17330f729Sjoerg//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===// 27330f729Sjoerg// 37330f729Sjoerg// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 47330f729Sjoerg// See https://llvm.org/LICENSE.txt for license information. 57330f729Sjoerg// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 67330f729Sjoerg// 77330f729Sjoerg//===----------------------------------------------------------------------===// 87330f729Sjoerg 97330f729Sjoerginclude "ARMSystemRegister.td" 107330f729Sjoerg 117330f729Sjoerg//===----------------------------------------------------------------------===// 127330f729Sjoerg// Declarations that describe the ARM register file 137330f729Sjoerg//===----------------------------------------------------------------------===// 147330f729Sjoerg 157330f729Sjoerg// Registers are identified with 4-bit ID numbers. 167330f729Sjoergclass ARMReg<bits<16> Enc, string n, list<Register> subregs = [], 177330f729Sjoerg list<string> altNames = []> : Register<n, altNames> { 187330f729Sjoerg let HWEncoding = Enc; 197330f729Sjoerg let Namespace = "ARM"; 207330f729Sjoerg let SubRegs = subregs; 217330f729Sjoerg // All bits of ARM registers with sub-registers are covered by sub-registers. 227330f729Sjoerg let CoveredBySubRegs = 1; 237330f729Sjoerg} 247330f729Sjoerg 257330f729Sjoergclass ARMFReg<bits<16> Enc, string n> : Register<n> { 267330f729Sjoerg let HWEncoding = Enc; 277330f729Sjoerg let Namespace = "ARM"; 287330f729Sjoerg} 297330f729Sjoerg 307330f729Sjoerglet Namespace = "ARM", 317330f729Sjoerg FallbackRegAltNameIndex = NoRegAltName in { 327330f729Sjoerg def RegNamesRaw : RegAltNameIndex; 337330f729Sjoerg} 347330f729Sjoerg 357330f729Sjoerg// Subregister indices. 367330f729Sjoerglet Namespace = "ARM" in { 377330f729Sjoergdef qqsub_0 : SubRegIndex<256>; 387330f729Sjoergdef qqsub_1 : SubRegIndex<256, 256>; 397330f729Sjoerg 407330f729Sjoerg// Note: Code depends on these having consecutive numbers. 417330f729Sjoergdef qsub_0 : SubRegIndex<128>; 427330f729Sjoergdef qsub_1 : SubRegIndex<128, 128>; 437330f729Sjoergdef qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>; 447330f729Sjoergdef qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>; 457330f729Sjoerg 467330f729Sjoergdef dsub_0 : SubRegIndex<64>; 477330f729Sjoergdef dsub_1 : SubRegIndex<64, 64>; 487330f729Sjoergdef dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>; 497330f729Sjoergdef dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>; 507330f729Sjoergdef dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>; 517330f729Sjoergdef dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>; 527330f729Sjoergdef dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>; 537330f729Sjoergdef dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>; 547330f729Sjoerg 557330f729Sjoergdef ssub_0 : SubRegIndex<32>; 567330f729Sjoergdef ssub_1 : SubRegIndex<32, 32>; 577330f729Sjoergdef ssub_2 : ComposedSubRegIndex<dsub_1, ssub_0>; 587330f729Sjoergdef ssub_3 : ComposedSubRegIndex<dsub_1, ssub_1>; 597330f729Sjoergdef ssub_4 : ComposedSubRegIndex<dsub_2, ssub_0>; 607330f729Sjoergdef ssub_5 : ComposedSubRegIndex<dsub_2, ssub_1>; 617330f729Sjoergdef ssub_6 : ComposedSubRegIndex<dsub_3, ssub_0>; 627330f729Sjoergdef ssub_7 : ComposedSubRegIndex<dsub_3, ssub_1>; 637330f729Sjoergdef ssub_8 : ComposedSubRegIndex<dsub_4, ssub_0>; 647330f729Sjoergdef ssub_9 : ComposedSubRegIndex<dsub_4, ssub_1>; 657330f729Sjoergdef ssub_10 : ComposedSubRegIndex<dsub_5, ssub_0>; 667330f729Sjoergdef ssub_11 : ComposedSubRegIndex<dsub_5, ssub_1>; 677330f729Sjoergdef ssub_12 : ComposedSubRegIndex<dsub_6, ssub_0>; 687330f729Sjoergdef ssub_13 : ComposedSubRegIndex<dsub_6, ssub_1>; 697330f729Sjoerg 707330f729Sjoergdef gsub_0 : SubRegIndex<32>; 717330f729Sjoergdef gsub_1 : SubRegIndex<32, 32>; 727330f729Sjoerg// Let TableGen synthesize the remaining 12 ssub_* indices. 737330f729Sjoerg// We don't need to name them. 747330f729Sjoerg} 757330f729Sjoerg 767330f729Sjoerg// Integer registers 777330f729Sjoergdef R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>; 787330f729Sjoergdef R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>; 797330f729Sjoergdef R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>; 807330f729Sjoergdef R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>; 817330f729Sjoergdef R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>; 827330f729Sjoergdef R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>; 837330f729Sjoergdef R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>; 847330f729Sjoergdef R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>; 857330f729Sjoerg// These require 32-bit instructions. 86*82d56013Sjoerglet CostPerUse = [1] in { 877330f729Sjoergdef R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>; 887330f729Sjoergdef R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>; 897330f729Sjoergdef R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>; 907330f729Sjoergdef R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>; 917330f729Sjoergdef R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>; 927330f729Sjoerglet RegAltNameIndices = [RegNamesRaw] in { 937330f729Sjoergdef SP : ARMReg<13, "sp", [], ["r13"]>, DwarfRegNum<[13]>; 947330f729Sjoergdef LR : ARMReg<14, "lr", [], ["r14"]>, DwarfRegNum<[14]>; 957330f729Sjoergdef PC : ARMReg<15, "pc", [], ["r15"]>, DwarfRegNum<[15]>; 967330f729Sjoerg} 977330f729Sjoerg} 987330f729Sjoerg 997330f729Sjoerg// Float registers 1007330f729Sjoergdef S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">; 1017330f729Sjoergdef S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">; 1027330f729Sjoergdef S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">; 1037330f729Sjoergdef S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">; 1047330f729Sjoergdef S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">; 1057330f729Sjoergdef S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">; 1067330f729Sjoergdef S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">; 1077330f729Sjoergdef S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">; 1087330f729Sjoergdef S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">; 1097330f729Sjoergdef S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">; 1107330f729Sjoergdef S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">; 1117330f729Sjoergdef S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">; 1127330f729Sjoergdef S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">; 1137330f729Sjoergdef S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">; 1147330f729Sjoergdef S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">; 1157330f729Sjoergdef S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">; 1167330f729Sjoerg 1177330f729Sjoerg// Aliases of the F* registers used to hold 64-bit fp values (doubles) 1187330f729Sjoerglet SubRegIndices = [ssub_0, ssub_1] in { 1197330f729Sjoergdef D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>; 1207330f729Sjoergdef D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>; 1217330f729Sjoergdef D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>; 1227330f729Sjoergdef D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>; 1237330f729Sjoergdef D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>; 1247330f729Sjoergdef D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>; 1257330f729Sjoergdef D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>; 1267330f729Sjoergdef D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>; 1277330f729Sjoergdef D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>; 1287330f729Sjoergdef D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>; 1297330f729Sjoergdef D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>; 1307330f729Sjoergdef D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>; 1317330f729Sjoergdef D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>; 1327330f729Sjoergdef D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>; 1337330f729Sjoergdef D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>; 1347330f729Sjoergdef D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>; 1357330f729Sjoerg} 1367330f729Sjoerg 1377330f729Sjoerg// VFP3 defines 16 additional double registers 1387330f729Sjoergdef D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; 1397330f729Sjoergdef D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>; 1407330f729Sjoergdef D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>; 1417330f729Sjoergdef D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>; 1427330f729Sjoergdef D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>; 1437330f729Sjoergdef D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>; 1447330f729Sjoergdef D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; 1457330f729Sjoergdef D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>; 1467330f729Sjoergdef D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>; 1477330f729Sjoergdef D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>; 1487330f729Sjoergdef D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>; 1497330f729Sjoergdef D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>; 1507330f729Sjoergdef D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>; 1517330f729Sjoergdef D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>; 1527330f729Sjoergdef D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>; 1537330f729Sjoergdef D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>; 1547330f729Sjoerg 1557330f729Sjoerg// Advanced SIMD (NEON) defines 16 quad-word aliases 1567330f729Sjoerglet SubRegIndices = [dsub_0, dsub_1] in { 1577330f729Sjoergdef Q0 : ARMReg< 0, "q0", [D0, D1]>; 1587330f729Sjoergdef Q1 : ARMReg< 1, "q1", [D2, D3]>; 1597330f729Sjoergdef Q2 : ARMReg< 2, "q2", [D4, D5]>; 1607330f729Sjoergdef Q3 : ARMReg< 3, "q3", [D6, D7]>; 1617330f729Sjoergdef Q4 : ARMReg< 4, "q4", [D8, D9]>; 1627330f729Sjoergdef Q5 : ARMReg< 5, "q5", [D10, D11]>; 1637330f729Sjoergdef Q6 : ARMReg< 6, "q6", [D12, D13]>; 1647330f729Sjoergdef Q7 : ARMReg< 7, "q7", [D14, D15]>; 1657330f729Sjoerg} 1667330f729Sjoerglet SubRegIndices = [dsub_0, dsub_1] in { 1677330f729Sjoergdef Q8 : ARMReg< 8, "q8", [D16, D17]>; 1687330f729Sjoergdef Q9 : ARMReg< 9, "q9", [D18, D19]>; 1697330f729Sjoergdef Q10 : ARMReg<10, "q10", [D20, D21]>; 1707330f729Sjoergdef Q11 : ARMReg<11, "q11", [D22, D23]>; 1717330f729Sjoergdef Q12 : ARMReg<12, "q12", [D24, D25]>; 1727330f729Sjoergdef Q13 : ARMReg<13, "q13", [D26, D27]>; 1737330f729Sjoergdef Q14 : ARMReg<14, "q14", [D28, D29]>; 1747330f729Sjoergdef Q15 : ARMReg<15, "q15", [D30, D31]>; 1757330f729Sjoerg} 1767330f729Sjoerg 1777330f729Sjoerg// Current Program Status Register. 1787330f729Sjoerg// We model fpscr with two registers: FPSCR models the control bits and will be 1797330f729Sjoerg// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV 1807330f729Sjoerg// models the APSR when it's accessed by some special instructions. In such cases 1817330f729Sjoerg// it has the same encoding as PC. 1827330f729Sjoergdef CPSR : ARMReg<0, "cpsr">; 1837330f729Sjoergdef APSR : ARMReg<15, "apsr">; 1847330f729Sjoergdef APSR_NZCV : ARMReg<15, "apsr_nzcv">; 1857330f729Sjoergdef SPSR : ARMReg<2, "spsr">; 1867330f729Sjoergdef FPSCR : ARMReg<3, "fpscr">; 1877330f729Sjoergdef FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> { 1887330f729Sjoerg let Aliases = [FPSCR]; 1897330f729Sjoerg} 1907330f729Sjoergdef ITSTATE : ARMReg<4, "itstate">; 1917330f729Sjoerg 1927330f729Sjoerg// Special Registers - only available in privileged mode. 1937330f729Sjoergdef FPSID : ARMReg<0, "fpsid">; 1947330f729Sjoergdef MVFR2 : ARMReg<5, "mvfr2">; 1957330f729Sjoergdef MVFR1 : ARMReg<6, "mvfr1">; 1967330f729Sjoergdef MVFR0 : ARMReg<7, "mvfr0">; 1977330f729Sjoergdef FPEXC : ARMReg<8, "fpexc">; 1987330f729Sjoergdef FPINST : ARMReg<9, "fpinst">; 1997330f729Sjoergdef FPINST2 : ARMReg<10, "fpinst2">; 2007330f729Sjoerg// These encodings aren't actual instruction encodings, their encoding depends 2017330f729Sjoerg// on the instruction they are used in and for VPR 32 was chosen such that it 2027330f729Sjoerg// always comes last in spr_reglist_with_vpr. 2037330f729Sjoergdef VPR : ARMReg<32, "vpr">; 2047330f729Sjoergdef FPSCR_NZCVQC 2057330f729Sjoerg : ARMReg<2, "fpscr_nzcvqc">; 2067330f729Sjoergdef P0 : ARMReg<13, "p0">; 2077330f729Sjoergdef FPCXTNS : ARMReg<14, "fpcxtns">; 2087330f729Sjoergdef FPCXTS : ARMReg<15, "fpcxts">; 2097330f729Sjoerg 2107330f729Sjoergdef ZR : ARMReg<15, "zr">, DwarfRegNum<[15]>; 2117330f729Sjoerg 2127330f729Sjoerg// Register classes. 2137330f729Sjoerg// 2147330f729Sjoerg// pc == Program Counter 2157330f729Sjoerg// lr == Link Register 2167330f729Sjoerg// sp == Stack Pointer 2177330f729Sjoerg// r12 == ip (scratch) 2187330f729Sjoerg// r7 == Frame Pointer (thumb-style backtraces) 2197330f729Sjoerg// r9 == May be reserved as Thread Register 2207330f729Sjoerg// r11 == Frame Pointer (arm-style backtraces) 2217330f729Sjoerg// r10 == Stack Limit 2227330f729Sjoerg// 2237330f729Sjoergdef GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), 2247330f729Sjoerg SP, LR, PC)> { 2257330f729Sjoerg // Allocate LR as the first CSR since it is always saved anyway. 2267330f729Sjoerg // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't 2277330f729Sjoerg // know how to spill them. If we make our prologue/epilogue code smarter at 2287330f729Sjoerg // some point, we can go back to using the above allocation orders for the 2297330f729Sjoerg // Thumb1 instructions that know how to use hi regs. 2307330f729Sjoerg let AltOrders = [(add LR, GPR), (trunc GPR, 8), 2317330f729Sjoerg (add (trunc GPR, 8), R12, LR, (shl GPR, 8))]; 2327330f729Sjoerg let AltOrderSelect = [{ 2337330f729Sjoerg return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 2347330f729Sjoerg }]; 2357330f729Sjoerg let DiagnosticString = "operand must be a register in range [r0, r15]"; 2367330f729Sjoerg} 2377330f729Sjoerg 238*82d56013Sjoerg// Register set that excludes registers that are reserved for procedure calls. 239*82d56013Sjoerg// This is used for pseudo-instructions that are actually implemented using a 240*82d56013Sjoerg// procedure call. 241*82d56013Sjoergdef GPRnoip : RegisterClass<"ARM", [i32], 32, (sub GPR, R12, LR)> { 242*82d56013Sjoerg // Allocate LR as the first CSR since it is always saved anyway. 243*82d56013Sjoerg // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't 244*82d56013Sjoerg // know how to spill them. If we make our prologue/epilogue code smarter at 245*82d56013Sjoerg // some point, we can go back to using the above allocation orders for the 246*82d56013Sjoerg // Thumb1 instructions that know how to use hi regs. 247*82d56013Sjoerg let AltOrders = [(add GPRnoip, GPRnoip), (trunc GPRnoip, 8), 248*82d56013Sjoerg (add (trunc GPRnoip, 8), (shl GPRnoip, 8))]; 249*82d56013Sjoerg let AltOrderSelect = [{ 250*82d56013Sjoerg return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 251*82d56013Sjoerg }]; 252*82d56013Sjoerg let DiagnosticString = "operand must be a register in range [r0, r14]"; 253*82d56013Sjoerg} 254*82d56013Sjoerg 2557330f729Sjoerg// GPRs without the PC. Some ARM instructions do not allow the PC in 2567330f729Sjoerg// certain operand slots, particularly as the destination. Primarily 2577330f729Sjoerg// useful for disassembly. 2587330f729Sjoergdef GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> { 2597330f729Sjoerg let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8), 2607330f729Sjoerg (add (trunc GPRnopc, 8), R12, LR, (shl GPRnopc, 8))]; 2617330f729Sjoerg let AltOrderSelect = [{ 2627330f729Sjoerg return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 2637330f729Sjoerg }]; 2647330f729Sjoerg let DiagnosticString = "operand must be a register in range [r0, r14]"; 2657330f729Sjoerg} 2667330f729Sjoerg 2677330f729Sjoerg// GPRs without the PC but with APSR. Some instructions allow accessing the 2687330f729Sjoerg// APSR, while actually encoding PC in the register field. This is useful 2697330f729Sjoerg// for assembly and disassembly only. 2707330f729Sjoergdef GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> { 2717330f729Sjoerg let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; 2727330f729Sjoerg let AltOrderSelect = [{ 2737330f729Sjoerg return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 2747330f729Sjoerg }]; 2757330f729Sjoerg let DiagnosticString = "operand must be a register in range [r0, r14] or apsr_nzcv"; 2767330f729Sjoerg} 2777330f729Sjoerg 2787330f729Sjoerg// GPRs without the PC and SP registers but with APSR. Used by CLRM instruction. 2797330f729Sjoergdef GPRwithAPSRnosp : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR)> { 2807330f729Sjoerg let isAllocatable = 0; 2817330f729Sjoerg} 2827330f729Sjoerg 2837330f729Sjoergdef GPRwithZR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), ZR)> { 2847330f729Sjoerg let AltOrders = [(add LR, GPRwithZR), (trunc GPRwithZR, 8)]; 2857330f729Sjoerg let AltOrderSelect = [{ 2867330f729Sjoerg return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 2877330f729Sjoerg }]; 2887330f729Sjoerg let DiagnosticString = "operand must be a register in range [r0, r14] or zr"; 2897330f729Sjoerg} 2907330f729Sjoerg 2917330f729Sjoergdef GPRwithZRnosp : RegisterClass<"ARM", [i32], 32, (sub GPRwithZR, SP)> { 2927330f729Sjoerg let AltOrders = [(add LR, GPRwithZRnosp), (trunc GPRwithZRnosp, 8)]; 2937330f729Sjoerg let AltOrderSelect = [{ 2947330f729Sjoerg return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 2957330f729Sjoerg }]; 2967330f729Sjoerg let DiagnosticString = "operand must be a register in range [r0, r12] or r14 or zr"; 2977330f729Sjoerg} 2987330f729Sjoerg 2997330f729Sjoerg// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the 3007330f729Sjoerg// implied SP argument list. 3017330f729Sjoerg// FIXME: It would be better to not use this at all and refactor the 3027330f729Sjoerg// instructions to not have SP an an explicit argument. That makes 3037330f729Sjoerg// frame index resolution a bit trickier, though. 3047330f729Sjoergdef GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)> { 3057330f729Sjoerg let DiagnosticString = "operand must be a register sp"; 3067330f729Sjoerg} 3077330f729Sjoerg 3087330f729Sjoerg// GPRlr - Only LR is legal. Used by ARMv8.1-M Low Overhead Loop instructions 3097330f729Sjoerg// where LR is the only legal loop counter register. 3107330f729Sjoergdef GPRlr : RegisterClass<"ARM", [i32], 32, (add LR)>; 3117330f729Sjoerg 3127330f729Sjoerg// restricted GPR register class. Many Thumb2 instructions allow the full 3137330f729Sjoerg// register range for operands, but have undefined behaviours when PC 3147330f729Sjoerg// or SP (R13 or R15) are used. The ARM ISA refers to these operands 3157330f729Sjoerg// via the BadReg() pseudo-code description. 3167330f729Sjoergdef rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> { 3177330f729Sjoerg let AltOrders = [(add LR, rGPR), (trunc rGPR, 8), 3187330f729Sjoerg (add (trunc rGPR, 8), R12, LR, (shl rGPR, 8))]; 3197330f729Sjoerg let AltOrderSelect = [{ 3207330f729Sjoerg return MF.getSubtarget<ARMSubtarget>().getGPRAllocationOrder(MF); 3217330f729Sjoerg }]; 3227330f729Sjoerg let DiagnosticType = "rGPR"; 3237330f729Sjoerg} 3247330f729Sjoerg 325*82d56013Sjoerg// GPRs without the PC and SP but with APSR_NZCV.Some instructions allow 326*82d56013Sjoerg// accessing the APSR_NZCV, while actually encoding PC in the register field. 327*82d56013Sjoerg// This is useful for assembly and disassembly only. 328*82d56013Sjoerg// Currently used by the CDE extension. 329*82d56013Sjoergdef GPRwithAPSR_NZCVnosp 330*82d56013Sjoerg : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), LR, APSR_NZCV)> { 331*82d56013Sjoerg let isAllocatable = 0; 332*82d56013Sjoerg let DiagnosticString = 333*82d56013Sjoerg "operand must be a register in the range [r0, r12], r14 or apsr_nzcv"; 334*82d56013Sjoerg} 335*82d56013Sjoerg 3367330f729Sjoerg// Thumb registers are R0-R7 normally. Some instructions can still use 3377330f729Sjoerg// the general GPR register class above (MOV, e.g.) 3387330f729Sjoergdef tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)> { 3397330f729Sjoerg let DiagnosticString = "operand must be a register in range [r0, r7]"; 3407330f729Sjoerg} 3417330f729Sjoerg 3427330f729Sjoerg// Thumb registers R0-R7 and the PC. Some instructions like TBB or THH allow 3437330f729Sjoerg// the PC to be used as a destination operand as well. 3447330f729Sjoergdef tGPRwithpc : RegisterClass<"ARM", [i32], 32, (add tGPR, PC)>; 3457330f729Sjoerg 3467330f729Sjoerg// The high registers in thumb mode, R8-R15. 3477330f729Sjoergdef hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)> { 3487330f729Sjoerg let DiagnosticString = "operand must be a register in range [r8, r15]"; 3497330f729Sjoerg} 3507330f729Sjoerg 3517330f729Sjoerg// For tail calls, we can't use callee-saved registers, as they are restored 3527330f729Sjoerg// to the saved value before the tail call, which would clobber a call address. 3537330f729Sjoerg// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of 3547330f729Sjoerg// this class and the preceding one(!) This is what we want. 3557330f729Sjoergdef tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> { 3567330f729Sjoerg let AltOrders = [(and tcGPR, tGPR)]; 3577330f729Sjoerg let AltOrderSelect = [{ 3587330f729Sjoerg return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 3597330f729Sjoerg }]; 3607330f729Sjoerg} 3617330f729Sjoerg 3627330f729Sjoergdef tGPROdd : RegisterClass<"ARM", [i32], 32, (add R1, R3, R5, R7, R9, R11)> { 3637330f729Sjoerg let AltOrders = [(and tGPROdd, tGPR)]; 3647330f729Sjoerg let AltOrderSelect = [{ 3657330f729Sjoerg return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 3667330f729Sjoerg }]; 3677330f729Sjoerg let DiagnosticString = 3687330f729Sjoerg "operand must be an odd-numbered register in range [r1,r11]"; 3697330f729Sjoerg} 3707330f729Sjoerg 3717330f729Sjoergdef tGPREven : RegisterClass<"ARM", [i32], 32, (add R0, R2, R4, R6, R8, R10, R12, LR)> { 3727330f729Sjoerg let AltOrders = [(and tGPREven, tGPR)]; 3737330f729Sjoerg let AltOrderSelect = [{ 3747330f729Sjoerg return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 3757330f729Sjoerg }]; 3767330f729Sjoerg let DiagnosticString = "operand must be an even-numbered register"; 3777330f729Sjoerg} 3787330f729Sjoerg 3797330f729Sjoerg// Condition code registers. 3807330f729Sjoergdef CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> { 3817330f729Sjoerg let CopyCost = -1; // Don't allow copying of status registers. 3827330f729Sjoerg let isAllocatable = 0; 3837330f729Sjoerg} 3847330f729Sjoerg 3857330f729Sjoerg// MVE Condition code register. 3867330f729Sjoergdef VCCR : RegisterClass<"ARM", [i32, v16i1, v8i1, v4i1], 32, (add VPR)> { 3877330f729Sjoerg// let CopyCost = -1; // Don't allow copying of status registers. 3887330f729Sjoerg} 3897330f729Sjoerg 3907330f729Sjoerg// FPSCR, when the flags at the top of it are used as the input or 3917330f729Sjoerg// output to an instruction such as MVE VADC. 3927330f729Sjoergdef cl_FPSCR_NZCV : RegisterClass<"ARM", [i32], 32, (add FPSCR_NZCV)>; 3937330f729Sjoerg 3947330f729Sjoerg// Scalar single precision floating point register class.. 3957330f729Sjoerg// FIXME: Allocation order changed to s0, s2, ... or s0, s4, ... as a quick hack 3967330f729Sjoerg// to avoid partial-write dependencies on D or Q (depending on platform) 3977330f729Sjoerg// registers (S registers are renamed as portions of D/Q registers). 3987330f729Sjoergdef SPR : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 31)> { 3997330f729Sjoerg let AltOrders = [(add (decimate SPR, 2), SPR), 4007330f729Sjoerg (add (decimate SPR, 4), 4017330f729Sjoerg (decimate SPR, 2), 4027330f729Sjoerg (decimate (rotl SPR, 1), 4), 4037330f729Sjoerg (decimate (rotl SPR, 1), 2))]; 4047330f729Sjoerg let AltOrderSelect = [{ 4057330f729Sjoerg return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 4067330f729Sjoerg }]; 4077330f729Sjoerg let DiagnosticString = "operand must be a register in range [s0, s31]"; 4087330f729Sjoerg} 4097330f729Sjoerg 410*82d56013Sjoergdef HPR : RegisterClass<"ARM", [f16, bf16], 32, (sequence "S%u", 0, 31)> { 4117330f729Sjoerg let AltOrders = [(add (decimate HPR, 2), SPR), 4127330f729Sjoerg (add (decimate HPR, 4), 4137330f729Sjoerg (decimate HPR, 2), 4147330f729Sjoerg (decimate (rotl HPR, 1), 4), 4157330f729Sjoerg (decimate (rotl HPR, 1), 2))]; 4167330f729Sjoerg let AltOrderSelect = [{ 4177330f729Sjoerg return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 4187330f729Sjoerg }]; 4197330f729Sjoerg let DiagnosticString = "operand must be a register in range [s0, s31]"; 4207330f729Sjoerg} 4217330f729Sjoerg 4227330f729Sjoerg// Subset of SPR which can be used as a source of NEON scalars for 16-bit 4237330f729Sjoerg// operations 4247330f729Sjoergdef SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)> { 4257330f729Sjoerg let DiagnosticString = "operand must be a register in range [s0, s15]"; 4267330f729Sjoerg} 4277330f729Sjoerg 4287330f729Sjoerg// Scalar double precision floating point / generic 64-bit vector register 4297330f729Sjoerg// class. 4307330f729Sjoerg// ARM requires only word alignment for double. It's more performant if it 4317330f729Sjoerg// is double-word alignment though. 432*82d56013Sjoergdef DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, 4337330f729Sjoerg (sequence "D%u", 0, 31)> { 4347330f729Sjoerg // Allocate non-VFP2 registers D16-D31 first, and prefer even registers on 4357330f729Sjoerg // Darwin platforms. 4367330f729Sjoerg let AltOrders = [(rotl DPR, 16), 4377330f729Sjoerg (add (decimate (rotl DPR, 16), 2), (rotl DPR, 16))]; 4387330f729Sjoerg let AltOrderSelect = [{ 4397330f729Sjoerg return 1 + MF.getSubtarget<ARMSubtarget>().useStride4VFPs(); 4407330f729Sjoerg }]; 4417330f729Sjoerg let DiagnosticType = "DPR"; 4427330f729Sjoerg} 4437330f729Sjoerg 4447330f729Sjoerg// Scalar single and double precision floating point and VPR register class, 4457330f729Sjoerg// this is only used for parsing, don't use it anywhere else as the size and 4467330f729Sjoerg// types don't match! 4477330f729Sjoergdef FPWithVPR : RegisterClass<"ARM", [f32], 32, (add SPR, DPR, VPR)> { 4487330f729Sjoerg let isAllocatable = 0; 4497330f729Sjoerg} 4507330f729Sjoerg 4517330f729Sjoerg// Subset of DPR that are accessible with VFP2 (and so that also have 4527330f729Sjoerg// 32-bit SPR subregs). 453*82d56013Sjoergdef DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, 4547330f729Sjoerg (trunc DPR, 16)> { 4557330f729Sjoerg let DiagnosticString = "operand must be a register in range [d0, d15]"; 4567330f729Sjoerg} 4577330f729Sjoerg 4587330f729Sjoerg// Subset of DPR which can be used as a source of NEON scalars for 16-bit 4597330f729Sjoerg// operations 460*82d56013Sjoergdef DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32, v4f16, v4bf16], 64, 4617330f729Sjoerg (trunc DPR, 8)> { 4627330f729Sjoerg let DiagnosticString = "operand must be a register in range [d0, d7]"; 4637330f729Sjoerg} 4647330f729Sjoerg 4657330f729Sjoerg// Generic 128-bit vector register class. 466*82d56013Sjoergdef QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16, v8bf16], 128, 4677330f729Sjoerg (sequence "Q%u", 0, 15)> { 4687330f729Sjoerg // Allocate non-VFP2 aliases Q8-Q15 first. 4697330f729Sjoerg let AltOrders = [(rotl QPR, 8), (trunc QPR, 8)]; 4707330f729Sjoerg let AltOrderSelect = [{ 4717330f729Sjoerg return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps(); 4727330f729Sjoerg }]; 4737330f729Sjoerg let DiagnosticString = "operand must be a register in range [q0, q15]"; 4747330f729Sjoerg} 4757330f729Sjoerg 4767330f729Sjoerg// Subset of QPR that have 32-bit SPR subregs. 4777330f729Sjoergdef QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 4787330f729Sjoerg 128, (trunc QPR, 8)> { 4797330f729Sjoerg let DiagnosticString = "operand must be a register in range [q0, q7]"; 4807330f729Sjoerg} 4817330f729Sjoerg 4827330f729Sjoerg// Subset of QPR that have DPR_8 and SPR_8 subregs. 4837330f729Sjoergdef QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 4847330f729Sjoerg 128, (trunc QPR, 4)> { 4857330f729Sjoerg let DiagnosticString = "operand must be a register in range [q0, q3]"; 4867330f729Sjoerg} 4877330f729Sjoerg 4887330f729Sjoerg// MVE 128-bit vector register class. This class is only really needed for 4897330f729Sjoerg// parsing assembly, since we still have to truncate the register set in the QPR 4907330f729Sjoerg// class anyway. 4917330f729Sjoergdef MQPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64, v8f16], 4927330f729Sjoerg 128, (trunc QPR, 8)>; 4937330f729Sjoerg 4947330f729Sjoerg// Pseudo-registers representing odd-even pairs of D registers. The even-odd 4957330f729Sjoerg// pairs are already represented by the Q registers. 4967330f729Sjoerg// These are needed by NEON instructions requiring two consecutive D registers. 4977330f729Sjoerg// There is no D31_D0 register as that is always an UNPREDICTABLE encoding. 4987330f729Sjoergdef TuplesOE2D : RegisterTuples<[dsub_0, dsub_1], 4997330f729Sjoerg [(decimate (shl DPR, 1), 2), 5007330f729Sjoerg (decimate (shl DPR, 2), 2)]>; 5017330f729Sjoerg 5027330f729Sjoerg// Register class representing a pair of consecutive D registers. 5037330f729Sjoerg// Use the Q registers for the even-odd pairs. 5047330f729Sjoergdef DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 5057330f729Sjoerg 128, (interleave QPR, TuplesOE2D)> { 5067330f729Sjoerg // Allocate starting at non-VFP2 registers D16-D31 first. 5077330f729Sjoerg // Prefer even-odd pairs as they are easier to copy. 5087330f729Sjoerg let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16)), 5097330f729Sjoerg (add (trunc QPR, 8), (trunc DPair, 16))]; 5107330f729Sjoerg let AltOrderSelect = [{ 5117330f729Sjoerg return 1 + MF.getSubtarget<ARMSubtarget>().hasMVEIntegerOps(); 5127330f729Sjoerg }]; 5137330f729Sjoerg} 5147330f729Sjoerg 5157330f729Sjoerg// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP. 5167330f729Sjoerg// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs. 5177330f729Sjoergdef Tuples2Rnosp : RegisterTuples<[gsub_0, gsub_1], 5187330f729Sjoerg [(add R0, R2, R4, R6, R8, R10), 5197330f729Sjoerg (add R1, R3, R5, R7, R9, R11)]>; 5207330f729Sjoerg 5217330f729Sjoergdef Tuples2Rsp : RegisterTuples<[gsub_0, gsub_1], 5227330f729Sjoerg [(add R12), (add SP)]>; 5237330f729Sjoerg 5247330f729Sjoerg// Register class representing a pair of even-odd GPRs. 5257330f729Sjoergdef GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp, Tuples2Rsp)> { 5267330f729Sjoerg let Size = 64; // 2 x 32 bits, we have no predefined type of that size. 5277330f729Sjoerg} 5287330f729Sjoerg 5297330f729Sjoerg// Register class representing a pair of even-odd GPRs, except (R12, SP). 5307330f729Sjoergdef GPRPairnosp : RegisterClass<"ARM", [untyped], 64, (add Tuples2Rnosp)> { 5317330f729Sjoerg let Size = 64; // 2 x 32 bits, we have no predefined type of that size. 5327330f729Sjoerg} 5337330f729Sjoerg 5347330f729Sjoerg// Pseudo-registers representing 3 consecutive D registers. 5357330f729Sjoergdef Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2], 5367330f729Sjoerg [(shl DPR, 0), 5377330f729Sjoerg (shl DPR, 1), 5387330f729Sjoerg (shl DPR, 2)]>; 5397330f729Sjoerg 5407330f729Sjoerg// 3 consecutive D registers. 5417330f729Sjoergdef DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> { 5427330f729Sjoerg let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 5437330f729Sjoerg} 5447330f729Sjoerg 5457330f729Sjoerg// Pseudo 256-bit registers to represent pairs of Q registers. These should 5467330f729Sjoerg// never be present in the emitted code. 5477330f729Sjoerg// These are used for NEON load / store instructions, e.g., vld4, vst3. 5487330f729Sjoergdef Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>; 5497330f729Sjoerg 5507330f729Sjoerg// Pseudo 256-bit vector register class to model pairs of Q registers 5517330f729Sjoerg// (4 consecutive D registers). 5527330f729Sjoergdef QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> { 5537330f729Sjoerg // Allocate non-VFP2 aliases first. 5547330f729Sjoerg let AltOrders = [(rotl QQPR, 8)]; 5557330f729Sjoerg let AltOrderSelect = [{ return 1; }]; 5567330f729Sjoerg} 5577330f729Sjoerg 5587330f729Sjoerg// Tuples of 4 D regs that isn't also a pair of Q regs. 5597330f729Sjoergdef TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3], 5607330f729Sjoerg [(decimate (shl DPR, 1), 2), 5617330f729Sjoerg (decimate (shl DPR, 2), 2), 5627330f729Sjoerg (decimate (shl DPR, 3), 2), 5637330f729Sjoerg (decimate (shl DPR, 4), 2)]>; 5647330f729Sjoerg 5657330f729Sjoerg// 4 consecutive D registers. 5667330f729Sjoergdef DQuad : RegisterClass<"ARM", [v4i64], 256, 5677330f729Sjoerg (interleave Tuples2Q, TuplesOE4D)>; 5687330f729Sjoerg 5697330f729Sjoerg// Pseudo 512-bit registers to represent four consecutive Q registers. 5707330f729Sjoergdef Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1], 5717330f729Sjoerg [(shl QQPR, 0), (shl QQPR, 2)]>; 5727330f729Sjoerg 5737330f729Sjoerg// Pseudo 512-bit vector register class to model 4 consecutive Q registers 5747330f729Sjoerg// (8 consecutive D registers). 5757330f729Sjoergdef QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> { 5767330f729Sjoerg // Allocate non-VFP2 aliases first. 5777330f729Sjoerg let AltOrders = [(rotl QQQQPR, 8)]; 5787330f729Sjoerg let AltOrderSelect = [{ return 1; }]; 5797330f729Sjoerg} 5807330f729Sjoerg 5817330f729Sjoerg 5827330f729Sjoerg// Pseudo-registers representing 2-spaced consecutive D registers. 5837330f729Sjoergdef Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2], 5847330f729Sjoerg [(shl DPR, 0), 5857330f729Sjoerg (shl DPR, 2)]>; 5867330f729Sjoerg 5877330f729Sjoerg// Spaced pairs of D registers. 5887330f729Sjoergdef DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>; 5897330f729Sjoerg 5907330f729Sjoergdef Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4], 5917330f729Sjoerg [(shl DPR, 0), 5927330f729Sjoerg (shl DPR, 2), 5937330f729Sjoerg (shl DPR, 4)]>; 5947330f729Sjoerg 5957330f729Sjoerg// Spaced triples of D registers. 5967330f729Sjoergdef DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> { 5977330f729Sjoerg let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 5987330f729Sjoerg} 5997330f729Sjoerg 6007330f729Sjoergdef Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6], 6017330f729Sjoerg [(shl DPR, 0), 6027330f729Sjoerg (shl DPR, 2), 6037330f729Sjoerg (shl DPR, 4), 6047330f729Sjoerg (shl DPR, 6)]>; 6057330f729Sjoerg 6067330f729Sjoerg// Spaced quads of D registers. 6077330f729Sjoergdef DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>; 608*82d56013Sjoerg 609*82d56013Sjoerg// FP context payload 610*82d56013Sjoergdef FPCXTRegs : RegisterClass<"ARM", [i32], 32, (add FPCXTNS)>; 611