != B.isVector())
514       return false;
515 
516     return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
517                         A.getSizeInBits() == B.getSizeInBits());
518   };
519 
520   for (unsigned M : Modes) {
521     TypeSetByHwMode::SetType &S = Small.get(M);
522     TypeSetByHwMode::SetType &B = Big.get(M);
523     // MinS = min scalar in Small, remove all scalars from Big that are
524     // smaller-or-equal than MinS.
525     auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526     if (MinS != S.end())
527       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
528 
529     // MaxS = max scalar in Big, remove all scalars from Small that are
530     // larger than MaxS.
531     auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532     if (MaxS != B.end())
533       Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
534 
535     // MinV = min vector in Small, remove all vectors from Big that are
536     // smaller-or-equal than MinV.
537     auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538     if (MinV != S.end())
539       Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
540 
541     // MaxV = max vector in Big, remove all vectors from Small that are
542     // larger than MaxV.
543     auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544     if (MaxV != B.end())
545       Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
546   }
547 
548   return Changed;
549 }
550 
551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
552 ///    for each type U in Elem, U is a scalar type.
553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554 ///    type T in Vec, such that U is the element type of T.
555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556                                        TypeSetByHwMode &Elem) {
557   ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558   if (TP.hasError())
559     return false;
560   bool Changed = false;
561 
562   if (Vec.empty())
563     Changed |= EnforceVector(Vec);
564   if (Elem.empty())
565     Changed |= EnforceScalar(Elem);
566 
567   for (unsigned M : union_modes(Vec, Elem)) {
568     TypeSetByHwMode::SetType &V = Vec.get(M);
569     TypeSetByHwMode::SetType &E = Elem.get(M);
570 
571     Changed |= berase_if(V, isScalar);  // Scalar = !vector
572     Changed |= berase_if(E, isVector);  // Vector = !scalar
573     assert(!V.empty() && !E.empty());
574 
575     SmallSet<MVT,4> VT, ST;
576     // Collect element types from the "vector" set.
577     for (MVT T : V)
578       VT.insert(T.getVectorElementType());
579     // Collect scalar types from the "element" set.
580     for (MVT T : E)
581       ST.insert(T);
582 
583     // Remove from V all (vector) types whose element type is not in S.
584     Changed |= berase_if(V, [&ST](MVT T) -> bool {
585                               return !ST.count(T.getVectorElementType());
586                             });
587     // Remove from E all (scalar) types, for which there is no corresponding
588     // type in V.
589     Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
590   }
591 
592   return Changed;
593 }
594 
595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596                                        const ValueTypeByHwMode &VVT) {
597   TypeSetByHwMode Tmp(VVT);
598   ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599   return EnforceVectorEltTypeIs(Vec, Tmp);
600 }
601 
602 /// Ensure that for each type T in Sub, T is a vector type, and there
603 /// exists a type U in Vec such that U is a vector type with the same
604 /// element type as T and at least as many elements as T.
605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606                                              TypeSetByHwMode &Sub) {
607   ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608   if (TP.hasError())
609     return false;
610 
611   /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612   auto IsSubVec = [](MVT B, MVT P) -> bool {
613     if (!B.isVector() || !P.isVector())
614       return false;
615     // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616     // but until there are obvious use-cases for this, keep the
617     // types separate.
618     if (B.isScalableVector() != P.isScalableVector())
619       return false;
620     if (B.getVectorElementType() != P.getVectorElementType())
621       return false;
622     return B.getVectorNumElements() < P.getVectorNumElements();
623   };
624 
625   /// Return true if S has no element (vector type) that T is a sub-vector of,
626   /// i.e. has the same element type as T and more elements.
627   auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628     for (const auto &I : S)
629       if (IsSubVec(T, I))
630         return false;
631     return true;
632   };
633 
634   /// Return true if S has no element (vector type) that T is a super-vector
635   /// of, i.e. has the same element type as T and fewer elements.
636   auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637     for (const auto &I : S)
638       if (IsSubVec(I, T))
639         return false;
640     return true;
641   };
642 
643   bool Changed = false;
644 
645   if (Vec.empty())
646     Changed |= EnforceVector(Vec);
647   if (Sub.empty())
648     Changed |= EnforceVector(Sub);
649 
650   for (unsigned M : union_modes(Vec, Sub)) {
651     TypeSetByHwMode::SetType &S = Sub.get(M);
652     TypeSetByHwMode::SetType &V = Vec.get(M);
653 
654     Changed |= berase_if(S, isScalar);
655 
656     // Erase all types from S that are not sub-vectors of a type in V.
657     Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
658 
659     // Erase all types from V that are not super-vectors of a type in S.
660     Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
661   }
662 
663   return Changed;
664 }
665 
666 /// 1. Ensure that V has a scalar type iff W has a scalar type.
667 /// 2. Ensure that for each vector type T in V, there exists a vector
668 ///    type U in W, such that T and U have the same number of elements.
669 /// 3. Ensure that for each vector type U in W, there exists a vector
670 ///    type T in V, such that T and U have the same number of elements
671 ///    (reverse of 2).
672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673   ValidateOnExit _1(V, *this), _2(W, *this);
674   if (TP.hasError())
675     return false;
676 
677   bool Changed = false;
678   if (V.empty())
679     Changed |= EnforceAny(V);
680   if (W.empty())
681     Changed |= EnforceAny(W);
682 
683   // An actual vector type cannot have 0 elements, so we can treat scalars
684   // as zero-length vectors. This way both vectors and scalars can be
685   // processed identically.
686   auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687     return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
688   };
689 
690   for (unsigned M : union_modes(V, W)) {
691     TypeSetByHwMode::SetType &VS = V.get(M);
692     TypeSetByHwMode::SetType &WS = W.get(M);
693 
694     SmallSet<unsigned,2> VN, WN;
695     for (MVT T : VS)
696       VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697     for (MVT T : WS)
698       WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
699 
700     Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701     Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
702   }
703   return Changed;
704 }
705 
706 /// 1. Ensure that for each type T in A, there exists a type U in B,
707 ///    such that T and U have equal size in bits.
708 /// 2. Ensure that for each type U in B, there exists a type T in A
709 ///    such that T and U have equal size in bits (reverse of 1).
710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711   ValidateOnExit _1(A, *this), _2(B, *this);
712   if (TP.hasError())
713     return false;
714   bool Changed = false;
715   if (A.empty())
716     Changed |= EnforceAny(A);
717   if (B.empty())
718     Changed |= EnforceAny(B);
719 
720   auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721     return !Sizes.count(T.getSizeInBits());
722   };
723 
724   for (unsigned M : union_modes(A, B)) {
725     TypeSetByHwMode::SetType &AS = A.get(M);
726     TypeSetByHwMode::SetType &BS = B.get(M);
727     SmallSet<unsigned,2> AN, BN;
728 
729     for (MVT T : AS)
730       AN.insert(T.getSizeInBits());
731     for (MVT T : BS)
732       BN.insert(T.getSizeInBits());
733 
734     Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735     Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
736   }
737 
738   return Changed;
739 }
740 
741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742   ValidateOnExit _1(VTS, *this);
743   const TypeSetByHwMode &Legal = getLegalTypes();
744   assert(Legal.isDefaultOnly() && "Default-mode only expected");
745   const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
746 
747   for (auto &I : VTS)
748     expandOverloads(I.second, LegalTypes);
749 }
750 
751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752                                 const TypeSetByHwMode::SetType &Legal) {
753   std::set<MVT> Ovs;
754   for (MVT T : Out) {
755     if (!T.isOverloaded())
756       continue;
757 
758     Ovs.insert(T);
759     // MachineValueTypeSet allows iteration and erasing.
760     Out.erase(T);
761   }
762 
763   for (MVT Ov : Ovs) {
764     switch (Ov.SimpleTy) {
765       case MVT::iPTRAny:
766         Out.insert(MVT::iPTR);
767         return;
768       case MVT::iAny:
769         for (MVT T : MVT::integer_valuetypes())
770           if (Legal.count(T))
771             Out.insert(T);
772         for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
773           if (Legal.count(T))
774             Out.insert(T);
775         for (MVT T : MVT::integer_scalable_vector_valuetypes())
776           if (Legal.count(T))
777             Out.insert(T);
778         return;
779       case MVT::fAny:
780         for (MVT T : MVT::fp_valuetypes())
781           if (Legal.count(T))
782             Out.insert(T);
783         for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
784           if (Legal.count(T))
785             Out.insert(T);
786         for (MVT T : MVT::fp_scalable_vector_valuetypes())
787           if (Legal.count(T))
788             Out.insert(T);
789         return;
790       case MVT::vAny:
791         for (MVT T : MVT::vector_valuetypes())
792           if (Legal.count(T))
793             Out.insert(T);
794         return;
795       case MVT::Any:
796         for (MVT T : MVT::all_valuetypes())
797           if (Legal.count(T))
798             Out.insert(T);
799         return;
800       default:
801         break;
802     }
803   }
804 }
805 
806 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
807   if (!LegalTypesCached) {
808     TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
809     // Stuff all types from all modes into the default mode.
810     const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
811     for (const auto &I : LTS)
812       LegalTypes.insert(I.second);
813     LegalTypesCached = true;
814   }
815   assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
816   return LegalCache;
817 }
818 
819 #ifndef NDEBUG
820 TypeInfer::ValidateOnExit::~ValidateOnExit() {
821   if (Infer.Validate && !VTS.validate()) {
822     dbgs() << "Type set is empty for each HW mode:\n"
823               "possible type contradiction in the pattern below "
824               "(use -print-records with llvm-tblgen to see all "
825               "expanded records).\n";
826     Infer.TP.dump();
827     llvm_unreachable(nullptr);
828   }
829 }
830 #endif
831 
832 
833 //===----------------------------------------------------------------------===//
834 // ScopedName Implementation
835 //===----------------------------------------------------------------------===//
836 
837 bool ScopedName::operator==(const ScopedName &o) const {
838   return Scope == o.Scope && Identifier == o.Identifier;
839 }
840 
841 bool ScopedName::operator!=(const ScopedName &o) const {
842   return !(*this == o);
843 }
844 
845 
846 //===----------------------------------------------------------------------===//
847 // TreePredicateFn Implementation
848 //===----------------------------------------------------------------------===//
849 
850 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
851 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
852   assert(
853       (!hasPredCode() || !hasImmCode()) &&
854       ".td file corrupt: can't have a node predicate *and* an imm predicate");
855 }
856 
857 bool TreePredicateFn::hasPredCode() const {
858   return isLoad() || isStore() || isAtomic() ||
859          !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
860 }
861 
862 std::string TreePredicateFn::getPredCode() const {
863   std::string Code = "";
864 
865   if (!isLoad() && !isStore() && !isAtomic()) {
866     Record *MemoryVT = getMemoryVT();
867 
868     if (MemoryVT)
869       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870                       "MemoryVT requires IsLoad or IsStore");
871   }
872 
873   if (!isLoad() && !isStore()) {
874     if (isUnindexed())
875       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
876                       "IsUnindexed requires IsLoad or IsStore");
877 
878     Record *ScalarMemoryVT = getScalarMemoryVT();
879 
880     if (ScalarMemoryVT)
881       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
882                       "ScalarMemoryVT requires IsLoad or IsStore");
883   }
884 
885   if (isLoad() + isStore() + isAtomic() > 1)
886     PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
887                     "IsLoad, IsStore, and IsAtomic are mutually exclusive");
888 
889   if (isLoad()) {
890     if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
891         !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
892         getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
893         getMinAlignment() < 1)
894       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
895                       "IsLoad cannot be used by itself");
896   } else {
897     if (isNonExtLoad())
898       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
899                       "IsNonExtLoad requires IsLoad");
900     if (isAnyExtLoad())
901       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
902                       "IsAnyExtLoad requires IsLoad");
903     if (isSignExtLoad())
904       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
905                       "IsSignExtLoad requires IsLoad");
906     if (isZeroExtLoad())
907       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
908                       "IsZeroExtLoad requires IsLoad");
909   }
910 
911   if (isStore()) {
912     if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
913         getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
914         getAddressSpaces() == nullptr && getMinAlignment() < 1)
915       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
916                       "IsStore cannot be used by itself");
917   } else {
918     if (isNonTruncStore())
919       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
920                       "IsNonTruncStore requires IsStore");
921     if (isTruncStore())
922       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
923                       "IsTruncStore requires IsStore");
924   }
925 
926   if (isAtomic()) {
927     if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
928         getAddressSpaces() == nullptr &&
929         !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
930         !isAtomicOrderingAcquireRelease() &&
931         !isAtomicOrderingSequentiallyConsistent() &&
932         !isAtomicOrderingAcquireOrStronger() &&
933         !isAtomicOrderingReleaseOrStronger() &&
934         !isAtomicOrderingWeakerThanAcquire() &&
935         !isAtomicOrderingWeakerThanRelease())
936       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
937                       "IsAtomic cannot be used by itself");
938   } else {
939     if (isAtomicOrderingMonotonic())
940       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941                       "IsAtomicOrderingMonotonic requires IsAtomic");
942     if (isAtomicOrderingAcquire())
943       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944                       "IsAtomicOrderingAcquire requires IsAtomic");
945     if (isAtomicOrderingRelease())
946       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947                       "IsAtomicOrderingRelease requires IsAtomic");
948     if (isAtomicOrderingAcquireRelease())
949       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950                       "IsAtomicOrderingAcquireRelease requires IsAtomic");
951     if (isAtomicOrderingSequentiallyConsistent())
952       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953                       "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
954     if (isAtomicOrderingAcquireOrStronger())
955       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
956                       "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
957     if (isAtomicOrderingReleaseOrStronger())
958       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
959                       "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
960     if (isAtomicOrderingWeakerThanAcquire())
961       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
962                       "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
963   }
964 
965   if (isLoad() || isStore() || isAtomic()) {
966     if (ListInit *AddressSpaces = getAddressSpaces()) {
967       Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
968         " if (";
969 
970       bool First = true;
971       for (Init *Val : AddressSpaces->getValues()) {
972         if (First)
973           First = false;
974         else
975           Code += " && ";
976 
977         IntInit *IntVal = dyn_cast<IntInit>(Val);
978         if (!IntVal) {
979           PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
980                           "AddressSpaces element must be integer");
981         }
982 
983         Code += "AddrSpace != " + utostr(IntVal->getValue());
984       }
985 
986       Code += ")\nreturn false;\n";
987     }
988 
989     int64_t MinAlign = getMinAlignment();
990     if (MinAlign > 0) {
991       Code += "if (cast<MemSDNode>(N)->getAlignment() < ";
992       Code += utostr(MinAlign);
993       Code += ")\nreturn false;\n";
994     }
995 
996     Record *MemoryVT = getMemoryVT();
997 
998     if (MemoryVT)
999       Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
1000                MemoryVT->getName() + ") return false;\n")
1001                   .str();
1002   }
1003 
1004   if (isAtomic() && isAtomicOrderingMonotonic())
1005     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1006             "AtomicOrdering::Monotonic) return false;\n";
1007   if (isAtomic() && isAtomicOrderingAcquire())
1008     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1009             "AtomicOrdering::Acquire) return false;\n";
1010   if (isAtomic() && isAtomicOrderingRelease())
1011     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1012             "AtomicOrdering::Release) return false;\n";
1013   if (isAtomic() && isAtomicOrderingAcquireRelease())
1014     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1015             "AtomicOrdering::AcquireRelease) return false;\n";
1016   if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1017     Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1018             "AtomicOrdering::SequentiallyConsistent) return false;\n";
1019 
1020   if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1021     Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1022             "return false;\n";
1023   if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1024     Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1025             "return false;\n";
1026 
1027   if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1028     Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1029             "return false;\n";
1030   if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1031     Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1032             "return false;\n";
1033 
1034   if (isLoad() || isStore()) {
1035     StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1036 
1037     if (isUnindexed())
1038       Code += ("if (cast<" + SDNodeName +
1039                ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1040                "return false;\n")
1041                   .str();
1042 
1043     if (isLoad()) {
1044       if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1045            isZeroExtLoad()) > 1)
1046         PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1047                         "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1048                         "IsZeroExtLoad are mutually exclusive");
1049       if (isNonExtLoad())
1050         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1051                 "ISD::NON_EXTLOAD) return false;\n";
1052       if (isAnyExtLoad())
1053         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1054                 "return false;\n";
1055       if (isSignExtLoad())
1056         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1057                 "return false;\n";
1058       if (isZeroExtLoad())
1059         Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1060                 "return false;\n";
1061     } else {
1062       if ((isNonTruncStore() + isTruncStore()) > 1)
1063         PrintFatalError(
1064             getOrigPatFragRecord()->getRecord()->getLoc(),
1065             "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1066       if (isNonTruncStore())
1067         Code +=
1068             " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1069       if (isTruncStore())
1070         Code +=
1071             " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1072     }
1073 
1074     Record *ScalarMemoryVT = getScalarMemoryVT();
1075 
1076     if (ScalarMemoryVT)
1077       Code += ("if (cast<" + SDNodeName +
1078                ">(N)->getMemoryVT().getScalarType() != MVT::" +
1079                ScalarMemoryVT->getName() + ") return false;\n")
1080                   .str();
1081   }
1082 
1083   std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1084 
1085   Code += PredicateCode;
1086 
1087   if (PredicateCode.empty() && !Code.empty())
1088     Code += "return true;\n";
1089 
1090   return Code;
1091 }
1092 
1093 bool TreePredicateFn::hasImmCode() const {
1094   return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1095 }
1096 
1097 std::string TreePredicateFn::getImmCode() const {
1098   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1099 }
1100 
1101 bool TreePredicateFn::immCodeUsesAPInt() const {
1102   return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1103 }
1104 
1105 bool TreePredicateFn::immCodeUsesAPFloat() const {
1106   bool Unset;
1107   // The return value will be false when IsAPFloat is unset.
1108   return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1109                                                                    Unset);
1110 }
1111 
1112 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1113                                                    bool Value) const {
1114   bool Unset;
1115   bool Result =
1116       getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1117   if (Unset)
1118     return false;
1119   return Result == Value;
1120 }
1121 bool TreePredicateFn::usesOperands() const {
1122   return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1123 }
1124 bool TreePredicateFn::isLoad() const {
1125   return isPredefinedPredicateEqualTo("IsLoad", true);
1126 }
1127 bool TreePredicateFn::isStore() const {
1128   return isPredefinedPredicateEqualTo("IsStore", true);
1129 }
1130 bool TreePredicateFn::isAtomic() const {
1131   return isPredefinedPredicateEqualTo("IsAtomic", true);
1132 }
1133 bool TreePredicateFn::isUnindexed() const {
1134   return isPredefinedPredicateEqualTo("IsUnindexed", true);
1135 }
1136 bool TreePredicateFn::isNonExtLoad() const {
1137   return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1138 }
1139 bool TreePredicateFn::isAnyExtLoad() const {
1140   return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1141 }
1142 bool TreePredicateFn::isSignExtLoad() const {
1143   return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1144 }
1145 bool TreePredicateFn::isZeroExtLoad() const {
1146   return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1147 }
1148 bool TreePredicateFn::isNonTruncStore() const {
1149   return isPredefinedPredicateEqualTo("IsTruncStore", false);
1150 }
1151 bool TreePredicateFn::isTruncStore() const {
1152   return isPredefinedPredicateEqualTo("IsTruncStore", true);
1153 }
1154 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1155   return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1156 }
1157 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1158   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1159 }
1160 bool TreePredicateFn::isAtomicOrderingRelease() const {
1161   return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1162 }
1163 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1164   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1165 }
1166 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1167   return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1168                                       true);
1169 }
1170 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1171   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1172 }
1173 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1174   return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1175 }
1176 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1177   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1178 }
1179 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1180   return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1181 }
1182 Record *TreePredicateFn::getMemoryVT() const {
1183   Record *R = getOrigPatFragRecord()->getRecord();
1184   if (R->isValueUnset("MemoryVT"))
1185     return nullptr;
1186   return R->getValueAsDef("MemoryVT");
1187 }
1188 
1189 ListInit *TreePredicateFn::getAddressSpaces() const {
1190   Record *R = getOrigPatFragRecord()->getRecord();
1191   if (R->isValueUnset("AddressSpaces"))
1192     return nullptr;
1193   return R->getValueAsListInit("AddressSpaces");
1194 }
1195 
1196 int64_t TreePredicateFn::getMinAlignment() const {
1197   Record *R = getOrigPatFragRecord()->getRecord();
1198   if (R->isValueUnset("MinAlignment"))
1199     return 0;
1200   return R->getValueAsInt("MinAlignment");
1201 }
1202 
1203 Record *TreePredicateFn::getScalarMemoryVT() const {
1204   Record *R = getOrigPatFragRecord()->getRecord();
1205   if (R->isValueUnset("ScalarMemoryVT"))
1206     return nullptr;
1207   return R->getValueAsDef("ScalarMemoryVT");
1208 }
1209 bool TreePredicateFn::hasGISelPredicateCode() const {
1210   return !PatFragRec->getRecord()
1211               ->getValueAsString("GISelPredicateCode")
1212               .empty();
1213 }
1214 std::string TreePredicateFn::getGISelPredicateCode() const {
1215   return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1216 }
1217 
1218 StringRef TreePredicateFn::getImmType() const {
1219   if (immCodeUsesAPInt())
1220     return "const APInt &";
1221   if (immCodeUsesAPFloat())
1222     return "const APFloat &";
1223   return "int64_t";
1224 }
1225 
1226 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1227   if (immCodeUsesAPInt())
1228     return "APInt";
1229   else if (immCodeUsesAPFloat())
1230     return "APFloat";
1231   return "I64";
1232 }
1233 
1234 /// isAlwaysTrue - Return true if this is a noop predicate.
1235 bool TreePredicateFn::isAlwaysTrue() const {
1236   return !hasPredCode() && !hasImmCode();
1237 }
1238 
1239 /// Return the name to use in the generated code to reference this, this is
1240 /// "Predicate_foo" if from a pattern fragment "foo".
1241 std::string TreePredicateFn::getFnName() const {
1242   return "Predicate_" + PatFragRec->getRecord()->getName().str();
1243 }
1244 
1245 /// getCodeToRunOnSDNode - Return the code for the function body that
1246 /// evaluates this predicate.  The argument is expected to be in "Node",
1247 /// not N.  This handles casting and conversion to a concrete node type as
1248 /// appropriate.
1249 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1250   // Handle immediate predicates first.
1251   std::string ImmCode = getImmCode();
1252   if (!ImmCode.empty()) {
1253     if (isLoad())
1254       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1255                       "IsLoad cannot be used with ImmLeaf or its subclasses");
1256     if (isStore())
1257       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1258                       "IsStore cannot be used with ImmLeaf or its subclasses");
1259     if (isUnindexed())
1260       PrintFatalError(
1261           getOrigPatFragRecord()->getRecord()->getLoc(),
1262           "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1263     if (isNonExtLoad())
1264       PrintFatalError(
1265           getOrigPatFragRecord()->getRecord()->getLoc(),
1266           "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1267     if (isAnyExtLoad())
1268       PrintFatalError(
1269           getOrigPatFragRecord()->getRecord()->getLoc(),
1270           "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1271     if (isSignExtLoad())
1272       PrintFatalError(
1273           getOrigPatFragRecord()->getRecord()->getLoc(),
1274           "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1275     if (isZeroExtLoad())
1276       PrintFatalError(
1277           getOrigPatFragRecord()->getRecord()->getLoc(),
1278           "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1279     if (isNonTruncStore())
1280       PrintFatalError(
1281           getOrigPatFragRecord()->getRecord()->getLoc(),
1282           "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1283     if (isTruncStore())
1284       PrintFatalError(
1285           getOrigPatFragRecord()->getRecord()->getLoc(),
1286           "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1287     if (getMemoryVT())
1288       PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1289                       "MemoryVT cannot be used with ImmLeaf or its subclasses");
1290     if (getScalarMemoryVT())
1291       PrintFatalError(
1292           getOrigPatFragRecord()->getRecord()->getLoc(),
1293           "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1294 
1295     std::string Result = ("    " + getImmType() + " Imm = ").str();
1296     if (immCodeUsesAPFloat())
1297       Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1298     else if (immCodeUsesAPInt())
1299       Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1300     else
1301       Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1302     return Result + ImmCode;
1303   }
1304 
1305   // Handle arbitrary node predicates.
1306   assert(hasPredCode() && "Don't have any predicate code!");
1307   StringRef ClassName;
1308   if (PatFragRec->getOnlyTree()->isLeaf())
1309     ClassName = "SDNode";
1310   else {
1311     Record *Op = PatFragRec->getOnlyTree()->getOperator();
1312     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1313   }
1314   std::string Result;
1315   if (ClassName == "SDNode")
1316     Result = "    SDNode *N = Node;\n";
1317   else
1318     Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
1319 
1320   return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
1321 }
1322 
1323 //===----------------------------------------------------------------------===//
1324 // PatternToMatch implementation
1325 //
1326 
1327 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1328   if (!P->isLeaf())
1329     return false;
1330   DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1331   if (!DI)
1332     return false;
1333 
1334   Record *R = DI->getDef();
1335   return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1336 }
1337 
1338 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
1339 /// patterns before small ones.  This is used to determine the size of a
1340 /// pattern.
1341 static unsigned getPatternSize(const TreePatternNode *P,
1342                                const CodeGenDAGPatterns &CGP) {
1343   unsigned Size = 3;  // The node itself.
1344   // If the root node is a ConstantSDNode, increases its size.
1345   // e.g. (set R32:$dst, 0).
1346   if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1347     Size += 2;
1348 
1349   if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1350     Size += AM->getComplexity();
1351     // We don't want to count any children twice, so return early.
1352     return Size;
1353   }
1354 
1355   // If this node has some predicate function that must match, it adds to the
1356   // complexity of this node.
1357   if (!P->getPredicateCalls().empty())
1358     ++Size;
1359 
1360   // Count children in the count if they are also nodes.
1361   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1362     const TreePatternNode *Child = P->getChild(i);
1363     if (!Child->isLeaf() && Child->getNumTypes()) {
1364       const TypeSetByHwMode &T0 = Child->getExtType(0);
1365       // At this point, all variable type sets should be simple, i.e. only
1366       // have a default mode.
1367       if (T0.getMachineValueType() != MVT::Other) {
1368         Size += getPatternSize(Child, CGP);
1369         continue;
1370       }
1371     }
1372     if (Child->isLeaf()) {
1373       if (isa<IntInit>(Child->getLeafValue()))
1374         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
1375       else if (Child->getComplexPatternInfo(CGP))
1376         Size += getPatternSize(Child, CGP);
1377       else if (isImmAllOnesAllZerosMatch(Child))
1378         Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1379       else if (!Child->getPredicateCalls().empty())
1380         ++Size;
1381     }
1382   }
1383 
1384   return Size;
1385 }
1386 
1387 /// Compute the complexity metric for the input pattern.  This roughly
1388 /// corresponds to the number of nodes that are covered.
1389 int PatternToMatch::
1390 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1391   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1392 }
1393 
1394 /// getPredicateCheck - Return a single string containing all of this
1395 /// pattern's predicates concatenated with "&&" operators.
1396 ///
1397 std::string PatternToMatch::getPredicateCheck() const {
1398   SmallVector<const Predicate*,4> PredList;
1399   for (const Predicate &P : Predicates) {
1400     if (!P.getCondString().empty())
1401       PredList.push_back(&P);
1402   }
1403   llvm::sort(PredList, deref<std::less<>>());
1404 
1405   std::string Check;
1406   for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1407     if (i != 0)
1408       Check += " && ";
1409     Check += '(' + PredList[i]->getCondString() + ')';
1410   }
1411   return Check;
1412 }
1413 
1414 //===----------------------------------------------------------------------===//
1415 // SDTypeConstraint implementation
1416 //
1417 
1418 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1419   OperandNo = R->getValueAsInt("OperandNum");
1420 
1421   if (R->isSubClassOf("SDTCisVT")) {
1422     ConstraintType = SDTCisVT;
1423     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1424     for (const auto &P : VVT)
1425       if (P.second == MVT::isVoid)
1426         PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1427   } else if (R->isSubClassOf("SDTCisPtrTy")) {
1428     ConstraintType = SDTCisPtrTy;
1429   } else if (R->isSubClassOf("SDTCisInt")) {
1430     ConstraintType = SDTCisInt;
1431   } else if (R->isSubClassOf("SDTCisFP")) {
1432     ConstraintType = SDTCisFP;
1433   } else if (R->isSubClassOf("SDTCisVec")) {
1434     ConstraintType = SDTCisVec;
1435   } else if (R->isSubClassOf("SDTCisSameAs")) {
1436     ConstraintType = SDTCisSameAs;
1437     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1438   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1439     ConstraintType = SDTCisVTSmallerThanOp;
1440     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1441       R->getValueAsInt("OtherOperandNum");
1442   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1443     ConstraintType = SDTCisOpSmallerThanOp;
1444     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1445       R->getValueAsInt("BigOperandNum");
1446   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1447     ConstraintType = SDTCisEltOfVec;
1448     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1449   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1450     ConstraintType = SDTCisSubVecOfVec;
1451     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1452       R->getValueAsInt("OtherOpNum");
1453   } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1454     ConstraintType = SDTCVecEltisVT;
1455     VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1456     for (const auto &P : VVT) {
1457       MVT T = P.second;
1458       if (T.isVector())
1459         PrintFatalError(R->getLoc(),
1460                         "Cannot use vector type as SDTCVecEltisVT");
1461       if (!T.isInteger() && !T.isFloatingPoint())
1462         PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1463                                      "as SDTCVecEltisVT");
1464     }
1465   } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1466     ConstraintType = SDTCisSameNumEltsAs;
1467     x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1468       R->getValueAsInt("OtherOperandNum");
1469   } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1470     ConstraintType = SDTCisSameSizeAs;
1471     x.SDTCisSameSizeAs_Info.OtherOperandNum =
1472       R->getValueAsInt("OtherOperandNum");
1473   } else {
1474     PrintFatalError(R->getLoc(),
1475                     "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1476   }
1477 }
1478 
1479 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1480 /// N, and the result number in ResNo.
1481 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1482                                       const SDNodeInfo &NodeInfo,
1483                                       unsigned &ResNo) {
1484   unsigned NumResults = NodeInfo.getNumResults();
1485   if (OpNo < NumResults) {
1486     ResNo = OpNo;
1487     return N;
1488   }
1489 
1490   OpNo -= NumResults;
1491 
1492   if (OpNo >= N->getNumChildren()) {
1493     std::string S;
1494     raw_string_ostream OS(S);
1495     OS << "Invalid operand number in type constraint "
1496            << (OpNo+NumResults) << " ";
1497     N->print(OS);
1498     PrintFatalError(OS.str());
1499   }
1500 
1501   return N->getChild(OpNo);
1502 }
1503 
1504 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1505 /// constraint to the nodes operands.  This returns true if it makes a
1506 /// change, false otherwise.  If a type contradiction is found, flag an error.
1507 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1508                                            const SDNodeInfo &NodeInfo,
1509                                            TreePattern &TP) const {
1510   if (TP.hasError())
1511     return false;
1512 
1513   unsigned ResNo = 0; // The result number being referenced.
1514   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1515   TypeInfer &TI = TP.getInfer();
1516 
1517   switch (ConstraintType) {
1518   case SDTCisVT:
1519     // Operand must be a particular type.
1520     return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1521   case SDTCisPtrTy:
1522     // Operand must be same as target pointer type.
1523     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1524   case SDTCisInt:
1525     // Require it to be one of the legal integer VTs.
1526      return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1527   case SDTCisFP:
1528     // Require it to be one of the legal fp VTs.
1529     return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1530   case SDTCisVec:
1531     // Require it to be one of the legal vector VTs.
1532     return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1533   case SDTCisSameAs: {
1534     unsigned OResNo = 0;
1535     TreePatternNode *OtherNode =
1536       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1537     return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1538            OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1539   }
1540   case SDTCisVTSmallerThanOp: {
1541     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
1542     // have an integer type that is smaller than the VT.
1543     if (!NodeToApply->isLeaf() ||
1544         !isa<DefInit>(NodeToApply->getLeafValue()) ||
1545         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1546                ->isSubClassOf("ValueType")) {
1547       TP.error(N->getOperator()->getName() + " expects a VT operand!");
1548       return false;
1549     }
1550     DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1551     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1552     auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1553     TypeSetByHwMode TypeListTmp(VVT);
1554 
1555     unsigned OResNo = 0;
1556     TreePatternNode *OtherNode =
1557       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1558                     OResNo);
1559 
1560     return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1561   }
1562   case SDTCisOpSmallerThanOp: {
1563     unsigned BResNo = 0;
1564     TreePatternNode *BigOperand =
1565       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1566                     BResNo);
1567     return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1568                                  BigOperand->getExtType(BResNo));
1569   }
1570   case SDTCisEltOfVec: {
1571     unsigned VResNo = 0;
1572     TreePatternNode *VecOperand =
1573       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1574                     VResNo);
1575     // Filter vector types out of VecOperand that don't have the right element
1576     // type.
1577     return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1578                                      NodeToApply->getExtType(ResNo));
1579   }
1580   case SDTCisSubVecOfVec: {
1581     unsigned VResNo = 0;
1582     TreePatternNode *BigVecOperand =
1583       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1584                     VResNo);
1585 
1586     // Filter vector types out of BigVecOperand that don't have the
1587     // right subvector type.
1588     return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1589                                            NodeToApply->getExtType(ResNo));
1590   }
1591   case SDTCVecEltisVT: {
1592     return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1593   }
1594   case SDTCisSameNumEltsAs: {
1595     unsigned OResNo = 0;
1596     TreePatternNode *OtherNode =
1597       getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1598                     N, NodeInfo, OResNo);
1599     return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1600                                  NodeToApply->getExtType(ResNo));
1601   }
1602   case SDTCisSameSizeAs: {
1603     unsigned OResNo = 0;
1604     TreePatternNode *OtherNode =
1605       getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1606                     N, NodeInfo, OResNo);
1607     return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1608                               NodeToApply->getExtType(ResNo));
1609   }
1610   }
1611   llvm_unreachable("Invalid ConstraintType!");
1612 }
1613 
1614 // Update the node type to match an instruction operand or result as specified
1615 // in the ins or outs lists on the instruction definition. Return true if the
1616 // type was actually changed.
1617 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1618                                              Record *Operand,
1619                                              TreePattern &TP) {
1620   // The 'unknown' operand indicates that types should be inferred from the
1621   // context.
1622   if (Operand->isSubClassOf("unknown_class"))
1623     return false;
1624 
1625   // The Operand class specifies a type directly.
1626   if (Operand->isSubClassOf("Operand")) {
1627     Record *R = Operand->getValueAsDef("Type");
1628     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1629     return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1630   }
1631 
1632   // PointerLikeRegClass has a type that is determined at runtime.
1633   if (Operand->isSubClassOf("PointerLikeRegClass"))
1634     return UpdateNodeType(ResNo, MVT::iPTR, TP);
1635 
1636   // Both RegisterClass and RegisterOperand operands derive their types from a
1637   // register class def.
1638   Record *RC = nullptr;
1639   if (Operand->isSubClassOf("RegisterClass"))
1640     RC = Operand;
1641   else if (Operand->isSubClassOf("RegisterOperand"))
1642     RC = Operand->getValueAsDef("RegClass");
1643 
1644   assert(RC && "Unknown operand type");
1645   CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1646   return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1647 }
1648 
1649 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1650   for (unsigned i = 0, e = Types.size(); i != e; ++i)
1651     if (!TP.getInfer().isConcrete(Types[i], true))
1652       return true;
1653   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1654     if (getChild(i)->ContainsUnresolvedType(TP))
1655       return true;
1656   return false;
1657 }
1658 
1659 bool TreePatternNode::hasProperTypeByHwMode() const {
1660   for (const TypeSetByHwMode &S : Types)
1661     if (!S.isDefaultOnly())
1662       return true;
1663   for (const TreePatternNodePtr &C : Children)
1664     if (C->hasProperTypeByHwMode())
1665       return true;
1666   return false;
1667 }
1668 
1669 bool TreePatternNode::hasPossibleType() const {
1670   for (const TypeSetByHwMode &S : Types)
1671     if (!S.isPossible())
1672       return false;
1673   for (const TreePatternNodePtr &C : Children)
1674     if (!C->hasPossibleType())
1675       return false;
1676   return true;
1677 }
1678 
1679 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1680   for (TypeSetByHwMode &S : Types) {
1681     S.makeSimple(Mode);
1682     // Check if the selected mode had a type conflict.
1683     if (S.get(DefaultMode).empty())
1684       return false;
1685   }
1686   for (const TreePatternNodePtr &C : Children)
1687     if (!C->setDefaultMode(Mode))
1688       return false;
1689   return true;
1690 }
1691 
1692 //===----------------------------------------------------------------------===//
1693 // SDNodeInfo implementation
1694 //
1695 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1696   EnumName    = R->getValueAsString("Opcode");
1697   SDClassName = R->getValueAsString("SDClass");
1698   Record *TypeProfile = R->getValueAsDef("TypeProfile");
1699   NumResults = TypeProfile->getValueAsInt("NumResults");
1700   NumOperands = TypeProfile->getValueAsInt("NumOperands");
1701 
1702   // Parse the properties.
1703   Properties = parseSDPatternOperatorProperties(R);
1704 
1705   // Parse the type constraints.
1706   std::vector<Record*> ConstraintList =
1707     TypeProfile->getValueAsListOfDefs("Constraints");
1708   for (Record *R : ConstraintList)
1709     TypeConstraints.emplace_back(R, CGH);
1710 }
1711 
1712 /// getKnownType - If the type constraints on this node imply a fixed type
1713 /// (e.g. all stores return void, etc), then return it as an
1714 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
1715 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1716   unsigned NumResults = getNumResults();
1717   assert(NumResults <= 1 &&
1718          "We only work with nodes with zero or one result so far!");
1719   assert(ResNo == 0 && "Only handles single result nodes so far");
1720 
1721   for (const SDTypeConstraint &Constraint : TypeConstraints) {
1722     // Make sure that this applies to the correct node result.
1723     if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
1724       continue;
1725 
1726     switch (Constraint.ConstraintType) {
1727     default: break;
1728     case SDTypeConstraint::SDTCisVT:
1729       if (Constraint.VVT.isSimple())
1730         return Constraint.VVT.getSimple().SimpleTy;
1731       break;
1732     case SDTypeConstraint::SDTCisPtrTy:
1733       return MVT::iPTR;
1734     }
1735   }
1736   return MVT::Other;
1737 }
1738 
1739 //===----------------------------------------------------------------------===//
1740 // TreePatternNode implementation
1741 //
1742 
1743 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1744   if (Operator->getName() == "set" ||
1745       Operator->getName() == "implicit")
1746     return 0;  // All return nothing.
1747 
1748   if (Operator->isSubClassOf("Intrinsic"))
1749     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1750 
1751   if (Operator->isSubClassOf("SDNode"))
1752     return CDP.getSDNodeInfo(Operator).getNumResults();
1753 
1754   if (Operator->isSubClassOf("PatFrags")) {
1755     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1756     // the forward reference case where one pattern fragment references another
1757     // before it is processed.
1758     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1759       // The number of results of a fragment with alternative records is the
1760       // maximum number of results across all alternatives.
1761       unsigned NumResults = 0;
1762       for (auto T : PFRec->getTrees())
1763         NumResults = std::max(NumResults, T->getNumTypes());
1764       return NumResults;
1765     }
1766 
1767     ListInit *LI = Operator->getValueAsListInit("Fragments");
1768     assert(LI && "Invalid Fragment");
1769     unsigned NumResults = 0;
1770     for (Init *I : LI->getValues()) {
1771       Record *Op = nullptr;
1772       if (DagInit *Dag = dyn_cast<DagInit>(I))
1773         if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1774           Op = DI->getDef();
1775       assert(Op && "Invalid Fragment");
1776       NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1777     }
1778     return NumResults;
1779   }
1780 
1781   if (Operator->isSubClassOf("Instruction")) {
1782     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1783 
1784     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1785 
1786     // Subtract any defaulted outputs.
1787     for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1788       Record *OperandNode = InstInfo.Operands[i].Rec;
1789 
1790       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1791           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1792         --NumDefsToAdd;
1793     }
1794 
1795     // Add on one implicit def if it has a resolvable type.
1796     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1797       ++NumDefsToAdd;
1798     return NumDefsToAdd;
1799   }
1800 
1801   if (Operator->isSubClassOf("SDNodeXForm"))
1802     return 1;  // FIXME: Generalize SDNodeXForm
1803 
1804   if (Operator->isSubClassOf("ValueType"))
1805     return 1;  // A type-cast of one result.
1806 
1807   if (Operator->isSubClassOf("ComplexPattern"))
1808     return 1;
1809 
1810   errs() << *Operator;
1811   PrintFatalError("Unhandled node in GetNumNodeResults");
1812 }
1813 
1814 void TreePatternNode::print(raw_ostream &OS) const {
1815   if (isLeaf())
1816     OS << *getLeafValue();
1817   else
1818     OS << '(' << getOperator()->getName();
1819 
1820   for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1821     OS << ':';
1822     getExtType(i).writeToStream(OS);
1823   }
1824 
1825   if (!isLeaf()) {
1826     if (getNumChildren() != 0) {
1827       OS << " ";
1828       getChild(0)->print(OS);
1829       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1830         OS << ", ";
1831         getChild(i)->print(OS);
1832       }
1833     }
1834     OS << ")";
1835   }
1836 
1837   for (const TreePredicateCall &Pred : PredicateCalls) {
1838     OS << "<<P:";
1839     if (Pred.Scope)
1840       OS << Pred.Scope << ":";
1841     OS << Pred.Fn.getFnName() << ">>";
1842   }
1843   if (TransformFn)
1844     OS << "<<X:" << TransformFn->getName() << ">>";
1845   if (!getName().empty())
1846     OS << ":$" << getName();
1847 
1848   for (const ScopedName &Name : NamesAsPredicateArg)
1849     OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1850 }
1851 void TreePatternNode::dump() const {
1852   print(errs());
1853 }
1854 
1855 /// isIsomorphicTo - Return true if this node is recursively
1856 /// isomorphic to the specified node.  For this comparison, the node's
1857 /// entire state is considered. The assigned name is ignored, since
1858 /// nodes with differing names are considered isomorphic. However, if
1859 /// the assigned name is present in the dependent variable set, then
1860 /// the assigned name is considered significant and the node is
1861 /// isomorphic if the names match.
1862 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1863                                      const MultipleUseVarSet &DepVars) const {
1864   if (N == this) return true;
1865   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1866       getPredicateCalls() != N->getPredicateCalls() ||
1867       getTransformFn() != N->getTransformFn())
1868     return false;
1869 
1870   if (isLeaf()) {
1871     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1872       if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1873         return ((DI->getDef() == NDI->getDef())
1874                 && (DepVars.find(getName()) == DepVars.end()
1875                     || getName() == N->getName()));
1876       }
1877     }
1878     return getLeafValue() == N->getLeafValue();
1879   }
1880 
1881   if (N->getOperator() != getOperator() ||
1882       N->getNumChildren() != getNumChildren()) return false;
1883   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1884     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1885       return false;
1886   return true;
1887 }
1888 
1889 /// clone - Make a copy of this tree and all of its children.
1890 ///
1891 TreePatternNodePtr TreePatternNode::clone() const {
1892   TreePatternNodePtr New;
1893   if (isLeaf()) {
1894     New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1895   } else {
1896     std::vector<TreePatternNodePtr> CChildren;
1897     CChildren.reserve(Children.size());
1898     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1899       CChildren.push_back(getChild(i)->clone());
1900     New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1901                                             getNumTypes());
1902   }
1903   New->setName(getName());
1904   New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1905   New->Types = Types;
1906   New->setPredicateCalls(getPredicateCalls());
1907   New->setTransformFn(getTransformFn());
1908   return New;
1909 }
1910 
1911 /// RemoveAllTypes - Recursively strip all the types of this tree.
1912 void TreePatternNode::RemoveAllTypes() {
1913   // Reset to unknown type.
1914   std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1915   if (isLeaf()) return;
1916   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1917     getChild(i)->RemoveAllTypes();
1918 }
1919 
1920 
1921 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1922 /// with actual values specified by ArgMap.
1923 void TreePatternNode::SubstituteFormalArguments(
1924     std::map<std::string, TreePatternNodePtr> &ArgMap) {
1925   if (isLeaf()) return;
1926 
1927   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1928     TreePatternNode *Child = getChild(i);
1929     if (Child->isLeaf()) {
1930       Init *Val = Child->getLeafValue();
1931       // Note that, when substituting into an output pattern, Val might be an
1932       // UnsetInit.
1933       if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1934           cast<DefInit>(Val)->getDef()->getName() == "node")) {
1935         // We found a use of a formal argument, replace it with its value.
1936         TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1937         assert(NewChild && "Couldn't find formal argument!");
1938         assert((Child->getPredicateCalls().empty() ||
1939                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1940                "Non-empty child predicate clobbered!");
1941         setChild(i, std::move(NewChild));
1942       }
1943     } else {
1944       getChild(i)->SubstituteFormalArguments(ArgMap);
1945     }
1946   }
1947 }
1948 
1949 
1950 /// InlinePatternFragments - If this pattern refers to any pattern
1951 /// fragments, return the set of inlined versions (this can be more than
1952 /// one if a PatFrags record has multiple alternatives).
1953 void TreePatternNode::InlinePatternFragments(
1954   TreePatternNodePtr T, TreePattern &TP,
1955   std::vector<TreePatternNodePtr> &OutAlternatives) {
1956 
1957   if (TP.hasError())
1958     return;
1959 
1960   if (isLeaf()) {
1961     OutAlternatives.push_back(T);  // nothing to do.
1962     return;
1963   }
1964 
1965   Record *Op = getOperator();
1966 
1967   if (!Op->isSubClassOf("PatFrags")) {
1968     if (getNumChildren() == 0) {
1969       OutAlternatives.push_back(T);
1970       return;
1971     }
1972 
1973     // Recursively inline children nodes.
1974     std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1975     ChildAlternatives.resize(getNumChildren());
1976     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1977       TreePatternNodePtr Child = getChildShared(i);
1978       Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1979       // If there are no alternatives for any child, there are no
1980       // alternatives for this expression as whole.
1981       if (ChildAlternatives[i].empty())
1982         return;
1983 
1984       for (auto NewChild : ChildAlternatives[i])
1985         assert((Child->getPredicateCalls().empty() ||
1986                 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1987                "Non-empty child predicate clobbered!");
1988     }
1989 
1990     // The end result is an all-pairs construction of the resultant pattern.
1991     std::vector<unsigned> Idxs;
1992     Idxs.resize(ChildAlternatives.size());
1993     bool NotDone;
1994     do {
1995       // Create the variant and add it to the output list.
1996       std::vector<TreePatternNodePtr> NewChildren;
1997       for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1998         NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1999       TreePatternNodePtr R = std::make_shared<TreePatternNode>(
2000           getOperator(), std::move(NewChildren), getNumTypes());
2001 
2002       // Copy over properties.
2003       R->setName(getName());
2004       R->setNamesAsPredicateArg(getNamesAsPredicateArg());
2005       R->setPredicateCalls(getPredicateCalls());
2006       R->setTransformFn(getTransformFn());
2007       for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
2008         R->setType(i, getExtType(i));
2009       for (unsigned i = 0, e = getNumResults(); i != e; ++i)
2010         R->setResultIndex(i, getResultIndex(i));
2011 
2012       // Register alternative.
2013       OutAlternatives.push_back(R);
2014 
2015       // Increment indices to the next permutation by incrementing the
2016       // indices from last index backward, e.g., generate the sequence
2017       // [0, 0], [0, 1], [1, 0], [1, 1].
2018       int IdxsIdx;
2019       for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
2020         if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
2021           Idxs[IdxsIdx] = 0;
2022         else
2023           break;
2024       }
2025       NotDone = (IdxsIdx >= 0);
2026     } while (NotDone);
2027 
2028     return;
2029   }
2030 
2031   // Otherwise, we found a reference to a fragment.  First, look up its
2032   // TreePattern record.
2033   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2034 
2035   // Verify that we are passing the right number of operands.
2036   if (Frag->getNumArgs() != Children.size()) {
2037     TP.error("'" + Op->getName() + "' fragment requires " +
2038              Twine(Frag->getNumArgs()) + " operands!");
2039     return;
2040   }
2041 
2042   TreePredicateFn PredFn(Frag);
2043   unsigned Scope = 0;
2044   if (TreePredicateFn(Frag).usesOperands())
2045     Scope = TP.getDAGPatterns().allocateScope();
2046 
2047   // Compute the map of formal to actual arguments.
2048   std::map<std::string, TreePatternNodePtr> ArgMap;
2049   for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2050     TreePatternNodePtr Child = getChildShared(i);
2051     if (Scope != 0) {
2052       Child = Child->clone();
2053       Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2054     }
2055     ArgMap[Frag->getArgName(i)] = Child;
2056   }
2057 
2058   // Loop over all fragment alternatives.
2059   for (auto Alternative : Frag->getTrees()) {
2060     TreePatternNodePtr FragTree = Alternative->clone();
2061 
2062     if (!PredFn.isAlwaysTrue())
2063       FragTree->addPredicateCall(PredFn, Scope);
2064 
2065     // Resolve formal arguments to their actual value.
2066     if (Frag->getNumArgs())
2067       FragTree->SubstituteFormalArguments(ArgMap);
2068 
2069     // Transfer types.  Note that the resolved alternative may have fewer
2070     // (but not more) results than the PatFrags node.
2071     FragTree->setName(getName());
2072     for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2073       FragTree->UpdateNodeType(i, getExtType(i), TP);
2074 
2075     // Transfer in the old predicates.
2076     for (const TreePredicateCall &Pred : getPredicateCalls())
2077       FragTree->addPredicateCall(Pred);
2078 
2079     // The fragment we inlined could have recursive inlining that is needed.  See
2080     // if there are any pattern fragments in it and inline them as needed.
2081     FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2082   }
2083 }
2084 
2085 /// getImplicitType - Check to see if the specified record has an implicit
2086 /// type which should be applied to it.  This will infer the type of register
2087 /// references from the register file information, for example.
2088 ///
2089 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2090 /// the F8RC register class argument in:
2091 ///
2092 ///   (COPY_TO_REGCLASS GPR:$src, F8RC)
2093 ///
2094 /// When Unnamed is false, return the type of a named DAG operand such as the
2095 /// GPR:$src operand above.
2096 ///
2097 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2098                                        bool NotRegisters,
2099                                        bool Unnamed,
2100                                        TreePattern &TP) {
2101   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2102 
2103   // Check to see if this is a register operand.
2104   if (R->isSubClassOf("RegisterOperand")) {
2105     assert(ResNo == 0 && "Regoperand ref only has one result!");
2106     if (NotRegisters)
2107       return TypeSetByHwMode(); // Unknown.
2108     Record *RegClass = R->getValueAsDef("RegClass");
2109     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2110     return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2111   }
2112 
2113   // Check to see if this is a register or a register class.
2114   if (R->isSubClassOf("RegisterClass")) {
2115     assert(ResNo == 0 && "Regclass ref only has one result!");
2116     // An unnamed register class represents itself as an i32 immediate, for
2117     // example on a COPY_TO_REGCLASS instruction.
2118     if (Unnamed)
2119       return TypeSetByHwMode(MVT::i32);
2120 
2121     // In a named operand, the register class provides the possible set of
2122     // types.
2123     if (NotRegisters)
2124       return TypeSetByHwMode(); // Unknown.
2125     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2126     return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2127   }
2128 
2129   if (R->isSubClassOf("PatFrags")) {
2130     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2131     // Pattern fragment types will be resolved when they are inlined.
2132     return TypeSetByHwMode(); // Unknown.
2133   }
2134 
2135   if (R->isSubClassOf("Register")) {
2136     assert(ResNo == 0 && "Registers only produce one result!");
2137     if (NotRegisters)
2138       return TypeSetByHwMode(); // Unknown.
2139     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2140     return TypeSetByHwMode(T.getRegisterVTs(R));
2141   }
2142 
2143   if (R->isSubClassOf("SubRegIndex")) {
2144     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2145     return TypeSetByHwMode(MVT::i32);
2146   }
2147 
2148   if (R->isSubClassOf("ValueType")) {
2149     assert(ResNo == 0 && "This node only has one result!");
2150     // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2151     //
2152     //   (sext_inreg GPR:$src, i16)
2153     //                         ~~~
2154     if (Unnamed)
2155       return TypeSetByHwMode(MVT::Other);
2156     // With a name, the ValueType simply provides the type of the named
2157     // variable.
2158     //
2159     //   (sext_inreg i32:$src, i16)
2160     //               ~~~~~~~~
2161     if (NotRegisters)
2162       return TypeSetByHwMode(); // Unknown.
2163     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2164     return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2165   }
2166 
2167   if (R->isSubClassOf("CondCode")) {
2168     assert(ResNo == 0 && "This node only has one result!");
2169     // Using a CondCodeSDNode.
2170     return TypeSetByHwMode(MVT::Other);
2171   }
2172 
2173   if (R->isSubClassOf("ComplexPattern")) {
2174     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2175     if (NotRegisters)
2176       return TypeSetByHwMode(); // Unknown.
2177     return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2178   }
2179   if (R->isSubClassOf("PointerLikeRegClass")) {
2180     assert(ResNo == 0 && "Regclass can only have one result!");
2181     TypeSetByHwMode VTS(MVT::iPTR);
2182     TP.getInfer().expandOverloads(VTS);
2183     return VTS;
2184   }
2185 
2186   if (R->getName() == "node" || R->getName() == "srcvalue" ||
2187       R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2188       R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2189     // Placeholder.
2190     return TypeSetByHwMode(); // Unknown.
2191   }
2192 
2193   if (R->isSubClassOf("Operand")) {
2194     const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2195     Record *T = R->getValueAsDef("Type");
2196     return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2197   }
2198 
2199   TP.error("Unknown node flavor used in pattern: " + R->getName());
2200   return TypeSetByHwMode(MVT::Other);
2201 }
2202 
2203 
2204 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2205 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2206 const CodeGenIntrinsic *TreePatternNode::
2207 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2208   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2209       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2210       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2211     return nullptr;
2212 
2213   unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2214   return &CDP.getIntrinsicInfo(IID);
2215 }
2216 
2217 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2218 /// return the ComplexPattern information, otherwise return null.
2219 const ComplexPattern *
2220 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2221   Record *Rec;
2222   if (isLeaf()) {
2223     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2224     if (!DI)
2225       return nullptr;
2226     Rec = DI->getDef();
2227   } else
2228     Rec = getOperator();
2229 
2230   if (!Rec->isSubClassOf("ComplexPattern"))
2231     return nullptr;
2232   return &CGP.getComplexPattern(Rec);
2233 }
2234 
2235 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2236   // A ComplexPattern specifically declares how many results it fills in.
2237   if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2238     return CP->getNumOperands();
2239 
2240   // If MIOperandInfo is specified, that gives the count.
2241   if (isLeaf()) {
2242     DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2243     if (DI && DI->getDef()->isSubClassOf("Operand")) {
2244       DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2245       if (MIOps->getNumArgs())
2246         return MIOps->getNumArgs();
2247     }
2248   }
2249 
2250   // Otherwise there is just one result.
2251   return 1;
2252 }
2253 
2254 /// NodeHasProperty - Return true if this node has the specified property.
2255 bool TreePatternNode::NodeHasProperty(SDNP Property,
2256                                       const CodeGenDAGPatterns &CGP) const {
2257   if (isLeaf()) {
2258     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2259       return CP->hasProperty(Property);
2260 
2261     return false;
2262   }
2263 
2264   if (Property != SDNPHasChain) {
2265     // The chain proprety is already present on the different intrinsic node
2266     // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2267     // on the intrinsic. Anything else is specific to the individual intrinsic.
2268     if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2269       return Int->hasProperty(Property);
2270   }
2271 
2272   if (!Operator->isSubClassOf("SDPatternOperator"))
2273     return false;
2274 
2275   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2276 }
2277 
2278 
2279 
2280 
2281 /// TreeHasProperty - Return true if any node in this tree has the specified
2282 /// property.
2283 bool TreePatternNode::TreeHasProperty(SDNP Property,
2284                                       const CodeGenDAGPatterns &CGP) const {
2285   if (NodeHasProperty(Property, CGP))
2286     return true;
2287   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2288     if (getChild(i)->TreeHasProperty(Property, CGP))
2289       return true;
2290   return false;
2291 }
2292 
2293 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2294 /// commutative intrinsic.
2295 bool
2296 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2297   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2298     return Int->isCommutative;
2299   return false;
2300 }
2301 
2302 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2303   if (!N->isLeaf())
2304     return N->getOperator()->isSubClassOf(Class);
2305 
2306   DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2307   if (DI && DI->getDef()->isSubClassOf(Class))
2308     return true;
2309 
2310   return false;
2311 }
2312 
2313 static void emitTooManyOperandsError(TreePattern &TP,
2314                                      StringRef InstName,
2315                                      unsigned Expected,
2316                                      unsigned Actual) {
2317   TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2318            " operands but expected only " + Twine(Expected) + "!");
2319 }
2320 
2321 static void emitTooFewOperandsError(TreePattern &TP,
2322                                     StringRef InstName,
2323                                     unsigned Actual) {
2324   TP.error("Instruction '" + InstName +
2325            "' expects more than the provided " + Twine(Actual) + " operands!");
2326 }
2327 
2328 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2329 /// this node and its children in the tree.  This returns true if it makes a
2330 /// change, false otherwise.  If a type contradiction is found, flag an error.
2331 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2332   if (TP.hasError())
2333     return false;
2334 
2335   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2336   if (isLeaf()) {
2337     if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2338       // If it's a regclass or something else known, include the type.
2339       bool MadeChange = false;
2340       for (unsigned i = 0, e = Types.size(); i != e; ++i)
2341         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2342                                                         NotRegisters,
2343                                                         !hasName(), TP), TP);
2344       return MadeChange;
2345     }
2346 
2347     if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2348       assert(Types.size() == 1 && "Invalid IntInit");
2349 
2350       // Int inits are always integers. :)
2351       bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2352 
2353       if (!TP.getInfer().isConcrete(Types[0], false))
2354         return MadeChange;
2355 
2356       ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2357       for (auto &P : VVT) {
2358         MVT::SimpleValueType VT = P.second.SimpleTy;
2359         if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2360           continue;
2361         unsigned Size = MVT(VT).getSizeInBits();
2362         // Make sure that the value is representable for this type.
2363         if (Size >= 32)
2364           continue;
2365         // Check that the value doesn't use more bits than we have. It must
2366         // either be a sign- or zero-extended equivalent of the original.
2367         int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2368         if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2369             SignBitAndAbove == 1)
2370           continue;
2371 
2372         TP.error("Integer value '" + Twine(II->getValue()) +
2373                  "' is out of range for type '" + getEnumName(VT) + "'!");
2374         break;
2375       }
2376       return MadeChange;
2377     }
2378 
2379     return false;
2380   }
2381 
2382   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2383     bool MadeChange = false;
2384 
2385     // Apply the result type to the node.
2386     unsigned NumRetVTs = Int->IS.RetVTs.size();
2387     unsigned NumParamVTs = Int->IS.ParamVTs.size();
2388 
2389     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2390       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2391 
2392     if (getNumChildren() != NumParamVTs + 1) {
2393       TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2394                " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2395       return false;
2396     }
2397 
2398     // Apply type info to the intrinsic ID.
2399     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2400 
2401     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2402       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2403 
2404       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2405       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2406       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2407     }
2408     return MadeChange;
2409   }
2410 
2411   if (getOperator()->isSubClassOf("SDNode")) {
2412     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2413 
2414     // Check that the number of operands is sane.  Negative operands -> varargs.
2415     if (NI.getNumOperands() >= 0 &&
2416         getNumChildren() != (unsigned)NI.getNumOperands()) {
2417       TP.error(getOperator()->getName() + " node requires exactly " +
2418                Twine(NI.getNumOperands()) + " operands!");
2419       return false;
2420     }
2421 
2422     bool MadeChange = false;
2423     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2424       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2425     MadeChange |= NI.ApplyTypeConstraints(this, TP);
2426     return MadeChange;
2427   }
2428 
2429   if (getOperator()->isSubClassOf("Instruction")) {
2430     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2431     CodeGenInstruction &InstInfo =
2432       CDP.getTargetInfo().getInstruction(getOperator());
2433 
2434     bool MadeChange = false;
2435 
2436     // Apply the result types to the node, these come from the things in the
2437     // (outs) list of the instruction.
2438     unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2439                                         Inst.getNumResults());
2440     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2441       MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2442 
2443     // If the instruction has implicit defs, we apply the first one as a result.
2444     // FIXME: This sucks, it should apply all implicit defs.
2445     if (!InstInfo.ImplicitDefs.empty()) {
2446       unsigned ResNo = NumResultsToAdd;
2447 
2448       // FIXME: Generalize to multiple possible types and multiple possible
2449       // ImplicitDefs.
2450       MVT::SimpleValueType VT =
2451         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2452 
2453       if (VT != MVT::Other)
2454         MadeChange |= UpdateNodeType(ResNo, VT, TP);
2455     }
2456 
2457     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2458     // be the same.
2459     if (getOperator()->getName() == "INSERT_SUBREG") {
2460       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2461       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2462       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2463     } else if (getOperator()->getName() == "REG_SEQUENCE") {
2464       // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2465       // variadic.
2466 
2467       unsigned NChild = getNumChildren();
2468       if (NChild < 3) {
2469         TP.error("REG_SEQUENCE requires at least 3 operands!");
2470         return false;
2471       }
2472 
2473       if (NChild % 2 == 0) {
2474         TP.error("REG_SEQUENCE requires an odd number of operands!");
2475         return false;
2476       }
2477 
2478       if (!isOperandClass(getChild(0), "RegisterClass")) {
2479         TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2480         return false;
2481       }
2482 
2483       for (unsigned I = 1; I < NChild; I += 2) {
2484         TreePatternNode *SubIdxChild = getChild(I + 1);
2485         if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2486           TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2487                    Twine(I + 1) + "!");
2488           return false;
2489         }
2490       }
2491     }
2492 
2493     // If one or more operands with a default value appear at the end of the
2494     // formal operand list for an instruction, we allow them to be overridden
2495     // by optional operands provided in the pattern.
2496     //
2497     // But if an operand B without a default appears at any point after an
2498     // operand A with a default, then we don't allow A to be overridden,
2499     // because there would be no way to specify whether the next operand in
2500     // the pattern was intended to override A or skip it.
2501     unsigned NonOverridableOperands = Inst.getNumOperands();
2502     while (NonOverridableOperands > 0 &&
2503            CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2504       --NonOverridableOperands;
2505 
2506     unsigned ChildNo = 0;
2507     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2508       Record *OperandNode = Inst.getOperand(i);
2509 
2510       // If the operand has a default value, do we use it? We must use the
2511       // default if we've run out of children of the pattern DAG to consume,
2512       // or if the operand is followed by a non-defaulted one.
2513       if (CDP.operandHasDefault(OperandNode) &&
2514           (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2515         continue;
2516 
2517       // If we have run out of child nodes and there _isn't_ a default
2518       // value we can use for the next operand, give an error.
2519       if (ChildNo >= getNumChildren()) {
2520         emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2521         return false;
2522       }
2523 
2524       TreePatternNode *Child = getChild(ChildNo++);
2525       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
2526 
2527       // If the operand has sub-operands, they may be provided by distinct
2528       // child patterns, so attempt to match each sub-operand separately.
2529       if (OperandNode->isSubClassOf("Operand")) {
2530         DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2531         if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2532           // But don't do that if the whole operand is being provided by
2533           // a single ComplexPattern-related Operand.
2534 
2535           if (Child->getNumMIResults(CDP) < NumArgs) {
2536             // Match first sub-operand against the child we already have.
2537             Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2538             MadeChange |=
2539               Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2540 
2541             // And the remaining sub-operands against subsequent children.
2542             for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2543               if (ChildNo >= getNumChildren()) {
2544                 emitTooFewOperandsError(TP, getOperator()->getName(),
2545                                         getNumChildren());
2546                 return false;
2547               }
2548               Child = getChild(ChildNo++);
2549 
2550               SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2551               MadeChange |=
2552                 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2553             }
2554             continue;
2555           }
2556         }
2557       }
2558 
2559       // If we didn't match by pieces above, attempt to match the whole
2560       // operand now.
2561       MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2562     }
2563 
2564     if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2565       emitTooManyOperandsError(TP, getOperator()->getName(),
2566                                ChildNo, getNumChildren());
2567       return false;
2568     }
2569 
2570     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2571       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2572     return MadeChange;
2573   }
2574 
2575   if (getOperator()->isSubClassOf("ComplexPattern")) {
2576     bool MadeChange = false;
2577 
2578     for (unsigned i = 0; i < getNumChildren(); ++i)
2579       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2580 
2581     return MadeChange;
2582   }
2583 
2584   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2585 
2586   // Node transforms always take one operand.
2587   if (getNumChildren() != 1) {
2588     TP.error("Node transform '" + getOperator()->getName() +
2589              "' requires one operand!");
2590     return false;
2591   }
2592 
2593   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2594   return MadeChange;
2595 }
2596 
2597 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2598 /// RHS of a commutative operation, not the on LHS.
2599 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2600   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2601     return true;
2602   if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2603     return true;
2604   return false;
2605 }
2606 
2607 
2608 /// canPatternMatch - If it is impossible for this pattern to match on this
2609 /// target, fill in Reason and return false.  Otherwise, return true.  This is
2610 /// used as a sanity check for .td files (to prevent people from writing stuff
2611 /// that can never possibly work), and to prevent the pattern permuter from
2612 /// generating stuff that is useless.
2613 bool TreePatternNode::canPatternMatch(std::string &Reason,
2614                                       const CodeGenDAGPatterns &CDP) {
2615   if (isLeaf()) return true;
2616 
2617   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2618     if (!getChild(i)->canPatternMatch(Reason, CDP))
2619       return false;
2620 
2621   // If this is an intrinsic, handle cases that would make it not match.  For
2622   // example, if an operand is required to be an immediate.
2623   if (getOperator()->isSubClassOf("Intrinsic")) {
2624     // TODO:
2625     return true;
2626   }
2627 
2628   if (getOperator()->isSubClassOf("ComplexPattern"))
2629     return true;
2630 
2631   // If this node is a commutative operator, check that the LHS isn't an
2632   // immediate.
2633   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2634   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2635   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2636     // Scan all of the operands of the node and make sure that only the last one
2637     // is a constant node, unless the RHS also is.
2638     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2639       unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2640       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2641         if (OnlyOnRHSOfCommutative(getChild(i))) {
2642           Reason="Immediate value must be on the RHS of commutative operators!";
2643           return false;
2644         }
2645     }
2646   }
2647 
2648   return true;
2649 }
2650 
2651 //===----------------------------------------------------------------------===//
2652 // TreePattern implementation
2653 //
2654 
2655 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2656                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2657                          isInputPattern(isInput), HasError(false),
2658                          Infer(*this) {
2659   for (Init *I : RawPat->getValues())
2660     Trees.push_back(ParseTreePattern(I, ""));
2661 }
2662 
2663 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2664                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2665                          isInputPattern(isInput), HasError(false),
2666                          Infer(*this) {
2667   Trees.push_back(ParseTreePattern(Pat, ""));
2668 }
2669 
2670 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2671                          CodeGenDAGPatterns &cdp)
2672     : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2673       Infer(*this) {
2674   Trees.push_back(Pat);
2675 }
2676 
2677 void TreePattern::error(const Twine &Msg) {
2678   if (HasError)
2679     return;
2680   dump();
2681   PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2682   HasError = true;
2683 }
2684 
2685 void TreePattern::ComputeNamedNodes() {
2686   for (TreePatternNodePtr &Tree : Trees)
2687     ComputeNamedNodes(Tree.get());
2688 }
2689 
2690 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2691   if (!N->getName().empty())
2692     NamedNodes[N->getName()].push_back(N);
2693 
2694   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2695     ComputeNamedNodes(N->getChild(i));
2696 }
2697 
2698 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2699                                                  StringRef OpName) {
2700   if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2701     Record *R = DI->getDef();
2702 
2703     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
2704     // TreePatternNode of its own.  For example:
2705     ///   (foo GPR, imm) -> (foo GPR, (imm))
2706     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2707       return ParseTreePattern(
2708         DagInit::get(DI, nullptr,
2709                      std::vector<std::pair<Init*, StringInit*> >()),
2710         OpName);
2711 
2712     // Input argument?
2713     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2714     if (R->getName() == "node" && !OpName.empty()) {
2715       if (OpName.empty())
2716         error("'node' argument requires a name to match with operand list");
2717       Args.push_back(OpName);
2718     }
2719 
2720     Res->setName(OpName);
2721     return Res;
2722   }
2723 
2724   // ?:$name or just $name.
2725   if (isa<UnsetInit>(TheInit)) {
2726     if (OpName.empty())
2727       error("'?' argument requires a name to match with operand list");
2728     TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2729     Args.push_back(OpName);
2730     Res->setName(OpName);
2731     return Res;
2732   }
2733 
2734   if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2735     if (!OpName.empty())
2736       error("Constant int or bit argument should not have a name!");
2737     if (isa<BitInit>(TheInit))
2738       TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2739     return std::make_shared<TreePatternNode>(TheInit, 1);
2740   }
2741 
2742   if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2743     // Turn this into an IntInit.
2744     Init *II = BI->convertInitializerTo(IntRecTy::get());
2745     if (!II || !isa<IntInit>(II))
2746       error("Bits value must be constants!");
2747     return ParseTreePattern(II, OpName);
2748   }
2749 
2750   DagInit *Dag = dyn_cast<DagInit>(TheInit);
2751   if (!Dag) {
2752     TheInit->print(errs());
2753     error("Pattern has unexpected init kind!");
2754   }
2755   DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2756   if (!OpDef) error("Pattern has unexpected operator type!");
2757   Record *Operator = OpDef->getDef();
2758 
2759   if (Operator->isSubClassOf("ValueType")) {
2760     // If the operator is a ValueType, then this must be "type cast" of a leaf
2761     // node.
2762     if (Dag->getNumArgs() != 1)
2763       error("Type cast only takes one operand!");
2764 
2765     TreePatternNodePtr New =
2766         ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2767 
2768     // Apply the type cast.
2769     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2770     const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2771     New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2772 
2773     if (!OpName.empty())
2774       error("ValueType cast should not have a name!");
2775     return New;
2776   }
2777 
2778   // Verify that this is something that makes sense for an operator.
2779   if (!Operator->isSubClassOf("PatFrags") &&
2780       !Operator->isSubClassOf("SDNode") &&
2781       !Operator->isSubClassOf("Instruction") &&
2782       !Operator->isSubClassOf("SDNodeXForm") &&
2783       !Operator->isSubClassOf("Intrinsic") &&
2784       !Operator->isSubClassOf("ComplexPattern") &&
2785       Operator->getName() != "set" &&
2786       Operator->getName() != "implicit")
2787     error("Unrecognized node '" + Operator->getName() + "'!");
2788 
2789   //  Check to see if this is something that is illegal in an input pattern.
2790   if (isInputPattern) {
2791     if (Operator->isSubClassOf("Instruction") ||
2792         Operator->isSubClassOf("SDNodeXForm"))
2793       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2794   } else {
2795     if (Operator->isSubClassOf("Intrinsic"))
2796       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2797 
2798     if (Operator->isSubClassOf("SDNode") &&
2799         Operator->getName() != "imm" &&
2800         Operator->getName() != "timm" &&
2801         Operator->getName() != "fpimm" &&
2802         Operator->getName() != "tglobaltlsaddr" &&
2803         Operator->getName() != "tconstpool" &&
2804         Operator->getName() != "tjumptable" &&
2805         Operator->getName() != "tframeindex" &&
2806         Operator->getName() != "texternalsym" &&
2807         Operator->getName() != "tblockaddress" &&
2808         Operator->getName() != "tglobaladdr" &&
2809         Operator->getName() != "bb" &&
2810         Operator->getName() != "vt" &&
2811         Operator->getName() != "mcsym")
2812       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2813   }
2814 
2815   std::vector<TreePatternNodePtr> Children;
2816 
2817   // Parse all the operands.
2818   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2819     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2820 
2821   // Get the actual number of results before Operator is converted to an intrinsic
2822   // node (which is hard-coded to have either zero or one result).
2823   unsigned NumResults = GetNumNodeResults(Operator, CDP);
2824 
2825   // If the operator is an intrinsic, then this is just syntactic sugar for
2826   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
2827   // convert the intrinsic name to a number.
2828   if (Operator->isSubClassOf("Intrinsic")) {
2829     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2830     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2831 
2832     // If this intrinsic returns void, it must have side-effects and thus a
2833     // chain.
2834     if (Int.IS.RetVTs.empty())
2835       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2836     else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2837       // Has side-effects, requires chain.
2838       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2839     else // Otherwise, no chain.
2840       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2841 
2842     Children.insert(Children.begin(),
2843                     std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2844   }
2845 
2846   if (Operator->isSubClassOf("ComplexPattern")) {
2847     for (unsigned i = 0; i < Children.size(); ++i) {
2848       TreePatternNodePtr Child = Children[i];
2849 
2850       if (Child->getName().empty())
2851         error("All arguments to a ComplexPattern must be named");
2852 
2853       // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2854       // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2855       // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2856       auto OperandId = std::make_pair(Operator, i);
2857       auto PrevOp = ComplexPatternOperands.find(Child->getName());
2858       if (PrevOp != ComplexPatternOperands.end()) {
2859         if (PrevOp->getValue() != OperandId)
2860           error("All ComplexPattern operands must appear consistently: "
2861                 "in the same order in just one ComplexPattern instance.");
2862       } else
2863         ComplexPatternOperands[Child->getName()] = OperandId;
2864     }
2865   }
2866 
2867   TreePatternNodePtr Result =
2868       std::make_shared<TreePatternNode>(Operator, std::move(Children),
2869                                         NumResults);
2870   Result->setName(OpName);
2871 
2872   if (Dag->getName()) {
2873     assert(Result->getName().empty());
2874     Result->setName(Dag->getNameStr());
2875   }
2876   return Result;
2877 }
2878 
2879 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2880 /// will never match in favor of something obvious that will.  This is here
2881 /// strictly as a convenience to target authors because it allows them to write
2882 /// more type generic things and have useless type casts fold away.
2883 ///
2884 /// This returns true if any change is made.
2885 static bool SimplifyTree(TreePatternNodePtr &N) {
2886   if (N->isLeaf())
2887     return false;
2888 
2889   // If we have a bitconvert with a resolved type and if the source and
2890   // destination types are the same, then the bitconvert is useless, remove it.
2891   if (N->getOperator()->getName() == "bitconvert" &&
2892       N->getExtType(0).isValueTypeByHwMode(false) &&
2893       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2894       N->getName().empty()) {
2895     N = N->getChildShared(0);
2896     SimplifyTree(N);
2897     return true;
2898   }
2899 
2900   // Walk all children.
2901   bool MadeChange = false;
2902   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2903     TreePatternNodePtr Child = N->getChildShared(i);
2904     MadeChange |= SimplifyTree(Child);
2905     N->setChild(i, std::move(Child));
2906   }
2907   return MadeChange;
2908 }
2909 
2910 
2911 
2912 /// InferAllTypes - Infer/propagate as many types throughout the expression
2913 /// patterns as possible.  Return true if all types are inferred, false
2914 /// otherwise.  Flags an error if a type contradiction is found.
2915 bool TreePattern::
2916 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2917   if (NamedNodes.empty())
2918     ComputeNamedNodes();
2919 
2920   bool MadeChange = true;
2921   while (MadeChange) {
2922     MadeChange = false;
2923     for (TreePatternNodePtr &Tree : Trees) {
2924       MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2925       MadeChange |= SimplifyTree(Tree);
2926     }
2927 
2928     // If there are constraints on our named nodes, apply them.
2929     for (auto &Entry : NamedNodes) {
2930       SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2931 
2932       // If we have input named node types, propagate their types to the named
2933       // values here.
2934       if (InNamedTypes) {
2935         if (!InNamedTypes->count(Entry.getKey())) {
2936           error("Node '" + std::string(Entry.getKey()) +
2937                 "' in output pattern but not input pattern");
2938           return true;
2939         }
2940 
2941         const SmallVectorImpl<TreePatternNode*> &InNodes =
2942           InNamedTypes->find(Entry.getKey())->second;
2943 
2944         // The input types should be fully resolved by now.
2945         for (TreePatternNode *Node : Nodes) {
2946           // If this node is a register class, and it is the root of the pattern
2947           // then we're mapping something onto an input register.  We allow
2948           // changing the type of the input register in this case.  This allows
2949           // us to match things like:
2950           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2951           if (Node == Trees[0].get() && Node->isLeaf()) {
2952             DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2953             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2954                        DI->getDef()->isSubClassOf("RegisterOperand")))
2955               continue;
2956           }
2957 
2958           assert(Node->getNumTypes() == 1 &&
2959                  InNodes[0]->getNumTypes() == 1 &&
2960                  "FIXME: cannot name multiple result nodes yet");
2961           MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2962                                              *this);
2963         }
2964       }
2965 
2966       // If there are multiple nodes with the same name, they must all have the
2967       // same type.
2968       if (Entry.second.size() > 1) {
2969         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2970           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2971           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2972                  "FIXME: cannot name multiple result nodes yet");
2973 
2974           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2975           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2976         }
2977       }
2978     }
2979   }
2980 
2981   bool HasUnresolvedTypes = false;
2982   for (const TreePatternNodePtr &Tree : Trees)
2983     HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2984   return !HasUnresolvedTypes;
2985 }
2986 
2987 void TreePattern::print(raw_ostream &OS) const {
2988   OS << getRecord()->getName();
2989   if (!Args.empty()) {
2990     OS << "(" << Args[0];
2991     for (unsigned i = 1, e = Args.size(); i != e; ++i)
2992       OS << ", " << Args[i];
2993     OS << ")";
2994   }
2995   OS << ": ";
2996 
2997   if (Trees.size() > 1)
2998     OS << "[\n";
2999   for (const TreePatternNodePtr &Tree : Trees) {
3000     OS << "\t";
3001     Tree->print(OS);
3002     OS << "\n";
3003   }
3004 
3005   if (Trees.size() > 1)
3006     OS << "]\n";
3007 }
3008 
3009 void TreePattern::dump() const { print(errs()); }
3010 
3011 //===----------------------------------------------------------------------===//
3012 // CodeGenDAGPatterns implementation
3013 //
3014 
3015 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
3016                                        PatternRewriterFn PatternRewriter)
3017     : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
3018       PatternRewriter(PatternRewriter) {
3019 
3020   Intrinsics = CodeGenIntrinsicTable(Records, false);
3021   TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
3022   ParseNodeInfo();
3023   ParseNodeTransforms();
3024   ParseComplexPatterns();
3025   ParsePatternFragments();
3026   ParseDefaultOperands();
3027   ParseInstructions();
3028   ParsePatternFragments(/*OutFrags*/true);
3029   ParsePatterns();
3030 
3031   // Break patterns with parameterized types into a series of patterns,
3032   // where each one has a fixed type and is predicated on the conditions
3033   // of the associated HW mode.
3034   ExpandHwModeBasedTypes();
3035 
3036   // Generate variants.  For example, commutative patterns can match
3037   // multiple ways.  Add them to PatternsToMatch as well.
3038   GenerateVariants();
3039 
3040   // Infer instruction flags.  For example, we can detect loads,
3041   // stores, and side effects in many cases by examining an
3042   // instruction's pattern.
3043   InferInstructionFlags();
3044 
3045   // Verify that instruction flags match the patterns.
3046   VerifyInstructionFlags();
3047 }
3048 
3049 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3050   Record *N = Records.getDef(Name);
3051   if (!N || !N->isSubClassOf("SDNode"))
3052     PrintFatalError("Error getting SDNode '" + Name + "'!");
3053 
3054   return N;
3055 }
3056 
3057 // Parse all of the SDNode definitions for the target, populating SDNodes.
3058 void CodeGenDAGPatterns::ParseNodeInfo() {
3059   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3060   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3061 
3062   while (!Nodes.empty()) {
3063     Record *R = Nodes.back();
3064     SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3065     Nodes.pop_back();
3066   }
3067 
3068   // Get the builtin intrinsic nodes.
3069   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
3070   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
3071   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3072 }
3073 
3074 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3075 /// map, and emit them to the file as functions.
3076 void CodeGenDAGPatterns::ParseNodeTransforms() {
3077   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3078   while (!Xforms.empty()) {
3079     Record *XFormNode = Xforms.back();
3080     Record *SDNode = XFormNode->getValueAsDef("Opcode");
3081     StringRef Code = XFormNode->getValueAsString("XFormFunction");
3082     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3083 
3084     Xforms.pop_back();
3085   }
3086 }
3087 
3088 void CodeGenDAGPatterns::ParseComplexPatterns() {
3089   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3090   while (!AMs.empty()) {
3091     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3092     AMs.pop_back();
3093   }
3094 }
3095 
3096 
3097 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3098 /// file, building up the PatternFragments map.  After we've collected them all,
3099 /// inline fragments together as necessary, so that there are no references left
3100 /// inside a pattern fragment to a pattern fragment.
3101 ///
3102 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3103   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3104 
3105   // First step, parse all of the fragments.
3106   for (Record *Frag : Fragments) {
3107     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3108       continue;
3109 
3110     ListInit *LI = Frag->getValueAsListInit("Fragments");
3111     TreePattern *P =
3112         (PatternFragments[Frag] = std::make_unique<TreePattern>(
3113              Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3114              *this)).get();
3115 
3116     // Validate the argument list, converting it to set, to discard duplicates.
3117     std::vector<std::string> &Args = P->getArgList();
3118     // Copy the args so we can take StringRefs to them.
3119     auto ArgsCopy = Args;
3120     SmallDenseSet<StringRef, 4> OperandsSet;
3121     OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3122 
3123     if (OperandsSet.count(""))
3124       P->error("Cannot have unnamed 'node' values in pattern fragment!");
3125 
3126     // Parse the operands list.
3127     DagInit *OpsList = Frag->getValueAsDag("Operands");
3128     DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3129     // Special cases: ops == outs == ins. Different names are used to
3130     // improve readability.
3131     if (!OpsOp ||
3132         (OpsOp->getDef()->getName() != "ops" &&
3133          OpsOp->getDef()->getName() != "outs" &&
3134          OpsOp->getDef()->getName() != "ins"))
3135       P->error("Operands list should start with '(ops ... '!");
3136 
3137     // Copy over the arguments.
3138     Args.clear();
3139     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3140       if (!isa<DefInit>(OpsList->getArg(j)) ||
3141           cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3142         P->error("Operands list should all be 'node' values.");
3143       if (!OpsList->getArgName(j))
3144         P->error("Operands list should have names for each operand!");
3145       StringRef ArgNameStr = OpsList->getArgNameStr(j);
3146       if (!OperandsSet.count(ArgNameStr))
3147         P->error("'" + ArgNameStr +
3148                  "' does not occur in pattern or was multiply specified!");
3149       OperandsSet.erase(ArgNameStr);
3150       Args.push_back(ArgNameStr);
3151     }
3152 
3153     if (!OperandsSet.empty())
3154       P->error("Operands list does not contain an entry for operand '" +
3155                *OperandsSet.begin() + "'!");
3156 
3157     // If there is a node transformation corresponding to this, keep track of
3158     // it.
3159     Record *Transform = Frag->getValueAsDef("OperandTransform");
3160     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
3161       for (auto T : P->getTrees())
3162         T->setTransformFn(Transform);
3163   }
3164 
3165   // Now that we've parsed all of the tree fragments, do a closure on them so
3166   // that there are not references to PatFrags left inside of them.
3167   for (Record *Frag : Fragments) {
3168     if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3169       continue;
3170 
3171     TreePattern &ThePat = *PatternFragments[Frag];
3172     ThePat.InlinePatternFragments();
3173 
3174     // Infer as many types as possible.  Don't worry about it if we don't infer
3175     // all of them, some may depend on the inputs of the pattern.  Also, don't
3176     // validate type sets; validation may cause spurious failures e.g. if a
3177     // fragment needs floating-point types but the current target does not have
3178     // any (this is only an error if that fragment is ever used!).
3179     {
3180       TypeInfer::SuppressValidation SV(ThePat.getInfer());
3181       ThePat.InferAllTypes();
3182       ThePat.resetError();
3183     }
3184 
3185     // If debugging, print out the pattern fragment result.
3186     LLVM_DEBUG(ThePat.dump());
3187   }
3188 }
3189 
3190 void CodeGenDAGPatterns::ParseDefaultOperands() {
3191   std::vector<Record*> DefaultOps;
3192   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3193 
3194   // Find some SDNode.
3195   assert(!SDNodes.empty() && "No SDNodes parsed?");
3196   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3197 
3198   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3199     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3200 
3201     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3202     // SomeSDnode so that we can parse this.
3203     std::vector<std::pair<Init*, StringInit*> > Ops;
3204     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3205       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3206                                    DefaultInfo->getArgName(op)));
3207     DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3208 
3209     // Create a TreePattern to parse this.
3210     TreePattern P(DefaultOps[i], DI, false, *this);
3211     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3212 
3213     // Copy the operands over into a DAGDefaultOperand.
3214     DAGDefaultOperand DefaultOpInfo;
3215 
3216     const TreePatternNodePtr &T = P.getTree(0);
3217     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3218       TreePatternNodePtr TPN = T->getChildShared(op);
3219       while (TPN->ApplyTypeConstraints(P, false))
3220         /* Resolve all types */;
3221 
3222       if (TPN->ContainsUnresolvedType(P)) {
3223         PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3224                         DefaultOps[i]->getName() +
3225                         "' doesn't have a concrete type!");
3226       }
3227       DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3228     }
3229 
3230     // Insert it into the DefaultOperands map so we can find it later.
3231     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3232   }
3233 }
3234 
3235 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3236 /// instruction input.  Return true if this is a real use.
3237 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3238                       std::map<std::string, TreePatternNodePtr> &InstInputs) {
3239   // No name -> not interesting.
3240   if (Pat->getName().empty()) {
3241     if (Pat->isLeaf()) {
3242       DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3243       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3244                  DI->getDef()->isSubClassOf("RegisterOperand")))
3245         I.error("Input " + DI->getDef()->getName() + " must be named!");
3246     }
3247     return false;
3248   }
3249 
3250   Record *Rec;
3251   if (Pat->isLeaf()) {
3252     DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3253     if (!DI)
3254       I.error("Input $" + Pat->getName() + " must be an identifier!");
3255     Rec = DI->getDef();
3256   } else {
3257     Rec = Pat->getOperator();
3258   }
3259 
3260   // SRCVALUE nodes are ignored.
3261   if (Rec->getName() == "srcvalue")
3262     return false;
3263 
3264   TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3265   if (!Slot) {
3266     Slot = Pat;
3267     return true;
3268   }
3269   Record *SlotRec;
3270   if (Slot->isLeaf()) {
3271     SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3272   } else {
3273     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3274     SlotRec = Slot->getOperator();
3275   }
3276 
3277   // Ensure that the inputs agree if we've already seen this input.
3278   if (Rec != SlotRec)
3279     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3280   // Ensure that the types can agree as well.
3281   Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3282   Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3283   if (Slot->getExtTypes() != Pat->getExtTypes())
3284     I.error("All $" + Pat->getName() + " inputs must agree with each other");
3285   return true;
3286 }
3287 
3288 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3289 /// part of "I", the instruction), computing the set of inputs and outputs of
3290 /// the pattern.  Report errors if we see anything naughty.
3291 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3292     TreePattern &I, TreePatternNodePtr Pat,
3293     std::map<std::string, TreePatternNodePtr> &InstInputs,
3294     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3295         &InstResults,
3296     std::vector<Record *> &InstImpResults) {
3297 
3298   // The instruction pattern still has unresolved fragments.  For *named*
3299   // nodes we must resolve those here.  This may not result in multiple
3300   // alternatives.
3301   if (!Pat->getName().empty()) {
3302     TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3303     SrcPattern.InlinePatternFragments();
3304     SrcPattern.InferAllTypes();
3305     Pat = SrcPattern.getOnlyTree();
3306   }
3307 
3308   if (Pat->isLeaf()) {
3309     bool isUse = HandleUse(I, Pat, InstInputs);
3310     if (!isUse && Pat->getTransformFn())
3311       I.error("Cannot specify a transform function for a non-input value!");
3312     return;
3313   }
3314 
3315   if (Pat->getOperator()->getName() == "implicit") {
3316     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3317       TreePatternNode *Dest = Pat->getChild(i);
3318       if (!Dest->isLeaf())
3319         I.error("implicitly defined value should be a register!");
3320 
3321       DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3322       if (!Val || !Val->getDef()->isSubClassOf("Register"))
3323         I.error("implicitly defined value should be a register!");
3324       InstImpResults.push_back(Val->getDef());
3325     }
3326     return;
3327   }
3328 
3329   if (Pat->getOperator()->getName() != "set") {
3330     // If this is not a set, verify that the children nodes are not void typed,
3331     // and recurse.
3332     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3333       if (Pat->getChild(i)->getNumTypes() == 0)
3334         I.error("Cannot have void nodes inside of patterns!");
3335       FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3336                                   InstResults, InstImpResults);
3337     }
3338 
3339     // If this is a non-leaf node with no children, treat it basically as if
3340     // it were a leaf.  This handles nodes like (imm).
3341     bool isUse = HandleUse(I, Pat, InstInputs);
3342 
3343     if (!isUse && Pat->getTransformFn())
3344       I.error("Cannot specify a transform function for a non-input value!");
3345     return;
3346   }
3347 
3348   // Otherwise, this is a set, validate and collect instruction results.
3349   if (Pat->getNumChildren() == 0)
3350     I.error("set requires operands!");
3351 
3352   if (Pat->getTransformFn())
3353     I.error("Cannot specify a transform function on a set node!");
3354 
3355   // Check the set destinations.
3356   unsigned NumDests = Pat->getNumChildren()-1;
3357   for (unsigned i = 0; i != NumDests; ++i) {
3358     TreePatternNodePtr Dest = Pat->getChildShared(i);
3359     // For set destinations we also must resolve fragments here.
3360     TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3361     DestPattern.InlinePatternFragments();
3362     DestPattern.InferAllTypes();
3363     Dest = DestPattern.getOnlyTree();
3364 
3365     if (!Dest->isLeaf())
3366       I.error("set destination should be a register!");
3367 
3368     DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3369     if (!Val) {
3370       I.error("set destination should be a register!");
3371       continue;
3372     }
3373 
3374     if (Val->getDef()->isSubClassOf("RegisterClass") ||
3375         Val->getDef()->isSubClassOf("ValueType") ||
3376         Val->getDef()->isSubClassOf("RegisterOperand") ||
3377         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3378       if (Dest->getName().empty())
3379         I.error("set destination must have a name!");
3380       if (InstResults.count(Dest->getName()))
3381         I.error("cannot set '" + Dest->getName() + "' multiple times");
3382       InstResults[Dest->getName()] = Dest;
3383     } else if (Val->getDef()->isSubClassOf("Register")) {
3384       InstImpResults.push_back(Val->getDef());
3385     } else {
3386       I.error("set destination should be a register!");
3387     }
3388   }
3389 
3390   // Verify and collect info from the computation.
3391   FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3392                               InstResults, InstImpResults);
3393 }
3394 
3395 //===----------------------------------------------------------------------===//
3396 // Instruction Analysis
3397 //===----------------------------------------------------------------------===//
3398 
3399 class InstAnalyzer {
3400   const CodeGenDAGPatterns &CDP;
3401 public:
3402   bool hasSideEffects;
3403   bool mayStore;
3404   bool mayLoad;
3405   bool isBitcast;
3406   bool isVariadic;
3407   bool hasChain;
3408 
3409   InstAnalyzer(const CodeGenDAGPatterns &cdp)
3410     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3411       isBitcast(false), isVariadic(false), hasChain(false) {}
3412 
3413   void Analyze(const PatternToMatch &Pat) {
3414     const TreePatternNode *N = Pat.getSrcPattern();
3415     AnalyzeNode(N);
3416     // These properties are detected only on the root node.
3417     isBitcast = IsNodeBitcast(N);
3418   }
3419 
3420 private:
3421   bool IsNodeBitcast(const TreePatternNode *N) const {
3422     if (hasSideEffects || mayLoad || mayStore || isVariadic)
3423       return false;
3424 
3425     if (N->isLeaf())
3426       return false;
3427     if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3428       return false;
3429 
3430     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3431     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3432       return false;
3433     return OpInfo.getEnumName() == "ISD::BITCAST";
3434   }
3435 
3436 public:
3437   void AnalyzeNode(const TreePatternNode *N) {
3438     if (N->isLeaf()) {
3439       if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3440         Record *LeafRec = DI->getDef();
3441         // Handle ComplexPattern leaves.
3442         if (LeafRec->isSubClassOf("ComplexPattern")) {
3443           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3444           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3445           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3446           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3447         }
3448       }
3449       return;
3450     }
3451 
3452     // Analyze children.
3453     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3454       AnalyzeNode(N->getChild(i));
3455 
3456     // Notice properties of the node.
3457     if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3458     if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3459     if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3460     if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3461     if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3462 
3463     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3464       // If this is an intrinsic, analyze it.
3465       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3466         mayLoad = true;// These may load memory.
3467 
3468       if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3469         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3470 
3471       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3472           IntInfo->hasSideEffects)
3473         // ReadWriteMem intrinsics can have other strange effects.
3474         hasSideEffects = true;
3475     }
3476   }
3477 
3478 };
3479 
3480 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3481                              const InstAnalyzer &PatInfo,
3482                              Record *PatDef) {
3483   bool Error = false;
3484 
3485   // Remember where InstInfo got its flags.
3486   if (InstInfo.hasUndefFlags())
3487       InstInfo.InferredFrom = PatDef;
3488 
3489   // Check explicitly set flags for consistency.
3490   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3491       !InstInfo.hasSideEffects_Unset) {
3492     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3493     // the pattern has no side effects. That could be useful for div/rem
3494     // instructions that may trap.
3495     if (!InstInfo.hasSideEffects) {
3496       Error = true;
3497       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3498                  Twine(InstInfo.hasSideEffects));
3499     }
3500   }
3501 
3502   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3503     Error = true;
3504     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3505                Twine(InstInfo.mayStore));
3506   }
3507 
3508   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3509     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3510     // Some targets translate immediates to loads.
3511     if (!InstInfo.mayLoad) {
3512       Error = true;
3513       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3514                  Twine(InstInfo.mayLoad));
3515     }
3516   }
3517 
3518   // Transfer inferred flags.
3519   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3520   InstInfo.mayStore |= PatInfo.mayStore;
3521   InstInfo.mayLoad |= PatInfo.mayLoad;
3522 
3523   // These flags are silently added without any verification.
3524   // FIXME: To match historical behavior of TableGen, for now add those flags
3525   // only when we're inferring from the primary instruction pattern.
3526   if (PatDef->isSubClassOf("Instruction")) {
3527     InstInfo.isBitcast |= PatInfo.isBitcast;
3528     InstInfo.hasChain |= PatInfo.hasChain;
3529     InstInfo.hasChain_Inferred = true;
3530   }
3531 
3532   // Don't infer isVariadic. This flag means something different on SDNodes and
3533   // instructions. For example, a CALL SDNode is variadic because it has the
3534   // call arguments as operands, but a CALL instruction is not variadic - it
3535   // has argument registers as implicit, not explicit uses.
3536 
3537   return Error;
3538 }
3539 
3540 /// hasNullFragReference - Return true if the DAG has any reference to the
3541 /// null_frag operator.
3542 static bool hasNullFragReference(DagInit *DI) {
3543   DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3544   if (!OpDef) return false;
3545   Record *Operator = OpDef->getDef();
3546 
3547   // If this is the null fragment, return true.
3548   if (Operator->getName() == "null_frag") return true;
3549   // If any of the arguments reference the null fragment, return true.
3550   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3551     DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3552     if (Arg && hasNullFragReference(Arg))
3553       return true;
3554   }
3555 
3556   return false;
3557 }
3558 
3559 /// hasNullFragReference - Return true if any DAG in the list references
3560 /// the null_frag operator.
3561 static bool hasNullFragReference(ListInit *LI) {
3562   for (Init *I : LI->getValues()) {
3563     DagInit *DI = dyn_cast<DagInit>(I);
3564     assert(DI && "non-dag in an instruction Pattern list?!");
3565     if (hasNullFragReference(DI))
3566       return true;
3567   }
3568   return false;
3569 }
3570 
3571 /// Get all the instructions in a tree.
3572 static void
3573 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3574   if (Tree->isLeaf())
3575     return;
3576   if (Tree->getOperator()->isSubClassOf("Instruction"))
3577     Instrs.push_back(Tree->getOperator());
3578   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3579     getInstructionsInTree(Tree->getChild(i), Instrs);
3580 }
3581 
3582 /// Check the class of a pattern leaf node against the instruction operand it
3583 /// represents.
3584 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3585                               Record *Leaf) {
3586   if (OI.Rec == Leaf)
3587     return true;
3588 
3589   // Allow direct value types to be used in instruction set patterns.
3590   // The type will be checked later.
3591   if (Leaf->isSubClassOf("ValueType"))
3592     return true;
3593 
3594   // Patterns can also be ComplexPattern instances.
3595   if (Leaf->isSubClassOf("ComplexPattern"))
3596     return true;
3597 
3598   return false;
3599 }
3600 
3601 void CodeGenDAGPatterns::parseInstructionPattern(
3602     CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3603 
3604   assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3605 
3606   // Parse the instruction.
3607   TreePattern I(CGI.TheDef, Pat, true, *this);
3608 
3609   // InstInputs - Keep track of all of the inputs of the instruction, along
3610   // with the record they are declared as.
3611   std::map<std::string, TreePatternNodePtr> InstInputs;
3612 
3613   // InstResults - Keep track of all the virtual registers that are 'set'
3614   // in the instruction, including what reg class they are.
3615   MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3616       InstResults;
3617 
3618   std::vector<Record*> InstImpResults;
3619 
3620   // Verify that the top-level forms in the instruction are of void type, and
3621   // fill in the InstResults map.
3622   SmallString<32> TypesString;
3623   for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3624     TypesString.clear();
3625     TreePatternNodePtr Pat = I.getTree(j);
3626     if (Pat->getNumTypes() != 0) {
3627       raw_svector_ostream OS(TypesString);
3628       for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3629         if (k > 0)
3630           OS << ", ";
3631         Pat->getExtType(k).writeToStream(OS);
3632       }
3633       I.error("Top-level forms in instruction pattern should have"
3634                " void types, has types " +
3635                OS.str());
3636     }
3637 
3638     // Find inputs and outputs, and verify the structure of the uses/defs.
3639     FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3640                                 InstImpResults);
3641   }
3642 
3643   // Now that we have inputs and outputs of the pattern, inspect the operands
3644   // list for the instruction.  This determines the order that operands are
3645   // added to the machine instruction the node corresponds to.
3646   unsigned NumResults = InstResults.size();
3647 
3648   // Parse the operands list from the (ops) list, validating it.
3649   assert(I.getArgList().empty() && "Args list should still be empty here!");
3650 
3651   // Check that all of the results occur first in the list.
3652   std::vector<Record*> Results;
3653   std::vector<unsigned> ResultIndices;
3654   SmallVector<TreePatternNodePtr, 2> ResNodes;
3655   for (unsigned i = 0; i != NumResults; ++i) {
3656     if (i == CGI.Operands.size()) {
3657       const std::string &OpName =
3658           std::find_if(InstResults.begin(), InstResults.end(),
3659                        [](const std::pair<std::string, TreePatternNodePtr> &P) {
3660                          return P.second;
3661                        })
3662               ->first;
3663 
3664       I.error("'" + OpName + "' set but does not appear in operand list!");
3665     }
3666 
3667     const std::string &OpName = CGI.Operands[i].Name;
3668 
3669     // Check that it exists in InstResults.
3670     auto InstResultIter = InstResults.find(OpName);
3671     if (InstResultIter == InstResults.end() || !InstResultIter->second)
3672       I.error("Operand $" + OpName + " does not exist in operand list!");
3673 
3674     TreePatternNodePtr RNode = InstResultIter->second;
3675     Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3676     ResNodes.push_back(std::move(RNode));
3677     if (!R)
3678       I.error("Operand $" + OpName + " should be a set destination: all "
3679                "outputs must occur before inputs in operand list!");
3680 
3681     if (!checkOperandClass(CGI.Operands[i], R))
3682       I.error("Operand $" + OpName + " class mismatch!");
3683 
3684     // Remember the return type.
3685     Results.push_back(CGI.Operands[i].Rec);
3686 
3687     // Remember the result index.
3688     ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3689 
3690     // Okay, this one checks out.
3691     InstResultIter->second = nullptr;
3692   }
3693 
3694   // Loop over the inputs next.
3695   std::vector<TreePatternNodePtr> ResultNodeOperands;
3696   std::vector<Record*> Operands;
3697   for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3698     CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3699     const std::string &OpName = Op.Name;
3700     if (OpName.empty())
3701       I.error("Operand #" + Twine(i) + " in operands list has no name!");
3702 
3703     if (!InstInputs.count(OpName)) {
3704       // If this is an operand with a DefaultOps set filled in, we can ignore
3705       // this.  When we codegen it, we will do so as always executed.
3706       if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3707         // Does it have a non-empty DefaultOps field?  If so, ignore this
3708         // operand.
3709         if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3710           continue;
3711       }
3712       I.error("Operand $" + OpName +
3713                " does not appear in the instruction pattern");
3714     }
3715     TreePatternNodePtr InVal = InstInputs[OpName];
3716     InstInputs.erase(OpName);   // It occurred, remove from map.
3717 
3718     if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3719       Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3720       if (!checkOperandClass(Op, InRec))
3721         I.error("Operand $" + OpName + "'s register class disagrees"
3722                  " between the operand and pattern");
3723     }
3724     Operands.push_back(Op.Rec);
3725 
3726     // Construct the result for the dest-pattern operand list.
3727     TreePatternNodePtr OpNode = InVal->clone();
3728 
3729     // No predicate is useful on the result.
3730     OpNode->clearPredicateCalls();
3731 
3732     // Promote the xform function to be an explicit node if set.
3733     if (Record *Xform = OpNode->getTransformFn()) {
3734       OpNode->setTransformFn(nullptr);
3735       std::vector<TreePatternNodePtr> Children;
3736       Children.push_back(OpNode);
3737       OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3738                                                  OpNode->getNumTypes());
3739     }
3740 
3741     ResultNodeOperands.push_back(std::move(OpNode));
3742   }
3743 
3744   if (!InstInputs.empty())
3745     I.error("Input operand $" + InstInputs.begin()->first +
3746             " occurs in pattern but not in operands list!");
3747 
3748   TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3749       I.getRecord(), std::move(ResultNodeOperands),
3750       GetNumNodeResults(I.getRecord(), *this));
3751   // Copy fully inferred output node types to instruction result pattern.
3752   for (unsigned i = 0; i != NumResults; ++i) {
3753     assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3754     ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3755     ResultPattern->setResultIndex(i, ResultIndices[i]);
3756   }
3757 
3758   // FIXME: Assume only the first tree is the pattern. The others are clobber
3759   // nodes.
3760   TreePatternNodePtr Pattern = I.getTree(0);
3761   TreePatternNodePtr SrcPattern;
3762   if (Pattern->getOperator()->getName() == "set") {
3763     SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3764   } else{
3765     // Not a set (store or something?)
3766     SrcPattern = Pattern;
3767   }
3768 
3769   // Create and insert the instruction.
3770   // FIXME: InstImpResults should not be part of DAGInstruction.
3771   Record *R = I.getRecord();
3772   DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3773                    std::forward_as_tuple(Results, Operands, InstImpResults,
3774                                          SrcPattern, ResultPattern));
3775 
3776   LLVM_DEBUG(I.dump());
3777 }
3778 
3779 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3780 /// any fragments involved.  This populates the Instructions list with fully
3781 /// resolved instructions.
3782 void CodeGenDAGPatterns::ParseInstructions() {
3783   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3784 
3785   for (Record *Instr : Instrs) {
3786     ListInit *LI = nullptr;
3787 
3788     if (isa<ListInit>(Instr->getValueInit("Pattern")))
3789       LI = Instr->getValueAsListInit("Pattern");
3790 
3791     // If there is no pattern, only collect minimal information about the
3792     // instruction for its operand list.  We have to assume that there is one
3793     // result, as we have no detailed info. A pattern which references the
3794     // null_frag operator is as-if no pattern were specified. Normally this
3795     // is from a multiclass expansion w/ a SDPatternOperator passed in as
3796     // null_frag.
3797     if (!LI || LI->empty() || hasNullFragReference(LI)) {
3798       std::vector<Record*> Results;
3799       std::vector<Record*> Operands;
3800 
3801       CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3802 
3803       if (InstInfo.Operands.size() != 0) {
3804         for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3805           Results.push_back(InstInfo.Operands[j].Rec);
3806 
3807         // The rest are inputs.
3808         for (unsigned j = InstInfo.Operands.NumDefs,
3809                e = InstInfo.Operands.size(); j < e; ++j)
3810           Operands.push_back(InstInfo.Operands[j].Rec);
3811       }
3812 
3813       // Create and insert the instruction.
3814       std::vector<Record*> ImpResults;
3815       Instructions.insert(std::make_pair(Instr,
3816                             DAGInstruction(Results, Operands, ImpResults)));
3817       continue;  // no pattern.
3818     }
3819 
3820     CodeGenInstruction &CGI = Target.getInstruction(Instr);
3821     parseInstructionPattern(CGI, LI, Instructions);
3822   }
3823 
3824   // If we can, convert the instructions to be patterns that are matched!
3825   for (auto &Entry : Instructions) {
3826     Record *Instr = Entry.first;
3827     DAGInstruction &TheInst = Entry.second;
3828     TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3829     TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3830 
3831     if (SrcPattern && ResultPattern) {
3832       TreePattern Pattern(Instr, SrcPattern, true, *this);
3833       TreePattern Result(Instr, ResultPattern, false, *this);
3834       ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3835     }
3836   }
3837 }
3838 
3839 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3840 
3841 static void FindNames(TreePatternNode *P,
3842                       std::map<std::string, NameRecord> &Names,
3843                       TreePattern *PatternTop) {
3844   if (!P->getName().empty()) {
3845     NameRecord &Rec = Names[P->getName()];
3846     // If this is the first instance of the name, remember the node.
3847     if (Rec.second++ == 0)
3848       Rec.first = P;
3849     else if (Rec.first->getExtTypes() != P->getExtTypes())
3850       PatternTop->error("repetition of value: $" + P->getName() +
3851                         " where different uses have different types!");
3852   }
3853 
3854   if (!P->isLeaf()) {
3855     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3856       FindNames(P->getChild(i), Names, PatternTop);
3857   }
3858 }
3859 
3860 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3861   std::vector<Predicate> Preds;
3862   for (Init *I : L->getValues()) {
3863     if (DefInit *Pred = dyn_cast<DefInit>(I))
3864       Preds.push_back(Pred->getDef());
3865     else
3866       llvm_unreachable("Non-def on the list");
3867   }
3868 
3869   // Sort so that different orders get canonicalized to the same string.
3870   llvm::sort(Preds);
3871   return Preds;
3872 }
3873 
3874 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3875                                            PatternToMatch &&PTM) {
3876   // Do some sanity checking on the pattern we're about to match.
3877   std::string Reason;
3878   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3879     PrintWarning(Pattern->getRecord()->getLoc(),
3880       Twine("Pattern can never match: ") + Reason);
3881     return;
3882   }
3883 
3884   // If the source pattern's root is a complex pattern, that complex pattern
3885   // must specify the nodes it can potentially match.
3886   if (const ComplexPattern *CP =
3887         PTM.getSrcPattern()->getComplexPatternInfo(*this))
3888     if (CP->getRootNodes().empty())
3889       Pattern->error("ComplexPattern at root must specify list of opcodes it"
3890                      " could match");
3891 
3892 
3893   // Find all of the named values in the input and output, ensure they have the
3894   // same type.
3895   std::map<std::string, NameRecord> SrcNames, DstNames;
3896   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3897   FindNames(PTM.getDstPattern(), DstNames, Pattern);
3898 
3899   // Scan all of the named values in the destination pattern, rejecting them if
3900   // they don't exist in the input pattern.
3901   for (const auto &Entry : DstNames) {
3902     if (SrcNames[Entry.first].first == nullptr)
3903       Pattern->error("Pattern has input without matching name in output: $" +
3904                      Entry.first);
3905   }
3906 
3907   // Scan all of the named values in the source pattern, rejecting them if the
3908   // name isn't used in the dest, and isn't used to tie two values together.
3909   for (const auto &Entry : SrcNames)
3910     if (DstNames[Entry.first].first == nullptr &&
3911         SrcNames[Entry.first].second == 1)
3912       Pattern->error("Pattern has dead named input: $" + Entry.first);
3913 
3914   PatternsToMatch.push_back(PTM);
3915 }
3916 
3917 void CodeGenDAGPatterns::InferInstructionFlags() {
3918   ArrayRef<const CodeGenInstruction*> Instructions =
3919     Target.getInstructionsByEnumValue();
3920 
3921   unsigned Errors = 0;
3922 
3923   // Try to infer flags from all patterns in PatternToMatch.  These include
3924   // both the primary instruction patterns (which always come first) and
3925   // patterns defined outside the instruction.
3926   for (const PatternToMatch &PTM : ptms()) {
3927     // We can only infer from single-instruction patterns, otherwise we won't
3928     // know which instruction should get the flags.
3929     SmallVector<Record*, 8> PatInstrs;
3930     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3931     if (PatInstrs.size() != 1)
3932       continue;
3933 
3934     // Get the single instruction.
3935     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3936 
3937     // Only infer properties from the first pattern. We'll verify the others.
3938     if (InstInfo.InferredFrom)
3939       continue;
3940 
3941     InstAnalyzer PatInfo(*this);
3942     PatInfo.Analyze(PTM);
3943     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3944   }
3945 
3946   if (Errors)
3947     PrintFatalError("pattern conflicts");
3948 
3949   // If requested by the target, guess any undefined properties.
3950   if (Target.guessInstructionProperties()) {
3951     for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3952       CodeGenInstruction *InstInfo =
3953         const_cast<CodeGenInstruction *>(Instructions[i]);
3954       if (InstInfo->InferredFrom)
3955         continue;
3956       // The mayLoad and mayStore flags default to false.
3957       // Conservatively assume hasSideEffects if it wasn't explicit.
3958       if (InstInfo->hasSideEffects_Unset)
3959         InstInfo->hasSideEffects = true;
3960     }
3961     return;
3962   }
3963 
3964   // Complain about any flags that are still undefined.
3965   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3966     CodeGenInstruction *InstInfo =
3967       const_cast<CodeGenInstruction *>(Instructions[i]);
3968     if (InstInfo->InferredFrom)
3969       continue;
3970     if (InstInfo->hasSideEffects_Unset)
3971       PrintError(InstInfo->TheDef->getLoc(),
3972                  "Can't infer hasSideEffects from patterns");
3973     if (InstInfo->mayStore_Unset)
3974       PrintError(InstInfo->TheDef->getLoc(),
3975                  "Can't infer mayStore from patterns");
3976     if (InstInfo->mayLoad_Unset)
3977       PrintError(InstInfo->TheDef->getLoc(),
3978                  "Can't infer mayLoad from patterns");
3979   }
3980 }
3981 
3982 
3983 /// Verify instruction flags against pattern node properties.
3984 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3985   unsigned Errors = 0;
3986   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3987     const PatternToMatch &PTM = *I;
3988     SmallVector<Record*, 8> Instrs;
3989     getInstructionsInTree(PTM.getDstPattern(), Instrs);
3990     if (Instrs.empty())
3991       continue;
3992 
3993     // Count the number of instructions with each flag set.
3994     unsigned NumSideEffects = 0;
3995     unsigned NumStores = 0;
3996     unsigned NumLoads = 0;
3997     for (const Record *Instr : Instrs) {
3998       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3999       NumSideEffects += InstInfo.hasSideEffects;
4000       NumStores += InstInfo.mayStore;
4001       NumLoads += InstInfo.mayLoad;
4002     }
4003 
4004     // Analyze the source pattern.
4005     InstAnalyzer PatInfo(*this);
4006     PatInfo.Analyze(PTM);
4007 
4008     // Collect error messages.
4009     SmallVector<std::string, 4> Msgs;
4010 
4011     // Check for missing flags in the output.
4012     // Permit extra flags for now at least.
4013     if (PatInfo.hasSideEffects && !NumSideEffects)
4014       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
4015 
4016     // Don't verify store flags on instructions with side effects. At least for
4017     // intrinsics, side effects implies mayStore.
4018     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
4019       Msgs.push_back("pattern may store, but mayStore isn't set");
4020 
4021     // Similarly, mayStore implies mayLoad on intrinsics.
4022     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
4023       Msgs.push_back("pattern may load, but mayLoad isn't set");
4024 
4025     // Print error messages.
4026     if (Msgs.empty())
4027       continue;
4028     ++Errors;
4029 
4030     for (const std::string &Msg : Msgs)
4031       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4032                  (Instrs.size() == 1 ?
4033                   "instruction" : "output instructions"));
4034     // Provide the location of the relevant instruction definitions.
4035     for (const Record *Instr : Instrs) {
4036       if (Instr != PTM.getSrcRecord())
4037         PrintError(Instr->getLoc(), "defined here");
4038       const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4039       if (InstInfo.InferredFrom &&
4040           InstInfo.InferredFrom != InstInfo.TheDef &&
4041           InstInfo.InferredFrom != PTM.getSrcRecord())
4042         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4043     }
4044   }
4045   if (Errors)
4046     PrintFatalError("Errors in DAG patterns");
4047 }
4048 
4049 /// Given a pattern result with an unresolved type, see if we can find one
4050 /// instruction with an unresolved result type.  Force this result type to an
4051 /// arbitrary element if it's possible types to converge results.
4052 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4053   if (N->isLeaf())
4054     return false;
4055 
4056   // Analyze children.
4057   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4058     if (ForceArbitraryInstResultType(N->getChild(i), TP))
4059       return true;
4060 
4061   if (!N->getOperator()->isSubClassOf("Instruction"))
4062     return false;
4063 
4064   // If this type is already concrete or completely unknown we can't do
4065   // anything.
4066   TypeInfer &TI = TP.getInfer();
4067   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4068     if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4069       continue;
4070 
4071     // Otherwise, force its type to an arbitrary choice.
4072     if (TI.forceArbitrary(N->getExtType(i)))
4073       return true;
4074   }
4075 
4076   return false;
4077 }
4078 
4079 // Promote xform function to be an explicit node wherever set.
4080 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4081   if (Record *Xform = N->getTransformFn()) {
4082       N->setTransformFn(nullptr);
4083       std::vector<TreePatternNodePtr> Children;
4084       Children.push_back(PromoteXForms(N));
4085       return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4086                                                N->getNumTypes());
4087   }
4088 
4089   if (!N->isLeaf())
4090     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4091       TreePatternNodePtr Child = N->getChildShared(i);
4092       N->setChild(i, PromoteXForms(Child));
4093     }
4094   return N;
4095 }
4096 
4097 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4098        TreePattern &Pattern, TreePattern &Result,
4099        const std::vector<Record *> &InstImpResults) {
4100 
4101   // Inline pattern fragments and expand multiple alternatives.
4102   Pattern.InlinePatternFragments();
4103   Result.InlinePatternFragments();
4104 
4105   if (Result.getNumTrees() != 1)
4106     Result.error("Cannot use multi-alternative fragments in result pattern!");
4107 
4108   // Infer types.
4109   bool IterateInference;
4110   bool InferredAllPatternTypes, InferredAllResultTypes;
4111   do {
4112     // Infer as many types as possible.  If we cannot infer all of them, we
4113     // can never do anything with this pattern: report it to the user.
4114     InferredAllPatternTypes =
4115         Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4116 
4117     // Infer as many types as possible.  If we cannot infer all of them, we
4118     // can never do anything with this pattern: report it to the user.
4119     InferredAllResultTypes =
4120         Result.InferAllTypes(&Pattern.getNamedNodesMap());
4121 
4122     IterateInference = false;
4123 
4124     // Apply the type of the result to the source pattern.  This helps us
4125     // resolve cases where the input type is known to be a pointer type (which
4126     // is considered resolved), but the result knows it needs to be 32- or
4127     // 64-bits.  Infer the other way for good measure.
4128     for (auto T : Pattern.getTrees())
4129       for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4130                                         T->getNumTypes());
4131          i != e; ++i) {
4132         IterateInference |= T->UpdateNodeType(
4133             i, Result.getOnlyTree()->getExtType(i), Result);
4134         IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4135             i, T->getExtType(i), Result);
4136       }
4137 
4138     // If our iteration has converged and the input pattern's types are fully
4139     // resolved but the result pattern is not fully resolved, we may have a
4140     // situation where we have two instructions in the result pattern and
4141     // the instructions require a common register class, but don't care about
4142     // what actual MVT is used.  This is actually a bug in our modelling:
4143     // output patterns should have register classes, not MVTs.
4144     //
4145     // In any case, to handle this, we just go through and disambiguate some
4146     // arbitrary types to the result pattern's nodes.
4147     if (!IterateInference && InferredAllPatternTypes &&
4148         !InferredAllResultTypes)
4149       IterateInference =
4150           ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4151   } while (IterateInference);
4152 
4153   // Verify that we inferred enough types that we can do something with the
4154   // pattern and result.  If these fire the user has to add type casts.
4155   if (!InferredAllPatternTypes)
4156     Pattern.error("Could not infer all types in pattern!");
4157   if (!InferredAllResultTypes) {
4158     Pattern.dump();
4159     Result.error("Could not infer all types in pattern result!");
4160   }
4161 
4162   // Promote xform function to be an explicit node wherever set.
4163   TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4164 
4165   TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4166   Temp.InferAllTypes();
4167 
4168   ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4169   int Complexity = TheDef->getValueAsInt("AddedComplexity");
4170 
4171   if (PatternRewriter)
4172     PatternRewriter(&Pattern);
4173 
4174   // A pattern may end up with an "impossible" type, i.e. a situation
4175   // where all types have been eliminated for some node in this pattern.
4176   // This could occur for intrinsics that only make sense for a specific
4177   // value type, and use a specific register class. If, for some mode,
4178   // that register class does not accept that type, the type inference
4179   // will lead to a contradiction, which is not an error however, but
4180   // a sign that this pattern will simply never match.
4181   if (Temp.getOnlyTree()->hasPossibleType())
4182     for (auto T : Pattern.getTrees())
4183       if (T->hasPossibleType())
4184         AddPatternToMatch(&Pattern,
4185                           PatternToMatch(TheDef, makePredList(Preds),
4186                                          T, Temp.getOnlyTree(),
4187                                          InstImpResults, Complexity,
4188                                          TheDef->getID()));
4189 }
4190 
4191 void CodeGenDAGPatterns::ParsePatterns() {
4192   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4193 
4194   for (Record *CurPattern : Patterns) {
4195     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4196 
4197     // If the pattern references the null_frag, there's nothing to do.
4198     if (hasNullFragReference(Tree))
4199       continue;
4200 
4201     TreePattern Pattern(CurPattern, Tree, true, *this);
4202 
4203     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4204     if (LI->empty()) continue;  // no pattern.
4205 
4206     // Parse the instruction.
4207     TreePattern Result(CurPattern, LI, false, *this);
4208 
4209     if (Result.getNumTrees() != 1)
4210       Result.error("Cannot handle instructions producing instructions "
4211                    "with temporaries yet!");
4212 
4213     // Validate that the input pattern is correct.
4214     std::map<std::string, TreePatternNodePtr> InstInputs;
4215     MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4216         InstResults;
4217     std::vector<Record*> InstImpResults;
4218     for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4219       FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4220                                   InstResults, InstImpResults);
4221 
4222     ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4223   }
4224 }
4225 
4226 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4227   for (const TypeSetByHwMode &VTS : N->getExtTypes())
4228     for (const auto &I : VTS)
4229       Modes.insert(I.first);
4230 
4231   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4232     collectModes(Modes, N->getChild(i));
4233 }
4234 
4235 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4236   const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4237   std::map<unsigned,std::vector<Predicate>> ModeChecks;
4238   std::vector<PatternToMatch> Copy = PatternsToMatch;
4239   PatternsToMatch.clear();
4240 
4241   auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4242     TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4243     TreePatternNodePtr NewDst = P.DstPattern->clone();
4244     if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4245       return;
4246     }
4247 
4248     std::vector<Predicate> Preds = P.Predicates;
4249     const std::vector<Predicate> &MC = ModeChecks[Mode];
4250     Preds.insert(Preds.end(), MC.begin(), MC.end());
4251     PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4252                                  std::move(NewDst), P.getDstRegs(),
4253                                  P.getAddedComplexity(), Record::getNewUID(),
4254                                  Mode);
4255   };
4256 
4257   for (PatternToMatch &P : Copy) {
4258     TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4259     if (P.SrcPattern->hasProperTypeByHwMode())
4260       SrcP = P.SrcPattern;
4261     if (P.DstPattern->hasProperTypeByHwMode())
4262       DstP = P.DstPattern;
4263     if (!SrcP && !DstP) {
4264       PatternsToMatch.push_back(P);
4265       continue;
4266     }
4267 
4268     std::set<unsigned> Modes;
4269     if (SrcP)
4270       collectModes(Modes, SrcP.get());
4271     if (DstP)
4272       collectModes(Modes, DstP.get());
4273 
4274     // The predicate for the default mode needs to be constructed for each
4275     // pattern separately.
4276     // Since not all modes must be present in each pattern, if a mode m is
4277     // absent, then there is no point in constructing a check for m. If such
4278     // a check was created, it would be equivalent to checking the default
4279     // mode, except not all modes' predicates would be a part of the checking
4280     // code. The subsequently generated check for the default mode would then
4281     // have the exact same patterns, but a different predicate code. To avoid
4282     // duplicated patterns with different predicate checks, construct the
4283     // default check as a negation of all predicates that are actually present
4284     // in the source/destination patterns.
4285     std::vector<Predicate> DefaultPred;
4286 
4287     for (unsigned M : Modes) {
4288       if (M == DefaultMode)
4289         continue;
4290       if (ModeChecks.find(M) != ModeChecks.end())
4291         continue;
4292 
4293       // Fill the map entry for this mode.
4294       const HwMode &HM = CGH.getMode(M);
4295       ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4296 
4297       // Add negations of the HM's predicates to the default predicate.
4298       DefaultPred.emplace_back(Predicate(HM.Features, false));
4299     }
4300 
4301     for (unsigned M : Modes) {
4302       if (M == DefaultMode)
4303         continue;
4304       AppendPattern(P, M);
4305     }
4306 
4307     bool HasDefault = Modes.count(DefaultMode);
4308     if (HasDefault)
4309       AppendPattern(P, DefaultMode);
4310   }
4311 }
4312 
4313 /// Dependent variable map for CodeGenDAGPattern variant generation
4314 typedef StringMap<int> DepVarMap;
4315 
4316 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4317   if (N->isLeaf()) {
4318     if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4319       DepMap[N->getName()]++;
4320   } else {
4321     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4322       FindDepVarsOf(N->getChild(i), DepMap);
4323   }
4324 }
4325 
4326 /// Find dependent variables within child patterns
4327 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4328   DepVarMap depcounts;
4329   FindDepVarsOf(N, depcounts);
4330   for (const auto &Pair : depcounts) {
4331     if (Pair.getValue() > 1)
4332       DepVars.insert(Pair.getKey());
4333   }
4334 }
4335 
4336 #ifndef NDEBUG
4337 /// Dump the dependent variable set:
4338 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4339   if (DepVars.empty()) {
4340     LLVM_DEBUG(errs() << "<empty set>");
4341   } else {
4342     LLVM_DEBUG(errs() << "[ ");
4343     for (const auto &DepVar : DepVars) {
4344       LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4345     }
4346     LLVM_DEBUG(errs() << "]");
4347   }
4348 }
4349 #endif
4350 
4351 
4352 /// CombineChildVariants - Given a bunch of permutations of each child of the
4353 /// 'operator' node, put them together in all possible ways.
4354 static void CombineChildVariants(
4355     TreePatternNodePtr Orig,
4356     const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4357     std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4358     const MultipleUseVarSet &DepVars) {
4359   // Make sure that each operand has at least one variant to choose from.
4360   for (const auto &Variants : ChildVariants)
4361     if (Variants.empty())
4362       return;
4363 
4364   // The end result is an all-pairs construction of the resultant pattern.
4365   std::vector<unsigned> Idxs;
4366   Idxs.resize(ChildVariants.size());
4367   bool NotDone;
4368   do {
4369 #ifndef NDEBUG
4370     LLVM_DEBUG(if (!Idxs.empty()) {
4371       errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4372       for (unsigned Idx : Idxs) {
4373         errs() << Idx << " ";
4374       }
4375       errs() << "]\n";
4376     });
4377 #endif
4378     // Create the variant and add it to the output list.
4379     std::vector<TreePatternNodePtr> NewChildren;
4380     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4381       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4382     TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4383         Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4384 
4385     // Copy over properties.
4386     R->setName(Orig->getName());
4387     R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4388     R->setPredicateCalls(Orig->getPredicateCalls());
4389     R->setTransformFn(Orig->getTransformFn());
4390     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4391       R->setType(i, Orig->getExtType(i));
4392 
4393     // If this pattern cannot match, do not include it as a variant.
4394     std::string ErrString;
4395     // Scan to see if this pattern has already been emitted.  We can get
4396     // duplication due to things like commuting:
4397     //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4398     // which are the same pattern.  Ignore the dups.
4399     if (R->canPatternMatch(ErrString, CDP) &&
4400         none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4401           return R->isIsomorphicTo(Variant.get(), DepVars);
4402         }))
4403       OutVariants.push_back(R);
4404 
4405     // Increment indices to the next permutation by incrementing the
4406     // indices from last index backward, e.g., generate the sequence
4407     // [0, 0], [0, 1], [1, 0], [1, 1].
4408     int IdxsIdx;
4409     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4410       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4411         Idxs[IdxsIdx] = 0;
4412       else
4413         break;
4414     }
4415     NotDone = (IdxsIdx >= 0);
4416   } while (NotDone);
4417 }
4418 
4419 /// CombineChildVariants - A helper function for binary operators.
4420 ///
4421 static void CombineChildVariants(TreePatternNodePtr Orig,
4422                                  const std::vector<TreePatternNodePtr> &LHS,
4423                                  const std::vector<TreePatternNodePtr> &RHS,
4424                                  std::vector<TreePatternNodePtr> &OutVariants,
4425                                  CodeGenDAGPatterns &CDP,
4426                                  const MultipleUseVarSet &DepVars) {
4427   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4428   ChildVariants.push_back(LHS);
4429   ChildVariants.push_back(RHS);
4430   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4431 }
4432 
4433 static void
4434 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4435                                   std::vector<TreePatternNodePtr> &Children) {
4436   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4437   Record *Operator = N->getOperator();
4438 
4439   // Only permit raw nodes.
4440   if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4441       N->getTransformFn()) {
4442     Children.push_back(N);
4443     return;
4444   }
4445 
4446   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4447     Children.push_back(N->getChildShared(0));
4448   else
4449     GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4450 
4451   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4452     Children.push_back(N->getChildShared(1));
4453   else
4454     GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4455 }
4456 
4457 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4458 /// the (potentially recursive) pattern by using algebraic laws.
4459 ///
4460 static void GenerateVariantsOf(TreePatternNodePtr N,
4461                                std::vector<TreePatternNodePtr> &OutVariants,
4462                                CodeGenDAGPatterns &CDP,
4463                                const MultipleUseVarSet &DepVars) {
4464   // We cannot permute leaves or ComplexPattern uses.
4465   if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4466     OutVariants.push_back(N);
4467     return;
4468   }
4469 
4470   // Look up interesting info about the node.
4471   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4472 
4473   // If this node is associative, re-associate.
4474   if (NodeInfo.hasProperty(SDNPAssociative)) {
4475     // Re-associate by pulling together all of the linked operators
4476     std::vector<TreePatternNodePtr> MaximalChildren;
4477     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4478 
4479     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
4480     // permutations.
4481     if (MaximalChildren.size() == 3) {
4482       // Find the variants of all of our maximal children.
4483       std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4484       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4485       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4486       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4487 
4488       // There are only two ways we can permute the tree:
4489       //   (A op B) op C    and    A op (B op C)
4490       // Within these forms, we can also permute A/B/C.
4491 
4492       // Generate legal pair permutations of A/B/C.
4493       std::vector<TreePatternNodePtr> ABVariants;
4494       std::vector<TreePatternNodePtr> BAVariants;
4495       std::vector<TreePatternNodePtr> ACVariants;
4496       std::vector<TreePatternNodePtr> CAVariants;
4497       std::vector<TreePatternNodePtr> BCVariants;
4498       std::vector<TreePatternNodePtr> CBVariants;
4499       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4500       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4501       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4502       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4503       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4504       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4505 
4506       // Combine those into the result: (x op x) op x
4507       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4508       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4509       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4510       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4511       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4512       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4513 
4514       // Combine those into the result: x op (x op x)
4515       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4516       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4517       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4518       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4519       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4520       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4521       return;
4522     }
4523   }
4524 
4525   // Compute permutations of all children.
4526   std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4527   ChildVariants.resize(N->getNumChildren());
4528   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4529     GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4530 
4531   // Build all permutations based on how the children were formed.
4532   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4533 
4534   // If this node is commutative, consider the commuted order.
4535   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4536   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4537     assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4538            "Commutative but doesn't have 2 children!");
4539     // Don't count children which are actually register references.
4540     unsigned NC = 0;
4541     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4542       TreePatternNode *Child = N->getChild(i);
4543       if (Child->isLeaf())
4544         if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4545           Record *RR = DI->getDef();
4546           if (RR->isSubClassOf("Register"))
4547             continue;
4548         }
4549       NC++;
4550     }
4551     // Consider the commuted order.
4552     if (isCommIntrinsic) {
4553       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4554       // operands are the commutative operands, and there might be more operands
4555       // after those.
4556       assert(NC >= 3 &&
4557              "Commutative intrinsic should have at least 3 children!");
4558       std::vector<std::vector<TreePatternNodePtr>> Variants;
4559       Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4560       Variants.push_back(std::move(ChildVariants[2]));
4561       Variants.push_back(std::move(ChildVariants[1]));
4562       for (unsigned i = 3; i != NC; ++i)
4563         Variants.push_back(std::move(ChildVariants[i]));
4564       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4565     } else if (NC == N->getNumChildren()) {
4566       std::vector<std::vector<TreePatternNodePtr>> Variants;
4567       Variants.push_back(std::move(ChildVariants[1]));
4568       Variants.push_back(std::move(ChildVariants[0]));
4569       for (unsigned i = 2; i != NC; ++i)
4570         Variants.push_back(std::move(ChildVariants[i]));
4571       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4572     }
4573   }
4574 }
4575 
4576 
4577 // GenerateVariants - Generate variants.  For example, commutative patterns can
4578 // match multiple ways.  Add them to PatternsToMatch as well.
4579 void CodeGenDAGPatterns::GenerateVariants() {
4580   LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4581 
4582   // Loop over all of the patterns we've collected, checking to see if we can
4583   // generate variants of the instruction, through the exploitation of
4584   // identities.  This permits the target to provide aggressive matching without
4585   // the .td file having to contain tons of variants of instructions.
4586   //
4587   // Note that this loop adds new patterns to the PatternsToMatch list, but we
4588   // intentionally do not reconsider these.  Any variants of added patterns have
4589   // already been added.
4590   //
4591   const unsigned NumOriginalPatterns = PatternsToMatch.size();
4592   BitVector MatchedPatterns(NumOriginalPatterns);
4593   std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4594                                            BitVector(NumOriginalPatterns));
4595 
4596   typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4597       DepsAndVariants;
4598   std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4599 
4600   // Collect patterns with more than one variant.
4601   for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4602     MultipleUseVarSet DepVars;
4603     std::vector<TreePatternNodePtr> Variants;
4604     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4605     LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4606     LLVM_DEBUG(DumpDepVars(DepVars));
4607     LLVM_DEBUG(errs() << "\n");
4608     GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4609                        *this, DepVars);
4610 
4611     assert(!Variants.empty() && "Must create at least original variant!");
4612     if (Variants.size() == 1) // No additional variants for this pattern.
4613       continue;
4614 
4615     LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4616                PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4617 
4618     PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4619 
4620     // Cache matching predicates.
4621     if (MatchedPatterns[i])
4622       continue;
4623 
4624     const std::vector<Predicate> &Predicates =
4625         PatternsToMatch[i].getPredicates();
4626 
4627     BitVector &Matches = MatchedPredicates[i];
4628     MatchedPatterns.set(i);
4629     Matches.set(i);
4630 
4631     // Don't test patterns that have already been cached - it won't match.
4632     for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4633       if (!MatchedPatterns[p])
4634         Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4635 
4636     // Copy this to all the matching patterns.
4637     for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4638       if (p != (int)i) {
4639         MatchedPatterns.set(p);
4640         MatchedPredicates[p] = Matches;
4641       }
4642   }
4643 
4644   for (auto it : PatternsWithVariants) {
4645     unsigned i = it.first;
4646     const MultipleUseVarSet &DepVars = it.second.first;
4647     const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4648 
4649     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4650       TreePatternNodePtr Variant = Variants[v];
4651       BitVector &Matches = MatchedPredicates[i];
4652 
4653       LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
4654                  errs() << "\n");
4655 
4656       // Scan to see if an instruction or explicit pattern already matches this.
4657       bool AlreadyExists = false;
4658       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4659         // Skip if the top level predicates do not match.
4660         if (!Matches[p])
4661           continue;
4662         // Check to see if this variant already exists.
4663         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4664                                     DepVars)) {
4665           LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
4666           AlreadyExists = true;
4667           break;
4668         }
4669       }
4670       // If we already have it, ignore the variant.
4671       if (AlreadyExists) continue;
4672 
4673       // Otherwise, add it to the list of patterns we have.
4674       PatternsToMatch.push_back(PatternToMatch(
4675           PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4676           Variant, PatternsToMatch[i].getDstPatternShared(),
4677           PatternsToMatch[i].getDstRegs(),
4678           PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4679       MatchedPredicates.push_back(Matches);
4680 
4681       // Add a new match the same as this pattern.
4682       for (auto &P : MatchedPredicates)
4683         P.push_back(P[i]);
4684     }
4685 
4686     LLVM_DEBUG(errs() << "\n");
4687   }
4688 }
4689