1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_fp, prev_lr | 51 // | (a.k.a. "frame record") | 52 // | | 53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 54 // | | 55 // | callee-saved gpr registers | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | callee-saved fp/simd regs | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.8-byte.alignment.....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- base pointer (not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses r6) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // In some cases when a base pointer is not strictly needed, it is generated 92 // anyway when offsets from the frame pointer to access local variables become 93 // so large that the offset can't be encoded in the immediate fields of loads 94 // or stores. 95 // 96 // The frame pointer might be chosen to be r7 or r11, depending on the target 97 // architecture and operating system. See ARMSubtarget::useR7AsFramePointer for 98 // details. 99 // 100 // Outgoing function arguments must be at the bottom of the stack frame when 101 // calling another function. If we do not have variable-sized stack objects, we 102 // can allocate a "reserved call frame" area at the bottom of the local 103 // variable area, large enough for all outgoing calls. If we do have VLAs, then 104 // the stack pointer must be decremented and incremented around each call to 105 // make space for the arguments below the VLAs. 106 // 107 //===----------------------------------------------------------------------===// 108 109 #include "ARMFrameLowering.h" 110 #include "ARMBaseInstrInfo.h" 111 #include "ARMBaseRegisterInfo.h" 112 #include "ARMConstantPoolValue.h" 113 #include "ARMMachineFunctionInfo.h" 114 #include "ARMSubtarget.h" 115 #include "MCTargetDesc/ARMAddressingModes.h" 116 #include "MCTargetDesc/ARMBaseInfo.h" 117 #include "Utils/ARMBaseInfo.h" 118 #include "llvm/ADT/BitVector.h" 119 #include "llvm/ADT/STLExtras.h" 120 #include "llvm/ADT/SmallPtrSet.h" 121 #include "llvm/ADT/SmallVector.h" 122 #include "llvm/CodeGen/MachineBasicBlock.h" 123 #include "llvm/CodeGen/MachineConstantPool.h" 124 #include "llvm/CodeGen/MachineFrameInfo.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineInstr.h" 127 #include "llvm/CodeGen/MachineInstrBuilder.h" 128 #include "llvm/CodeGen/MachineJumpTableInfo.h" 129 #include "llvm/CodeGen/MachineModuleInfo.h" 130 #include "llvm/CodeGen/MachineOperand.h" 131 #include "llvm/CodeGen/MachineRegisterInfo.h" 132 #include "llvm/CodeGen/RegisterScavenging.h" 133 #include "llvm/CodeGen/TargetInstrInfo.h" 134 #include "llvm/CodeGen/TargetOpcodes.h" 135 #include "llvm/CodeGen/TargetRegisterInfo.h" 136 #include "llvm/CodeGen/TargetSubtargetInfo.h" 137 #include "llvm/IR/Attributes.h" 138 #include "llvm/IR/CallingConv.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/MC/MCContext.h" 142 #include "llvm/MC/MCDwarf.h" 143 #include "llvm/MC/MCInstrDesc.h" 144 #include "llvm/MC/MCRegisterInfo.h" 145 #include "llvm/Support/CodeGen.h" 146 #include "llvm/Support/CommandLine.h" 147 #include "llvm/Support/Compiler.h" 148 #include "llvm/Support/Debug.h" 149 #include "llvm/Support/ErrorHandling.h" 150 #include "llvm/Support/MathExtras.h" 151 #include "llvm/Support/raw_ostream.h" 152 #include "llvm/Target/TargetMachine.h" 153 #include "llvm/Target/TargetOptions.h" 154 #include <algorithm> 155 #include <cassert> 156 #include <cstddef> 157 #include <cstdint> 158 #include <iterator> 159 #include <utility> 160 #include <vector> 161 162 #define DEBUG_TYPE "arm-frame-lowering" 163 164 using namespace llvm; 165 166 static cl::opt<bool> 167 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 168 cl::desc("Align ARM NEON spills in prolog and epilog")); 169 170 static MachineBasicBlock::iterator 171 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 172 unsigned NumAlignedDPRCS2Regs); 173 174 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 175 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 176 STI(sti) {} 177 178 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 179 // iOS always has a FP for backtracking, force other targets to keep their FP 180 // when doing FastISel. The emitted code is currently superior, and in cases 181 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 182 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 183 } 184 185 /// Returns true if the target can safely skip saving callee-saved registers 186 /// for noreturn nounwind functions. 187 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 188 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 189 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 190 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 191 192 // Frame pointer and link register are not treated as normal CSR, thus we 193 // can always skip CSR saves for nonreturning functions. 194 return true; 195 } 196 197 /// hasFP - Return true if the specified function should have a dedicated frame 198 /// pointer register. This is true if the function has variable sized allocas 199 /// or if frame pointer elimination is disabled. 200 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 201 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 203 204 // ABI-required frame pointer. 205 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 206 return true; 207 208 // Frame pointer required for use within this function. 209 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 210 MFI.isFrameAddressTaken()); 211 } 212 213 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 214 /// not required, we reserve argument space for call sites in the function 215 /// immediately on entry to the current function. This eliminates the need for 216 /// add/sub sp brackets around call sites. Returns true if the call frame is 217 /// included as part of the stack frame. 218 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 219 const MachineFrameInfo &MFI = MF.getFrameInfo(); 220 unsigned CFSize = MFI.getMaxCallFrameSize(); 221 // It's not always a good idea to include the call frame as part of the 222 // stack frame. ARM (especially Thumb) has small immediate offset to 223 // address the stack frame. So a large call frame can cause poor codegen 224 // and may even makes it impossible to scavenge a register. 225 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 226 return false; 227 228 return !MFI.hasVarSizedObjects(); 229 } 230 231 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 232 /// call frame pseudos can be simplified. Unlike most targets, having a FP 233 /// is not sufficient here since we still may reference some objects via SP 234 /// even when FP is available in Thumb2 mode. 235 bool 236 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 237 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 238 } 239 240 static void emitRegPlusImmediate( 241 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 242 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 243 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 244 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 245 if (isARM) 246 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 247 Pred, PredReg, TII, MIFlags); 248 else 249 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 250 Pred, PredReg, TII, MIFlags); 251 } 252 253 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 254 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 255 const ARMBaseInstrInfo &TII, int NumBytes, 256 unsigned MIFlags = MachineInstr::NoFlags, 257 ARMCC::CondCodes Pred = ARMCC::AL, 258 unsigned PredReg = 0) { 259 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 260 MIFlags, Pred, PredReg); 261 } 262 263 static int sizeOfSPAdjustment(const MachineInstr &MI) { 264 int RegSize; 265 switch (MI.getOpcode()) { 266 case ARM::VSTMDDB_UPD: 267 RegSize = 8; 268 break; 269 case ARM::STMDB_UPD: 270 case ARM::t2STMDB_UPD: 271 RegSize = 4; 272 break; 273 case ARM::t2STR_PRE: 274 case ARM::STR_PRE_IMM: 275 return 4; 276 default: 277 llvm_unreachable("Unknown push or pop like instruction"); 278 } 279 280 int count = 0; 281 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 282 // pred) so the list starts at 4. 283 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 284 count += RegSize; 285 return count; 286 } 287 288 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 289 size_t StackSizeInBytes) { 290 const MachineFrameInfo &MFI = MF.getFrameInfo(); 291 const Function &F = MF.getFunction(); 292 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 293 if (F.hasFnAttribute("stack-probe-size")) 294 F.getFnAttribute("stack-probe-size") 295 .getValueAsString() 296 .getAsInteger(0, StackProbeSize); 297 return (StackSizeInBytes >= StackProbeSize) && 298 !F.hasFnAttribute("no-stack-arg-probe"); 299 } 300 301 namespace { 302 303 struct StackAdjustingInsts { 304 struct InstInfo { 305 MachineBasicBlock::iterator I; 306 unsigned SPAdjust; 307 bool BeforeFPSet; 308 }; 309 310 SmallVector<InstInfo, 4> Insts; 311 312 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 313 bool BeforeFPSet = false) { 314 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 315 Insts.push_back(Info); 316 } 317 318 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 319 auto Info = 320 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 321 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 322 Info->SPAdjust += ExtraBytes; 323 } 324 325 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 326 const ARMBaseInstrInfo &TII, bool HasFP) { 327 MachineFunction &MF = *MBB.getParent(); 328 unsigned CFAOffset = 0; 329 for (auto &Info : Insts) { 330 if (HasFP && !Info.BeforeFPSet) 331 return; 332 333 CFAOffset += Info.SPAdjust; 334 unsigned CFIIndex = MF.addFrameInst( 335 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 336 BuildMI(MBB, std::next(Info.I), dl, 337 TII.get(TargetOpcode::CFI_INSTRUCTION)) 338 .addCFIIndex(CFIIndex) 339 .setMIFlags(MachineInstr::FrameSetup); 340 } 341 } 342 }; 343 344 } // end anonymous namespace 345 346 /// Emit an instruction sequence that will align the address in 347 /// register Reg by zero-ing out the lower bits. For versions of the 348 /// architecture that support Neon, this must be done in a single 349 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 350 /// single instruction. That function only gets called when optimizing 351 /// spilling of D registers on a core with the Neon instruction set 352 /// present. 353 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 354 const TargetInstrInfo &TII, 355 MachineBasicBlock &MBB, 356 MachineBasicBlock::iterator MBBI, 357 const DebugLoc &DL, const unsigned Reg, 358 const Align Alignment, 359 const bool MustBeSingleInstruction) { 360 const ARMSubtarget &AST = 361 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 362 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 363 const unsigned AlignMask = Alignment.value() - 1U; 364 const unsigned NrBitsToZero = Log2(Alignment); 365 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 366 if (!AFI->isThumbFunction()) { 367 // if the BFC instruction is available, use that to zero the lower 368 // bits: 369 // bfc Reg, #0, log2(Alignment) 370 // otherwise use BIC, if the mask to zero the required number of bits 371 // can be encoded in the bic immediate field 372 // bic Reg, Reg, Alignment-1 373 // otherwise, emit 374 // lsr Reg, Reg, log2(Alignment) 375 // lsl Reg, Reg, log2(Alignment) 376 if (CanUseBFC) { 377 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 378 .addReg(Reg, RegState::Kill) 379 .addImm(~AlignMask) 380 .add(predOps(ARMCC::AL)); 381 } else if (AlignMask <= 255) { 382 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 383 .addReg(Reg, RegState::Kill) 384 .addImm(AlignMask) 385 .add(predOps(ARMCC::AL)) 386 .add(condCodeOp()); 387 } else { 388 assert(!MustBeSingleInstruction && 389 "Shouldn't call emitAligningInstructions demanding a single " 390 "instruction to be emitted for large stack alignment for a target " 391 "without BFC."); 392 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 393 .addReg(Reg, RegState::Kill) 394 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 395 .add(predOps(ARMCC::AL)) 396 .add(condCodeOp()); 397 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 398 .addReg(Reg, RegState::Kill) 399 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 400 .add(predOps(ARMCC::AL)) 401 .add(condCodeOp()); 402 } 403 } else { 404 // Since this is only reached for Thumb-2 targets, the BFC instruction 405 // should always be available. 406 assert(CanUseBFC); 407 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 408 .addReg(Reg, RegState::Kill) 409 .addImm(~AlignMask) 410 .add(predOps(ARMCC::AL)); 411 } 412 } 413 414 /// We need the offset of the frame pointer relative to other MachineFrameInfo 415 /// offsets which are encoded relative to SP at function begin. 416 /// See also emitPrologue() for how the FP is set up. 417 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 418 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 419 /// this to produce a conservative estimate that we check in an assert() later. 420 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) { 421 // For Thumb1, push.w isn't available, so the first push will always push 422 // r7 and lr onto the stack first. 423 if (AFI.isThumb1OnlyFunction()) 424 return -AFI.getArgRegsSaveSize() - (2 * 4); 425 // This is a conservative estimation: Assume the frame pointer being r7 and 426 // pc("r15") up to r8 getting spilled before (= 8 registers). 427 int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 428 return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4); 429 } 430 431 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 432 MachineBasicBlock &MBB) const { 433 MachineBasicBlock::iterator MBBI = MBB.begin(); 434 MachineFrameInfo &MFI = MF.getFrameInfo(); 435 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 436 MachineModuleInfo &MMI = MF.getMMI(); 437 MCContext &Context = MMI.getContext(); 438 const TargetMachine &TM = MF.getTarget(); 439 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 440 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 441 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 442 assert(!AFI->isThumb1OnlyFunction() && 443 "This emitPrologue does not support Thumb1!"); 444 bool isARM = !AFI->isThumbFunction(); 445 Align Alignment = STI.getFrameLowering()->getStackAlign(); 446 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 447 unsigned NumBytes = MFI.getStackSize(); 448 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 449 int FPCXTSaveSize = 0; 450 451 // Debug location must be unknown since the first debug location is used 452 // to determine the end of the prologue. 453 DebugLoc dl; 454 455 Register FramePtr = RegInfo->getFrameRegister(MF); 456 457 // Determine the sizes of each callee-save spill areas and record which frame 458 // belongs to which callee-save spill areas. 459 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 460 int FramePtrSpillFI = 0; 461 int D8SpillFI = 0; 462 463 // All calls are tail calls in GHC calling conv, and functions have no 464 // prologue/epilogue. 465 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 466 return; 467 468 StackAdjustingInsts DefCFAOffsetCandidates; 469 bool HasFP = hasFP(MF); 470 471 // Allocate the vararg register save area. 472 if (ArgRegsSaveSize) { 473 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 474 MachineInstr::FrameSetup); 475 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 476 } 477 478 if (!AFI->hasStackFrame() && 479 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 480 if (NumBytes - ArgRegsSaveSize != 0) { 481 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 482 MachineInstr::FrameSetup); 483 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 484 NumBytes - ArgRegsSaveSize, true); 485 } 486 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 487 return; 488 } 489 490 // Determine spill area sizes. 491 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 492 unsigned Reg = CSI[i].getReg(); 493 int FI = CSI[i].getFrameIdx(); 494 switch (Reg) { 495 case ARM::R8: 496 case ARM::R9: 497 case ARM::R10: 498 case ARM::R11: 499 case ARM::R12: 500 if (STI.splitFramePushPop(MF)) { 501 GPRCS2Size += 4; 502 break; 503 } 504 LLVM_FALLTHROUGH; 505 case ARM::R0: 506 case ARM::R1: 507 case ARM::R2: 508 case ARM::R3: 509 case ARM::R4: 510 case ARM::R5: 511 case ARM::R6: 512 case ARM::R7: 513 case ARM::LR: 514 if (Reg == FramePtr) 515 FramePtrSpillFI = FI; 516 GPRCS1Size += 4; 517 break; 518 case ARM::FPCXTNS: 519 FPCXTSaveSize = 4; 520 break; 521 default: 522 // This is a DPR. Exclude the aligned DPRCS2 spills. 523 if (Reg == ARM::D8) 524 D8SpillFI = FI; 525 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 526 DPRCSSize += 8; 527 } 528 } 529 530 // Move past FPCXT area. 531 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 532 if (FPCXTSaveSize > 0) { 533 LastPush = MBBI++; 534 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 535 } 536 537 // Move past area 1. 538 if (GPRCS1Size > 0) { 539 GPRCS1Push = LastPush = MBBI++; 540 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 541 } 542 543 // Determine starting offsets of spill areas. 544 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 545 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 546 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 547 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 548 unsigned DPRGapSize = 549 (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) % 550 DPRAlign.value(); 551 552 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 553 int FramePtrOffsetInPush = 0; 554 if (HasFP) { 555 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 556 assert(getMaxFPOffset(STI, *AFI) <= FPOffset && 557 "Max FP estimation is wrong"); 558 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 559 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 560 NumBytes); 561 } 562 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 563 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 564 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 565 566 // Move past area 2. 567 if (GPRCS2Size > 0) { 568 GPRCS2Push = LastPush = MBBI++; 569 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 570 } 571 572 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 573 // .cfi_offset operations will reflect that. 574 if (DPRGapSize) { 575 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 576 if (LastPush != MBB.end() && 577 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 578 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 579 else { 580 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 581 MachineInstr::FrameSetup); 582 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 583 } 584 } 585 586 // Move past area 3. 587 if (DPRCSSize > 0) { 588 // Since vpush register list cannot have gaps, there may be multiple vpush 589 // instructions in the prologue. 590 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 591 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 592 LastPush = MBBI++; 593 } 594 } 595 596 // Move past the aligned DPRCS2 area. 597 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 598 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 599 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 600 // leaves the stack pointer pointing to the DPRCS2 area. 601 // 602 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 603 NumBytes += MFI.getObjectOffset(D8SpillFI); 604 } else 605 NumBytes = DPRCSOffset; 606 607 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 608 uint32_t NumWords = NumBytes >> 2; 609 610 if (NumWords < 65536) 611 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 612 .addImm(NumWords) 613 .setMIFlags(MachineInstr::FrameSetup) 614 .add(predOps(ARMCC::AL)); 615 else 616 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 617 .addImm(NumWords) 618 .setMIFlags(MachineInstr::FrameSetup); 619 620 switch (TM.getCodeModel()) { 621 case CodeModel::Tiny: 622 llvm_unreachable("Tiny code model not available on ARM."); 623 case CodeModel::Small: 624 case CodeModel::Medium: 625 case CodeModel::Kernel: 626 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 627 .add(predOps(ARMCC::AL)) 628 .addExternalSymbol("__chkstk") 629 .addReg(ARM::R4, RegState::Implicit) 630 .setMIFlags(MachineInstr::FrameSetup); 631 break; 632 case CodeModel::Large: 633 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 634 .addExternalSymbol("__chkstk") 635 .setMIFlags(MachineInstr::FrameSetup); 636 637 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 638 .add(predOps(ARMCC::AL)) 639 .addReg(ARM::R12, RegState::Kill) 640 .addReg(ARM::R4, RegState::Implicit) 641 .setMIFlags(MachineInstr::FrameSetup); 642 break; 643 } 644 645 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 646 .addReg(ARM::SP, RegState::Kill) 647 .addReg(ARM::R4, RegState::Kill) 648 .setMIFlags(MachineInstr::FrameSetup) 649 .add(predOps(ARMCC::AL)) 650 .add(condCodeOp()); 651 NumBytes = 0; 652 } 653 654 if (NumBytes) { 655 // Adjust SP after all the callee-save spills. 656 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 657 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 658 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 659 else { 660 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 661 MachineInstr::FrameSetup); 662 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 663 } 664 665 if (HasFP && isARM) 666 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 667 // Note it's not safe to do this in Thumb2 mode because it would have 668 // taken two instructions: 669 // mov sp, r7 670 // sub sp, #24 671 // If an interrupt is taken between the two instructions, then sp is in 672 // an inconsistent state (pointing to the middle of callee-saved area). 673 // The interrupt handler can end up clobbering the registers. 674 AFI->setShouldRestoreSPFromFP(true); 675 } 676 677 // Set FP to point to the stack slot that contains the previous FP. 678 // For iOS, FP is R7, which has now been stored in spill area 1. 679 // Otherwise, if this is not iOS, all the callee-saved registers go 680 // into spill area 1, including the FP in R11. In either case, it 681 // is in area one and the adjustment needs to take place just after 682 // that push. 683 if (HasFP) { 684 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 685 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 686 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 687 dl, TII, FramePtr, ARM::SP, 688 PushSize + FramePtrOffsetInPush, 689 MachineInstr::FrameSetup); 690 if (FramePtrOffsetInPush + PushSize != 0) { 691 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 692 nullptr, MRI->getDwarfRegNum(FramePtr, true), 693 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 694 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 695 .addCFIIndex(CFIIndex) 696 .setMIFlags(MachineInstr::FrameSetup); 697 } else { 698 unsigned CFIIndex = 699 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 700 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 701 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 702 .addCFIIndex(CFIIndex) 703 .setMIFlags(MachineInstr::FrameSetup); 704 } 705 } 706 707 // Now that the prologue's actual instructions are finalised, we can insert 708 // the necessary DWARF cf instructions to describe the situation. Start by 709 // recording where each register ended up: 710 if (GPRCS1Size > 0) { 711 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 712 int CFIIndex; 713 for (const auto &Entry : CSI) { 714 unsigned Reg = Entry.getReg(); 715 int FI = Entry.getFrameIdx(); 716 switch (Reg) { 717 case ARM::R8: 718 case ARM::R9: 719 case ARM::R10: 720 case ARM::R11: 721 case ARM::R12: 722 if (STI.splitFramePushPop(MF)) 723 break; 724 LLVM_FALLTHROUGH; 725 case ARM::R0: 726 case ARM::R1: 727 case ARM::R2: 728 case ARM::R3: 729 case ARM::R4: 730 case ARM::R5: 731 case ARM::R6: 732 case ARM::R7: 733 case ARM::LR: 734 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 735 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 736 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 737 .addCFIIndex(CFIIndex) 738 .setMIFlags(MachineInstr::FrameSetup); 739 break; 740 } 741 } 742 } 743 744 if (GPRCS2Size > 0) { 745 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 746 for (const auto &Entry : CSI) { 747 unsigned Reg = Entry.getReg(); 748 int FI = Entry.getFrameIdx(); 749 switch (Reg) { 750 case ARM::R8: 751 case ARM::R9: 752 case ARM::R10: 753 case ARM::R11: 754 case ARM::R12: 755 if (STI.splitFramePushPop(MF)) { 756 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 757 unsigned Offset = MFI.getObjectOffset(FI); 758 unsigned CFIIndex = MF.addFrameInst( 759 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 760 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 761 .addCFIIndex(CFIIndex) 762 .setMIFlags(MachineInstr::FrameSetup); 763 } 764 break; 765 } 766 } 767 } 768 769 if (DPRCSSize > 0) { 770 // Since vpush register list cannot have gaps, there may be multiple vpush 771 // instructions in the prologue. 772 MachineBasicBlock::iterator Pos = std::next(LastPush); 773 for (const auto &Entry : CSI) { 774 unsigned Reg = Entry.getReg(); 775 int FI = Entry.getFrameIdx(); 776 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 777 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 778 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 779 unsigned Offset = MFI.getObjectOffset(FI); 780 unsigned CFIIndex = MF.addFrameInst( 781 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 782 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 783 .addCFIIndex(CFIIndex) 784 .setMIFlags(MachineInstr::FrameSetup); 785 } 786 } 787 } 788 789 // Now we can emit descriptions of where the canonical frame address was 790 // throughout the process. If we have a frame pointer, it takes over the job 791 // half-way through, so only the first few .cfi_def_cfa_offset instructions 792 // actually get emitted. 793 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 794 795 if (STI.isTargetELF() && hasFP(MF)) 796 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 797 AFI->getFramePtrSpillOffset()); 798 799 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 800 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 801 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 802 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 803 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 804 805 // If we need dynamic stack realignment, do it here. Be paranoid and make 806 // sure if we also have VLAs, we have a base pointer for frame access. 807 // If aligned NEON registers were spilled, the stack has already been 808 // realigned. 809 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 810 Align MaxAlign = MFI.getMaxAlign(); 811 assert(!AFI->isThumb1OnlyFunction()); 812 if (!AFI->isThumbFunction()) { 813 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 814 false); 815 } else { 816 // We cannot use sp as source/dest register here, thus we're using r4 to 817 // perform the calculations. We're emitting the following sequence: 818 // mov r4, sp 819 // -- use emitAligningInstructions to produce best sequence to zero 820 // -- out lower bits in r4 821 // mov sp, r4 822 // FIXME: It will be better just to find spare register here. 823 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 824 .addReg(ARM::SP, RegState::Kill) 825 .add(predOps(ARMCC::AL)); 826 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 827 false); 828 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 829 .addReg(ARM::R4, RegState::Kill) 830 .add(predOps(ARMCC::AL)); 831 } 832 833 AFI->setShouldRestoreSPFromFP(true); 834 } 835 836 // If we need a base pointer, set it up here. It's whatever the value 837 // of the stack pointer is at this point. Any variable size objects 838 // will be allocated after this, so we can still use the base pointer 839 // to reference locals. 840 // FIXME: Clarify FrameSetup flags here. 841 if (RegInfo->hasBasePointer(MF)) { 842 if (isARM) 843 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 844 .addReg(ARM::SP) 845 .add(predOps(ARMCC::AL)) 846 .add(condCodeOp()); 847 else 848 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 849 .addReg(ARM::SP) 850 .add(predOps(ARMCC::AL)); 851 } 852 853 // If the frame has variable sized objects then the epilogue must restore 854 // the sp from fp. We can assume there's an FP here since hasFP already 855 // checks for hasVarSizedObjects. 856 if (MFI.hasVarSizedObjects()) 857 AFI->setShouldRestoreSPFromFP(true); 858 } 859 860 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 861 MachineBasicBlock &MBB) const { 862 MachineFrameInfo &MFI = MF.getFrameInfo(); 863 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 864 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 865 const ARMBaseInstrInfo &TII = 866 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 867 assert(!AFI->isThumb1OnlyFunction() && 868 "This emitEpilogue does not support Thumb1!"); 869 bool isARM = !AFI->isThumbFunction(); 870 871 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 872 int NumBytes = (int)MFI.getStackSize(); 873 Register FramePtr = RegInfo->getFrameRegister(MF); 874 875 // All calls are tail calls in GHC calling conv, and functions have no 876 // prologue/epilogue. 877 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 878 return; 879 880 // First put ourselves on the first (from top) terminator instructions. 881 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 882 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 883 884 if (!AFI->hasStackFrame()) { 885 if (NumBytes - ArgRegsSaveSize != 0) 886 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize, 887 MachineInstr::FrameDestroy); 888 } else { 889 // Unwind MBBI to point to first LDR / VLDRD. 890 if (MBBI != MBB.begin()) { 891 do { 892 --MBBI; 893 } while (MBBI != MBB.begin() && 894 MBBI->getFlag(MachineInstr::FrameDestroy)); 895 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 896 ++MBBI; 897 } 898 899 // Move SP to start of FP callee save spill area. 900 NumBytes -= (ArgRegsSaveSize + 901 AFI->getFPCXTSaveAreaSize() + 902 AFI->getGPRCalleeSavedArea1Size() + 903 AFI->getGPRCalleeSavedArea2Size() + 904 AFI->getDPRCalleeSavedGapSize() + 905 AFI->getDPRCalleeSavedAreaSize()); 906 907 // Reset SP based on frame pointer only if the stack frame extends beyond 908 // frame pointer stack slot or target is ELF and the function has FP. 909 if (AFI->shouldRestoreSPFromFP()) { 910 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 911 if (NumBytes) { 912 if (isARM) 913 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 914 ARMCC::AL, 0, TII, 915 MachineInstr::FrameDestroy); 916 else { 917 // It's not possible to restore SP from FP in a single instruction. 918 // For iOS, this looks like: 919 // mov sp, r7 920 // sub sp, #24 921 // This is bad, if an interrupt is taken after the mov, sp is in an 922 // inconsistent state. 923 // Use the first callee-saved register as a scratch register. 924 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 925 "No scratch register to restore SP from FP!"); 926 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 927 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 928 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 929 .addReg(ARM::R4) 930 .add(predOps(ARMCC::AL)) 931 .setMIFlag(MachineInstr::FrameDestroy); 932 } 933 } else { 934 // Thumb2 or ARM. 935 if (isARM) 936 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 937 .addReg(FramePtr) 938 .add(predOps(ARMCC::AL)) 939 .add(condCodeOp()) 940 .setMIFlag(MachineInstr::FrameDestroy); 941 else 942 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 943 .addReg(FramePtr) 944 .add(predOps(ARMCC::AL)) 945 .setMIFlag(MachineInstr::FrameDestroy); 946 } 947 } else if (NumBytes && 948 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 949 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 950 MachineInstr::FrameDestroy); 951 952 // Increment past our save areas. 953 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 954 MBBI++; 955 // Since vpop register list cannot have gaps, there may be multiple vpop 956 // instructions in the epilogue. 957 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 958 MBBI++; 959 } 960 if (AFI->getDPRCalleeSavedGapSize()) { 961 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 962 "unexpected DPR alignment gap"); 963 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 964 MachineInstr::FrameDestroy); 965 } 966 967 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 968 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 969 if (AFI->getFPCXTSaveAreaSize()) MBBI++; 970 } 971 972 if (ArgRegsSaveSize) 973 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize, 974 MachineInstr::FrameDestroy); 975 } 976 977 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 978 /// debug info. It's the same as what we use for resolving the code-gen 979 /// references for now. FIXME: This can go wrong when references are 980 /// SP-relative and simple call frames aren't used. 981 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 982 int FI, 983 Register &FrameReg) const { 984 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 985 } 986 987 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 988 int FI, Register &FrameReg, 989 int SPAdj) const { 990 const MachineFrameInfo &MFI = MF.getFrameInfo(); 991 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 992 MF.getSubtarget().getRegisterInfo()); 993 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 994 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 995 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 996 bool isFixed = MFI.isFixedObjectIndex(FI); 997 998 FrameReg = ARM::SP; 999 Offset += SPAdj; 1000 1001 // SP can move around if there are allocas. We may also lose track of SP 1002 // when emergency spilling inside a non-reserved call frame setup. 1003 bool hasMovingSP = !hasReservedCallFrame(MF); 1004 1005 // When dynamically realigning the stack, use the frame pointer for 1006 // parameters, and the stack/base pointer for locals. 1007 if (RegInfo->hasStackRealignment(MF)) { 1008 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1009 if (isFixed) { 1010 FrameReg = RegInfo->getFrameRegister(MF); 1011 Offset = FPOffset; 1012 } else if (hasMovingSP) { 1013 assert(RegInfo->hasBasePointer(MF) && 1014 "VLAs and dynamic stack alignment, but missing base pointer!"); 1015 FrameReg = RegInfo->getBaseRegister(); 1016 Offset -= SPAdj; 1017 } 1018 return Offset; 1019 } 1020 1021 // If there is a frame pointer, use it when we can. 1022 if (hasFP(MF) && AFI->hasStackFrame()) { 1023 // Use frame pointer to reference fixed objects. Use it for locals if 1024 // there are VLAs (and thus the SP isn't reliable as a base). 1025 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1026 FrameReg = RegInfo->getFrameRegister(MF); 1027 return FPOffset; 1028 } else if (hasMovingSP) { 1029 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1030 if (AFI->isThumb2Function()) { 1031 // Try to use the frame pointer if we can, else use the base pointer 1032 // since it's available. This is handy for the emergency spill slot, in 1033 // particular. 1034 if (FPOffset >= -255 && FPOffset < 0) { 1035 FrameReg = RegInfo->getFrameRegister(MF); 1036 return FPOffset; 1037 } 1038 } 1039 } else if (AFI->isThumbFunction()) { 1040 // Prefer SP to base pointer, if the offset is suitably aligned and in 1041 // range as the effective range of the immediate offset is bigger when 1042 // basing off SP. 1043 // Use add <rd>, sp, #<imm8> 1044 // ldr <rd>, [sp, #<imm8>] 1045 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1046 return Offset; 1047 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1048 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1049 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1050 FrameReg = RegInfo->getFrameRegister(MF); 1051 return FPOffset; 1052 } 1053 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1054 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1055 FrameReg = RegInfo->getFrameRegister(MF); 1056 return FPOffset; 1057 } 1058 } 1059 // Use the base pointer if we have one. 1060 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1061 // That can happen if we forced a base pointer for a large call frame. 1062 if (RegInfo->hasBasePointer(MF)) { 1063 FrameReg = RegInfo->getBaseRegister(); 1064 Offset -= SPAdj; 1065 } 1066 return Offset; 1067 } 1068 1069 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1070 MachineBasicBlock::iterator MI, 1071 ArrayRef<CalleeSavedInfo> CSI, 1072 unsigned StmOpc, unsigned StrOpc, 1073 bool NoGap, bool (*Func)(unsigned, bool), 1074 unsigned NumAlignedDPRCS2Regs, 1075 unsigned MIFlags) const { 1076 MachineFunction &MF = *MBB.getParent(); 1077 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1078 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1079 1080 DebugLoc DL; 1081 1082 using RegAndKill = std::pair<unsigned, bool>; 1083 1084 SmallVector<RegAndKill, 4> Regs; 1085 unsigned i = CSI.size(); 1086 while (i != 0) { 1087 unsigned LastReg = 0; 1088 for (; i != 0; --i) { 1089 unsigned Reg = CSI[i-1].getReg(); 1090 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1091 1092 // D-registers in the aligned area DPRCS2 are NOT spilled here. 1093 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1094 continue; 1095 1096 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1097 bool isLiveIn = MRI.isLiveIn(Reg); 1098 if (!isLiveIn && !MRI.isReserved(Reg)) 1099 MBB.addLiveIn(Reg); 1100 // If NoGap is true, push consecutive registers and then leave the rest 1101 // for other instructions. e.g. 1102 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1103 if (NoGap && LastReg && LastReg != Reg-1) 1104 break; 1105 LastReg = Reg; 1106 // Do not set a kill flag on values that are also marked as live-in. This 1107 // happens with the @llvm-returnaddress intrinsic and with arguments 1108 // passed in callee saved registers. 1109 // Omitting the kill flags is conservatively correct even if the live-in 1110 // is not used after all. 1111 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1112 } 1113 1114 if (Regs.empty()) 1115 continue; 1116 1117 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1118 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1119 }); 1120 1121 if (Regs.size() > 1 || StrOpc== 0) { 1122 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1123 .addReg(ARM::SP) 1124 .setMIFlags(MIFlags) 1125 .add(predOps(ARMCC::AL)); 1126 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1127 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1128 } else if (Regs.size() == 1) { 1129 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1130 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1131 .addReg(ARM::SP) 1132 .setMIFlags(MIFlags) 1133 .addImm(-4) 1134 .add(predOps(ARMCC::AL)); 1135 } 1136 Regs.clear(); 1137 1138 // Put any subsequent vpush instructions before this one: they will refer to 1139 // higher register numbers so need to be pushed first in order to preserve 1140 // monotonicity. 1141 if (MI != MBB.begin()) 1142 --MI; 1143 } 1144 } 1145 1146 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1147 MachineBasicBlock::iterator MI, 1148 MutableArrayRef<CalleeSavedInfo> CSI, 1149 unsigned LdmOpc, unsigned LdrOpc, 1150 bool isVarArg, bool NoGap, 1151 bool (*Func)(unsigned, bool), 1152 unsigned NumAlignedDPRCS2Regs) const { 1153 MachineFunction &MF = *MBB.getParent(); 1154 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1155 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1156 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1157 DebugLoc DL; 1158 bool isTailCall = false; 1159 bool isInterrupt = false; 1160 bool isTrap = false; 1161 bool isCmseEntry = false; 1162 if (MBB.end() != MI) { 1163 DL = MI->getDebugLoc(); 1164 unsigned RetOpcode = MI->getOpcode(); 1165 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1166 isInterrupt = 1167 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1168 isTrap = 1169 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1170 RetOpcode == ARM::tTRAP; 1171 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1172 } 1173 1174 SmallVector<unsigned, 4> Regs; 1175 unsigned i = CSI.size(); 1176 while (i != 0) { 1177 unsigned LastReg = 0; 1178 bool DeleteRet = false; 1179 for (; i != 0; --i) { 1180 CalleeSavedInfo &Info = CSI[i-1]; 1181 unsigned Reg = Info.getReg(); 1182 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1183 1184 // The aligned reloads from area DPRCS2 are not inserted here. 1185 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1186 continue; 1187 1188 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1189 !isCmseEntry && !isTrap && STI.hasV5TOps()) { 1190 if (MBB.succ_empty()) { 1191 Reg = ARM::PC; 1192 // Fold the return instruction into the LDM. 1193 DeleteRet = true; 1194 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1195 // We 'restore' LR into PC so it is not live out of the return block: 1196 // Clear Restored bit. 1197 Info.setRestored(false); 1198 } else 1199 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1200 } 1201 1202 // If NoGap is true, pop consecutive registers and then leave the rest 1203 // for other instructions. e.g. 1204 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1205 if (NoGap && LastReg && LastReg != Reg-1) 1206 break; 1207 1208 LastReg = Reg; 1209 Regs.push_back(Reg); 1210 } 1211 1212 if (Regs.empty()) 1213 continue; 1214 1215 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1216 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1217 }); 1218 1219 if (Regs.size() > 1 || LdrOpc == 0) { 1220 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1221 .addReg(ARM::SP) 1222 .add(predOps(ARMCC::AL)) 1223 .setMIFlags(MachineInstr::FrameDestroy); 1224 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1225 MIB.addReg(Regs[i], getDefRegState(true)); 1226 if (DeleteRet) { 1227 if (MI != MBB.end()) { 1228 MIB.copyImplicitOps(*MI); 1229 MI->eraseFromParent(); 1230 } 1231 } 1232 MI = MIB; 1233 } else if (Regs.size() == 1) { 1234 // If we adjusted the reg to PC from LR above, switch it back here. We 1235 // only do that for LDM. 1236 if (Regs[0] == ARM::PC) 1237 Regs[0] = ARM::LR; 1238 MachineInstrBuilder MIB = 1239 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1240 .addReg(ARM::SP, RegState::Define) 1241 .addReg(ARM::SP) 1242 .setMIFlags(MachineInstr::FrameDestroy); 1243 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1244 // that refactoring is complete (eventually). 1245 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1246 MIB.addReg(0); 1247 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1248 } else 1249 MIB.addImm(4); 1250 MIB.add(predOps(ARMCC::AL)); 1251 } 1252 Regs.clear(); 1253 1254 // Put any subsequent vpop instructions after this one: they will refer to 1255 // higher register numbers so need to be popped afterwards. 1256 if (MI != MBB.end()) 1257 ++MI; 1258 } 1259 } 1260 1261 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1262 /// starting from d8. Also insert stack realignment code and leave the stack 1263 /// pointer pointing to the d8 spill slot. 1264 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1265 MachineBasicBlock::iterator MI, 1266 unsigned NumAlignedDPRCS2Regs, 1267 ArrayRef<CalleeSavedInfo> CSI, 1268 const TargetRegisterInfo *TRI) { 1269 MachineFunction &MF = *MBB.getParent(); 1270 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1271 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1272 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1273 MachineFrameInfo &MFI = MF.getFrameInfo(); 1274 1275 // Mark the D-register spill slots as properly aligned. Since MFI computes 1276 // stack slot layout backwards, this can actually mean that the d-reg stack 1277 // slot offsets can be wrong. The offset for d8 will always be correct. 1278 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1279 unsigned DNum = CSI[i].getReg() - ARM::D8; 1280 if (DNum > NumAlignedDPRCS2Regs - 1) 1281 continue; 1282 int FI = CSI[i].getFrameIdx(); 1283 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1284 // registers will be 8-byte aligned. 1285 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1286 1287 // The stack slot for D8 needs to be maximally aligned because this is 1288 // actually the point where we align the stack pointer. MachineFrameInfo 1289 // computes all offsets relative to the incoming stack pointer which is a 1290 // bit weird when realigning the stack. Any extra padding for this 1291 // over-alignment is not realized because the code inserted below adjusts 1292 // the stack pointer by numregs * 8 before aligning the stack pointer. 1293 if (DNum == 0) 1294 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1295 } 1296 1297 // Move the stack pointer to the d8 spill slot, and align it at the same 1298 // time. Leave the stack slot address in the scratch register r4. 1299 // 1300 // sub r4, sp, #numregs * 8 1301 // bic r4, r4, #align - 1 1302 // mov sp, r4 1303 // 1304 bool isThumb = AFI->isThumbFunction(); 1305 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1306 AFI->setShouldRestoreSPFromFP(true); 1307 1308 // sub r4, sp, #numregs * 8 1309 // The immediate is <= 64, so it doesn't need any special encoding. 1310 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1311 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1312 .addReg(ARM::SP) 1313 .addImm(8 * NumAlignedDPRCS2Regs) 1314 .add(predOps(ARMCC::AL)) 1315 .add(condCodeOp()); 1316 1317 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1318 // We must set parameter MustBeSingleInstruction to true, since 1319 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1320 // stack alignment. Luckily, this can always be done since all ARM 1321 // architecture versions that support Neon also support the BFC 1322 // instruction. 1323 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1324 1325 // mov sp, r4 1326 // The stack pointer must be adjusted before spilling anything, otherwise 1327 // the stack slots could be clobbered by an interrupt handler. 1328 // Leave r4 live, it is used below. 1329 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1330 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1331 .addReg(ARM::R4) 1332 .add(predOps(ARMCC::AL)); 1333 if (!isThumb) 1334 MIB.add(condCodeOp()); 1335 1336 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1337 // r4 holds the stack slot address. 1338 unsigned NextReg = ARM::D8; 1339 1340 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1341 // The writeback is only needed when emitting two vst1.64 instructions. 1342 if (NumAlignedDPRCS2Regs >= 6) { 1343 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1344 &ARM::QQPRRegClass); 1345 MBB.addLiveIn(SupReg); 1346 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1347 .addReg(ARM::R4, RegState::Kill) 1348 .addImm(16) 1349 .addReg(NextReg) 1350 .addReg(SupReg, RegState::ImplicitKill) 1351 .add(predOps(ARMCC::AL)); 1352 NextReg += 4; 1353 NumAlignedDPRCS2Regs -= 4; 1354 } 1355 1356 // We won't modify r4 beyond this point. It currently points to the next 1357 // register to be spilled. 1358 unsigned R4BaseReg = NextReg; 1359 1360 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1361 if (NumAlignedDPRCS2Regs >= 4) { 1362 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1363 &ARM::QQPRRegClass); 1364 MBB.addLiveIn(SupReg); 1365 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1366 .addReg(ARM::R4) 1367 .addImm(16) 1368 .addReg(NextReg) 1369 .addReg(SupReg, RegState::ImplicitKill) 1370 .add(predOps(ARMCC::AL)); 1371 NextReg += 4; 1372 NumAlignedDPRCS2Regs -= 4; 1373 } 1374 1375 // 16-byte aligned vst1.64 with 2 d-regs. 1376 if (NumAlignedDPRCS2Regs >= 2) { 1377 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1378 &ARM::QPRRegClass); 1379 MBB.addLiveIn(SupReg); 1380 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1381 .addReg(ARM::R4) 1382 .addImm(16) 1383 .addReg(SupReg) 1384 .add(predOps(ARMCC::AL)); 1385 NextReg += 2; 1386 NumAlignedDPRCS2Regs -= 2; 1387 } 1388 1389 // Finally, use a vanilla vstr.64 for the odd last register. 1390 if (NumAlignedDPRCS2Regs) { 1391 MBB.addLiveIn(NextReg); 1392 // vstr.64 uses addrmode5 which has an offset scale of 4. 1393 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1394 .addReg(NextReg) 1395 .addReg(ARM::R4) 1396 .addImm((NextReg - R4BaseReg) * 2) 1397 .add(predOps(ARMCC::AL)); 1398 } 1399 1400 // The last spill instruction inserted should kill the scratch register r4. 1401 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1402 } 1403 1404 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1405 /// iterator to the following instruction. 1406 static MachineBasicBlock::iterator 1407 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1408 unsigned NumAlignedDPRCS2Regs) { 1409 // sub r4, sp, #numregs * 8 1410 // bic r4, r4, #align - 1 1411 // mov sp, r4 1412 ++MI; ++MI; ++MI; 1413 assert(MI->mayStore() && "Expecting spill instruction"); 1414 1415 // These switches all fall through. 1416 switch(NumAlignedDPRCS2Regs) { 1417 case 7: 1418 ++MI; 1419 assert(MI->mayStore() && "Expecting spill instruction"); 1420 LLVM_FALLTHROUGH; 1421 default: 1422 ++MI; 1423 assert(MI->mayStore() && "Expecting spill instruction"); 1424 LLVM_FALLTHROUGH; 1425 case 1: 1426 case 2: 1427 case 4: 1428 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1429 ++MI; 1430 } 1431 return MI; 1432 } 1433 1434 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1435 /// starting from d8. These instructions are assumed to execute while the 1436 /// stack is still aligned, unlike the code inserted by emitPopInst. 1437 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1438 MachineBasicBlock::iterator MI, 1439 unsigned NumAlignedDPRCS2Regs, 1440 ArrayRef<CalleeSavedInfo> CSI, 1441 const TargetRegisterInfo *TRI) { 1442 MachineFunction &MF = *MBB.getParent(); 1443 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1444 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1445 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1446 1447 // Find the frame index assigned to d8. 1448 int D8SpillFI = 0; 1449 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1450 if (CSI[i].getReg() == ARM::D8) { 1451 D8SpillFI = CSI[i].getFrameIdx(); 1452 break; 1453 } 1454 1455 // Materialize the address of the d8 spill slot into the scratch register r4. 1456 // This can be fairly complicated if the stack frame is large, so just use 1457 // the normal frame index elimination mechanism to do it. This code runs as 1458 // the initial part of the epilog where the stack and base pointers haven't 1459 // been changed yet. 1460 bool isThumb = AFI->isThumbFunction(); 1461 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1462 1463 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1464 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1465 .addFrameIndex(D8SpillFI) 1466 .addImm(0) 1467 .add(predOps(ARMCC::AL)) 1468 .add(condCodeOp()); 1469 1470 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1471 unsigned NextReg = ARM::D8; 1472 1473 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1474 if (NumAlignedDPRCS2Regs >= 6) { 1475 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1476 &ARM::QQPRRegClass); 1477 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1478 .addReg(ARM::R4, RegState::Define) 1479 .addReg(ARM::R4, RegState::Kill) 1480 .addImm(16) 1481 .addReg(SupReg, RegState::ImplicitDefine) 1482 .add(predOps(ARMCC::AL)); 1483 NextReg += 4; 1484 NumAlignedDPRCS2Regs -= 4; 1485 } 1486 1487 // We won't modify r4 beyond this point. It currently points to the next 1488 // register to be spilled. 1489 unsigned R4BaseReg = NextReg; 1490 1491 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1492 if (NumAlignedDPRCS2Regs >= 4) { 1493 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1494 &ARM::QQPRRegClass); 1495 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1496 .addReg(ARM::R4) 1497 .addImm(16) 1498 .addReg(SupReg, RegState::ImplicitDefine) 1499 .add(predOps(ARMCC::AL)); 1500 NextReg += 4; 1501 NumAlignedDPRCS2Regs -= 4; 1502 } 1503 1504 // 16-byte aligned vld1.64 with 2 d-regs. 1505 if (NumAlignedDPRCS2Regs >= 2) { 1506 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1507 &ARM::QPRRegClass); 1508 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1509 .addReg(ARM::R4) 1510 .addImm(16) 1511 .add(predOps(ARMCC::AL)); 1512 NextReg += 2; 1513 NumAlignedDPRCS2Regs -= 2; 1514 } 1515 1516 // Finally, use a vanilla vldr.64 for the remaining odd register. 1517 if (NumAlignedDPRCS2Regs) 1518 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1519 .addReg(ARM::R4) 1520 .addImm(2 * (NextReg - R4BaseReg)) 1521 .add(predOps(ARMCC::AL)); 1522 1523 // Last store kills r4. 1524 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1525 } 1526 1527 bool ARMFrameLowering::spillCalleeSavedRegisters( 1528 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1529 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1530 if (CSI.empty()) 1531 return false; 1532 1533 MachineFunction &MF = *MBB.getParent(); 1534 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1535 1536 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1537 unsigned PushOneOpc = AFI->isThumbFunction() ? 1538 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1539 unsigned FltOpc = ARM::VSTMDDB_UPD; 1540 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1541 // Save the non-secure floating point context. 1542 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 1543 return C.getReg() == ARM::FPCXTNS; 1544 })) { 1545 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 1546 ARM::SP) 1547 .addReg(ARM::SP) 1548 .addImm(-4) 1549 .add(predOps(ARMCC::AL)); 1550 } 1551 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1552 MachineInstr::FrameSetup); 1553 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1554 MachineInstr::FrameSetup); 1555 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1556 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1557 1558 // The code above does not insert spill code for the aligned DPRCS2 registers. 1559 // The stack realignment code will be inserted between the push instructions 1560 // and these spills. 1561 if (NumAlignedDPRCS2Regs) 1562 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1563 1564 return true; 1565 } 1566 1567 bool ARMFrameLowering::restoreCalleeSavedRegisters( 1568 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1569 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1570 if (CSI.empty()) 1571 return false; 1572 1573 MachineFunction &MF = *MBB.getParent(); 1574 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1575 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1576 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1577 1578 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1579 // registers. Do that here instead. 1580 if (NumAlignedDPRCS2Regs) 1581 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1582 1583 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1584 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1585 unsigned FltOpc = ARM::VLDMDIA_UPD; 1586 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1587 NumAlignedDPRCS2Regs); 1588 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1589 &isARMArea2Register, 0); 1590 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1591 &isARMArea1Register, 0); 1592 1593 return true; 1594 } 1595 1596 // FIXME: Make generic? 1597 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 1598 const ARMBaseInstrInfo &TII) { 1599 unsigned FnSize = 0; 1600 for (auto &MBB : MF) { 1601 for (auto &MI : MBB) 1602 FnSize += TII.getInstSizeInBytes(MI); 1603 } 1604 if (MF.getJumpTableInfo()) 1605 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 1606 FnSize += Table.MBBs.size() * 4; 1607 FnSize += MF.getConstantPool()->getConstants().size() * 4; 1608 return FnSize; 1609 } 1610 1611 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1612 /// frames and return the stack size limit beyond which some of these 1613 /// instructions will require a scratch register during their expansion later. 1614 // FIXME: Move to TII? 1615 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1616 const TargetFrameLowering *TFI, 1617 bool &HasNonSPFrameIndex) { 1618 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1619 const ARMBaseInstrInfo &TII = 1620 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1621 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1622 unsigned Limit = (1 << 12) - 1; 1623 for (auto &MBB : MF) { 1624 for (auto &MI : MBB) { 1625 if (MI.isDebugInstr()) 1626 continue; 1627 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1628 if (!MI.getOperand(i).isFI()) 1629 continue; 1630 1631 // When using ADDri to get the address of a stack object, 255 is the 1632 // largest offset guaranteed to fit in the immediate offset. 1633 if (MI.getOpcode() == ARM::ADDri) { 1634 Limit = std::min(Limit, (1U << 8) - 1); 1635 break; 1636 } 1637 // t2ADDri will not require an extra register, it can reuse the 1638 // destination. 1639 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 1640 break; 1641 1642 const MCInstrDesc &MCID = MI.getDesc(); 1643 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 1644 if (RegClass && !RegClass->contains(ARM::SP)) 1645 HasNonSPFrameIndex = true; 1646 1647 // Otherwise check the addressing mode. 1648 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1649 case ARMII::AddrMode_i12: 1650 case ARMII::AddrMode2: 1651 // Default 12 bit limit. 1652 break; 1653 case ARMII::AddrMode3: 1654 case ARMII::AddrModeT2_i8: 1655 Limit = std::min(Limit, (1U << 8) - 1); 1656 break; 1657 case ARMII::AddrMode5FP16: 1658 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 1659 break; 1660 case ARMII::AddrMode5: 1661 case ARMII::AddrModeT2_i8s4: 1662 case ARMII::AddrModeT2_ldrex: 1663 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1664 break; 1665 case ARMII::AddrModeT2_i12: 1666 // i12 supports only positive offset so these will be converted to 1667 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1668 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1669 Limit = std::min(Limit, (1U << 8) - 1); 1670 break; 1671 case ARMII::AddrMode4: 1672 case ARMII::AddrMode6: 1673 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1674 // immediate offset for stack references. 1675 return 0; 1676 case ARMII::AddrModeT2_i7: 1677 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 1678 break; 1679 case ARMII::AddrModeT2_i7s2: 1680 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 1681 break; 1682 case ARMII::AddrModeT2_i7s4: 1683 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 1684 break; 1685 default: 1686 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 1687 } 1688 break; // At most one FI per instruction 1689 } 1690 } 1691 } 1692 1693 return Limit; 1694 } 1695 1696 // In functions that realign the stack, it can be an advantage to spill the 1697 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1698 // instructions take alignment hints that can improve performance. 1699 static void 1700 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1701 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1702 if (!SpillAlignedNEONRegs) 1703 return; 1704 1705 // Naked functions don't spill callee-saved registers. 1706 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1707 return; 1708 1709 // We are planning to use NEON instructions vst1 / vld1. 1710 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1711 return; 1712 1713 // Don't bother if the default stack alignment is sufficiently high. 1714 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 1715 return; 1716 1717 // Aligned spills require stack realignment. 1718 if (!static_cast<const ARMBaseRegisterInfo *>( 1719 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1720 return; 1721 1722 // We always spill contiguous d-registers starting from d8. Count how many 1723 // needs spilling. The register allocator will almost always use the 1724 // callee-saved registers in order, but it can happen that there are holes in 1725 // the range. Registers above the hole will be spilled to the standard DPRCS 1726 // area. 1727 unsigned NumSpills = 0; 1728 for (; NumSpills < 8; ++NumSpills) 1729 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1730 break; 1731 1732 // Don't do this for just one d-register. It's not worth it. 1733 if (NumSpills < 2) 1734 return; 1735 1736 // Spill the first NumSpills D-registers after realigning the stack. 1737 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1738 1739 // A scratch register is required for the vst1 / vld1 instructions. 1740 SavedRegs.set(ARM::R4); 1741 } 1742 1743 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 1744 // For CMSE entry functions, we want to save the FPCXT_NS immediately 1745 // upon function entry (resp. restore it immmediately before return) 1746 if (STI.hasV8_1MMainlineOps() && 1747 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 1748 return false; 1749 1750 return true; 1751 } 1752 1753 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1754 BitVector &SavedRegs, 1755 RegScavenger *RS) const { 1756 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1757 // This tells PEI to spill the FP as if it is any other callee-save register 1758 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1759 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1760 // to combine multiple loads / stores. 1761 bool CanEliminateFrame = true; 1762 bool CS1Spilled = false; 1763 bool LRSpilled = false; 1764 unsigned NumGPRSpills = 0; 1765 unsigned NumFPRSpills = 0; 1766 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1767 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1768 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1769 MF.getSubtarget().getRegisterInfo()); 1770 const ARMBaseInstrInfo &TII = 1771 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1772 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1773 MachineFrameInfo &MFI = MF.getFrameInfo(); 1774 MachineRegisterInfo &MRI = MF.getRegInfo(); 1775 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1776 (void)TRI; // Silence unused warning in non-assert builds. 1777 Register FramePtr = RegInfo->getFrameRegister(MF); 1778 1779 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1780 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1781 // since it's not always possible to restore sp from fp in a single 1782 // instruction. 1783 // FIXME: It will be better just to find spare register here. 1784 if (AFI->isThumb2Function() && 1785 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 1786 SavedRegs.set(ARM::R4); 1787 1788 // If a stack probe will be emitted, spill R4 and LR, since they are 1789 // clobbered by the stack probe call. 1790 // This estimate should be a safe, conservative estimate. The actual 1791 // stack probe is enabled based on the size of the local objects; 1792 // this estimate also includes the varargs store size. 1793 if (STI.isTargetWindows() && 1794 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 1795 SavedRegs.set(ARM::R4); 1796 SavedRegs.set(ARM::LR); 1797 } 1798 1799 if (AFI->isThumb1OnlyFunction()) { 1800 // Spill LR if Thumb1 function uses variable length argument lists. 1801 if (AFI->getArgRegsSaveSize() > 0) 1802 SavedRegs.set(ARM::LR); 1803 1804 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1805 // requires stack alignment. We don't know for sure what the stack size 1806 // will be, but for this, an estimate is good enough. If there anything 1807 // changes it, it'll be a spill, which implies we've used all the registers 1808 // and so R4 is already used, so not marking it here will be OK. 1809 // FIXME: It will be better just to find spare register here. 1810 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 1811 MFI.estimateStackSize(MF) > 508) 1812 SavedRegs.set(ARM::R4); 1813 } 1814 1815 // See if we can spill vector registers to aligned stack. 1816 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1817 1818 // Spill the BasePtr if it's used. 1819 if (RegInfo->hasBasePointer(MF)) 1820 SavedRegs.set(RegInfo->getBaseRegister()); 1821 1822 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 1823 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 1824 CanEliminateFrame = false; 1825 1826 // Don't spill FP if the frame can be eliminated. This is determined 1827 // by scanning the callee-save registers to see if any is modified. 1828 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1829 for (unsigned i = 0; CSRegs[i]; ++i) { 1830 unsigned Reg = CSRegs[i]; 1831 bool Spilled = false; 1832 if (SavedRegs.test(Reg)) { 1833 Spilled = true; 1834 CanEliminateFrame = false; 1835 } 1836 1837 if (!ARM::GPRRegClass.contains(Reg)) { 1838 if (Spilled) { 1839 if (ARM::SPRRegClass.contains(Reg)) 1840 NumFPRSpills++; 1841 else if (ARM::DPRRegClass.contains(Reg)) 1842 NumFPRSpills += 2; 1843 else if (ARM::QPRRegClass.contains(Reg)) 1844 NumFPRSpills += 4; 1845 } 1846 continue; 1847 } 1848 1849 if (Spilled) { 1850 NumGPRSpills++; 1851 1852 if (!STI.splitFramePushPop(MF)) { 1853 if (Reg == ARM::LR) 1854 LRSpilled = true; 1855 CS1Spilled = true; 1856 continue; 1857 } 1858 1859 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1860 switch (Reg) { 1861 case ARM::LR: 1862 LRSpilled = true; 1863 LLVM_FALLTHROUGH; 1864 case ARM::R0: case ARM::R1: 1865 case ARM::R2: case ARM::R3: 1866 case ARM::R4: case ARM::R5: 1867 case ARM::R6: case ARM::R7: 1868 CS1Spilled = true; 1869 break; 1870 default: 1871 break; 1872 } 1873 } else { 1874 if (!STI.splitFramePushPop(MF)) { 1875 UnspilledCS1GPRs.push_back(Reg); 1876 continue; 1877 } 1878 1879 switch (Reg) { 1880 case ARM::R0: case ARM::R1: 1881 case ARM::R2: case ARM::R3: 1882 case ARM::R4: case ARM::R5: 1883 case ARM::R6: case ARM::R7: 1884 case ARM::LR: 1885 UnspilledCS1GPRs.push_back(Reg); 1886 break; 1887 default: 1888 UnspilledCS2GPRs.push_back(Reg); 1889 break; 1890 } 1891 } 1892 } 1893 1894 bool ForceLRSpill = false; 1895 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1896 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 1897 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1898 // use of BL to implement far jump. 1899 if (FnSize >= (1 << 11)) { 1900 CanEliminateFrame = false; 1901 ForceLRSpill = true; 1902 } 1903 } 1904 1905 // If any of the stack slot references may be out of range of an immediate 1906 // offset, make sure a register (or a spill slot) is available for the 1907 // register scavenger. Note that if we're indexing off the frame pointer, the 1908 // effective stack size is 4 bytes larger since the FP points to the stack 1909 // slot of the previous FP. Also, if we have variable sized objects in the 1910 // function, stack slot references will often be negative, and some of 1911 // our instructions are positive-offset only, so conservatively consider 1912 // that case to want a spill slot (or register) as well. Similarly, if 1913 // the function adjusts the stack pointer during execution and the 1914 // adjustments aren't already part of our stack size estimate, our offset 1915 // calculations may be off, so be conservative. 1916 // FIXME: We could add logic to be more precise about negative offsets 1917 // and which instructions will need a scratch register for them. Is it 1918 // worth the effort and added fragility? 1919 unsigned EstimatedStackSize = 1920 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1921 1922 // Determine biggest (positive) SP offset in MachineFrameInfo. 1923 int MaxFixedOffset = 0; 1924 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1925 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1926 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1927 } 1928 1929 bool HasFP = hasFP(MF); 1930 if (HasFP) { 1931 if (AFI->hasStackFrame()) 1932 EstimatedStackSize += 4; 1933 } else { 1934 // If FP is not used, SP will be used to access arguments, so count the 1935 // size of arguments into the estimation. 1936 EstimatedStackSize += MaxFixedOffset; 1937 } 1938 EstimatedStackSize += 16; // For possible paddings. 1939 1940 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 1941 bool HasNonSPFrameIndex = false; 1942 if (AFI->isThumb1OnlyFunction()) { 1943 // For Thumb1, don't bother to iterate over the function. The only 1944 // instruction that requires an emergency spill slot is a store to a 1945 // frame index. 1946 // 1947 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 1948 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 1949 // a 5-bit unsigned immediate. 1950 // 1951 // We could try to check if the function actually contains a tSTRspi 1952 // that might need the spill slot, but it's not really important. 1953 // Functions with VLAs or extremely large call frames are rare, and 1954 // if a function is allocating more than 1KB of stack, an extra 4-byte 1955 // slot probably isn't relevant. 1956 if (RegInfo->hasBasePointer(MF)) 1957 EstimatedRSStackSizeLimit = (1U << 5) * 4; 1958 else 1959 EstimatedRSStackSizeLimit = (1U << 8) * 4; 1960 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 1961 } else { 1962 EstimatedRSStackSizeLimit = 1963 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 1964 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 1965 } 1966 // Final estimate of whether sp or bp-relative accesses might require 1967 // scavenging. 1968 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 1969 1970 // If the stack pointer moves and we don't have a base pointer, the 1971 // estimate logic doesn't work. The actual offsets might be larger when 1972 // we're constructing a call frame, or we might need to use negative 1973 // offsets from fp. 1974 bool HasMovingSP = MFI.hasVarSizedObjects() || 1975 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 1976 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 1977 1978 // If we have a frame pointer, we assume arguments will be accessed 1979 // relative to the frame pointer. Check whether fp-relative accesses to 1980 // arguments require scavenging. 1981 // 1982 // We could do slightly better on Thumb1; in some cases, an sp-relative 1983 // offset would be legal even though an fp-relative offset is not. 1984 int MaxFPOffset = getMaxFPOffset(STI, *AFI); 1985 bool HasLargeArgumentList = 1986 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 1987 1988 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 1989 HasLargeArgumentList || HasNonSPFrameIndex; 1990 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 1991 << "; EstimatedStack: " << EstimatedStackSize 1992 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 1993 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 1994 if (BigFrameOffsets || 1995 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1996 AFI->setHasStackFrame(true); 1997 1998 if (HasFP) { 1999 SavedRegs.set(FramePtr); 2000 // If the frame pointer is required by the ABI, also spill LR so that we 2001 // emit a complete frame record. 2002 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 2003 SavedRegs.set(ARM::LR); 2004 LRSpilled = true; 2005 NumGPRSpills++; 2006 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2007 if (LRPos != UnspilledCS1GPRs.end()) 2008 UnspilledCS1GPRs.erase(LRPos); 2009 } 2010 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2011 if (FPPos != UnspilledCS1GPRs.end()) 2012 UnspilledCS1GPRs.erase(FPPos); 2013 NumGPRSpills++; 2014 if (FramePtr == ARM::R7) 2015 CS1Spilled = true; 2016 } 2017 2018 // This is true when we inserted a spill for a callee-save GPR which is 2019 // not otherwise used by the function. This guaranteees it is possible 2020 // to scavenge a register to hold the address of a stack slot. On Thumb1, 2021 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other 2022 // subtargets, this is any GPR, i.e. r4-r11 or lr. 2023 // 2024 // If we don't insert a spill, we instead allocate an emergency spill 2025 // slot, which can be used by scavenging to spill an arbitrary register. 2026 // 2027 // We currently don't try to figure out whether any specific instruction 2028 // requires scavening an additional register. 2029 bool ExtraCSSpill = false; 2030 2031 if (AFI->isThumb1OnlyFunction()) { 2032 // For Thumb1-only targets, we need some low registers when we save and 2033 // restore the high registers (which aren't allocatable, but could be 2034 // used by inline assembly) because the push/pop instructions can not 2035 // access high registers. If necessary, we might need to push more low 2036 // registers to ensure that there is at least one free that can be used 2037 // for the saving & restoring, and preferably we should ensure that as 2038 // many as are needed are available so that fewer push/pop instructions 2039 // are required. 2040 2041 // Low registers which are not currently pushed, but could be (r4-r7). 2042 SmallVector<unsigned, 4> AvailableRegs; 2043 2044 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2045 // free. 2046 int EntryRegDeficit = 0; 2047 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2048 if (!MF.getRegInfo().isLiveIn(Reg)) { 2049 --EntryRegDeficit; 2050 LLVM_DEBUG(dbgs() 2051 << printReg(Reg, TRI) 2052 << " is unused argument register, EntryRegDeficit = " 2053 << EntryRegDeficit << "\n"); 2054 } 2055 } 2056 2057 // Unused return registers can be clobbered in the epilogue for free. 2058 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2059 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2060 << " return regs used, ExitRegDeficit = " 2061 << ExitRegDeficit << "\n"); 2062 2063 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2064 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2065 2066 // r4-r6 can be used in the prologue if they are pushed by the first push 2067 // instruction. 2068 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2069 if (SavedRegs.test(Reg)) { 2070 --RegDeficit; 2071 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2072 << " is saved low register, RegDeficit = " 2073 << RegDeficit << "\n"); 2074 } else { 2075 AvailableRegs.push_back(Reg); 2076 LLVM_DEBUG( 2077 dbgs() 2078 << printReg(Reg, TRI) 2079 << " is non-saved low register, adding to AvailableRegs\n"); 2080 } 2081 } 2082 2083 // r7 can be used if it is not being used as the frame pointer. 2084 if (!HasFP) { 2085 if (SavedRegs.test(ARM::R7)) { 2086 --RegDeficit; 2087 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2088 << RegDeficit << "\n"); 2089 } else { 2090 AvailableRegs.push_back(ARM::R7); 2091 LLVM_DEBUG( 2092 dbgs() 2093 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2094 } 2095 } 2096 2097 // Each of r8-r11 needs to be copied to a low register, then pushed. 2098 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2099 if (SavedRegs.test(Reg)) { 2100 ++RegDeficit; 2101 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2102 << " is saved high register, RegDeficit = " 2103 << RegDeficit << "\n"); 2104 } 2105 } 2106 2107 // LR can only be used by PUSH, not POP, and can't be used at all if the 2108 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2109 // are more limited at function entry than exit. 2110 if ((EntryRegDeficit > ExitRegDeficit) && 2111 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2112 MF.getFrameInfo().isReturnAddressTaken())) { 2113 if (SavedRegs.test(ARM::LR)) { 2114 --RegDeficit; 2115 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2116 << RegDeficit << "\n"); 2117 } else { 2118 AvailableRegs.push_back(ARM::LR); 2119 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2120 } 2121 } 2122 2123 // If there are more high registers that need pushing than low registers 2124 // available, push some more low registers so that we can use fewer push 2125 // instructions. This might not reduce RegDeficit all the way to zero, 2126 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2127 // need saving. 2128 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2129 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2130 unsigned Reg = AvailableRegs.pop_back_val(); 2131 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2132 << " to make up reg deficit\n"); 2133 SavedRegs.set(Reg); 2134 NumGPRSpills++; 2135 CS1Spilled = true; 2136 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2137 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2138 ExtraCSSpill = true; 2139 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2140 if (Reg == ARM::LR) 2141 LRSpilled = true; 2142 } 2143 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2144 << "\n"); 2145 } 2146 2147 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2148 // restore LR in that case. 2149 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2150 2151 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2152 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2153 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2154 SavedRegs.set(ARM::LR); 2155 NumGPRSpills++; 2156 SmallVectorImpl<unsigned>::iterator LRPos; 2157 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2158 if (LRPos != UnspilledCS1GPRs.end()) 2159 UnspilledCS1GPRs.erase(LRPos); 2160 2161 ForceLRSpill = false; 2162 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2163 !AFI->isThumb1OnlyFunction()) 2164 ExtraCSSpill = true; 2165 } 2166 2167 // If stack and double are 8-byte aligned and we are spilling an odd number 2168 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2169 // the integer and double callee save areas. 2170 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2171 const Align TargetAlign = getStackAlign(); 2172 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2173 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2174 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 2175 unsigned Reg = UnspilledCS1GPRs[i]; 2176 // Don't spill high register if the function is thumb. In the case of 2177 // Windows on ARM, accept R11 (frame pointer) 2178 if (!AFI->isThumbFunction() || 2179 (STI.isTargetWindows() && Reg == ARM::R11) || 2180 isARMLowRegister(Reg) || 2181 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2182 SavedRegs.set(Reg); 2183 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2184 << " to make up alignment\n"); 2185 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2186 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2187 ExtraCSSpill = true; 2188 break; 2189 } 2190 } 2191 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2192 unsigned Reg = UnspilledCS2GPRs.front(); 2193 SavedRegs.set(Reg); 2194 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2195 << " to make up alignment\n"); 2196 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2197 ExtraCSSpill = true; 2198 } 2199 } 2200 2201 // Estimate if we might need to scavenge a register at some point in order 2202 // to materialize a stack offset. If so, either spill one additional 2203 // callee-saved register or reserve a special spill slot to facilitate 2204 // register scavenging. Thumb1 needs a spill slot for stack pointer 2205 // adjustments also, even when the frame itself is small. 2206 if (BigFrameOffsets && !ExtraCSSpill) { 2207 // If any non-reserved CS register isn't spilled, just spill one or two 2208 // extra. That should take care of it! 2209 unsigned NumExtras = TargetAlign.value() / 4; 2210 SmallVector<unsigned, 2> Extras; 2211 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2212 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2213 if (!MRI.isReserved(Reg) && 2214 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2215 Extras.push_back(Reg); 2216 NumExtras--; 2217 } 2218 } 2219 // For non-Thumb1 functions, also check for hi-reg CS registers 2220 if (!AFI->isThumb1OnlyFunction()) { 2221 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2222 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2223 if (!MRI.isReserved(Reg)) { 2224 Extras.push_back(Reg); 2225 NumExtras--; 2226 } 2227 } 2228 } 2229 if (NumExtras == 0) { 2230 for (unsigned Reg : Extras) { 2231 SavedRegs.set(Reg); 2232 if (!MRI.isPhysRegUsed(Reg)) 2233 ExtraCSSpill = true; 2234 } 2235 } 2236 if (!ExtraCSSpill && RS) { 2237 // Reserve a slot closest to SP or frame pointer. 2238 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2239 const TargetRegisterClass &RC = ARM::GPRRegClass; 2240 unsigned Size = TRI->getSpillSize(RC); 2241 Align Alignment = TRI->getSpillAlign(RC); 2242 RS->addScavengingFrameIndex( 2243 MFI.CreateStackObject(Size, Alignment, false)); 2244 } 2245 } 2246 } 2247 2248 if (ForceLRSpill) 2249 SavedRegs.set(ARM::LR); 2250 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2251 } 2252 2253 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2254 BitVector &SavedRegs) const { 2255 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2256 2257 // If we have the "returned" parameter attribute which guarantees that we 2258 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2259 // record that fact for IPRA. 2260 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2261 if (AFI->getPreservesR0()) 2262 SavedRegs.set(ARM::R0); 2263 } 2264 2265 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2266 MachineFunction &MF, const TargetRegisterInfo *TRI, 2267 std::vector<CalleeSavedInfo> &CSI) const { 2268 // For CMSE entry functions, handle floating-point context as if it was a 2269 // callee-saved register. 2270 if (STI.hasV8_1MMainlineOps() && 2271 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2272 CSI.emplace_back(ARM::FPCXTNS); 2273 CSI.back().setRestored(false); 2274 } 2275 2276 return false; 2277 } 2278 2279 const TargetFrameLowering::SpillSlot * 2280 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2281 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2282 NumEntries = array_lengthof(FixedSpillOffsets); 2283 return FixedSpillOffsets; 2284 } 2285 2286 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2287 MachineFunction &MF, MachineBasicBlock &MBB, 2288 MachineBasicBlock::iterator I) const { 2289 const ARMBaseInstrInfo &TII = 2290 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2291 if (!hasReservedCallFrame(MF)) { 2292 // If we have alloca, convert as follows: 2293 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2294 // ADJCALLSTACKUP -> add, sp, sp, amount 2295 MachineInstr &Old = *I; 2296 DebugLoc dl = Old.getDebugLoc(); 2297 unsigned Amount = TII.getFrameSize(Old); 2298 if (Amount != 0) { 2299 // We need to keep the stack aligned properly. To do this, we round the 2300 // amount of space needed for the outgoing arguments up to the next 2301 // alignment boundary. 2302 Amount = alignSPAdjust(Amount); 2303 2304 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2305 assert(!AFI->isThumb1OnlyFunction() && 2306 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2307 bool isARM = !AFI->isThumbFunction(); 2308 2309 // Replace the pseudo instruction with a new instruction... 2310 unsigned Opc = Old.getOpcode(); 2311 int PIdx = Old.findFirstPredOperandIdx(); 2312 ARMCC::CondCodes Pred = 2313 (PIdx == -1) ? ARMCC::AL 2314 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2315 unsigned PredReg = TII.getFramePred(Old); 2316 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2317 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2318 Pred, PredReg); 2319 } else { 2320 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2321 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2322 Pred, PredReg); 2323 } 2324 } 2325 } 2326 return MBB.erase(I); 2327 } 2328 2329 /// Get the minimum constant for ARM that is greater than or equal to the 2330 /// argument. In ARM, constants can have any value that can be produced by 2331 /// rotating an 8-bit value to the right by an even number of bits within a 2332 /// 32-bit word. 2333 static uint32_t alignToARMConstant(uint32_t Value) { 2334 unsigned Shifted = 0; 2335 2336 if (Value == 0) 2337 return 0; 2338 2339 while (!(Value & 0xC0000000)) { 2340 Value = Value << 2; 2341 Shifted += 2; 2342 } 2343 2344 bool Carry = (Value & 0x00FFFFFF); 2345 Value = ((Value & 0xFF000000) >> 24) + Carry; 2346 2347 if (Value & 0x0000100) 2348 Value = Value & 0x000001FC; 2349 2350 if (Shifted > 24) 2351 Value = Value >> (Shifted - 24); 2352 else 2353 Value = Value << (24 - Shifted); 2354 2355 return Value; 2356 } 2357 2358 // The stack limit in the TCB is set to this many bytes above the actual 2359 // stack limit. 2360 static const uint64_t kSplitStackAvailable = 256; 2361 2362 // Adjust the function prologue to enable split stacks. This currently only 2363 // supports android and linux. 2364 // 2365 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2366 // must be well defined in order to allow for consistent implementations of the 2367 // __morestack helper function. The ABI is also not a normal ABI in that it 2368 // doesn't follow the normal calling conventions because this allows the 2369 // prologue of each function to be optimized further. 2370 // 2371 // Currently, the ABI looks like (when calling __morestack) 2372 // 2373 // * r4 holds the minimum stack size requested for this function call 2374 // * r5 holds the stack size of the arguments to the function 2375 // * the beginning of the function is 3 instructions after the call to 2376 // __morestack 2377 // 2378 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2379 // place the arguments on to the new stack, and the 3-instruction knowledge to 2380 // jump directly to the body of the function when working on the new stack. 2381 // 2382 // An old (and possibly no longer compatible) implementation of __morestack for 2383 // ARM can be found at [1]. 2384 // 2385 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2386 void ARMFrameLowering::adjustForSegmentedStacks( 2387 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2388 unsigned Opcode; 2389 unsigned CFIIndex; 2390 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2391 bool Thumb = ST->isThumb(); 2392 2393 // Sadly, this currently doesn't support varargs, platforms other than 2394 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2395 if (MF.getFunction().isVarArg()) 2396 report_fatal_error("Segmented stacks do not support vararg functions."); 2397 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2398 report_fatal_error("Segmented stacks not supported on this platform."); 2399 2400 MachineFrameInfo &MFI = MF.getFrameInfo(); 2401 MachineModuleInfo &MMI = MF.getMMI(); 2402 MCContext &Context = MMI.getContext(); 2403 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2404 const ARMBaseInstrInfo &TII = 2405 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2406 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2407 DebugLoc DL; 2408 2409 uint64_t StackSize = MFI.getStackSize(); 2410 2411 // Do not generate a prologue for leaf functions with a stack of size zero. 2412 // For non-leaf functions we have to allow for the possibility that the 2413 // callis to a non-split function, as in PR37807. This function could also 2414 // take the address of a non-split function. When the linker tries to adjust 2415 // its non-existent prologue, it would fail with an error. Mark the object 2416 // file so that such failures are not errors. See this Go language bug-report 2417 // https://go-review.googlesource.com/c/go/+/148819/ 2418 if (StackSize == 0 && !MFI.hasTailCall()) { 2419 MF.getMMI().setHasNosplitStack(true); 2420 return; 2421 } 2422 2423 // Use R4 and R5 as scratch registers. 2424 // We save R4 and R5 before use and restore them before leaving the function. 2425 unsigned ScratchReg0 = ARM::R4; 2426 unsigned ScratchReg1 = ARM::R5; 2427 uint64_t AlignedStackSize; 2428 2429 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2430 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2431 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2432 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2433 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2434 2435 // Grab everything that reaches PrologueMBB to update there liveness as well. 2436 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2437 SmallVector<MachineBasicBlock *, 2> WalkList; 2438 WalkList.push_back(&PrologueMBB); 2439 2440 do { 2441 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2442 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2443 if (BeforePrologueRegion.insert(PredBB).second) 2444 WalkList.push_back(PredBB); 2445 } 2446 } while (!WalkList.empty()); 2447 2448 // The order in that list is important. 2449 // The blocks will all be inserted before PrologueMBB using that order. 2450 // Therefore the block that should appear first in the CFG should appear 2451 // first in the list. 2452 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2453 PostStackMBB}; 2454 2455 for (MachineBasicBlock *B : AddedBlocks) 2456 BeforePrologueRegion.insert(B); 2457 2458 for (const auto &LI : PrologueMBB.liveins()) { 2459 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2460 PredBB->addLiveIn(LI); 2461 } 2462 2463 // Remove the newly added blocks from the list, since we know 2464 // we do not have to do the following updates for them. 2465 for (MachineBasicBlock *B : AddedBlocks) { 2466 BeforePrologueRegion.erase(B); 2467 MF.insert(PrologueMBB.getIterator(), B); 2468 } 2469 2470 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2471 // Make sure the LiveIns are still sorted and unique. 2472 MBB->sortUniqueLiveIns(); 2473 // Replace the edges to PrologueMBB by edges to the sequences 2474 // we are about to add. 2475 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2476 } 2477 2478 // The required stack size that is aligned to ARM constant criterion. 2479 AlignedStackSize = alignToARMConstant(StackSize); 2480 2481 // When the frame size is less than 256 we just compare the stack 2482 // boundary directly to the value of the stack pointer, per gcc. 2483 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2484 2485 // We will use two of the callee save registers as scratch registers so we 2486 // need to save those registers onto the stack. 2487 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2488 // requested and arguments for __morestack(). 2489 // SR0: Scratch Register #0 2490 // SR1: Scratch Register #1 2491 // push {SR0, SR1} 2492 if (Thumb) { 2493 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2494 .add(predOps(ARMCC::AL)) 2495 .addReg(ScratchReg0) 2496 .addReg(ScratchReg1); 2497 } else { 2498 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2499 .addReg(ARM::SP, RegState::Define) 2500 .addReg(ARM::SP) 2501 .add(predOps(ARMCC::AL)) 2502 .addReg(ScratchReg0) 2503 .addReg(ScratchReg1); 2504 } 2505 2506 // Emit the relevant DWARF information about the change in stack pointer as 2507 // well as where to find both r4 and r5 (the callee-save registers) 2508 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 2509 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2510 .addCFIIndex(CFIIndex); 2511 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2512 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2513 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2514 .addCFIIndex(CFIIndex); 2515 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2516 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2517 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2518 .addCFIIndex(CFIIndex); 2519 2520 // mov SR1, sp 2521 if (Thumb) { 2522 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2523 .addReg(ARM::SP) 2524 .add(predOps(ARMCC::AL)); 2525 } else if (CompareStackPointer) { 2526 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2527 .addReg(ARM::SP) 2528 .add(predOps(ARMCC::AL)) 2529 .add(condCodeOp()); 2530 } 2531 2532 // sub SR1, sp, #StackSize 2533 if (!CompareStackPointer && Thumb) { 2534 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2535 .add(condCodeOp()) 2536 .addReg(ScratchReg1) 2537 .addImm(AlignedStackSize) 2538 .add(predOps(ARMCC::AL)); 2539 } else if (!CompareStackPointer) { 2540 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2541 .addReg(ARM::SP) 2542 .addImm(AlignedStackSize) 2543 .add(predOps(ARMCC::AL)) 2544 .add(condCodeOp()); 2545 } 2546 2547 if (Thumb && ST->isThumb1Only()) { 2548 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2549 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2550 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2551 MachineConstantPool *MCP = MF.getConstantPool(); 2552 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 2553 2554 // ldr SR0, [pc, offset(STACK_LIMIT)] 2555 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2556 .addConstantPoolIndex(CPI) 2557 .add(predOps(ARMCC::AL)); 2558 2559 // ldr SR0, [SR0] 2560 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2561 .addReg(ScratchReg0) 2562 .addImm(0) 2563 .add(predOps(ARMCC::AL)); 2564 } else { 2565 // Get TLS base address from the coprocessor 2566 // mrc p15, #0, SR0, c13, c0, #3 2567 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 2568 ScratchReg0) 2569 .addImm(15) 2570 .addImm(0) 2571 .addImm(13) 2572 .addImm(0) 2573 .addImm(3) 2574 .add(predOps(ARMCC::AL)); 2575 2576 // Use the last tls slot on android and a private field of the TCP on linux. 2577 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2578 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2579 2580 // Get the stack limit from the right offset 2581 // ldr SR0, [sr0, #4 * TlsOffset] 2582 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 2583 ScratchReg0) 2584 .addReg(ScratchReg0) 2585 .addImm(4 * TlsOffset) 2586 .add(predOps(ARMCC::AL)); 2587 } 2588 2589 // Compare stack limit with stack size requested. 2590 // cmp SR0, SR1 2591 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2592 BuildMI(GetMBB, DL, TII.get(Opcode)) 2593 .addReg(ScratchReg0) 2594 .addReg(ScratchReg1) 2595 .add(predOps(ARMCC::AL)); 2596 2597 // This jump is taken if StackLimit < SP - stack required. 2598 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2599 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2600 .addImm(ARMCC::LO) 2601 .addReg(ARM::CPSR); 2602 2603 2604 // Calling __morestack(StackSize, Size of stack arguments). 2605 // __morestack knows that the stack size requested is in SR0(r4) 2606 // and amount size of stack arguments is in SR1(r5). 2607 2608 // Pass first argument for the __morestack by Scratch Register #0. 2609 // The amount size of stack required 2610 if (Thumb) { 2611 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2612 .add(condCodeOp()) 2613 .addImm(AlignedStackSize) 2614 .add(predOps(ARMCC::AL)); 2615 } else { 2616 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2617 .addImm(AlignedStackSize) 2618 .add(predOps(ARMCC::AL)) 2619 .add(condCodeOp()); 2620 } 2621 // Pass second argument for the __morestack by Scratch Register #1. 2622 // The amount size of stack consumed to save function arguments. 2623 if (Thumb) { 2624 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2625 .add(condCodeOp()) 2626 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2627 .add(predOps(ARMCC::AL)); 2628 } else { 2629 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2630 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2631 .add(predOps(ARMCC::AL)) 2632 .add(condCodeOp()); 2633 } 2634 2635 // push {lr} - Save return address of this function. 2636 if (Thumb) { 2637 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2638 .add(predOps(ARMCC::AL)) 2639 .addReg(ARM::LR); 2640 } else { 2641 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2642 .addReg(ARM::SP, RegState::Define) 2643 .addReg(ARM::SP) 2644 .add(predOps(ARMCC::AL)) 2645 .addReg(ARM::LR); 2646 } 2647 2648 // Emit the DWARF info about the change in stack as well as where to find the 2649 // previous link register 2650 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 2651 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2652 .addCFIIndex(CFIIndex); 2653 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2654 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2655 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2656 .addCFIIndex(CFIIndex); 2657 2658 // Call __morestack(). 2659 if (Thumb) { 2660 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2661 .add(predOps(ARMCC::AL)) 2662 .addExternalSymbol("__morestack"); 2663 } else { 2664 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2665 .addExternalSymbol("__morestack"); 2666 } 2667 2668 // pop {lr} - Restore return address of this original function. 2669 if (Thumb) { 2670 if (ST->isThumb1Only()) { 2671 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2672 .add(predOps(ARMCC::AL)) 2673 .addReg(ScratchReg0); 2674 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2675 .addReg(ScratchReg0) 2676 .add(predOps(ARMCC::AL)); 2677 } else { 2678 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2679 .addReg(ARM::LR, RegState::Define) 2680 .addReg(ARM::SP, RegState::Define) 2681 .addReg(ARM::SP) 2682 .addImm(4) 2683 .add(predOps(ARMCC::AL)); 2684 } 2685 } else { 2686 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2687 .addReg(ARM::SP, RegState::Define) 2688 .addReg(ARM::SP) 2689 .add(predOps(ARMCC::AL)) 2690 .addReg(ARM::LR); 2691 } 2692 2693 // Restore SR0 and SR1 in case of __morestack() was called. 2694 // __morestack() will skip PostStackMBB block so we need to restore 2695 // scratch registers from here. 2696 // pop {SR0, SR1} 2697 if (Thumb) { 2698 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2699 .add(predOps(ARMCC::AL)) 2700 .addReg(ScratchReg0) 2701 .addReg(ScratchReg1); 2702 } else { 2703 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2704 .addReg(ARM::SP, RegState::Define) 2705 .addReg(ARM::SP) 2706 .add(predOps(ARMCC::AL)) 2707 .addReg(ScratchReg0) 2708 .addReg(ScratchReg1); 2709 } 2710 2711 // Update the CFA offset now that we've popped 2712 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 2713 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2714 .addCFIIndex(CFIIndex); 2715 2716 // Return from this function. 2717 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2718 2719 // Restore SR0 and SR1 in case of __morestack() was not called. 2720 // pop {SR0, SR1} 2721 if (Thumb) { 2722 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2723 .add(predOps(ARMCC::AL)) 2724 .addReg(ScratchReg0) 2725 .addReg(ScratchReg1); 2726 } else { 2727 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2728 .addReg(ARM::SP, RegState::Define) 2729 .addReg(ARM::SP) 2730 .add(predOps(ARMCC::AL)) 2731 .addReg(ScratchReg0) 2732 .addReg(ScratchReg1); 2733 } 2734 2735 // Update the CFA offset now that we've popped 2736 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 2737 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2738 .addCFIIndex(CFIIndex); 2739 2740 // Tell debuggers that r4 and r5 are now the same as they were in the 2741 // previous function, that they're the "Same Value". 2742 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2743 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2744 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2745 .addCFIIndex(CFIIndex); 2746 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2747 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2748 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2749 .addCFIIndex(CFIIndex); 2750 2751 // Organizing MBB lists 2752 PostStackMBB->addSuccessor(&PrologueMBB); 2753 2754 AllocMBB->addSuccessor(PostStackMBB); 2755 2756 GetMBB->addSuccessor(PostStackMBB); 2757 GetMBB->addSuccessor(AllocMBB); 2758 2759 McrMBB->addSuccessor(GetMBB); 2760 2761 PrevStackMBB->addSuccessor(McrMBB); 2762 2763 #ifdef EXPENSIVE_CHECKS 2764 MF.verify(); 2765 #endif 2766 } 2767