xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp (revision ed75d7a867996c84cfa88e3b8906816277e957f7)
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // Conservatively require the attributes of the call to match those of
56   // the return. Ignore NoAlias and NonNull because they don't affect the
57   // call sequence.
58   AttributeList CallerAttrs = F.getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
60           .removeAttribute(Attribute::NoAlias)
61           .removeAttribute(Attribute::NonNull)
62           .hasAttributes())
63     return false;
64 
65   // It's not safe to eliminate the sign / zero extension of the return value.
66   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68     return false;
69 
70   // Check if the only use is a function return node.
71   return isUsedByReturnOnly(Node, Chain);
72 }
73 
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75     const uint32_t *CallerPreservedMask,
76     const SmallVectorImpl<CCValAssign> &ArgLocs,
77     const SmallVectorImpl<SDValue> &OutVals) const {
78   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79     const CCValAssign &ArgLoc = ArgLocs[I];
80     if (!ArgLoc.isRegLoc())
81       continue;
82     Register Reg = ArgLoc.getLocReg();
83     // Only look at callee saved registers.
84     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85       continue;
86     // Check that we pass the value used for the caller.
87     // (We look for a CopyFromReg reading a virtual register that is used
88     //  for the function live-in value of register Reg)
89     SDValue Value = OutVals[I];
90     if (Value->getOpcode() != ISD::CopyFromReg)
91       return false;
92     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94       return false;
95   }
96   return true;
97 }
98 
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
102                                                      unsigned ArgIdx) {
103   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
104   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
105   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
106   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
107   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
108   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
109   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
110   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
111   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
113   Alignment = Call->getParamAlignment(ArgIdx);
114   ByValType = nullptr;
115   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
116     ByValType = Call->getParamByValType(ArgIdx);
117 }
118 
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair<SDValue, SDValue>
122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
123                             ArrayRef<SDValue> Ops,
124                             MakeLibCallOptions CallOptions,
125                             const SDLoc &dl) const {
126   TargetLowering::ArgListTy Args;
127   Args.reserve(Ops.size());
128 
129   TargetLowering::ArgListEntry Entry;
130   for (unsigned i = 0; i < Ops.size(); ++i) {
131     SDValue NewOp = Ops[i];
132     Entry.Node = NewOp;
133     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
134     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
135                                                  CallOptions.IsSExt);
136     Entry.IsZExt = !Entry.IsSExt;
137 
138     if (CallOptions.IsSoften &&
139         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
140       Entry.IsSExt = Entry.IsZExt = false;
141     }
142     Args.push_back(Entry);
143   }
144 
145   if (LC == RTLIB::UNKNOWN_LIBCALL)
146     report_fatal_error("Unsupported library call operation!");
147   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
148                                          getPointerTy(DAG.getDataLayout()));
149 
150   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
151   TargetLowering::CallLoweringInfo CLI(DAG);
152   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
153   bool zeroExtend = !signExtend;
154 
155   if (CallOptions.IsSoften &&
156       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
157     signExtend = zeroExtend = false;
158   }
159 
160   CLI.setDebugLoc(dl)
161       .setChain(DAG.getEntryNode())
162       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
163       .setNoReturn(CallOptions.DoesNotReturn)
164       .setDiscardResult(!CallOptions.IsReturnValueUsed)
165       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
166       .setSExtResult(signExtend)
167       .setZExtResult(zeroExtend);
168   return LowerCallTo(CLI);
169 }
170 
171 bool
172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
173                                          unsigned Limit, uint64_t Size,
174                                          unsigned DstAlign, unsigned SrcAlign,
175                                          bool IsMemset,
176                                          bool ZeroMemset,
177                                          bool MemcpyStrSrc,
178                                          bool AllowOverlap,
179                                          unsigned DstAS, unsigned SrcAS,
180                                          const AttributeList &FuncAttributes) const {
181   // If 'SrcAlign' is zero, that means the memory operation does not need to
182   // load the value, i.e. memset or memcpy from constant string. Otherwise,
183   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184   // is the specified alignment of the memory operation. If it is zero, that
185   // means it's possible to change the alignment of the destination.
186   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187   // not need to be loaded.
188   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
189     return false;
190 
191   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
192                                IsMemset, ZeroMemset, MemcpyStrSrc,
193                                FuncAttributes);
194 
195   if (VT == MVT::Other) {
196     // Use the largest integer type whose alignment constraints are satisfied.
197     // We only need to check DstAlign here as SrcAlign is always greater or
198     // equal to DstAlign (or zero).
199     VT = MVT::i64;
200     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
201            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
202       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
203     assert(VT.isInteger());
204 
205     // Find the largest legal integer type.
206     MVT LVT = MVT::i64;
207     while (!isTypeLegal(LVT))
208       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
209     assert(LVT.isInteger());
210 
211     // If the type we've chosen is larger than the largest legal integer type
212     // then use that instead.
213     if (VT.bitsGT(LVT))
214       VT = LVT;
215   }
216 
217   unsigned NumMemOps = 0;
218   while (Size != 0) {
219     unsigned VTSize = VT.getSizeInBits() / 8;
220     while (VTSize > Size) {
221       // For now, only use non-vector load / store's for the left-over pieces.
222       EVT NewVT = VT;
223       unsigned NewVTSize;
224 
225       bool Found = false;
226       if (VT.isVector() || VT.isFloatingPoint()) {
227         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
228         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
229             isSafeMemOpType(NewVT.getSimpleVT()))
230           Found = true;
231         else if (NewVT == MVT::i64 &&
232                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
233                  isSafeMemOpType(MVT::f64)) {
234           // i64 is usually not legal on 32-bit targets, but f64 may be.
235           NewVT = MVT::f64;
236           Found = true;
237         }
238       }
239 
240       if (!Found) {
241         do {
242           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
243           if (NewVT == MVT::i8)
244             break;
245         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
246       }
247       NewVTSize = NewVT.getSizeInBits() / 8;
248 
249       // If the new VT cannot cover all of the remaining bits, then consider
250       // issuing a (or a pair of) unaligned and overlapping load / store.
251       bool Fast;
252       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
253           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
254                                          MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
281          && "Unsupported setcc type!");
282 
283   // Expand into one or more soft-fp libcall(s).
284   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
285   bool ShouldInvertCC = false;
286   switch (CCCode) {
287   case ISD::SETEQ:
288   case ISD::SETOEQ:
289     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
290           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
291           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
292     break;
293   case ISD::SETNE:
294   case ISD::SETUNE:
295     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
296           (VT == MVT::f64) ? RTLIB::UNE_F64 :
297           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
298     break;
299   case ISD::SETGE:
300   case ISD::SETOGE:
301     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
302           (VT == MVT::f64) ? RTLIB::OGE_F64 :
303           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
304     break;
305   case ISD::SETLT:
306   case ISD::SETOLT:
307     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
308           (VT == MVT::f64) ? RTLIB::OLT_F64 :
309           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
310     break;
311   case ISD::SETLE:
312   case ISD::SETOLE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
314           (VT == MVT::f64) ? RTLIB::OLE_F64 :
315           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
316     break;
317   case ISD::SETGT:
318   case ISD::SETOGT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
320           (VT == MVT::f64) ? RTLIB::OGT_F64 :
321           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
322     break;
323   case ISD::SETUO:
324     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
325           (VT == MVT::f64) ? RTLIB::UO_F64 :
326           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
327     break;
328   case ISD::SETO:
329     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
330           (VT == MVT::f64) ? RTLIB::O_F64 :
331           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
332     break;
333   case ISD::SETONE:
334     // SETONE = SETOLT | SETOGT
335     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
336           (VT == MVT::f64) ? RTLIB::OLT_F64 :
337           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
338     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
339           (VT == MVT::f64) ? RTLIB::OGT_F64 :
340           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
341     break;
342   case ISD::SETUEQ:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
347           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
348           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
349     break;
350   default:
351     // Invert CC for unordered comparisons
352     ShouldInvertCC = true;
353     switch (CCCode) {
354     case ISD::SETULT:
355       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
356             (VT == MVT::f64) ? RTLIB::OGE_F64 :
357             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
358       break;
359     case ISD::SETULE:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
361             (VT == MVT::f64) ? RTLIB::OGT_F64 :
362             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
363       break;
364     case ISD::SETUGT:
365       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366             (VT == MVT::f64) ? RTLIB::OLE_F64 :
367             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
368       break;
369     case ISD::SETUGE:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
371             (VT == MVT::f64) ? RTLIB::OLT_F64 :
372             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
373       break;
374     default: llvm_unreachable("Do not know how to soften this setcc!");
375     }
376   }
377 
378   // Use the target specific return value for comparions lib calls.
379   EVT RetVT = getCmpLibcallReturnType();
380   SDValue Ops[2] = {NewLHS, NewRHS};
381   TargetLowering::MakeLibCallOptions CallOptions;
382   EVT OpsVT[2] = { OldLHS.getValueType(),
383                    OldRHS.getValueType() };
384   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
385   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
386   NewRHS = DAG.getConstant(0, dl, RetVT);
387 
388   CCCode = getCmpLibcallCC(LC1);
389   if (ShouldInvertCC)
390     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
391 
392   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
393     SDValue Tmp = DAG.getNode(
394         ISD::SETCC, dl,
395         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
396         NewLHS, NewRHS, DAG.getCondCode(CCCode));
397     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
398     NewLHS = DAG.getNode(
399         ISD::SETCC, dl,
400         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
401         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
402     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
403     NewRHS = SDValue();
404   }
405 }
406 
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410   // In non-pic modes, just use the address of a block.
411   if (!isPositionIndependent())
412     return MachineJumpTableInfo::EK_BlockAddress;
413 
414   // In PIC mode, if the target supports a GPRel32 directive, use it.
415   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
417 
418   // Otherwise, use a label difference.
419   return MachineJumpTableInfo::EK_LabelDifference32;
420 }
421 
422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
423                                                  SelectionDAG &DAG) const {
424   // If our PIC model is GP relative, use the global offset table as the base.
425   unsigned JTEncoding = getJumpTableEncoding();
426 
427   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
428       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
429     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
430 
431   return Table;
432 }
433 
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
436 const MCExpr *
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
438                                              unsigned JTI,MCContext &Ctx) const{
439   // The normal PIC reloc base is the label at the start of the jump table.
440   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
441 }
442 
443 bool
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
445   const TargetMachine &TM = getTargetMachine();
446   const GlobalValue *GV = GA->getGlobal();
447 
448   // If the address is not even local to this DSO we will have to load it from
449   // a got and then add the offset.
450   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
451     return false;
452 
453   // If the code is position independent we will have to add a base register.
454   if (isPositionIndependent())
455     return false;
456 
457   // Otherwise we can do it.
458   return true;
459 }
460 
461 //===----------------------------------------------------------------------===//
462 //  Optimization Methods
463 //===----------------------------------------------------------------------===//
464 
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
467 /// return true.
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
469                                             TargetLoweringOpt &TLO) const {
470   SDLoc DL(Op);
471   unsigned Opcode = Op.getOpcode();
472 
473   // Do target-specific constant optimization.
474   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
475     return TLO.New.getNode();
476 
477   // FIXME: ISD::SELECT, ISD::SELECT_CC
478   switch (Opcode) {
479   default:
480     break;
481   case ISD::XOR:
482   case ISD::AND:
483   case ISD::OR: {
484     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
485     if (!Op1C)
486       return false;
487 
488     // If this is a 'not' op, don't touch it because that's a canonical form.
489     const APInt &C = Op1C->getAPIntValue();
490     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
491       return false;
492 
493     if (!C.isSubsetOf(Demanded)) {
494       EVT VT = Op.getValueType();
495       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
496       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
497       return TLO.CombineTo(Op, NewOp);
498     }
499 
500     break;
501   }
502   }
503 
504   return false;
505 }
506 
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
511                                       const APInt &Demanded,
512                                       TargetLoweringOpt &TLO) const {
513   assert(Op.getNumOperands() == 2 &&
514          "ShrinkDemandedOp only supports binary operators!");
515   assert(Op.getNode()->getNumValues() == 1 &&
516          "ShrinkDemandedOp only supports nodes with one result!");
517 
518   SelectionDAG &DAG = TLO.DAG;
519   SDLoc dl(Op);
520 
521   // Early return, as this function cannot handle vector types.
522   if (Op.getValueType().isVector())
523     return false;
524 
525   // Don't do this if the node has another user, which may require the
526   // full value.
527   if (!Op.getNode()->hasOneUse())
528     return false;
529 
530   // Search for the smallest integer type with free casts to and from
531   // Op's type. For expedience, just check power-of-2 integer types.
532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
533   unsigned DemandedSize = Demanded.getActiveBits();
534   unsigned SmallVTBits = DemandedSize;
535   if (!isPowerOf2_32(SmallVTBits))
536     SmallVTBits = NextPowerOf2(SmallVTBits);
537   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
538     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
539     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
540         TLI.isZExtFree(SmallVT, Op.getValueType())) {
541       // We found a type with free casts.
542       SDValue X = DAG.getNode(
543           Op.getOpcode(), dl, SmallVT,
544           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
545           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
546       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
547       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
548       return TLO.CombineTo(Op, Z);
549     }
550   }
551   return false;
552 }
553 
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555                                           DAGCombinerInfo &DCI) const {
556   SelectionDAG &DAG = DCI.DAG;
557   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
558                         !DCI.isBeforeLegalizeOps());
559   KnownBits Known;
560 
561   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
562   if (Simplified) {
563     DCI.AddToWorklist(Op.getNode());
564     DCI.CommitTargetLoweringOpt(TLO);
565   }
566   return Simplified;
567 }
568 
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
570                                           KnownBits &Known,
571                                           TargetLoweringOpt &TLO,
572                                           unsigned Depth,
573                                           bool AssumeSingleUse) const {
574   EVT VT = Op.getValueType();
575   APInt DemandedElts = VT.isVector()
576                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
577                            : APInt(1, 1);
578   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
579                               AssumeSingleUse);
580 }
581 
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
585     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
586     SelectionDAG &DAG, unsigned Depth) const {
587   // Limit search depth.
588   if (Depth >= SelectionDAG::MaxRecursionDepth)
589     return SDValue();
590 
591   // Ignore UNDEFs.
592   if (Op.isUndef())
593     return SDValue();
594 
595   // Not demanding any bits/elts from Op.
596   if (DemandedBits == 0 || DemandedElts == 0)
597     return DAG.getUNDEF(Op.getValueType());
598 
599   unsigned NumElts = DemandedElts.getBitWidth();
600   KnownBits LHSKnown, RHSKnown;
601   switch (Op.getOpcode()) {
602   case ISD::BITCAST: {
603     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
604     EVT SrcVT = Src.getValueType();
605     EVT DstVT = Op.getValueType();
606     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
607     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
608 
609     if (NumSrcEltBits == NumDstEltBits)
610       if (SDValue V = SimplifyMultipleUseDemandedBits(
611               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
612         return DAG.getBitcast(DstVT, V);
613 
614     // TODO - bigendian once we have test coverage.
615     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
616         DAG.getDataLayout().isLittleEndian()) {
617       unsigned Scale = NumDstEltBits / NumSrcEltBits;
618       unsigned NumSrcElts = SrcVT.getVectorNumElements();
619       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
620       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
621       for (unsigned i = 0; i != Scale; ++i) {
622         unsigned Offset = i * NumSrcEltBits;
623         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
624         if (!Sub.isNullValue()) {
625           DemandedSrcBits |= Sub;
626           for (unsigned j = 0; j != NumElts; ++j)
627             if (DemandedElts[j])
628               DemandedSrcElts.setBit((j * Scale) + i);
629         }
630       }
631 
632       if (SDValue V = SimplifyMultipleUseDemandedBits(
633               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
634         return DAG.getBitcast(DstVT, V);
635     }
636 
637     // TODO - bigendian once we have test coverage.
638     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
639         DAG.getDataLayout().isLittleEndian()) {
640       unsigned Scale = NumSrcEltBits / NumDstEltBits;
641       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
642       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
643       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
644       for (unsigned i = 0; i != NumElts; ++i)
645         if (DemandedElts[i]) {
646           unsigned Offset = (i % Scale) * NumDstEltBits;
647           DemandedSrcBits.insertBits(DemandedBits, Offset);
648           DemandedSrcElts.setBit(i / Scale);
649         }
650 
651       if (SDValue V = SimplifyMultipleUseDemandedBits(
652               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
653         return DAG.getBitcast(DstVT, V);
654     }
655 
656     break;
657   }
658   case ISD::AND: {
659     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
660     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
661 
662     // If all of the demanded bits are known 1 on one side, return the other.
663     // These bits cannot contribute to the result of the 'and' in this
664     // context.
665     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
666       return Op.getOperand(0);
667     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
668       return Op.getOperand(1);
669     break;
670   }
671   case ISD::OR: {
672     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
673     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
674 
675     // If all of the demanded bits are known zero on one side, return the
676     // other.  These bits cannot contribute to the result of the 'or' in this
677     // context.
678     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
679       return Op.getOperand(0);
680     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
681       return Op.getOperand(1);
682     break;
683   }
684   case ISD::XOR: {
685     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
687 
688     // If all of the demanded bits are known zero on one side, return the
689     // other.
690     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
691       return Op.getOperand(0);
692     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
693       return Op.getOperand(1);
694     break;
695   }
696   case ISD::SIGN_EXTEND_INREG: {
697     // If none of the extended bits are demanded, eliminate the sextinreg.
698     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
699     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
700       return Op.getOperand(0);
701     break;
702   }
703   case ISD::INSERT_VECTOR_ELT: {
704     // If we don't demand the inserted element, return the base vector.
705     SDValue Vec = Op.getOperand(0);
706     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
707     EVT VecVT = Vec.getValueType();
708     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
709         !DemandedElts[CIdx->getZExtValue()])
710       return Vec;
711     break;
712   }
713   case ISD::VECTOR_SHUFFLE: {
714     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
715 
716     // If all the demanded elts are from one operand and are inline,
717     // then we can use the operand directly.
718     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
719     for (unsigned i = 0; i != NumElts; ++i) {
720       int M = ShuffleMask[i];
721       if (M < 0 || !DemandedElts[i])
722         continue;
723       AllUndef = false;
724       IdentityLHS &= (M == (int)i);
725       IdentityRHS &= ((M - NumElts) == i);
726     }
727 
728     if (AllUndef)
729       return DAG.getUNDEF(Op.getValueType());
730     if (IdentityLHS)
731       return Op.getOperand(0);
732     if (IdentityRHS)
733       return Op.getOperand(1);
734     break;
735   }
736   default:
737     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
738       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
739               Op, DemandedBits, DemandedElts, DAG, Depth))
740         return V;
741     break;
742   }
743   return SDValue();
744 }
745 
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller).  The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754     SDValue Op, const APInt &OriginalDemandedBits,
755     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
756     unsigned Depth, bool AssumeSingleUse) const {
757   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
758   assert(Op.getScalarValueSizeInBits() == BitWidth &&
759          "Mask size mismatches value type size!");
760 
761   unsigned NumElts = OriginalDemandedElts.getBitWidth();
762   assert((!Op.getValueType().isVector() ||
763           NumElts == Op.getValueType().getVectorNumElements()) &&
764          "Unexpected vector size");
765 
766   APInt DemandedBits = OriginalDemandedBits;
767   APInt DemandedElts = OriginalDemandedElts;
768   SDLoc dl(Op);
769   auto &DL = TLO.DAG.getDataLayout();
770 
771   // Don't know anything.
772   Known = KnownBits(BitWidth);
773 
774   // Undef operand.
775   if (Op.isUndef())
776     return false;
777 
778   if (Op.getOpcode() == ISD::Constant) {
779     // We know all of the bits for a constant!
780     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
781     Known.Zero = ~Known.One;
782     return false;
783   }
784 
785   // Other users may use these bits.
786   EVT VT = Op.getValueType();
787   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
788     if (Depth != 0) {
789       // If not at the root, Just compute the Known bits to
790       // simplify things downstream.
791       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
792       return false;
793     }
794     // If this is the root being simplified, allow it to have multiple uses,
795     // just set the DemandedBits/Elts to all bits.
796     DemandedBits = APInt::getAllOnesValue(BitWidth);
797     DemandedElts = APInt::getAllOnesValue(NumElts);
798   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
799     // Not demanding any bits/elts from Op.
800     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
801   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
802     // Limit search depth.
803     return false;
804   }
805 
806   KnownBits Known2, KnownOut;
807   switch (Op.getOpcode()) {
808   case ISD::TargetConstant:
809     llvm_unreachable("Can't simplify this node");
810   case ISD::SCALAR_TO_VECTOR: {
811     if (!DemandedElts[0])
812       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
813 
814     KnownBits SrcKnown;
815     SDValue Src = Op.getOperand(0);
816     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
817     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
818     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
819       return true;
820     Known = SrcKnown.zextOrTrunc(BitWidth, false);
821     break;
822   }
823   case ISD::BUILD_VECTOR:
824     // Collect the known bits that are shared by every demanded element.
825     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
826     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
827     return false; // Don't fall through, will infinitely loop.
828   case ISD::LOAD: {
829     LoadSDNode *LD = cast<LoadSDNode>(Op);
830     if (getTargetConstantFromLoad(LD)) {
831       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
832       return false; // Don't fall through, will infinitely loop.
833     }
834     break;
835   }
836   case ISD::INSERT_VECTOR_ELT: {
837     SDValue Vec = Op.getOperand(0);
838     SDValue Scl = Op.getOperand(1);
839     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
840     EVT VecVT = Vec.getValueType();
841 
842     // If index isn't constant, assume we need all vector elements AND the
843     // inserted element.
844     APInt DemandedVecElts(DemandedElts);
845     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
846       unsigned Idx = CIdx->getZExtValue();
847       DemandedVecElts.clearBit(Idx);
848 
849       // Inserted element is not required.
850       if (!DemandedElts[Idx])
851         return TLO.CombineTo(Op, Vec);
852     }
853 
854     KnownBits KnownScl;
855     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
856     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
857     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
858       return true;
859 
860     Known = KnownScl.zextOrTrunc(BitWidth, false);
861 
862     KnownBits KnownVec;
863     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
864                              Depth + 1))
865       return true;
866 
867     if (!!DemandedVecElts) {
868       Known.One &= KnownVec.One;
869       Known.Zero &= KnownVec.Zero;
870     }
871 
872     return false;
873   }
874   case ISD::INSERT_SUBVECTOR: {
875     SDValue Base = Op.getOperand(0);
876     SDValue Sub = Op.getOperand(1);
877     EVT SubVT = Sub.getValueType();
878     unsigned NumSubElts = SubVT.getVectorNumElements();
879 
880     // If index isn't constant, assume we need the original demanded base
881     // elements and ALL the inserted subvector elements.
882     APInt BaseElts = DemandedElts;
883     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
884     if (isa<ConstantSDNode>(Op.getOperand(2))) {
885       const APInt &Idx = Op.getConstantOperandAPInt(2);
886       if (Idx.ule(NumElts - NumSubElts)) {
887         unsigned SubIdx = Idx.getZExtValue();
888         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
889         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
890       }
891     }
892 
893     KnownBits KnownSub, KnownBase;
894     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
895                              Depth + 1))
896       return true;
897     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
898                              Depth + 1))
899       return true;
900 
901     Known.Zero.setAllBits();
902     Known.One.setAllBits();
903     if (!!SubElts) {
904         Known.One &= KnownSub.One;
905         Known.Zero &= KnownSub.Zero;
906     }
907     if (!!BaseElts) {
908         Known.One &= KnownBase.One;
909         Known.Zero &= KnownBase.Zero;
910     }
911     break;
912   }
913   case ISD::EXTRACT_SUBVECTOR: {
914     // If index isn't constant, assume we need all the source vector elements.
915     SDValue Src = Op.getOperand(0);
916     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
917     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
918     APInt SrcElts = APInt::getAllOnesValue(NumSrcElts);
919     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
920       // Offset the demanded elts by the subvector index.
921       uint64_t Idx = SubIdx->getZExtValue();
922       SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
923     }
924     if (SimplifyDemandedBits(Src, DemandedBits, SrcElts, Known, TLO, Depth + 1))
925       return true;
926     break;
927   }
928   case ISD::CONCAT_VECTORS: {
929     Known.Zero.setAllBits();
930     Known.One.setAllBits();
931     EVT SubVT = Op.getOperand(0).getValueType();
932     unsigned NumSubVecs = Op.getNumOperands();
933     unsigned NumSubElts = SubVT.getVectorNumElements();
934     for (unsigned i = 0; i != NumSubVecs; ++i) {
935       APInt DemandedSubElts =
936           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
937       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
938                                Known2, TLO, Depth + 1))
939         return true;
940       // Known bits are shared by every demanded subvector element.
941       if (!!DemandedSubElts) {
942         Known.One &= Known2.One;
943         Known.Zero &= Known2.Zero;
944       }
945     }
946     break;
947   }
948   case ISD::VECTOR_SHUFFLE: {
949     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
950 
951     // Collect demanded elements from shuffle operands..
952     APInt DemandedLHS(NumElts, 0);
953     APInt DemandedRHS(NumElts, 0);
954     for (unsigned i = 0; i != NumElts; ++i) {
955       if (!DemandedElts[i])
956         continue;
957       int M = ShuffleMask[i];
958       if (M < 0) {
959         // For UNDEF elements, we don't know anything about the common state of
960         // the shuffle result.
961         DemandedLHS.clearAllBits();
962         DemandedRHS.clearAllBits();
963         break;
964       }
965       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
966       if (M < (int)NumElts)
967         DemandedLHS.setBit(M);
968       else
969         DemandedRHS.setBit(M - NumElts);
970     }
971 
972     if (!!DemandedLHS || !!DemandedRHS) {
973       SDValue Op0 = Op.getOperand(0);
974       SDValue Op1 = Op.getOperand(1);
975 
976       Known.Zero.setAllBits();
977       Known.One.setAllBits();
978       if (!!DemandedLHS) {
979         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
980                                  Depth + 1))
981           return true;
982         Known.One &= Known2.One;
983         Known.Zero &= Known2.Zero;
984       }
985       if (!!DemandedRHS) {
986         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
987                                  Depth + 1))
988           return true;
989         Known.One &= Known2.One;
990         Known.Zero &= Known2.Zero;
991       }
992 
993       // Attempt to avoid multi-use ops if we don't need anything from them.
994       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
995           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
996       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
997           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
998       if (DemandedOp0 || DemandedOp1) {
999         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1000         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1001         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1002         return TLO.CombineTo(Op, NewOp);
1003       }
1004     }
1005     break;
1006   }
1007   case ISD::AND: {
1008     SDValue Op0 = Op.getOperand(0);
1009     SDValue Op1 = Op.getOperand(1);
1010 
1011     // If the RHS is a constant, check to see if the LHS would be zero without
1012     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1013     // simplify the LHS, here we're using information from the LHS to simplify
1014     // the RHS.
1015     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1016       // Do not increment Depth here; that can cause an infinite loop.
1017       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1018       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1019       if ((LHSKnown.Zero & DemandedBits) ==
1020           (~RHSC->getAPIntValue() & DemandedBits))
1021         return TLO.CombineTo(Op, Op0);
1022 
1023       // If any of the set bits in the RHS are known zero on the LHS, shrink
1024       // the constant.
1025       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1026         return true;
1027 
1028       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1029       // constant, but if this 'and' is only clearing bits that were just set by
1030       // the xor, then this 'and' can be eliminated by shrinking the mask of
1031       // the xor. For example, for a 32-bit X:
1032       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1033       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1034           LHSKnown.One == ~RHSC->getAPIntValue()) {
1035         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1036         return TLO.CombineTo(Op, Xor);
1037       }
1038     }
1039 
1040     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1041                              Depth + 1))
1042       return true;
1043     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1044     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1045                              Known2, TLO, Depth + 1))
1046       return true;
1047     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1048 
1049     // Attempt to avoid multi-use ops if we don't need anything from them.
1050     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1051       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1052           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1053       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1054           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1055       if (DemandedOp0 || DemandedOp1) {
1056         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1057         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1058         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1059         return TLO.CombineTo(Op, NewOp);
1060       }
1061     }
1062 
1063     // If all of the demanded bits are known one on one side, return the other.
1064     // These bits cannot contribute to the result of the 'and'.
1065     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1066       return TLO.CombineTo(Op, Op0);
1067     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1068       return TLO.CombineTo(Op, Op1);
1069     // If all of the demanded bits in the inputs are known zeros, return zero.
1070     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1071       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1072     // If the RHS is a constant, see if we can simplify it.
1073     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1074       return true;
1075     // If the operation can be done in a smaller type, do so.
1076     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1077       return true;
1078 
1079     // Output known-1 bits are only known if set in both the LHS & RHS.
1080     Known.One &= Known2.One;
1081     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1082     Known.Zero |= Known2.Zero;
1083     break;
1084   }
1085   case ISD::OR: {
1086     SDValue Op0 = Op.getOperand(0);
1087     SDValue Op1 = Op.getOperand(1);
1088 
1089     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1090                              Depth + 1))
1091       return true;
1092     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1093     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1094                              Known2, TLO, Depth + 1))
1095       return true;
1096     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1097 
1098     // Attempt to avoid multi-use ops if we don't need anything from them.
1099     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1100       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1101           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1102       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1103           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1104       if (DemandedOp0 || DemandedOp1) {
1105         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1106         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1107         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1108         return TLO.CombineTo(Op, NewOp);
1109       }
1110     }
1111 
1112     // If all of the demanded bits are known zero on one side, return the other.
1113     // These bits cannot contribute to the result of the 'or'.
1114     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1115       return TLO.CombineTo(Op, Op0);
1116     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1117       return TLO.CombineTo(Op, Op1);
1118     // If the RHS is a constant, see if we can simplify it.
1119     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1120       return true;
1121     // If the operation can be done in a smaller type, do so.
1122     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1123       return true;
1124 
1125     // Output known-0 bits are only known if clear in both the LHS & RHS.
1126     Known.Zero &= Known2.Zero;
1127     // Output known-1 are known to be set if set in either the LHS | RHS.
1128     Known.One |= Known2.One;
1129     break;
1130   }
1131   case ISD::XOR: {
1132     SDValue Op0 = Op.getOperand(0);
1133     SDValue Op1 = Op.getOperand(1);
1134 
1135     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1136                              Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1140                              Depth + 1))
1141       return true;
1142     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1143 
1144     // Attempt to avoid multi-use ops if we don't need anything from them.
1145     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1146       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1147           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1148       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1149           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1150       if (DemandedOp0 || DemandedOp1) {
1151         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1152         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1153         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1154         return TLO.CombineTo(Op, NewOp);
1155       }
1156     }
1157 
1158     // If all of the demanded bits are known zero on one side, return the other.
1159     // These bits cannot contribute to the result of the 'xor'.
1160     if (DemandedBits.isSubsetOf(Known.Zero))
1161       return TLO.CombineTo(Op, Op0);
1162     if (DemandedBits.isSubsetOf(Known2.Zero))
1163       return TLO.CombineTo(Op, Op1);
1164     // If the operation can be done in a smaller type, do so.
1165     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1166       return true;
1167 
1168     // If all of the unknown bits are known to be zero on one side or the other
1169     // (but not both) turn this into an *inclusive* or.
1170     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1171     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1172       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1173 
1174     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1175     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1176     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1177     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1178 
1179     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1180       // If one side is a constant, and all of the known set bits on the other
1181       // side are also set in the constant, turn this into an AND, as we know
1182       // the bits will be cleared.
1183       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1184       // NB: it is okay if more bits are known than are requested
1185       if (C->getAPIntValue() == Known2.One) {
1186         SDValue ANDC =
1187             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1188         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1189       }
1190 
1191       // If the RHS is a constant, see if we can change it. Don't alter a -1
1192       // constant because that's a 'not' op, and that is better for combining
1193       // and codegen.
1194       if (!C->isAllOnesValue()) {
1195         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1196           // We're flipping all demanded bits. Flip the undemanded bits too.
1197           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1198           return TLO.CombineTo(Op, New);
1199         }
1200         // If we can't turn this into a 'not', try to shrink the constant.
1201         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1202           return true;
1203       }
1204     }
1205 
1206     Known = std::move(KnownOut);
1207     break;
1208   }
1209   case ISD::SELECT:
1210     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1211                              Depth + 1))
1212       return true;
1213     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1214                              Depth + 1))
1215       return true;
1216     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1217     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1218 
1219     // If the operands are constants, see if we can simplify them.
1220     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1221       return true;
1222 
1223     // Only known if known in both the LHS and RHS.
1224     Known.One &= Known2.One;
1225     Known.Zero &= Known2.Zero;
1226     break;
1227   case ISD::SELECT_CC:
1228     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1229                              Depth + 1))
1230       return true;
1231     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1232                              Depth + 1))
1233       return true;
1234     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1235     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1236 
1237     // If the operands are constants, see if we can simplify them.
1238     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1239       return true;
1240 
1241     // Only known if known in both the LHS and RHS.
1242     Known.One &= Known2.One;
1243     Known.Zero &= Known2.Zero;
1244     break;
1245   case ISD::SETCC: {
1246     SDValue Op0 = Op.getOperand(0);
1247     SDValue Op1 = Op.getOperand(1);
1248     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1249     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1250     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1251     // -1, we may be able to bypass the setcc.
1252     if (DemandedBits.isSignMask() &&
1253         Op0.getScalarValueSizeInBits() == BitWidth &&
1254         getBooleanContents(VT) ==
1255             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1256       // If we're testing X < 0, then this compare isn't needed - just use X!
1257       // FIXME: We're limiting to integer types here, but this should also work
1258       // if we don't care about FP signed-zero. The use of SETLT with FP means
1259       // that we don't care about NaNs.
1260       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1261           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1262         return TLO.CombineTo(Op, Op0);
1263 
1264       // TODO: Should we check for other forms of sign-bit comparisons?
1265       // Examples: X <= -1, X >= 0
1266     }
1267     if (getBooleanContents(Op0.getValueType()) ==
1268             TargetLowering::ZeroOrOneBooleanContent &&
1269         BitWidth > 1)
1270       Known.Zero.setBitsFrom(1);
1271     break;
1272   }
1273   case ISD::SHL: {
1274     SDValue Op0 = Op.getOperand(0);
1275     SDValue Op1 = Op.getOperand(1);
1276 
1277     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1278       // If the shift count is an invalid immediate, don't do anything.
1279       if (SA->getAPIntValue().uge(BitWidth))
1280         break;
1281 
1282       unsigned ShAmt = SA->getZExtValue();
1283       if (ShAmt == 0)
1284         return TLO.CombineTo(Op, Op0);
1285 
1286       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1287       // single shift.  We can do this if the bottom bits (which are shifted
1288       // out) are never demanded.
1289       // TODO - support non-uniform vector amounts.
1290       if (Op0.getOpcode() == ISD::SRL) {
1291         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1292           if (ConstantSDNode *SA2 =
1293                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1294             if (SA2->getAPIntValue().ult(BitWidth)) {
1295               unsigned C1 = SA2->getZExtValue();
1296               unsigned Opc = ISD::SHL;
1297               int Diff = ShAmt - C1;
1298               if (Diff < 0) {
1299                 Diff = -Diff;
1300                 Opc = ISD::SRL;
1301               }
1302 
1303               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1304               return TLO.CombineTo(
1305                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1306             }
1307           }
1308         }
1309       }
1310 
1311       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1312                                Known, TLO, Depth + 1))
1313         return true;
1314 
1315       // Try shrinking the operation as long as the shift amount will still be
1316       // in range.
1317       if ((ShAmt < DemandedBits.getActiveBits()) &&
1318           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1319         return true;
1320 
1321       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1322       // are not demanded. This will likely allow the anyext to be folded away.
1323       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1324         SDValue InnerOp = Op0.getOperand(0);
1325         EVT InnerVT = InnerOp.getValueType();
1326         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1327         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1328             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1329           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1330           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1331             ShTy = InnerVT;
1332           SDValue NarrowShl =
1333               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1334                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1335           return TLO.CombineTo(
1336               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1337         }
1338         // Repeat the SHL optimization above in cases where an extension
1339         // intervenes: (shl (anyext (shr x, c1)), c2) to
1340         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1341         // aren't demanded (as above) and that the shifted upper c1 bits of
1342         // x aren't demanded.
1343         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1344             InnerOp.hasOneUse()) {
1345           if (ConstantSDNode *SA2 =
1346                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1347             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1348             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1349                 DemandedBits.getActiveBits() <=
1350                     (InnerBits - InnerShAmt + ShAmt) &&
1351                 DemandedBits.countTrailingZeros() >= ShAmt) {
1352               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1353                                                   Op1.getValueType());
1354               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1355                                                InnerOp.getOperand(0));
1356               return TLO.CombineTo(
1357                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1358             }
1359           }
1360         }
1361       }
1362 
1363       Known.Zero <<= ShAmt;
1364       Known.One <<= ShAmt;
1365       // low bits known zero.
1366       Known.Zero.setLowBits(ShAmt);
1367     }
1368     break;
1369   }
1370   case ISD::SRL: {
1371     SDValue Op0 = Op.getOperand(0);
1372     SDValue Op1 = Op.getOperand(1);
1373 
1374     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1375       // If the shift count is an invalid immediate, don't do anything.
1376       if (SA->getAPIntValue().uge(BitWidth))
1377         break;
1378 
1379       unsigned ShAmt = SA->getZExtValue();
1380       if (ShAmt == 0)
1381         return TLO.CombineTo(Op, Op0);
1382 
1383       EVT ShiftVT = Op1.getValueType();
1384       APInt InDemandedMask = (DemandedBits << ShAmt);
1385 
1386       // If the shift is exact, then it does demand the low bits (and knows that
1387       // they are zero).
1388       if (Op->getFlags().hasExact())
1389         InDemandedMask.setLowBits(ShAmt);
1390 
1391       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1392       // single shift.  We can do this if the top bits (which are shifted out)
1393       // are never demanded.
1394       // TODO - support non-uniform vector amounts.
1395       if (Op0.getOpcode() == ISD::SHL) {
1396         if (ConstantSDNode *SA2 =
1397                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1398           if (!DemandedBits.intersects(
1399                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1400             if (SA2->getAPIntValue().ult(BitWidth)) {
1401               unsigned C1 = SA2->getZExtValue();
1402               unsigned Opc = ISD::SRL;
1403               int Diff = ShAmt - C1;
1404               if (Diff < 0) {
1405                 Diff = -Diff;
1406                 Opc = ISD::SHL;
1407               }
1408 
1409               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1410               return TLO.CombineTo(
1411                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1412             }
1413           }
1414         }
1415       }
1416 
1417       // Compute the new bits that are at the top now.
1418       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1419                                Depth + 1))
1420         return true;
1421       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1422       Known.Zero.lshrInPlace(ShAmt);
1423       Known.One.lshrInPlace(ShAmt);
1424 
1425       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1426     }
1427     break;
1428   }
1429   case ISD::SRA: {
1430     SDValue Op0 = Op.getOperand(0);
1431     SDValue Op1 = Op.getOperand(1);
1432 
1433     // If this is an arithmetic shift right and only the low-bit is set, we can
1434     // always convert this into a logical shr, even if the shift amount is
1435     // variable.  The low bit of the shift cannot be an input sign bit unless
1436     // the shift amount is >= the size of the datatype, which is undefined.
1437     if (DemandedBits.isOneValue())
1438       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1439 
1440     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1441       // If the shift count is an invalid immediate, don't do anything.
1442       if (SA->getAPIntValue().uge(BitWidth))
1443         break;
1444 
1445       unsigned ShAmt = SA->getZExtValue();
1446       if (ShAmt == 0)
1447         return TLO.CombineTo(Op, Op0);
1448 
1449       APInt InDemandedMask = (DemandedBits << ShAmt);
1450 
1451       // If the shift is exact, then it does demand the low bits (and knows that
1452       // they are zero).
1453       if (Op->getFlags().hasExact())
1454         InDemandedMask.setLowBits(ShAmt);
1455 
1456       // If any of the demanded bits are produced by the sign extension, we also
1457       // demand the input sign bit.
1458       if (DemandedBits.countLeadingZeros() < ShAmt)
1459         InDemandedMask.setSignBit();
1460 
1461       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1462                                Depth + 1))
1463         return true;
1464       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1465       Known.Zero.lshrInPlace(ShAmt);
1466       Known.One.lshrInPlace(ShAmt);
1467 
1468       // If the input sign bit is known to be zero, or if none of the top bits
1469       // are demanded, turn this into an unsigned shift right.
1470       if (Known.Zero[BitWidth - ShAmt - 1] ||
1471           DemandedBits.countLeadingZeros() >= ShAmt) {
1472         SDNodeFlags Flags;
1473         Flags.setExact(Op->getFlags().hasExact());
1474         return TLO.CombineTo(
1475             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1476       }
1477 
1478       int Log2 = DemandedBits.exactLogBase2();
1479       if (Log2 >= 0) {
1480         // The bit must come from the sign.
1481         SDValue NewSA =
1482             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1483         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1484       }
1485 
1486       if (Known.One[BitWidth - ShAmt - 1])
1487         // New bits are known one.
1488         Known.One.setHighBits(ShAmt);
1489     }
1490     break;
1491   }
1492   case ISD::FSHL:
1493   case ISD::FSHR: {
1494     SDValue Op0 = Op.getOperand(0);
1495     SDValue Op1 = Op.getOperand(1);
1496     SDValue Op2 = Op.getOperand(2);
1497     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1498 
1499     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1500       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1501 
1502       // For fshl, 0-shift returns the 1st arg.
1503       // For fshr, 0-shift returns the 2nd arg.
1504       if (Amt == 0) {
1505         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1506                                  Known, TLO, Depth + 1))
1507           return true;
1508         break;
1509       }
1510 
1511       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1512       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1513       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1514       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1515       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1516                                Depth + 1))
1517         return true;
1518       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1519                                Depth + 1))
1520         return true;
1521 
1522       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1523       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1524       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1525       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1526       Known.One |= Known2.One;
1527       Known.Zero |= Known2.Zero;
1528     }
1529     break;
1530   }
1531   case ISD::BITREVERSE: {
1532     SDValue Src = Op.getOperand(0);
1533     APInt DemandedSrcBits = DemandedBits.reverseBits();
1534     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1535                              Depth + 1))
1536       return true;
1537     Known.One = Known2.One.reverseBits();
1538     Known.Zero = Known2.Zero.reverseBits();
1539     break;
1540   }
1541   case ISD::SIGN_EXTEND_INREG: {
1542     SDValue Op0 = Op.getOperand(0);
1543     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1544     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1545 
1546     // If we only care about the highest bit, don't bother shifting right.
1547     if (DemandedBits.isSignMask()) {
1548       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1549       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1550       // However if the input is already sign extended we expect the sign
1551       // extension to be dropped altogether later and do not simplify.
1552       if (!AlreadySignExtended) {
1553         // Compute the correct shift amount type, which must be getShiftAmountTy
1554         // for scalar types after legalization.
1555         EVT ShiftAmtTy = VT;
1556         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1557           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1558 
1559         SDValue ShiftAmt =
1560             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1561         return TLO.CombineTo(Op,
1562                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1563       }
1564     }
1565 
1566     // If none of the extended bits are demanded, eliminate the sextinreg.
1567     if (DemandedBits.getActiveBits() <= ExVTBits)
1568       return TLO.CombineTo(Op, Op0);
1569 
1570     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1571 
1572     // Since the sign extended bits are demanded, we know that the sign
1573     // bit is demanded.
1574     InputDemandedBits.setBit(ExVTBits - 1);
1575 
1576     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1577       return true;
1578     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1579 
1580     // If the sign bit of the input is known set or clear, then we know the
1581     // top bits of the result.
1582 
1583     // If the input sign bit is known zero, convert this into a zero extension.
1584     if (Known.Zero[ExVTBits - 1])
1585       return TLO.CombineTo(
1586           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1587 
1588     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1589     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1590       Known.One.setBitsFrom(ExVTBits);
1591       Known.Zero &= Mask;
1592     } else { // Input sign bit unknown
1593       Known.Zero &= Mask;
1594       Known.One &= Mask;
1595     }
1596     break;
1597   }
1598   case ISD::BUILD_PAIR: {
1599     EVT HalfVT = Op.getOperand(0).getValueType();
1600     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1601 
1602     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1603     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1604 
1605     KnownBits KnownLo, KnownHi;
1606 
1607     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1608       return true;
1609 
1610     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1611       return true;
1612 
1613     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1614                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1615 
1616     Known.One = KnownLo.One.zext(BitWidth) |
1617                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1618     break;
1619   }
1620   case ISD::ZERO_EXTEND:
1621   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1622     SDValue Src = Op.getOperand(0);
1623     EVT SrcVT = Src.getValueType();
1624     unsigned InBits = SrcVT.getScalarSizeInBits();
1625     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1626     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1627 
1628     // If none of the top bits are demanded, convert this into an any_extend.
1629     if (DemandedBits.getActiveBits() <= InBits) {
1630       // If we only need the non-extended bits of the bottom element
1631       // then we can just bitcast to the result.
1632       if (IsVecInReg && DemandedElts == 1 &&
1633           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1634           TLO.DAG.getDataLayout().isLittleEndian())
1635         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1636 
1637       unsigned Opc =
1638           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1639       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1640         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1641     }
1642 
1643     APInt InDemandedBits = DemandedBits.trunc(InBits);
1644     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1645     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1646                              Depth + 1))
1647       return true;
1648     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1649     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1650     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1651     break;
1652   }
1653   case ISD::SIGN_EXTEND:
1654   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1655     SDValue Src = Op.getOperand(0);
1656     EVT SrcVT = Src.getValueType();
1657     unsigned InBits = SrcVT.getScalarSizeInBits();
1658     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1659     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1660 
1661     // If none of the top bits are demanded, convert this into an any_extend.
1662     if (DemandedBits.getActiveBits() <= InBits) {
1663       // If we only need the non-extended bits of the bottom element
1664       // then we can just bitcast to the result.
1665       if (IsVecInReg && DemandedElts == 1 &&
1666           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1667           TLO.DAG.getDataLayout().isLittleEndian())
1668         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1669 
1670       unsigned Opc =
1671           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1672       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1673         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1674     }
1675 
1676     APInt InDemandedBits = DemandedBits.trunc(InBits);
1677     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1678 
1679     // Since some of the sign extended bits are demanded, we know that the sign
1680     // bit is demanded.
1681     InDemandedBits.setBit(InBits - 1);
1682 
1683     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1684                              Depth + 1))
1685       return true;
1686     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1687     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1688 
1689     // If the sign bit is known one, the top bits match.
1690     Known = Known.sext(BitWidth);
1691 
1692     // If the sign bit is known zero, convert this to a zero extend.
1693     if (Known.isNonNegative()) {
1694       unsigned Opc =
1695           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1696       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1697         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1698     }
1699     break;
1700   }
1701   case ISD::ANY_EXTEND:
1702   case ISD::ANY_EXTEND_VECTOR_INREG: {
1703     SDValue Src = Op.getOperand(0);
1704     EVT SrcVT = Src.getValueType();
1705     unsigned InBits = SrcVT.getScalarSizeInBits();
1706     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1707     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1708 
1709     // If we only need the bottom element then we can just bitcast.
1710     // TODO: Handle ANY_EXTEND?
1711     if (IsVecInReg && DemandedElts == 1 &&
1712         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1713         TLO.DAG.getDataLayout().isLittleEndian())
1714       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1715 
1716     APInt InDemandedBits = DemandedBits.trunc(InBits);
1717     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1718     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1719                              Depth + 1))
1720       return true;
1721     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1722     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1723     Known = Known.zext(BitWidth, false /* => any extend */);
1724     break;
1725   }
1726   case ISD::TRUNCATE: {
1727     SDValue Src = Op.getOperand(0);
1728 
1729     // Simplify the input, using demanded bit information, and compute the known
1730     // zero/one bits live out.
1731     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1732     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1733     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1734       return true;
1735     Known = Known.trunc(BitWidth);
1736 
1737     // Attempt to avoid multi-use ops if we don't need anything from them.
1738     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1739             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1740       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1741 
1742     // If the input is only used by this truncate, see if we can shrink it based
1743     // on the known demanded bits.
1744     if (Src.getNode()->hasOneUse()) {
1745       switch (Src.getOpcode()) {
1746       default:
1747         break;
1748       case ISD::SRL:
1749         // Shrink SRL by a constant if none of the high bits shifted in are
1750         // demanded.
1751         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1752           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1753           // undesirable.
1754           break;
1755 
1756         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1757         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1758           break;
1759 
1760         SDValue Shift = Src.getOperand(1);
1761         uint64_t ShVal = ShAmt->getZExtValue();
1762 
1763         if (TLO.LegalTypes())
1764           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1765 
1766         APInt HighBits =
1767             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1768         HighBits.lshrInPlace(ShVal);
1769         HighBits = HighBits.trunc(BitWidth);
1770 
1771         if (!(HighBits & DemandedBits)) {
1772           // None of the shifted in bits are needed.  Add a truncate of the
1773           // shift input, then shift it.
1774           SDValue NewTrunc =
1775               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1776           return TLO.CombineTo(
1777               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1778         }
1779         break;
1780       }
1781     }
1782 
1783     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1784     break;
1785   }
1786   case ISD::AssertZext: {
1787     // AssertZext demands all of the high bits, plus any of the low bits
1788     // demanded by its users.
1789     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1790     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1791     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1792                              TLO, Depth + 1))
1793       return true;
1794     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1795 
1796     Known.Zero |= ~InMask;
1797     break;
1798   }
1799   case ISD::EXTRACT_VECTOR_ELT: {
1800     SDValue Src = Op.getOperand(0);
1801     SDValue Idx = Op.getOperand(1);
1802     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1803     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1804 
1805     // Demand the bits from every vector element without a constant index.
1806     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1807     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1808       if (CIdx->getAPIntValue().ult(NumSrcElts))
1809         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1810 
1811     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1812     // anything about the extended bits.
1813     APInt DemandedSrcBits = DemandedBits;
1814     if (BitWidth > EltBitWidth)
1815       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1816 
1817     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1818                              Depth + 1))
1819       return true;
1820 
1821     Known = Known2;
1822     if (BitWidth > EltBitWidth)
1823       Known = Known.zext(BitWidth, false /* => any extend */);
1824     break;
1825   }
1826   case ISD::BITCAST: {
1827     SDValue Src = Op.getOperand(0);
1828     EVT SrcVT = Src.getValueType();
1829     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1830 
1831     // If this is an FP->Int bitcast and if the sign bit is the only
1832     // thing demanded, turn this into a FGETSIGN.
1833     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1834         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1835         SrcVT.isFloatingPoint()) {
1836       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1837       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1838       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1839           SrcVT != MVT::f128) {
1840         // Cannot eliminate/lower SHL for f128 yet.
1841         EVT Ty = OpVTLegal ? VT : MVT::i32;
1842         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1843         // place.  We expect the SHL to be eliminated by other optimizations.
1844         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1845         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1846         if (!OpVTLegal && OpVTSizeInBits > 32)
1847           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1848         unsigned ShVal = Op.getValueSizeInBits() - 1;
1849         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1850         return TLO.CombineTo(Op,
1851                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1852       }
1853     }
1854 
1855     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1856     // Demand the elt/bit if any of the original elts/bits are demanded.
1857     // TODO - bigendian once we have test coverage.
1858     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1859         TLO.DAG.getDataLayout().isLittleEndian()) {
1860       unsigned Scale = BitWidth / NumSrcEltBits;
1861       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1862       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1863       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1864       for (unsigned i = 0; i != Scale; ++i) {
1865         unsigned Offset = i * NumSrcEltBits;
1866         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1867         if (!Sub.isNullValue()) {
1868           DemandedSrcBits |= Sub;
1869           for (unsigned j = 0; j != NumElts; ++j)
1870             if (DemandedElts[j])
1871               DemandedSrcElts.setBit((j * Scale) + i);
1872         }
1873       }
1874 
1875       APInt KnownSrcUndef, KnownSrcZero;
1876       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1877                                      KnownSrcZero, TLO, Depth + 1))
1878         return true;
1879 
1880       KnownBits KnownSrcBits;
1881       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1882                                KnownSrcBits, TLO, Depth + 1))
1883         return true;
1884     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1885                TLO.DAG.getDataLayout().isLittleEndian()) {
1886       unsigned Scale = NumSrcEltBits / BitWidth;
1887       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1888       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1889       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1890       for (unsigned i = 0; i != NumElts; ++i)
1891         if (DemandedElts[i]) {
1892           unsigned Offset = (i % Scale) * BitWidth;
1893           DemandedSrcBits.insertBits(DemandedBits, Offset);
1894           DemandedSrcElts.setBit(i / Scale);
1895         }
1896 
1897       if (SrcVT.isVector()) {
1898         APInt KnownSrcUndef, KnownSrcZero;
1899         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1900                                        KnownSrcZero, TLO, Depth + 1))
1901           return true;
1902       }
1903 
1904       KnownBits KnownSrcBits;
1905       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1906                                KnownSrcBits, TLO, Depth + 1))
1907         return true;
1908     }
1909 
1910     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1911     // recursive call where Known may be useful to the caller.
1912     if (Depth > 0) {
1913       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1914       return false;
1915     }
1916     break;
1917   }
1918   case ISD::ADD:
1919   case ISD::MUL:
1920   case ISD::SUB: {
1921     // Add, Sub, and Mul don't demand any bits in positions beyond that
1922     // of the highest bit demanded of them.
1923     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1924     SDNodeFlags Flags = Op.getNode()->getFlags();
1925     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1926     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1927     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1928                              Depth + 1) ||
1929         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1930                              Depth + 1) ||
1931         // See if the operation should be performed at a smaller bit width.
1932         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1933       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1934         // Disable the nsw and nuw flags. We can no longer guarantee that we
1935         // won't wrap after simplification.
1936         Flags.setNoSignedWrap(false);
1937         Flags.setNoUnsignedWrap(false);
1938         SDValue NewOp =
1939             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1940         return TLO.CombineTo(Op, NewOp);
1941       }
1942       return true;
1943     }
1944 
1945     // Attempt to avoid multi-use ops if we don't need anything from them.
1946     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1947       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1948           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1949       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1950           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1951       if (DemandedOp0 || DemandedOp1) {
1952         Flags.setNoSignedWrap(false);
1953         Flags.setNoUnsignedWrap(false);
1954         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1955         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1956         SDValue NewOp =
1957             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1958         return TLO.CombineTo(Op, NewOp);
1959       }
1960     }
1961 
1962     // If we have a constant operand, we may be able to turn it into -1 if we
1963     // do not demand the high bits. This can make the constant smaller to
1964     // encode, allow more general folding, or match specialized instruction
1965     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1966     // is probably not useful (and could be detrimental).
1967     ConstantSDNode *C = isConstOrConstSplat(Op1);
1968     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1969     if (C && !C->isAllOnesValue() && !C->isOne() &&
1970         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1971       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1972       // Disable the nsw and nuw flags. We can no longer guarantee that we
1973       // won't wrap after simplification.
1974       Flags.setNoSignedWrap(false);
1975       Flags.setNoUnsignedWrap(false);
1976       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1977       return TLO.CombineTo(Op, NewOp);
1978     }
1979 
1980     LLVM_FALLTHROUGH;
1981   }
1982   default:
1983     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1984       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1985                                             Known, TLO, Depth))
1986         return true;
1987       break;
1988     }
1989 
1990     // Just use computeKnownBits to compute output bits.
1991     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1992     break;
1993   }
1994 
1995   // If we know the value of all of the demanded bits, return this as a
1996   // constant.
1997   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1998     // Avoid folding to a constant if any OpaqueConstant is involved.
1999     const SDNode *N = Op.getNode();
2000     for (SDNodeIterator I = SDNodeIterator::begin(N),
2001                         E = SDNodeIterator::end(N);
2002          I != E; ++I) {
2003       SDNode *Op = *I;
2004       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2005         if (C->isOpaque())
2006           return false;
2007     }
2008     // TODO: Handle float bits as well.
2009     if (VT.isInteger())
2010       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2011   }
2012 
2013   return false;
2014 }
2015 
2016 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2017                                                 const APInt &DemandedElts,
2018                                                 APInt &KnownUndef,
2019                                                 APInt &KnownZero,
2020                                                 DAGCombinerInfo &DCI) const {
2021   SelectionDAG &DAG = DCI.DAG;
2022   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2023                         !DCI.isBeforeLegalizeOps());
2024 
2025   bool Simplified =
2026       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2027   if (Simplified) {
2028     DCI.AddToWorklist(Op.getNode());
2029     DCI.CommitTargetLoweringOpt(TLO);
2030   }
2031 
2032   return Simplified;
2033 }
2034 
2035 /// Given a vector binary operation and known undefined elements for each input
2036 /// operand, compute whether each element of the output is undefined.
2037 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2038                                          const APInt &UndefOp0,
2039                                          const APInt &UndefOp1) {
2040   EVT VT = BO.getValueType();
2041   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2042          "Vector binop only");
2043 
2044   EVT EltVT = VT.getVectorElementType();
2045   unsigned NumElts = VT.getVectorNumElements();
2046   assert(UndefOp0.getBitWidth() == NumElts &&
2047          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2048 
2049   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2050                                    const APInt &UndefVals) {
2051     if (UndefVals[Index])
2052       return DAG.getUNDEF(EltVT);
2053 
2054     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2055       // Try hard to make sure that the getNode() call is not creating temporary
2056       // nodes. Ignore opaque integers because they do not constant fold.
2057       SDValue Elt = BV->getOperand(Index);
2058       auto *C = dyn_cast<ConstantSDNode>(Elt);
2059       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2060         return Elt;
2061     }
2062 
2063     return SDValue();
2064   };
2065 
2066   APInt KnownUndef = APInt::getNullValue(NumElts);
2067   for (unsigned i = 0; i != NumElts; ++i) {
2068     // If both inputs for this element are either constant or undef and match
2069     // the element type, compute the constant/undef result for this element of
2070     // the vector.
2071     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2072     // not handle FP constants. The code within getNode() should be refactored
2073     // to avoid the danger of creating a bogus temporary node here.
2074     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2075     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2076     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2077       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2078         KnownUndef.setBit(i);
2079   }
2080   return KnownUndef;
2081 }
2082 
2083 bool TargetLowering::SimplifyDemandedVectorElts(
2084     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2085     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2086     bool AssumeSingleUse) const {
2087   EVT VT = Op.getValueType();
2088   APInt DemandedElts = OriginalDemandedElts;
2089   unsigned NumElts = DemandedElts.getBitWidth();
2090   assert(VT.isVector() && "Expected vector op");
2091   assert(VT.getVectorNumElements() == NumElts &&
2092          "Mask size mismatches value type element count!");
2093 
2094   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2095 
2096   // Undef operand.
2097   if (Op.isUndef()) {
2098     KnownUndef.setAllBits();
2099     return false;
2100   }
2101 
2102   // If Op has other users, assume that all elements are needed.
2103   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2104     DemandedElts.setAllBits();
2105 
2106   // Not demanding any elements from Op.
2107   if (DemandedElts == 0) {
2108     KnownUndef.setAllBits();
2109     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2110   }
2111 
2112   // Limit search depth.
2113   if (Depth >= SelectionDAG::MaxRecursionDepth)
2114     return false;
2115 
2116   SDLoc DL(Op);
2117   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2118 
2119   switch (Op.getOpcode()) {
2120   case ISD::SCALAR_TO_VECTOR: {
2121     if (!DemandedElts[0]) {
2122       KnownUndef.setAllBits();
2123       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2124     }
2125     KnownUndef.setHighBits(NumElts - 1);
2126     break;
2127   }
2128   case ISD::BITCAST: {
2129     SDValue Src = Op.getOperand(0);
2130     EVT SrcVT = Src.getValueType();
2131 
2132     // We only handle vectors here.
2133     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2134     if (!SrcVT.isVector())
2135       break;
2136 
2137     // Fast handling of 'identity' bitcasts.
2138     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2139     if (NumSrcElts == NumElts)
2140       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2141                                         KnownZero, TLO, Depth + 1);
2142 
2143     APInt SrcZero, SrcUndef;
2144     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2145 
2146     // Bitcast from 'large element' src vector to 'small element' vector, we
2147     // must demand a source element if any DemandedElt maps to it.
2148     if ((NumElts % NumSrcElts) == 0) {
2149       unsigned Scale = NumElts / NumSrcElts;
2150       for (unsigned i = 0; i != NumElts; ++i)
2151         if (DemandedElts[i])
2152           SrcDemandedElts.setBit(i / Scale);
2153 
2154       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2155                                      TLO, Depth + 1))
2156         return true;
2157 
2158       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2159       // of the large element.
2160       // TODO - bigendian once we have test coverage.
2161       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2162         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2163         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2164         for (unsigned i = 0; i != NumElts; ++i)
2165           if (DemandedElts[i]) {
2166             unsigned Ofs = (i % Scale) * EltSizeInBits;
2167             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2168           }
2169 
2170         KnownBits Known;
2171         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2172           return true;
2173       }
2174 
2175       // If the src element is zero/undef then all the output elements will be -
2176       // only demanded elements are guaranteed to be correct.
2177       for (unsigned i = 0; i != NumSrcElts; ++i) {
2178         if (SrcDemandedElts[i]) {
2179           if (SrcZero[i])
2180             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2181           if (SrcUndef[i])
2182             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2183         }
2184       }
2185     }
2186 
2187     // Bitcast from 'small element' src vector to 'large element' vector, we
2188     // demand all smaller source elements covered by the larger demanded element
2189     // of this vector.
2190     if ((NumSrcElts % NumElts) == 0) {
2191       unsigned Scale = NumSrcElts / NumElts;
2192       for (unsigned i = 0; i != NumElts; ++i)
2193         if (DemandedElts[i])
2194           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2195 
2196       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2197                                      TLO, Depth + 1))
2198         return true;
2199 
2200       // If all the src elements covering an output element are zero/undef, then
2201       // the output element will be as well, assuming it was demanded.
2202       for (unsigned i = 0; i != NumElts; ++i) {
2203         if (DemandedElts[i]) {
2204           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2205             KnownZero.setBit(i);
2206           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2207             KnownUndef.setBit(i);
2208         }
2209       }
2210     }
2211     break;
2212   }
2213   case ISD::BUILD_VECTOR: {
2214     // Check all elements and simplify any unused elements with UNDEF.
2215     if (!DemandedElts.isAllOnesValue()) {
2216       // Don't simplify BROADCASTS.
2217       if (llvm::any_of(Op->op_values(),
2218                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2219         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2220         bool Updated = false;
2221         for (unsigned i = 0; i != NumElts; ++i) {
2222           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2223             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2224             KnownUndef.setBit(i);
2225             Updated = true;
2226           }
2227         }
2228         if (Updated)
2229           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2230       }
2231     }
2232     for (unsigned i = 0; i != NumElts; ++i) {
2233       SDValue SrcOp = Op.getOperand(i);
2234       if (SrcOp.isUndef()) {
2235         KnownUndef.setBit(i);
2236       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2237                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2238         KnownZero.setBit(i);
2239       }
2240     }
2241     break;
2242   }
2243   case ISD::CONCAT_VECTORS: {
2244     EVT SubVT = Op.getOperand(0).getValueType();
2245     unsigned NumSubVecs = Op.getNumOperands();
2246     unsigned NumSubElts = SubVT.getVectorNumElements();
2247     for (unsigned i = 0; i != NumSubVecs; ++i) {
2248       SDValue SubOp = Op.getOperand(i);
2249       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2250       APInt SubUndef, SubZero;
2251       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2252                                      Depth + 1))
2253         return true;
2254       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2255       KnownZero.insertBits(SubZero, i * NumSubElts);
2256     }
2257     break;
2258   }
2259   case ISD::INSERT_SUBVECTOR: {
2260     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2261       break;
2262     SDValue Base = Op.getOperand(0);
2263     SDValue Sub = Op.getOperand(1);
2264     EVT SubVT = Sub.getValueType();
2265     unsigned NumSubElts = SubVT.getVectorNumElements();
2266     const APInt &Idx = Op.getConstantOperandAPInt(2);
2267     if (Idx.ugt(NumElts - NumSubElts))
2268       break;
2269     unsigned SubIdx = Idx.getZExtValue();
2270     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2271     APInt SubUndef, SubZero;
2272     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2273                                    Depth + 1))
2274       return true;
2275     APInt BaseElts = DemandedElts;
2276     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2277 
2278     // If none of the base operand elements are demanded, replace it with undef.
2279     if (!BaseElts && !Base.isUndef())
2280       return TLO.CombineTo(Op,
2281                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2282                                            TLO.DAG.getUNDEF(VT),
2283                                            Op.getOperand(1),
2284                                            Op.getOperand(2)));
2285 
2286     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2287                                    Depth + 1))
2288       return true;
2289     KnownUndef.insertBits(SubUndef, SubIdx);
2290     KnownZero.insertBits(SubZero, SubIdx);
2291     break;
2292   }
2293   case ISD::EXTRACT_SUBVECTOR: {
2294     SDValue Src = Op.getOperand(0);
2295     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2296     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2297     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2298       // Offset the demanded elts by the subvector index.
2299       uint64_t Idx = SubIdx->getZExtValue();
2300       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2301       APInt SrcUndef, SrcZero;
2302       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2303                                      Depth + 1))
2304         return true;
2305       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2306       KnownZero = SrcZero.extractBits(NumElts, Idx);
2307     }
2308     break;
2309   }
2310   case ISD::INSERT_VECTOR_ELT: {
2311     SDValue Vec = Op.getOperand(0);
2312     SDValue Scl = Op.getOperand(1);
2313     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2314 
2315     // For a legal, constant insertion index, if we don't need this insertion
2316     // then strip it, else remove it from the demanded elts.
2317     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2318       unsigned Idx = CIdx->getZExtValue();
2319       if (!DemandedElts[Idx])
2320         return TLO.CombineTo(Op, Vec);
2321 
2322       APInt DemandedVecElts(DemandedElts);
2323       DemandedVecElts.clearBit(Idx);
2324       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2325                                      KnownZero, TLO, Depth + 1))
2326         return true;
2327 
2328       KnownUndef.clearBit(Idx);
2329       if (Scl.isUndef())
2330         KnownUndef.setBit(Idx);
2331 
2332       KnownZero.clearBit(Idx);
2333       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2334         KnownZero.setBit(Idx);
2335       break;
2336     }
2337 
2338     APInt VecUndef, VecZero;
2339     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2340                                    Depth + 1))
2341       return true;
2342     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2343     break;
2344   }
2345   case ISD::VSELECT: {
2346     // Try to transform the select condition based on the current demanded
2347     // elements.
2348     // TODO: If a condition element is undef, we can choose from one arm of the
2349     //       select (and if one arm is undef, then we can propagate that to the
2350     //       result).
2351     // TODO - add support for constant vselect masks (see IR version of this).
2352     APInt UnusedUndef, UnusedZero;
2353     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2354                                    UnusedZero, TLO, Depth + 1))
2355       return true;
2356 
2357     // See if we can simplify either vselect operand.
2358     APInt DemandedLHS(DemandedElts);
2359     APInt DemandedRHS(DemandedElts);
2360     APInt UndefLHS, ZeroLHS;
2361     APInt UndefRHS, ZeroRHS;
2362     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2363                                    ZeroLHS, TLO, Depth + 1))
2364       return true;
2365     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2366                                    ZeroRHS, TLO, Depth + 1))
2367       return true;
2368 
2369     KnownUndef = UndefLHS & UndefRHS;
2370     KnownZero = ZeroLHS & ZeroRHS;
2371     break;
2372   }
2373   case ISD::VECTOR_SHUFFLE: {
2374     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2375 
2376     // Collect demanded elements from shuffle operands..
2377     APInt DemandedLHS(NumElts, 0);
2378     APInt DemandedRHS(NumElts, 0);
2379     for (unsigned i = 0; i != NumElts; ++i) {
2380       int M = ShuffleMask[i];
2381       if (M < 0 || !DemandedElts[i])
2382         continue;
2383       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2384       if (M < (int)NumElts)
2385         DemandedLHS.setBit(M);
2386       else
2387         DemandedRHS.setBit(M - NumElts);
2388     }
2389 
2390     // See if we can simplify either shuffle operand.
2391     APInt UndefLHS, ZeroLHS;
2392     APInt UndefRHS, ZeroRHS;
2393     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2394                                    ZeroLHS, TLO, Depth + 1))
2395       return true;
2396     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2397                                    ZeroRHS, TLO, Depth + 1))
2398       return true;
2399 
2400     // Simplify mask using undef elements from LHS/RHS.
2401     bool Updated = false;
2402     bool IdentityLHS = true, IdentityRHS = true;
2403     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2404     for (unsigned i = 0; i != NumElts; ++i) {
2405       int &M = NewMask[i];
2406       if (M < 0)
2407         continue;
2408       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2409           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2410         Updated = true;
2411         M = -1;
2412       }
2413       IdentityLHS &= (M < 0) || (M == (int)i);
2414       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2415     }
2416 
2417     // Update legal shuffle masks based on demanded elements if it won't reduce
2418     // to Identity which can cause premature removal of the shuffle mask.
2419     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2420       SDValue LegalShuffle =
2421           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2422                                   NewMask, TLO.DAG);
2423       if (LegalShuffle)
2424         return TLO.CombineTo(Op, LegalShuffle);
2425     }
2426 
2427     // Propagate undef/zero elements from LHS/RHS.
2428     for (unsigned i = 0; i != NumElts; ++i) {
2429       int M = ShuffleMask[i];
2430       if (M < 0) {
2431         KnownUndef.setBit(i);
2432       } else if (M < (int)NumElts) {
2433         if (UndefLHS[M])
2434           KnownUndef.setBit(i);
2435         if (ZeroLHS[M])
2436           KnownZero.setBit(i);
2437       } else {
2438         if (UndefRHS[M - NumElts])
2439           KnownUndef.setBit(i);
2440         if (ZeroRHS[M - NumElts])
2441           KnownZero.setBit(i);
2442       }
2443     }
2444     break;
2445   }
2446   case ISD::ANY_EXTEND_VECTOR_INREG:
2447   case ISD::SIGN_EXTEND_VECTOR_INREG:
2448   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2449     APInt SrcUndef, SrcZero;
2450     SDValue Src = Op.getOperand(0);
2451     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2452     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2453     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2454                                    Depth + 1))
2455       return true;
2456     KnownZero = SrcZero.zextOrTrunc(NumElts);
2457     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2458 
2459     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2460         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2461         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2462       // aext - if we just need the bottom element then we can bitcast.
2463       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2464     }
2465 
2466     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2467       // zext(undef) upper bits are guaranteed to be zero.
2468       if (DemandedElts.isSubsetOf(KnownUndef))
2469         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2470       KnownUndef.clearAllBits();
2471     }
2472     break;
2473   }
2474 
2475   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2476   // MAX, saturated math, etc.
2477   case ISD::OR:
2478   case ISD::XOR:
2479   case ISD::ADD:
2480   case ISD::SUB:
2481   case ISD::FADD:
2482   case ISD::FSUB:
2483   case ISD::FMUL:
2484   case ISD::FDIV:
2485   case ISD::FREM: {
2486     APInt UndefRHS, ZeroRHS;
2487     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2488                                    ZeroRHS, TLO, Depth + 1))
2489       return true;
2490     APInt UndefLHS, ZeroLHS;
2491     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2492                                    ZeroLHS, TLO, Depth + 1))
2493       return true;
2494 
2495     KnownZero = ZeroLHS & ZeroRHS;
2496     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2497     break;
2498   }
2499   case ISD::SHL:
2500   case ISD::SRL:
2501   case ISD::SRA:
2502   case ISD::ROTL:
2503   case ISD::ROTR: {
2504     APInt UndefRHS, ZeroRHS;
2505     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2506                                    ZeroRHS, TLO, Depth + 1))
2507       return true;
2508     APInt UndefLHS, ZeroLHS;
2509     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2510                                    ZeroLHS, TLO, Depth + 1))
2511       return true;
2512 
2513     KnownZero = ZeroLHS;
2514     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2515     break;
2516   }
2517   case ISD::MUL:
2518   case ISD::AND: {
2519     APInt SrcUndef, SrcZero;
2520     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2521                                    SrcZero, TLO, Depth + 1))
2522       return true;
2523     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2524                                    KnownZero, TLO, Depth + 1))
2525       return true;
2526 
2527     // If either side has a zero element, then the result element is zero, even
2528     // if the other is an UNDEF.
2529     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2530     // and then handle 'and' nodes with the rest of the binop opcodes.
2531     KnownZero |= SrcZero;
2532     KnownUndef &= SrcUndef;
2533     KnownUndef &= ~KnownZero;
2534     break;
2535   }
2536   case ISD::TRUNCATE:
2537   case ISD::SIGN_EXTEND:
2538   case ISD::ZERO_EXTEND:
2539     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2540                                    KnownZero, TLO, Depth + 1))
2541       return true;
2542 
2543     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2544       // zext(undef) upper bits are guaranteed to be zero.
2545       if (DemandedElts.isSubsetOf(KnownUndef))
2546         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2547       KnownUndef.clearAllBits();
2548     }
2549     break;
2550   default: {
2551     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2552       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2553                                                   KnownZero, TLO, Depth))
2554         return true;
2555     } else {
2556       KnownBits Known;
2557       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2558       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2559                                TLO, Depth, AssumeSingleUse))
2560         return true;
2561     }
2562     break;
2563   }
2564   }
2565   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2566 
2567   // Constant fold all undef cases.
2568   // TODO: Handle zero cases as well.
2569   if (DemandedElts.isSubsetOf(KnownUndef))
2570     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2571 
2572   return false;
2573 }
2574 
2575 /// Determine which of the bits specified in Mask are known to be either zero or
2576 /// one and return them in the Known.
2577 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2578                                                    KnownBits &Known,
2579                                                    const APInt &DemandedElts,
2580                                                    const SelectionDAG &DAG,
2581                                                    unsigned Depth) const {
2582   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2583           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2584           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2585           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2586          "Should use MaskedValueIsZero if you don't know whether Op"
2587          " is a target node!");
2588   Known.resetAll();
2589 }
2590 
2591 void TargetLowering::computeKnownBitsForTargetInstr(
2592     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2593     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2594     unsigned Depth) const {
2595   Known.resetAll();
2596 }
2597 
2598 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2599                                                    KnownBits &Known,
2600                                                    const APInt &DemandedElts,
2601                                                    const SelectionDAG &DAG,
2602                                                    unsigned Depth) const {
2603   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2604 
2605   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2606     // The low bits are known zero if the pointer is aligned.
2607     Known.Zero.setLowBits(Log2_32(Align));
2608   }
2609 }
2610 
2611 /// This method can be implemented by targets that want to expose additional
2612 /// information about sign bits to the DAG Combiner.
2613 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2614                                                          const APInt &,
2615                                                          const SelectionDAG &,
2616                                                          unsigned Depth) const {
2617   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2618           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2619           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2620           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2621          "Should use ComputeNumSignBits if you don't know whether Op"
2622          " is a target node!");
2623   return 1;
2624 }
2625 
2626 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2627     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2628     TargetLoweringOpt &TLO, unsigned Depth) const {
2629   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2630           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2631           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2632           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2633          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2634          " is a target node!");
2635   return false;
2636 }
2637 
2638 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2639     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2640     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2641   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2642           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2643           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2644           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2645          "Should use SimplifyDemandedBits if you don't know whether Op"
2646          " is a target node!");
2647   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2648   return false;
2649 }
2650 
2651 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2652     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2653     SelectionDAG &DAG, unsigned Depth) const {
2654   assert(
2655       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2656        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2657        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2658        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2659       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2660       " is a target node!");
2661   return SDValue();
2662 }
2663 
2664 SDValue
2665 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2666                                         SDValue N1, MutableArrayRef<int> Mask,
2667                                         SelectionDAG &DAG) const {
2668   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2669   if (!LegalMask) {
2670     std::swap(N0, N1);
2671     ShuffleVectorSDNode::commuteMask(Mask);
2672     LegalMask = isShuffleMaskLegal(Mask, VT);
2673   }
2674 
2675   if (!LegalMask)
2676     return SDValue();
2677 
2678   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2679 }
2680 
2681 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2682   return nullptr;
2683 }
2684 
2685 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2686                                                   const SelectionDAG &DAG,
2687                                                   bool SNaN,
2688                                                   unsigned Depth) const {
2689   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2690           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2691           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2692           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2693          "Should use isKnownNeverNaN if you don't know whether Op"
2694          " is a target node!");
2695   return false;
2696 }
2697 
2698 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2699 // work with truncating build vectors and vectors with elements of less than
2700 // 8 bits.
2701 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2702   if (!N)
2703     return false;
2704 
2705   APInt CVal;
2706   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2707     CVal = CN->getAPIntValue();
2708   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2709     auto *CN = BV->getConstantSplatNode();
2710     if (!CN)
2711       return false;
2712 
2713     // If this is a truncating build vector, truncate the splat value.
2714     // Otherwise, we may fail to match the expected values below.
2715     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2716     CVal = CN->getAPIntValue();
2717     if (BVEltWidth < CVal.getBitWidth())
2718       CVal = CVal.trunc(BVEltWidth);
2719   } else {
2720     return false;
2721   }
2722 
2723   switch (getBooleanContents(N->getValueType(0))) {
2724   case UndefinedBooleanContent:
2725     return CVal[0];
2726   case ZeroOrOneBooleanContent:
2727     return CVal.isOneValue();
2728   case ZeroOrNegativeOneBooleanContent:
2729     return CVal.isAllOnesValue();
2730   }
2731 
2732   llvm_unreachable("Invalid boolean contents");
2733 }
2734 
2735 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2736   if (!N)
2737     return false;
2738 
2739   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2740   if (!CN) {
2741     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2742     if (!BV)
2743       return false;
2744 
2745     // Only interested in constant splats, we don't care about undef
2746     // elements in identifying boolean constants and getConstantSplatNode
2747     // returns NULL if all ops are undef;
2748     CN = BV->getConstantSplatNode();
2749     if (!CN)
2750       return false;
2751   }
2752 
2753   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2754     return !CN->getAPIntValue()[0];
2755 
2756   return CN->isNullValue();
2757 }
2758 
2759 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2760                                        bool SExt) const {
2761   if (VT == MVT::i1)
2762     return N->isOne();
2763 
2764   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2765   switch (Cnt) {
2766   case TargetLowering::ZeroOrOneBooleanContent:
2767     // An extended value of 1 is always true, unless its original type is i1,
2768     // in which case it will be sign extended to -1.
2769     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2770   case TargetLowering::UndefinedBooleanContent:
2771   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2772     return N->isAllOnesValue() && SExt;
2773   }
2774   llvm_unreachable("Unexpected enumeration.");
2775 }
2776 
2777 /// This helper function of SimplifySetCC tries to optimize the comparison when
2778 /// either operand of the SetCC node is a bitwise-and instruction.
2779 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2780                                          ISD::CondCode Cond, const SDLoc &DL,
2781                                          DAGCombinerInfo &DCI) const {
2782   // Match these patterns in any of their permutations:
2783   // (X & Y) == Y
2784   // (X & Y) != Y
2785   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2786     std::swap(N0, N1);
2787 
2788   EVT OpVT = N0.getValueType();
2789   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2790       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2791     return SDValue();
2792 
2793   SDValue X, Y;
2794   if (N0.getOperand(0) == N1) {
2795     X = N0.getOperand(1);
2796     Y = N0.getOperand(0);
2797   } else if (N0.getOperand(1) == N1) {
2798     X = N0.getOperand(0);
2799     Y = N0.getOperand(1);
2800   } else {
2801     return SDValue();
2802   }
2803 
2804   SelectionDAG &DAG = DCI.DAG;
2805   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2806   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2807     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2808     // Note that where Y is variable and is known to have at most one bit set
2809     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2810     // equivalent when Y == 0.
2811     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2812     if (DCI.isBeforeLegalizeOps() ||
2813         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2814       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2815   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2816     // If the target supports an 'and-not' or 'and-complement' logic operation,
2817     // try to use that to make a comparison operation more efficient.
2818     // But don't do this transform if the mask is a single bit because there are
2819     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2820     // 'rlwinm' on PPC).
2821 
2822     // Bail out if the compare operand that we want to turn into a zero is
2823     // already a zero (otherwise, infinite loop).
2824     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2825     if (YConst && YConst->isNullValue())
2826       return SDValue();
2827 
2828     // Transform this into: ~X & Y == 0.
2829     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2830     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2831     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2832   }
2833 
2834   return SDValue();
2835 }
2836 
2837 /// There are multiple IR patterns that could be checking whether certain
2838 /// truncation of a signed number would be lossy or not. The pattern which is
2839 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2840 /// We are looking for the following pattern: (KeptBits is a constant)
2841 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2842 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2843 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2844 /// We will unfold it into the natural trunc+sext pattern:
2845 ///   ((%x << C) a>> C) dstcond %x
2846 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2847 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2848     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2849     const SDLoc &DL) const {
2850   // We must be comparing with a constant.
2851   ConstantSDNode *C1;
2852   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2853     return SDValue();
2854 
2855   // N0 should be:  add %x, (1 << (KeptBits-1))
2856   if (N0->getOpcode() != ISD::ADD)
2857     return SDValue();
2858 
2859   // And we must be 'add'ing a constant.
2860   ConstantSDNode *C01;
2861   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2862     return SDValue();
2863 
2864   SDValue X = N0->getOperand(0);
2865   EVT XVT = X.getValueType();
2866 
2867   // Validate constants ...
2868 
2869   APInt I1 = C1->getAPIntValue();
2870 
2871   ISD::CondCode NewCond;
2872   if (Cond == ISD::CondCode::SETULT) {
2873     NewCond = ISD::CondCode::SETEQ;
2874   } else if (Cond == ISD::CondCode::SETULE) {
2875     NewCond = ISD::CondCode::SETEQ;
2876     // But need to 'canonicalize' the constant.
2877     I1 += 1;
2878   } else if (Cond == ISD::CondCode::SETUGT) {
2879     NewCond = ISD::CondCode::SETNE;
2880     // But need to 'canonicalize' the constant.
2881     I1 += 1;
2882   } else if (Cond == ISD::CondCode::SETUGE) {
2883     NewCond = ISD::CondCode::SETNE;
2884   } else
2885     return SDValue();
2886 
2887   APInt I01 = C01->getAPIntValue();
2888 
2889   auto checkConstants = [&I1, &I01]() -> bool {
2890     // Both of them must be power-of-two, and the constant from setcc is bigger.
2891     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2892   };
2893 
2894   if (checkConstants()) {
2895     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2896   } else {
2897     // What if we invert constants? (and the target predicate)
2898     I1.negate();
2899     I01.negate();
2900     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2901     if (!checkConstants())
2902       return SDValue();
2903     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2904   }
2905 
2906   // They are power-of-two, so which bit is set?
2907   const unsigned KeptBits = I1.logBase2();
2908   const unsigned KeptBitsMinusOne = I01.logBase2();
2909 
2910   // Magic!
2911   if (KeptBits != (KeptBitsMinusOne + 1))
2912     return SDValue();
2913   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2914 
2915   // We don't want to do this in every single case.
2916   SelectionDAG &DAG = DCI.DAG;
2917   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2918           XVT, KeptBits))
2919     return SDValue();
2920 
2921   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2922   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2923 
2924   // Unfold into:  ((%x << C) a>> C) cond %x
2925   // Where 'cond' will be either 'eq' or 'ne'.
2926   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2927   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2928   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2929   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2930 
2931   return T2;
2932 }
2933 
2934 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
2935 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2936     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2937     DAGCombinerInfo &DCI, const SDLoc &DL) const {
2938   assert(isConstOrConstSplat(N1C) &&
2939          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2940          "Should be a comparison with 0.");
2941   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2942          "Valid only for [in]equality comparisons.");
2943 
2944   unsigned NewShiftOpcode;
2945   SDValue X, C, Y;
2946 
2947   SelectionDAG &DAG = DCI.DAG;
2948   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2949 
2950   // Look for '(C l>>/<< Y)'.
2951   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2952     // The shift should be one-use.
2953     if (!V.hasOneUse())
2954       return false;
2955     unsigned OldShiftOpcode = V.getOpcode();
2956     switch (OldShiftOpcode) {
2957     case ISD::SHL:
2958       NewShiftOpcode = ISD::SRL;
2959       break;
2960     case ISD::SRL:
2961       NewShiftOpcode = ISD::SHL;
2962       break;
2963     default:
2964       return false; // must be a logical shift.
2965     }
2966     // We should be shifting a constant.
2967     // FIXME: best to use isConstantOrConstantVector().
2968     C = V.getOperand(0);
2969     ConstantSDNode *CC =
2970         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2971     if (!CC)
2972       return false;
2973     Y = V.getOperand(1);
2974 
2975     ConstantSDNode *XC =
2976         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2977     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2978         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2979   };
2980 
2981   // LHS of comparison should be an one-use 'and'.
2982   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2983     return SDValue();
2984 
2985   X = N0.getOperand(0);
2986   SDValue Mask = N0.getOperand(1);
2987 
2988   // 'and' is commutative!
2989   if (!Match(Mask)) {
2990     std::swap(X, Mask);
2991     if (!Match(Mask))
2992       return SDValue();
2993   }
2994 
2995   EVT VT = X.getValueType();
2996 
2997   // Produce:
2998   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2999   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3000   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3001   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3002   return T2;
3003 }
3004 
3005 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3006 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3007 /// handle the commuted versions of these patterns.
3008 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3009                                            ISD::CondCode Cond, const SDLoc &DL,
3010                                            DAGCombinerInfo &DCI) const {
3011   unsigned BOpcode = N0.getOpcode();
3012   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3013          "Unexpected binop");
3014   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3015 
3016   // (X + Y) == X --> Y == 0
3017   // (X - Y) == X --> Y == 0
3018   // (X ^ Y) == X --> Y == 0
3019   SelectionDAG &DAG = DCI.DAG;
3020   EVT OpVT = N0.getValueType();
3021   SDValue X = N0.getOperand(0);
3022   SDValue Y = N0.getOperand(1);
3023   if (X == N1)
3024     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3025 
3026   if (Y != N1)
3027     return SDValue();
3028 
3029   // (X + Y) == Y --> X == 0
3030   // (X ^ Y) == Y --> X == 0
3031   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3032     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3033 
3034   // The shift would not be valid if the operands are boolean (i1).
3035   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3036     return SDValue();
3037 
3038   // (X - Y) == Y --> X == Y << 1
3039   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3040                                  !DCI.isBeforeLegalize());
3041   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3042   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3043   if (!DCI.isCalledByLegalizer())
3044     DCI.AddToWorklist(YShl1.getNode());
3045   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3046 }
3047 
3048 /// Try to simplify a setcc built with the specified operands and cc. If it is
3049 /// unable to simplify it, return a null SDValue.
3050 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3051                                       ISD::CondCode Cond, bool foldBooleans,
3052                                       DAGCombinerInfo &DCI,
3053                                       const SDLoc &dl) const {
3054   SelectionDAG &DAG = DCI.DAG;
3055   EVT OpVT = N0.getValueType();
3056 
3057   // Constant fold or commute setcc.
3058   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3059     return Fold;
3060 
3061   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3062   // TODO: Handle non-splat vector constants. All undef causes trouble.
3063   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3064   if (isConstOrConstSplat(N0) &&
3065       (DCI.isBeforeLegalizeOps() ||
3066        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3067     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3068 
3069   // If we have a subtract with the same 2 non-constant operands as this setcc
3070   // -- but in reverse order -- then try to commute the operands of this setcc
3071   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3072   // instruction on some targets.
3073   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3074       (DCI.isBeforeLegalizeOps() ||
3075        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3076       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3077       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3078     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3079 
3080   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3081     const APInt &C1 = N1C->getAPIntValue();
3082 
3083     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3084     // equality comparison, then we're just comparing whether X itself is
3085     // zero.
3086     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3087         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3088         N0.getOperand(1).getOpcode() == ISD::Constant) {
3089       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3090       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3091           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3092         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3093           // (srl (ctlz x), 5) == 0  -> X != 0
3094           // (srl (ctlz x), 5) != 1  -> X != 0
3095           Cond = ISD::SETNE;
3096         } else {
3097           // (srl (ctlz x), 5) != 0  -> X == 0
3098           // (srl (ctlz x), 5) == 1  -> X == 0
3099           Cond = ISD::SETEQ;
3100         }
3101         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3102         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3103                             Zero, Cond);
3104       }
3105     }
3106 
3107     SDValue CTPOP = N0;
3108     // Look through truncs that don't change the value of a ctpop.
3109     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3110       CTPOP = N0.getOperand(0);
3111 
3112     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3113         (N0 == CTPOP ||
3114          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3115       EVT CTVT = CTPOP.getValueType();
3116       SDValue CTOp = CTPOP.getOperand(0);
3117 
3118       // (ctpop x) u< 2 -> (x & x-1) == 0
3119       // (ctpop x) u> 1 -> (x & x-1) != 0
3120       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3121         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3122         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3123         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3124         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3125         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3126       }
3127 
3128       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3129       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3130           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3131         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3132         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3133         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3134         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3135         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3136         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3137         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3138         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3139         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3140         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3141         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3142       }
3143     }
3144 
3145     // (zext x) == C --> x == (trunc C)
3146     // (sext x) == C --> x == (trunc C)
3147     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3148         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3149       unsigned MinBits = N0.getValueSizeInBits();
3150       SDValue PreExt;
3151       bool Signed = false;
3152       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3153         // ZExt
3154         MinBits = N0->getOperand(0).getValueSizeInBits();
3155         PreExt = N0->getOperand(0);
3156       } else if (N0->getOpcode() == ISD::AND) {
3157         // DAGCombine turns costly ZExts into ANDs
3158         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3159           if ((C->getAPIntValue()+1).isPowerOf2()) {
3160             MinBits = C->getAPIntValue().countTrailingOnes();
3161             PreExt = N0->getOperand(0);
3162           }
3163       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3164         // SExt
3165         MinBits = N0->getOperand(0).getValueSizeInBits();
3166         PreExt = N0->getOperand(0);
3167         Signed = true;
3168       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3169         // ZEXTLOAD / SEXTLOAD
3170         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3171           MinBits = LN0->getMemoryVT().getSizeInBits();
3172           PreExt = N0;
3173         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3174           Signed = true;
3175           MinBits = LN0->getMemoryVT().getSizeInBits();
3176           PreExt = N0;
3177         }
3178       }
3179 
3180       // Figure out how many bits we need to preserve this constant.
3181       unsigned ReqdBits = Signed ?
3182         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3183         C1.getActiveBits();
3184 
3185       // Make sure we're not losing bits from the constant.
3186       if (MinBits > 0 &&
3187           MinBits < C1.getBitWidth() &&
3188           MinBits >= ReqdBits) {
3189         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3190         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3191           // Will get folded away.
3192           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3193           if (MinBits == 1 && C1 == 1)
3194             // Invert the condition.
3195             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3196                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3197           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3198           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3199         }
3200 
3201         // If truncating the setcc operands is not desirable, we can still
3202         // simplify the expression in some cases:
3203         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3204         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3205         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3206         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3207         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3208         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3209         SDValue TopSetCC = N0->getOperand(0);
3210         unsigned N0Opc = N0->getOpcode();
3211         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3212         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3213             TopSetCC.getOpcode() == ISD::SETCC &&
3214             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3215             (isConstFalseVal(N1C) ||
3216              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3217 
3218           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3219                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3220 
3221           if (!Inverse)
3222             return TopSetCC;
3223 
3224           ISD::CondCode InvCond = ISD::getSetCCInverse(
3225               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3226               TopSetCC.getOperand(0).getValueType().isInteger());
3227           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3228                                       TopSetCC.getOperand(1),
3229                                       InvCond);
3230         }
3231       }
3232     }
3233 
3234     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3235     // equality or unsigned, and all 1 bits of the const are in the same
3236     // partial word, see if we can shorten the load.
3237     if (DCI.isBeforeLegalize() &&
3238         !ISD::isSignedIntSetCC(Cond) &&
3239         N0.getOpcode() == ISD::AND && C1 == 0 &&
3240         N0.getNode()->hasOneUse() &&
3241         isa<LoadSDNode>(N0.getOperand(0)) &&
3242         N0.getOperand(0).getNode()->hasOneUse() &&
3243         isa<ConstantSDNode>(N0.getOperand(1))) {
3244       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3245       APInt bestMask;
3246       unsigned bestWidth = 0, bestOffset = 0;
3247       if (Lod->isSimple() && Lod->isUnindexed()) {
3248         unsigned origWidth = N0.getValueSizeInBits();
3249         unsigned maskWidth = origWidth;
3250         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3251         // 8 bits, but have to be careful...
3252         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3253           origWidth = Lod->getMemoryVT().getSizeInBits();
3254         const APInt &Mask = N0.getConstantOperandAPInt(1);
3255         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3256           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3257           for (unsigned offset=0; offset<origWidth/width; offset++) {
3258             if (Mask.isSubsetOf(newMask)) {
3259               if (DAG.getDataLayout().isLittleEndian())
3260                 bestOffset = (uint64_t)offset * (width/8);
3261               else
3262                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3263               bestMask = Mask.lshr(offset * (width/8) * 8);
3264               bestWidth = width;
3265               break;
3266             }
3267             newMask <<= width;
3268           }
3269         }
3270       }
3271       if (bestWidth) {
3272         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3273         if (newVT.isRound() &&
3274             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3275           EVT PtrType = Lod->getOperand(1).getValueType();
3276           SDValue Ptr = Lod->getBasePtr();
3277           if (bestOffset != 0)
3278             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3279                               DAG.getConstant(bestOffset, dl, PtrType));
3280           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3281           SDValue NewLoad = DAG.getLoad(
3282               newVT, dl, Lod->getChain(), Ptr,
3283               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3284           return DAG.getSetCC(dl, VT,
3285                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3286                                       DAG.getConstant(bestMask.trunc(bestWidth),
3287                                                       dl, newVT)),
3288                               DAG.getConstant(0LL, dl, newVT), Cond);
3289         }
3290       }
3291     }
3292 
3293     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3294     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3295       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3296 
3297       // If the comparison constant has bits in the upper part, the
3298       // zero-extended value could never match.
3299       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3300                                               C1.getBitWidth() - InSize))) {
3301         switch (Cond) {
3302         case ISD::SETUGT:
3303         case ISD::SETUGE:
3304         case ISD::SETEQ:
3305           return DAG.getConstant(0, dl, VT);
3306         case ISD::SETULT:
3307         case ISD::SETULE:
3308         case ISD::SETNE:
3309           return DAG.getConstant(1, dl, VT);
3310         case ISD::SETGT:
3311         case ISD::SETGE:
3312           // True if the sign bit of C1 is set.
3313           return DAG.getConstant(C1.isNegative(), dl, VT);
3314         case ISD::SETLT:
3315         case ISD::SETLE:
3316           // True if the sign bit of C1 isn't set.
3317           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3318         default:
3319           break;
3320         }
3321       }
3322 
3323       // Otherwise, we can perform the comparison with the low bits.
3324       switch (Cond) {
3325       case ISD::SETEQ:
3326       case ISD::SETNE:
3327       case ISD::SETUGT:
3328       case ISD::SETUGE:
3329       case ISD::SETULT:
3330       case ISD::SETULE: {
3331         EVT newVT = N0.getOperand(0).getValueType();
3332         if (DCI.isBeforeLegalizeOps() ||
3333             (isOperationLegal(ISD::SETCC, newVT) &&
3334              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3335           EVT NewSetCCVT =
3336               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3337           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3338 
3339           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3340                                           NewConst, Cond);
3341           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3342         }
3343         break;
3344       }
3345       default:
3346         break; // todo, be more careful with signed comparisons
3347       }
3348     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3349                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3350       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3351       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3352       EVT ExtDstTy = N0.getValueType();
3353       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3354 
3355       // If the constant doesn't fit into the number of bits for the source of
3356       // the sign extension, it is impossible for both sides to be equal.
3357       if (C1.getMinSignedBits() > ExtSrcTyBits)
3358         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3359 
3360       SDValue ZextOp;
3361       EVT Op0Ty = N0.getOperand(0).getValueType();
3362       if (Op0Ty == ExtSrcTy) {
3363         ZextOp = N0.getOperand(0);
3364       } else {
3365         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3366         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3367                              DAG.getConstant(Imm, dl, Op0Ty));
3368       }
3369       if (!DCI.isCalledByLegalizer())
3370         DCI.AddToWorklist(ZextOp.getNode());
3371       // Otherwise, make this a use of a zext.
3372       return DAG.getSetCC(dl, VT, ZextOp,
3373                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3374                                                               ExtDstTyBits,
3375                                                               ExtSrcTyBits),
3376                                           dl, ExtDstTy),
3377                           Cond);
3378     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3379                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3380       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3381       if (N0.getOpcode() == ISD::SETCC &&
3382           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3383           (N0.getValueType() == MVT::i1 ||
3384            getBooleanContents(N0.getOperand(0).getValueType()) ==
3385                        ZeroOrOneBooleanContent)) {
3386         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3387         if (TrueWhenTrue)
3388           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3389         // Invert the condition.
3390         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3391         CC = ISD::getSetCCInverse(CC,
3392                                   N0.getOperand(0).getValueType().isInteger());
3393         if (DCI.isBeforeLegalizeOps() ||
3394             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3395           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3396       }
3397 
3398       if ((N0.getOpcode() == ISD::XOR ||
3399            (N0.getOpcode() == ISD::AND &&
3400             N0.getOperand(0).getOpcode() == ISD::XOR &&
3401             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3402           isa<ConstantSDNode>(N0.getOperand(1)) &&
3403           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3404         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3405         // can only do this if the top bits are known zero.
3406         unsigned BitWidth = N0.getValueSizeInBits();
3407         if (DAG.MaskedValueIsZero(N0,
3408                                   APInt::getHighBitsSet(BitWidth,
3409                                                         BitWidth-1))) {
3410           // Okay, get the un-inverted input value.
3411           SDValue Val;
3412           if (N0.getOpcode() == ISD::XOR) {
3413             Val = N0.getOperand(0);
3414           } else {
3415             assert(N0.getOpcode() == ISD::AND &&
3416                     N0.getOperand(0).getOpcode() == ISD::XOR);
3417             // ((X^1)&1)^1 -> X & 1
3418             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3419                               N0.getOperand(0).getOperand(0),
3420                               N0.getOperand(1));
3421           }
3422 
3423           return DAG.getSetCC(dl, VT, Val, N1,
3424                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3425         }
3426       } else if (N1C->isOne() &&
3427                  (VT == MVT::i1 ||
3428                   getBooleanContents(N0.getValueType()) ==
3429                       ZeroOrOneBooleanContent)) {
3430         SDValue Op0 = N0;
3431         if (Op0.getOpcode() == ISD::TRUNCATE)
3432           Op0 = Op0.getOperand(0);
3433 
3434         if ((Op0.getOpcode() == ISD::XOR) &&
3435             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3436             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3437           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3438           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3439           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3440                               Cond);
3441         }
3442         if (Op0.getOpcode() == ISD::AND &&
3443             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3444             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3445           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3446           if (Op0.getValueType().bitsGT(VT))
3447             Op0 = DAG.getNode(ISD::AND, dl, VT,
3448                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3449                           DAG.getConstant(1, dl, VT));
3450           else if (Op0.getValueType().bitsLT(VT))
3451             Op0 = DAG.getNode(ISD::AND, dl, VT,
3452                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3453                         DAG.getConstant(1, dl, VT));
3454 
3455           return DAG.getSetCC(dl, VT, Op0,
3456                               DAG.getConstant(0, dl, Op0.getValueType()),
3457                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3458         }
3459         if (Op0.getOpcode() == ISD::AssertZext &&
3460             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3461           return DAG.getSetCC(dl, VT, Op0,
3462                               DAG.getConstant(0, dl, Op0.getValueType()),
3463                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3464       }
3465     }
3466 
3467     // Given:
3468     //   icmp eq/ne (urem %x, %y), 0
3469     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3470     //   icmp eq/ne %x, 0
3471     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3472         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3473       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3474       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3475       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3476         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3477     }
3478 
3479     if (SDValue V =
3480             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3481       return V;
3482   }
3483 
3484   // These simplifications apply to splat vectors as well.
3485   // TODO: Handle more splat vector cases.
3486   if (auto *N1C = isConstOrConstSplat(N1)) {
3487     const APInt &C1 = N1C->getAPIntValue();
3488 
3489     APInt MinVal, MaxVal;
3490     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3491     if (ISD::isSignedIntSetCC(Cond)) {
3492       MinVal = APInt::getSignedMinValue(OperandBitSize);
3493       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3494     } else {
3495       MinVal = APInt::getMinValue(OperandBitSize);
3496       MaxVal = APInt::getMaxValue(OperandBitSize);
3497     }
3498 
3499     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3500     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3501       // X >= MIN --> true
3502       if (C1 == MinVal)
3503         return DAG.getBoolConstant(true, dl, VT, OpVT);
3504 
3505       if (!VT.isVector()) { // TODO: Support this for vectors.
3506         // X >= C0 --> X > (C0 - 1)
3507         APInt C = C1 - 1;
3508         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3509         if ((DCI.isBeforeLegalizeOps() ||
3510              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3511             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3512                                   isLegalICmpImmediate(C.getSExtValue())))) {
3513           return DAG.getSetCC(dl, VT, N0,
3514                               DAG.getConstant(C, dl, N1.getValueType()),
3515                               NewCC);
3516         }
3517       }
3518     }
3519 
3520     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3521       // X <= MAX --> true
3522       if (C1 == MaxVal)
3523         return DAG.getBoolConstant(true, dl, VT, OpVT);
3524 
3525       // X <= C0 --> X < (C0 + 1)
3526       if (!VT.isVector()) { // TODO: Support this for vectors.
3527         APInt C = C1 + 1;
3528         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3529         if ((DCI.isBeforeLegalizeOps() ||
3530              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3531             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3532                                   isLegalICmpImmediate(C.getSExtValue())))) {
3533           return DAG.getSetCC(dl, VT, N0,
3534                               DAG.getConstant(C, dl, N1.getValueType()),
3535                               NewCC);
3536         }
3537       }
3538     }
3539 
3540     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3541       if (C1 == MinVal)
3542         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3543 
3544       // TODO: Support this for vectors after legalize ops.
3545       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3546         // Canonicalize setlt X, Max --> setne X, Max
3547         if (C1 == MaxVal)
3548           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3549 
3550         // If we have setult X, 1, turn it into seteq X, 0
3551         if (C1 == MinVal+1)
3552           return DAG.getSetCC(dl, VT, N0,
3553                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3554                               ISD::SETEQ);
3555       }
3556     }
3557 
3558     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3559       if (C1 == MaxVal)
3560         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3561 
3562       // TODO: Support this for vectors after legalize ops.
3563       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3564         // Canonicalize setgt X, Min --> setne X, Min
3565         if (C1 == MinVal)
3566           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3567 
3568         // If we have setugt X, Max-1, turn it into seteq X, Max
3569         if (C1 == MaxVal-1)
3570           return DAG.getSetCC(dl, VT, N0,
3571                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3572                               ISD::SETEQ);
3573       }
3574     }
3575 
3576     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3577       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3578       if (C1.isNullValue())
3579         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3580                 VT, N0, N1, Cond, DCI, dl))
3581           return CC;
3582     }
3583 
3584     // If we have "setcc X, C0", check to see if we can shrink the immediate
3585     // by changing cc.
3586     // TODO: Support this for vectors after legalize ops.
3587     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3588       // SETUGT X, SINTMAX  -> SETLT X, 0
3589       if (Cond == ISD::SETUGT &&
3590           C1 == APInt::getSignedMaxValue(OperandBitSize))
3591         return DAG.getSetCC(dl, VT, N0,
3592                             DAG.getConstant(0, dl, N1.getValueType()),
3593                             ISD::SETLT);
3594 
3595       // SETULT X, SINTMIN  -> SETGT X, -1
3596       if (Cond == ISD::SETULT &&
3597           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3598         SDValue ConstMinusOne =
3599             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3600                             N1.getValueType());
3601         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3602       }
3603     }
3604   }
3605 
3606   // Back to non-vector simplifications.
3607   // TODO: Can we do these for vector splats?
3608   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3609     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3610     const APInt &C1 = N1C->getAPIntValue();
3611     EVT ShValTy = N0.getValueType();
3612 
3613     // Fold bit comparisons when we can.
3614     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3615         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3616         N0.getOpcode() == ISD::AND) {
3617       auto &DL = DAG.getDataLayout();
3618       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3619         EVT ShiftTy = getShiftAmountTy(ShValTy, DL, !DCI.isBeforeLegalize());
3620         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3621           // Perform the xform if the AND RHS is a single bit.
3622           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3623           if (AndRHS->getAPIntValue().isPowerOf2() &&
3624               ShCt <= TLI.getShiftAmountThreshold(ShValTy)) {
3625             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3626                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3627                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3628           }
3629         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3630           // (X & 8) == 8  -->  (X & 8) >> 3
3631           // Perform the xform if C1 is a single bit.
3632           unsigned ShCt = C1.logBase2();
3633           if (C1.isPowerOf2() &&
3634               ShCt <= TLI.getShiftAmountThreshold(ShValTy)) {
3635             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3636                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3637                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3638           }
3639         }
3640       }
3641     }
3642 
3643     if (C1.getMinSignedBits() <= 64 &&
3644         !isLegalICmpImmediate(C1.getSExtValue())) {
3645       // (X & -256) == 256 -> (X >> 8) == 1
3646       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3647           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3648         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3649           const APInt &AndRHSC = AndRHS->getAPIntValue();
3650           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3651             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3652             auto &DL = DAG.getDataLayout();
3653             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3654                                            !DCI.isBeforeLegalize());
3655             EVT CmpTy = N0.getValueType();
3656             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3657                                         DAG.getConstant(ShiftBits, dl,
3658                                                         ShiftTy));
3659             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3660             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3661           }
3662         }
3663       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3664                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3665         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3666         // X <  0x100000000 -> (X >> 32) <  1
3667         // X >= 0x100000000 -> (X >> 32) >= 1
3668         // X <= 0x0ffffffff -> (X >> 32) <  1
3669         // X >  0x0ffffffff -> (X >> 32) >= 1
3670         unsigned ShiftBits;
3671         APInt NewC = C1;
3672         ISD::CondCode NewCond = Cond;
3673         if (AdjOne) {
3674           ShiftBits = C1.countTrailingOnes();
3675           NewC = NewC + 1;
3676           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3677         } else {
3678           ShiftBits = C1.countTrailingZeros();
3679         }
3680         NewC.lshrInPlace(ShiftBits);
3681         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3682           isLegalICmpImmediate(NewC.getSExtValue())) {
3683           auto &DL = DAG.getDataLayout();
3684           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3685                                          !DCI.isBeforeLegalize());
3686           EVT CmpTy = N0.getValueType();
3687           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3688                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3689           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3690           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3691         }
3692       }
3693     }
3694   }
3695 
3696   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3697     auto *CFP = cast<ConstantFPSDNode>(N1);
3698     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3699 
3700     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3701     // constant if knowing that the operand is non-nan is enough.  We prefer to
3702     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3703     // materialize 0.0.
3704     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3705       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3706 
3707     // setcc (fneg x), C -> setcc swap(pred) x, -C
3708     if (N0.getOpcode() == ISD::FNEG) {
3709       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3710       if (DCI.isBeforeLegalizeOps() ||
3711           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3712         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3713         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3714       }
3715     }
3716 
3717     // If the condition is not legal, see if we can find an equivalent one
3718     // which is legal.
3719     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3720       // If the comparison was an awkward floating-point == or != and one of
3721       // the comparison operands is infinity or negative infinity, convert the
3722       // condition to a less-awkward <= or >=.
3723       if (CFP->getValueAPF().isInfinity()) {
3724         if (CFP->getValueAPF().isNegative()) {
3725           if (Cond == ISD::SETOEQ &&
3726               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3727             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3728           if (Cond == ISD::SETUEQ &&
3729               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3730             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3731           if (Cond == ISD::SETUNE &&
3732               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3733             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3734           if (Cond == ISD::SETONE &&
3735               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3736             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3737         } else {
3738           if (Cond == ISD::SETOEQ &&
3739               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3740             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3741           if (Cond == ISD::SETUEQ &&
3742               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3743             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3744           if (Cond == ISD::SETUNE &&
3745               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3746             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3747           if (Cond == ISD::SETONE &&
3748               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3749             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3750         }
3751       }
3752     }
3753   }
3754 
3755   if (N0 == N1) {
3756     // The sext(setcc()) => setcc() optimization relies on the appropriate
3757     // constant being emitted.
3758     assert(!N0.getValueType().isInteger() &&
3759            "Integer types should be handled by FoldSetCC");
3760 
3761     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3762     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3763     if (UOF == 2) // FP operators that are undefined on NaNs.
3764       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3765     if (UOF == unsigned(EqTrue))
3766       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3767     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3768     // if it is not already.
3769     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3770     if (NewCond != Cond &&
3771         (DCI.isBeforeLegalizeOps() ||
3772                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3773       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3774   }
3775 
3776   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3777       N0.getValueType().isInteger()) {
3778     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3779         N0.getOpcode() == ISD::XOR) {
3780       // Simplify (X+Y) == (X+Z) -->  Y == Z
3781       if (N0.getOpcode() == N1.getOpcode()) {
3782         if (N0.getOperand(0) == N1.getOperand(0))
3783           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3784         if (N0.getOperand(1) == N1.getOperand(1))
3785           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3786         if (isCommutativeBinOp(N0.getOpcode())) {
3787           // If X op Y == Y op X, try other combinations.
3788           if (N0.getOperand(0) == N1.getOperand(1))
3789             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3790                                 Cond);
3791           if (N0.getOperand(1) == N1.getOperand(0))
3792             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3793                                 Cond);
3794         }
3795       }
3796 
3797       // If RHS is a legal immediate value for a compare instruction, we need
3798       // to be careful about increasing register pressure needlessly.
3799       bool LegalRHSImm = false;
3800 
3801       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3802         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3803           // Turn (X+C1) == C2 --> X == C2-C1
3804           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3805             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3806                                 DAG.getConstant(RHSC->getAPIntValue()-
3807                                                 LHSR->getAPIntValue(),
3808                                 dl, N0.getValueType()), Cond);
3809           }
3810 
3811           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3812           if (N0.getOpcode() == ISD::XOR)
3813             // If we know that all of the inverted bits are zero, don't bother
3814             // performing the inversion.
3815             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3816               return
3817                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3818                              DAG.getConstant(LHSR->getAPIntValue() ^
3819                                                RHSC->getAPIntValue(),
3820                                              dl, N0.getValueType()),
3821                              Cond);
3822         }
3823 
3824         // Turn (C1-X) == C2 --> X == C1-C2
3825         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3826           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3827             return
3828               DAG.getSetCC(dl, VT, N0.getOperand(1),
3829                            DAG.getConstant(SUBC->getAPIntValue() -
3830                                              RHSC->getAPIntValue(),
3831                                            dl, N0.getValueType()),
3832                            Cond);
3833           }
3834         }
3835 
3836         // Could RHSC fold directly into a compare?
3837         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3838           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3839       }
3840 
3841       // (X+Y) == X --> Y == 0 and similar folds.
3842       // Don't do this if X is an immediate that can fold into a cmp
3843       // instruction and X+Y has other uses. It could be an induction variable
3844       // chain, and the transform would increase register pressure.
3845       if (!LegalRHSImm || N0.hasOneUse())
3846         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3847           return V;
3848     }
3849 
3850     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3851         N1.getOpcode() == ISD::XOR)
3852       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3853         return V;
3854 
3855     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3856       return V;
3857   }
3858 
3859   // Fold remainder of division by a constant.
3860   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3861       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3862     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3863 
3864     // When division is cheap or optimizing for minimum size,
3865     // fall through to DIVREM creation by skipping this fold.
3866     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3867       if (N0.getOpcode() == ISD::UREM) {
3868         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3869           return Folded;
3870       } else if (N0.getOpcode() == ISD::SREM) {
3871         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3872           return Folded;
3873       }
3874     }
3875   }
3876 
3877   // Fold away ALL boolean setcc's.
3878   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3879     SDValue Temp;
3880     switch (Cond) {
3881     default: llvm_unreachable("Unknown integer setcc!");
3882     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3883       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3884       N0 = DAG.getNOT(dl, Temp, OpVT);
3885       if (!DCI.isCalledByLegalizer())
3886         DCI.AddToWorklist(Temp.getNode());
3887       break;
3888     case ISD::SETNE:  // X != Y   -->  (X^Y)
3889       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3890       break;
3891     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3892     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3893       Temp = DAG.getNOT(dl, N0, OpVT);
3894       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3895       if (!DCI.isCalledByLegalizer())
3896         DCI.AddToWorklist(Temp.getNode());
3897       break;
3898     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3899     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3900       Temp = DAG.getNOT(dl, N1, OpVT);
3901       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3902       if (!DCI.isCalledByLegalizer())
3903         DCI.AddToWorklist(Temp.getNode());
3904       break;
3905     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3906     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3907       Temp = DAG.getNOT(dl, N0, OpVT);
3908       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3909       if (!DCI.isCalledByLegalizer())
3910         DCI.AddToWorklist(Temp.getNode());
3911       break;
3912     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3913     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3914       Temp = DAG.getNOT(dl, N1, OpVT);
3915       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3916       break;
3917     }
3918     if (VT.getScalarType() != MVT::i1) {
3919       if (!DCI.isCalledByLegalizer())
3920         DCI.AddToWorklist(N0.getNode());
3921       // FIXME: If running after legalize, we probably can't do this.
3922       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3923       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3924     }
3925     return N0;
3926   }
3927 
3928   // Could not fold it.
3929   return SDValue();
3930 }
3931 
3932 /// Returns true (and the GlobalValue and the offset) if the node is a
3933 /// GlobalAddress + offset.
3934 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3935                                     int64_t &Offset) const {
3936 
3937   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3938 
3939   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3940     GA = GASD->getGlobal();
3941     Offset += GASD->getOffset();
3942     return true;
3943   }
3944 
3945   if (N->getOpcode() == ISD::ADD) {
3946     SDValue N1 = N->getOperand(0);
3947     SDValue N2 = N->getOperand(1);
3948     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3949       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3950         Offset += V->getSExtValue();
3951         return true;
3952       }
3953     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3954       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3955         Offset += V->getSExtValue();
3956         return true;
3957       }
3958     }
3959   }
3960 
3961   return false;
3962 }
3963 
3964 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3965                                           DAGCombinerInfo &DCI) const {
3966   // Default implementation: no optimization.
3967   return SDValue();
3968 }
3969 
3970 //===----------------------------------------------------------------------===//
3971 //  Inline Assembler Implementation Methods
3972 //===----------------------------------------------------------------------===//
3973 
3974 TargetLowering::ConstraintType
3975 TargetLowering::getConstraintType(StringRef Constraint) const {
3976   unsigned S = Constraint.size();
3977 
3978   if (S == 1) {
3979     switch (Constraint[0]) {
3980     default: break;
3981     case 'r':
3982       return C_RegisterClass;
3983     case 'm': // memory
3984     case 'o': // offsetable
3985     case 'V': // not offsetable
3986       return C_Memory;
3987     case 'n': // Simple Integer
3988     case 'E': // Floating Point Constant
3989     case 'F': // Floating Point Constant
3990       return C_Immediate;
3991     case 'i': // Simple Integer or Relocatable Constant
3992     case 's': // Relocatable Constant
3993     case 'p': // Address.
3994     case 'X': // Allow ANY value.
3995     case 'I': // Target registers.
3996     case 'J':
3997     case 'K':
3998     case 'L':
3999     case 'M':
4000     case 'N':
4001     case 'O':
4002     case 'P':
4003     case '<':
4004     case '>':
4005       return C_Other;
4006     }
4007   }
4008 
4009   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4010     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4011       return C_Memory;
4012     return C_Register;
4013   }
4014   return C_Unknown;
4015 }
4016 
4017 /// Try to replace an X constraint, which matches anything, with another that
4018 /// has more specific requirements based on the type of the corresponding
4019 /// operand.
4020 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4021   if (ConstraintVT.isInteger())
4022     return "r";
4023   if (ConstraintVT.isFloatingPoint())
4024     return "f"; // works for many targets
4025   return nullptr;
4026 }
4027 
4028 SDValue TargetLowering::LowerAsmOutputForConstraint(
4029     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4030     SelectionDAG &DAG) const {
4031   return SDValue();
4032 }
4033 
4034 /// Lower the specified operand into the Ops vector.
4035 /// If it is invalid, don't add anything to Ops.
4036 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4037                                                   std::string &Constraint,
4038                                                   std::vector<SDValue> &Ops,
4039                                                   SelectionDAG &DAG) const {
4040 
4041   if (Constraint.length() > 1) return;
4042 
4043   char ConstraintLetter = Constraint[0];
4044   switch (ConstraintLetter) {
4045   default: break;
4046   case 'X':     // Allows any operand; labels (basic block) use this.
4047     if (Op.getOpcode() == ISD::BasicBlock ||
4048         Op.getOpcode() == ISD::TargetBlockAddress) {
4049       Ops.push_back(Op);
4050       return;
4051     }
4052     LLVM_FALLTHROUGH;
4053   case 'i':    // Simple Integer or Relocatable Constant
4054   case 'n':    // Simple Integer
4055   case 's': {  // Relocatable Constant
4056 
4057     GlobalAddressSDNode *GA;
4058     ConstantSDNode *C;
4059     BlockAddressSDNode *BA;
4060     uint64_t Offset = 0;
4061 
4062     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4063     // etc., since getelementpointer is variadic. We can't use
4064     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4065     // while in this case the GA may be furthest from the root node which is
4066     // likely an ISD::ADD.
4067     while (1) {
4068       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4069         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4070                                                  GA->getValueType(0),
4071                                                  Offset + GA->getOffset()));
4072         return;
4073       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4074                  ConstraintLetter != 's') {
4075         // gcc prints these as sign extended.  Sign extend value to 64 bits
4076         // now; without this it would get ZExt'd later in
4077         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4078         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4079         BooleanContent BCont = getBooleanContents(MVT::i64);
4080         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4081                                       : ISD::SIGN_EXTEND;
4082         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4083                                                     : C->getSExtValue();
4084         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4085                                             SDLoc(C), MVT::i64));
4086         return;
4087       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4088                  ConstraintLetter != 'n') {
4089         Ops.push_back(DAG.getTargetBlockAddress(
4090             BA->getBlockAddress(), BA->getValueType(0),
4091             Offset + BA->getOffset(), BA->getTargetFlags()));
4092         return;
4093       } else {
4094         const unsigned OpCode = Op.getOpcode();
4095         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4096           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4097             Op = Op.getOperand(1);
4098           // Subtraction is not commutative.
4099           else if (OpCode == ISD::ADD &&
4100                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4101             Op = Op.getOperand(0);
4102           else
4103             return;
4104           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4105           continue;
4106         }
4107       }
4108       return;
4109     }
4110     break;
4111   }
4112   }
4113 }
4114 
4115 std::pair<unsigned, const TargetRegisterClass *>
4116 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4117                                              StringRef Constraint,
4118                                              MVT VT) const {
4119   if (Constraint.empty() || Constraint[0] != '{')
4120     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4121   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4122 
4123   // Remove the braces from around the name.
4124   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4125 
4126   std::pair<unsigned, const TargetRegisterClass *> R =
4127       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4128 
4129   // Figure out which register class contains this reg.
4130   for (const TargetRegisterClass *RC : RI->regclasses()) {
4131     // If none of the value types for this register class are valid, we
4132     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4133     if (!isLegalRC(*RI, *RC))
4134       continue;
4135 
4136     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4137          I != E; ++I) {
4138       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4139         std::pair<unsigned, const TargetRegisterClass *> S =
4140             std::make_pair(*I, RC);
4141 
4142         // If this register class has the requested value type, return it,
4143         // otherwise keep searching and return the first class found
4144         // if no other is found which explicitly has the requested type.
4145         if (RI->isTypeLegalForClass(*RC, VT))
4146           return S;
4147         if (!R.second)
4148           R = S;
4149       }
4150     }
4151   }
4152 
4153   return R;
4154 }
4155 
4156 //===----------------------------------------------------------------------===//
4157 // Constraint Selection.
4158 
4159 /// Return true of this is an input operand that is a matching constraint like
4160 /// "4".
4161 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4162   assert(!ConstraintCode.empty() && "No known constraint!");
4163   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4164 }
4165 
4166 /// If this is an input matching constraint, this method returns the output
4167 /// operand it matches.
4168 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4169   assert(!ConstraintCode.empty() && "No known constraint!");
4170   return atoi(ConstraintCode.c_str());
4171 }
4172 
4173 /// Split up the constraint string from the inline assembly value into the
4174 /// specific constraints and their prefixes, and also tie in the associated
4175 /// operand values.
4176 /// If this returns an empty vector, and if the constraint string itself
4177 /// isn't empty, there was an error parsing.
4178 TargetLowering::AsmOperandInfoVector
4179 TargetLowering::ParseConstraints(const DataLayout &DL,
4180                                  const TargetRegisterInfo *TRI,
4181                                  ImmutableCallSite CS) const {
4182   /// Information about all of the constraints.
4183   AsmOperandInfoVector ConstraintOperands;
4184   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4185   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4186 
4187   // Do a prepass over the constraints, canonicalizing them, and building up the
4188   // ConstraintOperands list.
4189   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4190   unsigned ResNo = 0; // ResNo - The result number of the next output.
4191 
4192   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4193     ConstraintOperands.emplace_back(std::move(CI));
4194     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4195 
4196     // Update multiple alternative constraint count.
4197     if (OpInfo.multipleAlternatives.size() > maCount)
4198       maCount = OpInfo.multipleAlternatives.size();
4199 
4200     OpInfo.ConstraintVT = MVT::Other;
4201 
4202     // Compute the value type for each operand.
4203     switch (OpInfo.Type) {
4204     case InlineAsm::isOutput:
4205       // Indirect outputs just consume an argument.
4206       if (OpInfo.isIndirect) {
4207         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4208         break;
4209       }
4210 
4211       // The return value of the call is this value.  As such, there is no
4212       // corresponding argument.
4213       assert(!CS.getType()->isVoidTy() &&
4214              "Bad inline asm!");
4215       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4216         OpInfo.ConstraintVT =
4217             getSimpleValueType(DL, STy->getElementType(ResNo));
4218       } else {
4219         assert(ResNo == 0 && "Asm only has one result!");
4220         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4221       }
4222       ++ResNo;
4223       break;
4224     case InlineAsm::isInput:
4225       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4226       break;
4227     case InlineAsm::isClobber:
4228       // Nothing to do.
4229       break;
4230     }
4231 
4232     if (OpInfo.CallOperandVal) {
4233       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4234       if (OpInfo.isIndirect) {
4235         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4236         if (!PtrTy)
4237           report_fatal_error("Indirect operand for inline asm not a pointer!");
4238         OpTy = PtrTy->getElementType();
4239       }
4240 
4241       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4242       if (StructType *STy = dyn_cast<StructType>(OpTy))
4243         if (STy->getNumElements() == 1)
4244           OpTy = STy->getElementType(0);
4245 
4246       // If OpTy is not a single value, it may be a struct/union that we
4247       // can tile with integers.
4248       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4249         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4250         switch (BitSize) {
4251         default: break;
4252         case 1:
4253         case 8:
4254         case 16:
4255         case 32:
4256         case 64:
4257         case 128:
4258           OpInfo.ConstraintVT =
4259               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4260           break;
4261         }
4262       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4263         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4264         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4265       } else {
4266         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4267       }
4268     }
4269   }
4270 
4271   // If we have multiple alternative constraints, select the best alternative.
4272   if (!ConstraintOperands.empty()) {
4273     if (maCount) {
4274       unsigned bestMAIndex = 0;
4275       int bestWeight = -1;
4276       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4277       int weight = -1;
4278       unsigned maIndex;
4279       // Compute the sums of the weights for each alternative, keeping track
4280       // of the best (highest weight) one so far.
4281       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4282         int weightSum = 0;
4283         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4284              cIndex != eIndex; ++cIndex) {
4285           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4286           if (OpInfo.Type == InlineAsm::isClobber)
4287             continue;
4288 
4289           // If this is an output operand with a matching input operand,
4290           // look up the matching input. If their types mismatch, e.g. one
4291           // is an integer, the other is floating point, or their sizes are
4292           // different, flag it as an maCantMatch.
4293           if (OpInfo.hasMatchingInput()) {
4294             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4295             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4296               if ((OpInfo.ConstraintVT.isInteger() !=
4297                    Input.ConstraintVT.isInteger()) ||
4298                   (OpInfo.ConstraintVT.getSizeInBits() !=
4299                    Input.ConstraintVT.getSizeInBits())) {
4300                 weightSum = -1; // Can't match.
4301                 break;
4302               }
4303             }
4304           }
4305           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4306           if (weight == -1) {
4307             weightSum = -1;
4308             break;
4309           }
4310           weightSum += weight;
4311         }
4312         // Update best.
4313         if (weightSum > bestWeight) {
4314           bestWeight = weightSum;
4315           bestMAIndex = maIndex;
4316         }
4317       }
4318 
4319       // Now select chosen alternative in each constraint.
4320       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4321            cIndex != eIndex; ++cIndex) {
4322         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4323         if (cInfo.Type == InlineAsm::isClobber)
4324           continue;
4325         cInfo.selectAlternative(bestMAIndex);
4326       }
4327     }
4328   }
4329 
4330   // Check and hook up tied operands, choose constraint code to use.
4331   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4332        cIndex != eIndex; ++cIndex) {
4333     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4334 
4335     // If this is an output operand with a matching input operand, look up the
4336     // matching input. If their types mismatch, e.g. one is an integer, the
4337     // other is floating point, or their sizes are different, flag it as an
4338     // error.
4339     if (OpInfo.hasMatchingInput()) {
4340       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4341 
4342       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4343         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4344             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4345                                          OpInfo.ConstraintVT);
4346         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4347             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4348                                          Input.ConstraintVT);
4349         if ((OpInfo.ConstraintVT.isInteger() !=
4350              Input.ConstraintVT.isInteger()) ||
4351             (MatchRC.second != InputRC.second)) {
4352           report_fatal_error("Unsupported asm: input constraint"
4353                              " with a matching output constraint of"
4354                              " incompatible type!");
4355         }
4356       }
4357     }
4358   }
4359 
4360   return ConstraintOperands;
4361 }
4362 
4363 /// Return an integer indicating how general CT is.
4364 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4365   switch (CT) {
4366   case TargetLowering::C_Immediate:
4367   case TargetLowering::C_Other:
4368   case TargetLowering::C_Unknown:
4369     return 0;
4370   case TargetLowering::C_Register:
4371     return 1;
4372   case TargetLowering::C_RegisterClass:
4373     return 2;
4374   case TargetLowering::C_Memory:
4375     return 3;
4376   }
4377   llvm_unreachable("Invalid constraint type");
4378 }
4379 
4380 /// Examine constraint type and operand type and determine a weight value.
4381 /// This object must already have been set up with the operand type
4382 /// and the current alternative constraint selected.
4383 TargetLowering::ConstraintWeight
4384   TargetLowering::getMultipleConstraintMatchWeight(
4385     AsmOperandInfo &info, int maIndex) const {
4386   InlineAsm::ConstraintCodeVector *rCodes;
4387   if (maIndex >= (int)info.multipleAlternatives.size())
4388     rCodes = &info.Codes;
4389   else
4390     rCodes = &info.multipleAlternatives[maIndex].Codes;
4391   ConstraintWeight BestWeight = CW_Invalid;
4392 
4393   // Loop over the options, keeping track of the most general one.
4394   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4395     ConstraintWeight weight =
4396       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4397     if (weight > BestWeight)
4398       BestWeight = weight;
4399   }
4400 
4401   return BestWeight;
4402 }
4403 
4404 /// Examine constraint type and operand type and determine a weight value.
4405 /// This object must already have been set up with the operand type
4406 /// and the current alternative constraint selected.
4407 TargetLowering::ConstraintWeight
4408   TargetLowering::getSingleConstraintMatchWeight(
4409     AsmOperandInfo &info, const char *constraint) const {
4410   ConstraintWeight weight = CW_Invalid;
4411   Value *CallOperandVal = info.CallOperandVal;
4412     // If we don't have a value, we can't do a match,
4413     // but allow it at the lowest weight.
4414   if (!CallOperandVal)
4415     return CW_Default;
4416   // Look at the constraint type.
4417   switch (*constraint) {
4418     case 'i': // immediate integer.
4419     case 'n': // immediate integer with a known value.
4420       if (isa<ConstantInt>(CallOperandVal))
4421         weight = CW_Constant;
4422       break;
4423     case 's': // non-explicit intregal immediate.
4424       if (isa<GlobalValue>(CallOperandVal))
4425         weight = CW_Constant;
4426       break;
4427     case 'E': // immediate float if host format.
4428     case 'F': // immediate float.
4429       if (isa<ConstantFP>(CallOperandVal))
4430         weight = CW_Constant;
4431       break;
4432     case '<': // memory operand with autodecrement.
4433     case '>': // memory operand with autoincrement.
4434     case 'm': // memory operand.
4435     case 'o': // offsettable memory operand
4436     case 'V': // non-offsettable memory operand
4437       weight = CW_Memory;
4438       break;
4439     case 'r': // general register.
4440     case 'g': // general register, memory operand or immediate integer.
4441               // note: Clang converts "g" to "imr".
4442       if (CallOperandVal->getType()->isIntegerTy())
4443         weight = CW_Register;
4444       break;
4445     case 'X': // any operand.
4446   default:
4447     weight = CW_Default;
4448     break;
4449   }
4450   return weight;
4451 }
4452 
4453 /// If there are multiple different constraints that we could pick for this
4454 /// operand (e.g. "imr") try to pick the 'best' one.
4455 /// This is somewhat tricky: constraints fall into four classes:
4456 ///    Other         -> immediates and magic values
4457 ///    Register      -> one specific register
4458 ///    RegisterClass -> a group of regs
4459 ///    Memory        -> memory
4460 /// Ideally, we would pick the most specific constraint possible: if we have
4461 /// something that fits into a register, we would pick it.  The problem here
4462 /// is that if we have something that could either be in a register or in
4463 /// memory that use of the register could cause selection of *other*
4464 /// operands to fail: they might only succeed if we pick memory.  Because of
4465 /// this the heuristic we use is:
4466 ///
4467 ///  1) If there is an 'other' constraint, and if the operand is valid for
4468 ///     that constraint, use it.  This makes us take advantage of 'i'
4469 ///     constraints when available.
4470 ///  2) Otherwise, pick the most general constraint present.  This prefers
4471 ///     'm' over 'r', for example.
4472 ///
4473 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4474                              const TargetLowering &TLI,
4475                              SDValue Op, SelectionDAG *DAG) {
4476   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4477   unsigned BestIdx = 0;
4478   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4479   int BestGenerality = -1;
4480 
4481   // Loop over the options, keeping track of the most general one.
4482   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4483     TargetLowering::ConstraintType CType =
4484       TLI.getConstraintType(OpInfo.Codes[i]);
4485 
4486     // If this is an 'other' or 'immediate' constraint, see if the operand is
4487     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4488     // the operand is an integer in the range [0..31] we want to use I (saving a
4489     // load of a register), otherwise we must use 'r'.
4490     if ((CType == TargetLowering::C_Other ||
4491          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4492       assert(OpInfo.Codes[i].size() == 1 &&
4493              "Unhandled multi-letter 'other' constraint");
4494       std::vector<SDValue> ResultOps;
4495       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4496                                        ResultOps, *DAG);
4497       if (!ResultOps.empty()) {
4498         BestType = CType;
4499         BestIdx = i;
4500         break;
4501       }
4502     }
4503 
4504     // Things with matching constraints can only be registers, per gcc
4505     // documentation.  This mainly affects "g" constraints.
4506     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4507       continue;
4508 
4509     // This constraint letter is more general than the previous one, use it.
4510     int Generality = getConstraintGenerality(CType);
4511     if (Generality > BestGenerality) {
4512       BestType = CType;
4513       BestIdx = i;
4514       BestGenerality = Generality;
4515     }
4516   }
4517 
4518   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4519   OpInfo.ConstraintType = BestType;
4520 }
4521 
4522 /// Determines the constraint code and constraint type to use for the specific
4523 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4524 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4525                                             SDValue Op,
4526                                             SelectionDAG *DAG) const {
4527   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4528 
4529   // Single-letter constraints ('r') are very common.
4530   if (OpInfo.Codes.size() == 1) {
4531     OpInfo.ConstraintCode = OpInfo.Codes[0];
4532     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4533   } else {
4534     ChooseConstraint(OpInfo, *this, Op, DAG);
4535   }
4536 
4537   // 'X' matches anything.
4538   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4539     // Labels and constants are handled elsewhere ('X' is the only thing
4540     // that matches labels).  For Functions, the type here is the type of
4541     // the result, which is not what we want to look at; leave them alone.
4542     Value *v = OpInfo.CallOperandVal;
4543     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4544       OpInfo.CallOperandVal = v;
4545       return;
4546     }
4547 
4548     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4549       return;
4550 
4551     // Otherwise, try to resolve it to something we know about by looking at
4552     // the actual operand type.
4553     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4554       OpInfo.ConstraintCode = Repl;
4555       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4556     }
4557   }
4558 }
4559 
4560 /// Given an exact SDIV by a constant, create a multiplication
4561 /// with the multiplicative inverse of the constant.
4562 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4563                               const SDLoc &dl, SelectionDAG &DAG,
4564                               SmallVectorImpl<SDNode *> &Created) {
4565   SDValue Op0 = N->getOperand(0);
4566   SDValue Op1 = N->getOperand(1);
4567   EVT VT = N->getValueType(0);
4568   EVT SVT = VT.getScalarType();
4569   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4570   EVT ShSVT = ShVT.getScalarType();
4571 
4572   bool UseSRA = false;
4573   SmallVector<SDValue, 16> Shifts, Factors;
4574 
4575   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4576     if (C->isNullValue())
4577       return false;
4578     APInt Divisor = C->getAPIntValue();
4579     unsigned Shift = Divisor.countTrailingZeros();
4580     if (Shift) {
4581       Divisor.ashrInPlace(Shift);
4582       UseSRA = true;
4583     }
4584     // Calculate the multiplicative inverse, using Newton's method.
4585     APInt t;
4586     APInt Factor = Divisor;
4587     while ((t = Divisor * Factor) != 1)
4588       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4589     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4590     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4591     return true;
4592   };
4593 
4594   // Collect all magic values from the build vector.
4595   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4596     return SDValue();
4597 
4598   SDValue Shift, Factor;
4599   if (VT.isVector()) {
4600     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4601     Factor = DAG.getBuildVector(VT, dl, Factors);
4602   } else {
4603     Shift = Shifts[0];
4604     Factor = Factors[0];
4605   }
4606 
4607   SDValue Res = Op0;
4608 
4609   // Shift the value upfront if it is even, so the LSB is one.
4610   if (UseSRA) {
4611     // TODO: For UDIV use SRL instead of SRA.
4612     SDNodeFlags Flags;
4613     Flags.setExact(true);
4614     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4615     Created.push_back(Res.getNode());
4616   }
4617 
4618   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4619 }
4620 
4621 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4622                               SelectionDAG &DAG,
4623                               SmallVectorImpl<SDNode *> &Created) const {
4624   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4626   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4627     return SDValue(N, 0); // Lower SDIV as SDIV
4628   return SDValue();
4629 }
4630 
4631 /// Given an ISD::SDIV node expressing a divide by constant,
4632 /// return a DAG expression to select that will generate the same value by
4633 /// multiplying by a magic number.
4634 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4635 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4636                                   bool IsAfterLegalization,
4637                                   SmallVectorImpl<SDNode *> &Created) const {
4638   SDLoc dl(N);
4639   EVT VT = N->getValueType(0);
4640   EVT SVT = VT.getScalarType();
4641   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4642   EVT ShSVT = ShVT.getScalarType();
4643   unsigned EltBits = VT.getScalarSizeInBits();
4644 
4645   // Check to see if we can do this.
4646   // FIXME: We should be more aggressive here.
4647   if (!isTypeLegal(VT))
4648     return SDValue();
4649 
4650   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4651   if (N->getFlags().hasExact())
4652     return BuildExactSDIV(*this, N, dl, DAG, Created);
4653 
4654   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4655 
4656   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4657     if (C->isNullValue())
4658       return false;
4659 
4660     const APInt &Divisor = C->getAPIntValue();
4661     APInt::ms magics = Divisor.magic();
4662     int NumeratorFactor = 0;
4663     int ShiftMask = -1;
4664 
4665     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4666       // If d is +1/-1, we just multiply the numerator by +1/-1.
4667       NumeratorFactor = Divisor.getSExtValue();
4668       magics.m = 0;
4669       magics.s = 0;
4670       ShiftMask = 0;
4671     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4672       // If d > 0 and m < 0, add the numerator.
4673       NumeratorFactor = 1;
4674     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4675       // If d < 0 and m > 0, subtract the numerator.
4676       NumeratorFactor = -1;
4677     }
4678 
4679     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4680     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4681     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4682     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4683     return true;
4684   };
4685 
4686   SDValue N0 = N->getOperand(0);
4687   SDValue N1 = N->getOperand(1);
4688 
4689   // Collect the shifts / magic values from each element.
4690   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4691     return SDValue();
4692 
4693   SDValue MagicFactor, Factor, Shift, ShiftMask;
4694   if (VT.isVector()) {
4695     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4696     Factor = DAG.getBuildVector(VT, dl, Factors);
4697     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4698     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4699   } else {
4700     MagicFactor = MagicFactors[0];
4701     Factor = Factors[0];
4702     Shift = Shifts[0];
4703     ShiftMask = ShiftMasks[0];
4704   }
4705 
4706   // Multiply the numerator (operand 0) by the magic value.
4707   // FIXME: We should support doing a MUL in a wider type.
4708   SDValue Q;
4709   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4710                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4711     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4712   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4713                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4714     SDValue LoHi =
4715         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4716     Q = SDValue(LoHi.getNode(), 1);
4717   } else
4718     return SDValue(); // No mulhs or equivalent.
4719   Created.push_back(Q.getNode());
4720 
4721   // (Optionally) Add/subtract the numerator using Factor.
4722   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4723   Created.push_back(Factor.getNode());
4724   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4725   Created.push_back(Q.getNode());
4726 
4727   // Shift right algebraic by shift value.
4728   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4729   Created.push_back(Q.getNode());
4730 
4731   // Extract the sign bit, mask it and add it to the quotient.
4732   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4733   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4734   Created.push_back(T.getNode());
4735   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4736   Created.push_back(T.getNode());
4737   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4738 }
4739 
4740 /// Given an ISD::UDIV node expressing a divide by constant,
4741 /// return a DAG expression to select that will generate the same value by
4742 /// multiplying by a magic number.
4743 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4744 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4745                                   bool IsAfterLegalization,
4746                                   SmallVectorImpl<SDNode *> &Created) const {
4747   SDLoc dl(N);
4748   EVT VT = N->getValueType(0);
4749   EVT SVT = VT.getScalarType();
4750   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4751   EVT ShSVT = ShVT.getScalarType();
4752   unsigned EltBits = VT.getScalarSizeInBits();
4753 
4754   // Check to see if we can do this.
4755   // FIXME: We should be more aggressive here.
4756   if (!isTypeLegal(VT))
4757     return SDValue();
4758 
4759   bool UseNPQ = false;
4760   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4761 
4762   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4763     if (C->isNullValue())
4764       return false;
4765     // FIXME: We should use a narrower constant when the upper
4766     // bits are known to be zero.
4767     APInt Divisor = C->getAPIntValue();
4768     APInt::mu magics = Divisor.magicu();
4769     unsigned PreShift = 0, PostShift = 0;
4770 
4771     // If the divisor is even, we can avoid using the expensive fixup by
4772     // shifting the divided value upfront.
4773     if (magics.a != 0 && !Divisor[0]) {
4774       PreShift = Divisor.countTrailingZeros();
4775       // Get magic number for the shifted divisor.
4776       magics = Divisor.lshr(PreShift).magicu(PreShift);
4777       assert(magics.a == 0 && "Should use cheap fixup now");
4778     }
4779 
4780     APInt Magic = magics.m;
4781 
4782     unsigned SelNPQ;
4783     if (magics.a == 0 || Divisor.isOneValue()) {
4784       assert(magics.s < Divisor.getBitWidth() &&
4785              "We shouldn't generate an undefined shift!");
4786       PostShift = magics.s;
4787       SelNPQ = false;
4788     } else {
4789       PostShift = magics.s - 1;
4790       SelNPQ = true;
4791     }
4792 
4793     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4794     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4795     NPQFactors.push_back(
4796         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4797                                : APInt::getNullValue(EltBits),
4798                         dl, SVT));
4799     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4800     UseNPQ |= SelNPQ;
4801     return true;
4802   };
4803 
4804   SDValue N0 = N->getOperand(0);
4805   SDValue N1 = N->getOperand(1);
4806 
4807   // Collect the shifts/magic values from each element.
4808   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4809     return SDValue();
4810 
4811   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4812   if (VT.isVector()) {
4813     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4814     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4815     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4816     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4817   } else {
4818     PreShift = PreShifts[0];
4819     MagicFactor = MagicFactors[0];
4820     PostShift = PostShifts[0];
4821   }
4822 
4823   SDValue Q = N0;
4824   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4825   Created.push_back(Q.getNode());
4826 
4827   // FIXME: We should support doing a MUL in a wider type.
4828   auto GetMULHU = [&](SDValue X, SDValue Y) {
4829     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4830                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4831       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4832     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4833                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4834       SDValue LoHi =
4835           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4836       return SDValue(LoHi.getNode(), 1);
4837     }
4838     return SDValue(); // No mulhu or equivalent
4839   };
4840 
4841   // Multiply the numerator (operand 0) by the magic value.
4842   Q = GetMULHU(Q, MagicFactor);
4843   if (!Q)
4844     return SDValue();
4845 
4846   Created.push_back(Q.getNode());
4847 
4848   if (UseNPQ) {
4849     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4850     Created.push_back(NPQ.getNode());
4851 
4852     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4853     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4854     if (VT.isVector())
4855       NPQ = GetMULHU(NPQ, NPQFactor);
4856     else
4857       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4858 
4859     Created.push_back(NPQ.getNode());
4860 
4861     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4862     Created.push_back(Q.getNode());
4863   }
4864 
4865   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4866   Created.push_back(Q.getNode());
4867 
4868   SDValue One = DAG.getConstant(1, dl, VT);
4869   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4870   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4871 }
4872 
4873 /// If all values in Values that *don't* match the predicate are same 'splat'
4874 /// value, then replace all values with that splat value.
4875 /// Else, if AlternativeReplacement was provided, then replace all values that
4876 /// do match predicate with AlternativeReplacement value.
4877 static void
4878 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4879                           std::function<bool(SDValue)> Predicate,
4880                           SDValue AlternativeReplacement = SDValue()) {
4881   SDValue Replacement;
4882   // Is there a value for which the Predicate does *NOT* match? What is it?
4883   auto SplatValue = llvm::find_if_not(Values, Predicate);
4884   if (SplatValue != Values.end()) {
4885     // Does Values consist only of SplatValue's and values matching Predicate?
4886     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4887           return Value == *SplatValue || Predicate(Value);
4888         })) // Then we shall replace values matching predicate with SplatValue.
4889       Replacement = *SplatValue;
4890   }
4891   if (!Replacement) {
4892     // Oops, we did not find the "baseline" splat value.
4893     if (!AlternativeReplacement)
4894       return; // Nothing to do.
4895     // Let's replace with provided value then.
4896     Replacement = AlternativeReplacement;
4897   }
4898   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4899 }
4900 
4901 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4902 /// where the divisor is constant and the comparison target is zero,
4903 /// return a DAG expression that will generate the same comparison result
4904 /// using only multiplications, additions and shifts/rotations.
4905 /// Ref: "Hacker's Delight" 10-17.
4906 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4907                                         SDValue CompTargetNode,
4908                                         ISD::CondCode Cond,
4909                                         DAGCombinerInfo &DCI,
4910                                         const SDLoc &DL) const {
4911   SmallVector<SDNode *, 2> Built;
4912   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4913                                          DCI, DL, Built)) {
4914     for (SDNode *N : Built)
4915       DCI.AddToWorklist(N);
4916     return Folded;
4917   }
4918 
4919   return SDValue();
4920 }
4921 
4922 SDValue
4923 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4924                                   SDValue CompTargetNode, ISD::CondCode Cond,
4925                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4926                                   SmallVectorImpl<SDNode *> &Created) const {
4927   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4928   // - D must be constant, with D = D0 * 2^K where D0 is odd
4929   // - P is the multiplicative inverse of D0 modulo 2^W
4930   // - Q = floor(((2^W) - 1) / D)
4931   // where W is the width of the common type of N and D.
4932   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4933          "Only applicable for (in)equality comparisons.");
4934 
4935   SelectionDAG &DAG = DCI.DAG;
4936 
4937   EVT VT = REMNode.getValueType();
4938   EVT SVT = VT.getScalarType();
4939   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4940   EVT ShSVT = ShVT.getScalarType();
4941 
4942   // If MUL is unavailable, we cannot proceed in any case.
4943   if (!isOperationLegalOrCustom(ISD::MUL, VT))
4944     return SDValue();
4945 
4946   // TODO: Could support comparing with non-zero too.
4947   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4948   if (!CompTarget || !CompTarget->isNullValue())
4949     return SDValue();
4950 
4951   bool HadOneDivisor = false;
4952   bool AllDivisorsAreOnes = true;
4953   bool HadEvenDivisor = false;
4954   bool AllDivisorsArePowerOfTwo = true;
4955   SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4956 
4957   auto BuildUREMPattern = [&](ConstantSDNode *C) {
4958     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4959     if (C->isNullValue())
4960       return false;
4961 
4962     const APInt &D = C->getAPIntValue();
4963     // If all divisors are ones, we will prefer to avoid the fold.
4964     HadOneDivisor |= D.isOneValue();
4965     AllDivisorsAreOnes &= D.isOneValue();
4966 
4967     // Decompose D into D0 * 2^K
4968     unsigned K = D.countTrailingZeros();
4969     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4970     APInt D0 = D.lshr(K);
4971 
4972     // D is even if it has trailing zeros.
4973     HadEvenDivisor |= (K != 0);
4974     // D is a power-of-two if D0 is one.
4975     // If all divisors are power-of-two, we will prefer to avoid the fold.
4976     AllDivisorsArePowerOfTwo &= D0.isOneValue();
4977 
4978     // P = inv(D0, 2^W)
4979     // 2^W requires W + 1 bits, so we have to extend and then truncate.
4980     unsigned W = D.getBitWidth();
4981     APInt P = D0.zext(W + 1)
4982                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4983                   .trunc(W);
4984     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4985     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4986 
4987     // Q = floor((2^W - 1) / D)
4988     APInt Q = APInt::getAllOnesValue(W).udiv(D);
4989 
4990     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4991            "We are expecting that K is always less than all-ones for ShSVT");
4992 
4993     // If the divisor is 1 the result can be constant-folded.
4994     if (D.isOneValue()) {
4995       // Set P and K amount to a bogus values so we can try to splat them.
4996       P = 0;
4997       K = -1;
4998       assert(Q.isAllOnesValue() &&
4999              "Expecting all-ones comparison for one divisor");
5000     }
5001 
5002     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5003     KAmts.push_back(
5004         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5005     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5006     return true;
5007   };
5008 
5009   SDValue N = REMNode.getOperand(0);
5010   SDValue D = REMNode.getOperand(1);
5011 
5012   // Collect the values from each element.
5013   if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
5014     return SDValue();
5015 
5016   // If this is a urem by a one, avoid the fold since it can be constant-folded.
5017   if (AllDivisorsAreOnes)
5018     return SDValue();
5019 
5020   // If this is a urem by a powers-of-two, avoid the fold since it can be
5021   // best implemented as a bit test.
5022   if (AllDivisorsArePowerOfTwo)
5023     return SDValue();
5024 
5025   SDValue PVal, KVal, QVal;
5026   if (VT.isVector()) {
5027     if (HadOneDivisor) {
5028       // Try to turn PAmts into a splat, since we don't care about the values
5029       // that are currently '0'. If we can't, just keep '0'`s.
5030       turnVectorIntoSplatVector(PAmts, isNullConstant);
5031       // Try to turn KAmts into a splat, since we don't care about the values
5032       // that are currently '-1'. If we can't, change them to '0'`s.
5033       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5034                                 DAG.getConstant(0, DL, ShSVT));
5035     }
5036 
5037     PVal = DAG.getBuildVector(VT, DL, PAmts);
5038     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5039     QVal = DAG.getBuildVector(VT, DL, QAmts);
5040   } else {
5041     PVal = PAmts[0];
5042     KVal = KAmts[0];
5043     QVal = QAmts[0];
5044   }
5045 
5046   // (mul N, P)
5047   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5048   Created.push_back(Op0.getNode());
5049 
5050   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5051   // divisors as a performance improvement, since rotating by 0 is a no-op.
5052   if (HadEvenDivisor) {
5053     // We need ROTR to do this.
5054     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5055       return SDValue();
5056     SDNodeFlags Flags;
5057     Flags.setExact(true);
5058     // UREM: (rotr (mul N, P), K)
5059     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5060     Created.push_back(Op0.getNode());
5061   }
5062 
5063   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5064   return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5065                       ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5066 }
5067 
5068 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5069 /// where the divisor is constant and the comparison target is zero,
5070 /// return a DAG expression that will generate the same comparison result
5071 /// using only multiplications, additions and shifts/rotations.
5072 /// Ref: "Hacker's Delight" 10-17.
5073 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5074                                         SDValue CompTargetNode,
5075                                         ISD::CondCode Cond,
5076                                         DAGCombinerInfo &DCI,
5077                                         const SDLoc &DL) const {
5078   SmallVector<SDNode *, 7> Built;
5079   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5080                                          DCI, DL, Built)) {
5081     assert(Built.size() <= 7 && "Max size prediction failed.");
5082     for (SDNode *N : Built)
5083       DCI.AddToWorklist(N);
5084     return Folded;
5085   }
5086 
5087   return SDValue();
5088 }
5089 
5090 SDValue
5091 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5092                                   SDValue CompTargetNode, ISD::CondCode Cond,
5093                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5094                                   SmallVectorImpl<SDNode *> &Created) const {
5095   // Fold:
5096   //   (seteq/ne (srem N, D), 0)
5097   // To:
5098   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5099   //
5100   // - D must be constant, with D = D0 * 2^K where D0 is odd
5101   // - P is the multiplicative inverse of D0 modulo 2^W
5102   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5103   // - Q = floor((2 * A) / (2^K))
5104   // where W is the width of the common type of N and D.
5105   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5106          "Only applicable for (in)equality comparisons.");
5107 
5108   SelectionDAG &DAG = DCI.DAG;
5109 
5110   EVT VT = REMNode.getValueType();
5111   EVT SVT = VT.getScalarType();
5112   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5113   EVT ShSVT = ShVT.getScalarType();
5114 
5115   // If MUL is unavailable, we cannot proceed in any case.
5116   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5117     return SDValue();
5118 
5119   // TODO: Could support comparing with non-zero too.
5120   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5121   if (!CompTarget || !CompTarget->isNullValue())
5122     return SDValue();
5123 
5124   bool HadIntMinDivisor = false;
5125   bool HadOneDivisor = false;
5126   bool AllDivisorsAreOnes = true;
5127   bool HadEvenDivisor = false;
5128   bool NeedToApplyOffset = false;
5129   bool AllDivisorsArePowerOfTwo = true;
5130   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5131 
5132   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5133     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5134     if (C->isNullValue())
5135       return false;
5136 
5137     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5138 
5139     // WARNING: this fold is only valid for positive divisors!
5140     APInt D = C->getAPIntValue();
5141     if (D.isNegative())
5142       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5143 
5144     HadIntMinDivisor |= D.isMinSignedValue();
5145 
5146     // If all divisors are ones, we will prefer to avoid the fold.
5147     HadOneDivisor |= D.isOneValue();
5148     AllDivisorsAreOnes &= D.isOneValue();
5149 
5150     // Decompose D into D0 * 2^K
5151     unsigned K = D.countTrailingZeros();
5152     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5153     APInt D0 = D.lshr(K);
5154 
5155     if (!D.isMinSignedValue()) {
5156       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5157       // we don't care about this lane in this fold, we'll special-handle it.
5158       HadEvenDivisor |= (K != 0);
5159     }
5160 
5161     // D is a power-of-two if D0 is one. This includes INT_MIN.
5162     // If all divisors are power-of-two, we will prefer to avoid the fold.
5163     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5164 
5165     // P = inv(D0, 2^W)
5166     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5167     unsigned W = D.getBitWidth();
5168     APInt P = D0.zext(W + 1)
5169                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5170                   .trunc(W);
5171     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5172     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5173 
5174     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5175     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5176     A.clearLowBits(K);
5177 
5178     if (!D.isMinSignedValue()) {
5179       // If divisor INT_MIN, then we don't care about this lane in this fold,
5180       // we'll special-handle it.
5181       NeedToApplyOffset |= A != 0;
5182     }
5183 
5184     // Q = floor((2 * A) / (2^K))
5185     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5186 
5187     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5188            "We are expecting that A is always less than all-ones for SVT");
5189     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5190            "We are expecting that K is always less than all-ones for ShSVT");
5191 
5192     // If the divisor is 1 the result can be constant-folded. Likewise, we
5193     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5194     if (D.isOneValue()) {
5195       // Set P, A and K to a bogus values so we can try to splat them.
5196       P = 0;
5197       A = -1;
5198       K = -1;
5199 
5200       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5201       Q = -1;
5202     }
5203 
5204     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5205     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5206     KAmts.push_back(
5207         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5208     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5209     return true;
5210   };
5211 
5212   SDValue N = REMNode.getOperand(0);
5213   SDValue D = REMNode.getOperand(1);
5214 
5215   // Collect the values from each element.
5216   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5217     return SDValue();
5218 
5219   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5220   if (AllDivisorsAreOnes)
5221     return SDValue();
5222 
5223   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5224   // since it can be best implemented as a bit test.
5225   if (AllDivisorsArePowerOfTwo)
5226     return SDValue();
5227 
5228   SDValue PVal, AVal, KVal, QVal;
5229   if (VT.isVector()) {
5230     if (HadOneDivisor) {
5231       // Try to turn PAmts into a splat, since we don't care about the values
5232       // that are currently '0'. If we can't, just keep '0'`s.
5233       turnVectorIntoSplatVector(PAmts, isNullConstant);
5234       // Try to turn AAmts into a splat, since we don't care about the
5235       // values that are currently '-1'. If we can't, change them to '0'`s.
5236       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5237                                 DAG.getConstant(0, DL, SVT));
5238       // Try to turn KAmts into a splat, since we don't care about the values
5239       // that are currently '-1'. If we can't, change them to '0'`s.
5240       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5241                                 DAG.getConstant(0, DL, ShSVT));
5242     }
5243 
5244     PVal = DAG.getBuildVector(VT, DL, PAmts);
5245     AVal = DAG.getBuildVector(VT, DL, AAmts);
5246     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5247     QVal = DAG.getBuildVector(VT, DL, QAmts);
5248   } else {
5249     PVal = PAmts[0];
5250     AVal = AAmts[0];
5251     KVal = KAmts[0];
5252     QVal = QAmts[0];
5253   }
5254 
5255   // (mul N, P)
5256   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5257   Created.push_back(Op0.getNode());
5258 
5259   if (NeedToApplyOffset) {
5260     // We need ADD to do this.
5261     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5262       return SDValue();
5263 
5264     // (add (mul N, P), A)
5265     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5266     Created.push_back(Op0.getNode());
5267   }
5268 
5269   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5270   // divisors as a performance improvement, since rotating by 0 is a no-op.
5271   if (HadEvenDivisor) {
5272     // We need ROTR to do this.
5273     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5274       return SDValue();
5275     SDNodeFlags Flags;
5276     Flags.setExact(true);
5277     // SREM: (rotr (add (mul N, P), A), K)
5278     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5279     Created.push_back(Op0.getNode());
5280   }
5281 
5282   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5283   SDValue Fold =
5284       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5285                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5286 
5287   // If we didn't have lanes with INT_MIN divisor, then we're done.
5288   if (!HadIntMinDivisor)
5289     return Fold;
5290 
5291   // That fold is only valid for positive divisors. Which effectively means,
5292   // it is invalid for INT_MIN divisors. So if we have such a lane,
5293   // we must fix-up results for said lanes.
5294   assert(VT.isVector() && "Can/should only get here for vectors.");
5295 
5296   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5297       !isOperationLegalOrCustom(ISD::AND, VT) ||
5298       !isOperationLegalOrCustom(Cond, VT) ||
5299       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5300     return SDValue();
5301 
5302   Created.push_back(Fold.getNode());
5303 
5304   SDValue IntMin = DAG.getConstant(
5305       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5306   SDValue IntMax = DAG.getConstant(
5307       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5308   SDValue Zero =
5309       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5310 
5311   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5312   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5313   Created.push_back(DivisorIsIntMin.getNode());
5314 
5315   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5316   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5317   Created.push_back(Masked.getNode());
5318   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5319   Created.push_back(MaskedIsZero.getNode());
5320 
5321   // To produce final result we need to blend 2 vectors: 'SetCC' and
5322   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5323   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5324   // constant-folded, select can get lowered to a shuffle with constant mask.
5325   SDValue Blended =
5326       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5327 
5328   return Blended;
5329 }
5330 
5331 bool TargetLowering::
5332 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5333   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5334     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5335                                 "be a constant integer");
5336     return true;
5337   }
5338 
5339   return false;
5340 }
5341 
5342 char TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
5343                                         bool LegalOperations, bool ForCodeSize,
5344                                         unsigned Depth) const {
5345   // fneg is removable even if it has multiple uses.
5346   if (Op.getOpcode() == ISD::FNEG)
5347     return 2;
5348 
5349   // Don't allow anything with multiple uses unless we know it is free.
5350   EVT VT = Op.getValueType();
5351   const SDNodeFlags Flags = Op->getFlags();
5352   const TargetOptions &Options = DAG.getTarget().Options;
5353   if (!Op.hasOneUse() && !(Op.getOpcode() == ISD::FP_EXTEND &&
5354                            isFPExtFree(VT, Op.getOperand(0).getValueType())))
5355     return 0;
5356 
5357   // Don't recurse exponentially.
5358   if (Depth > SelectionDAG::MaxRecursionDepth)
5359     return 0;
5360 
5361   switch (Op.getOpcode()) {
5362   case ISD::ConstantFP: {
5363     if (!LegalOperations)
5364       return 1;
5365 
5366     // Don't invert constant FP values after legalization unless the target says
5367     // the negated constant is legal.
5368     return isOperationLegal(ISD::ConstantFP, VT) ||
5369            isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5370                         ForCodeSize);
5371   }
5372   case ISD::BUILD_VECTOR: {
5373     // Only permit BUILD_VECTOR of constants.
5374     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5375           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5376         }))
5377       return 0;
5378     if (!LegalOperations)
5379       return 1;
5380     if (isOperationLegal(ISD::ConstantFP, VT) &&
5381         isOperationLegal(ISD::BUILD_VECTOR, VT))
5382       return 1;
5383     return llvm::all_of(Op->op_values(), [&](SDValue N) {
5384       return N.isUndef() ||
5385              isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5386                           ForCodeSize);
5387     });
5388   }
5389   case ISD::FADD:
5390     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5391       return 0;
5392 
5393     // After operation legalization, it might not be legal to create new FSUBs.
5394     if (LegalOperations && !isOperationLegalOrCustom(ISD::FSUB, VT))
5395       return 0;
5396 
5397     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5398     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5399                                     ForCodeSize, Depth + 1))
5400       return V;
5401     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5402     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5403                               ForCodeSize, Depth + 1);
5404   case ISD::FSUB:
5405     // We can't turn -(A-B) into B-A when we honor signed zeros.
5406     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5407       return 0;
5408 
5409     // fold (fneg (fsub A, B)) -> (fsub B, A)
5410     return 1;
5411 
5412   case ISD::FMUL:
5413   case ISD::FDIV:
5414     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
5415     if (char V = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5416                                     ForCodeSize, Depth + 1))
5417       return V;
5418 
5419     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5420     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5421       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5422         return 0;
5423 
5424     return isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5425                               ForCodeSize, Depth + 1);
5426 
5427   case ISD::FMA:
5428   case ISD::FMAD: {
5429     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5430       return 0;
5431 
5432     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5433     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5434     char V2 = isNegatibleForFree(Op.getOperand(2), DAG, LegalOperations,
5435                                  ForCodeSize, Depth + 1);
5436     if (!V2)
5437       return 0;
5438 
5439     // One of Op0/Op1 must be cheaply negatible, then select the cheapest.
5440     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5441                                  ForCodeSize, Depth + 1);
5442     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5443                                  ForCodeSize, Depth + 1);
5444     char V01 = std::max(V0, V1);
5445     return V01 ? std::max(V01, V2) : 0;
5446   }
5447 
5448   case ISD::FP_EXTEND:
5449   case ISD::FP_ROUND:
5450   case ISD::FSIN:
5451     return isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5452                               ForCodeSize, Depth + 1);
5453   }
5454 
5455   return 0;
5456 }
5457 
5458 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5459                                              bool LegalOperations,
5460                                              bool ForCodeSize,
5461                                              unsigned Depth) const {
5462   // fneg is removable even if it has multiple uses.
5463   if (Op.getOpcode() == ISD::FNEG)
5464     return Op.getOperand(0);
5465 
5466   assert(Depth <= SelectionDAG::MaxRecursionDepth &&
5467          "getNegatedExpression doesn't match isNegatibleForFree");
5468   const SDNodeFlags Flags = Op->getFlags();
5469 
5470   switch (Op.getOpcode()) {
5471   case ISD::ConstantFP: {
5472     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5473     V.changeSign();
5474     return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
5475   }
5476   case ISD::BUILD_VECTOR: {
5477     SmallVector<SDValue, 4> Ops;
5478     for (SDValue C : Op->op_values()) {
5479       if (C.isUndef()) {
5480         Ops.push_back(C);
5481         continue;
5482       }
5483       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5484       V.changeSign();
5485       Ops.push_back(DAG.getConstantFP(V, SDLoc(Op), C.getValueType()));
5486     }
5487     return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Ops);
5488   }
5489   case ISD::FADD:
5490     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5491             Flags.hasNoSignedZeros()) &&
5492            "Expected NSZ fp-flag");
5493 
5494     // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
5495     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5496                            Depth + 1))
5497       return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5498                          getNegatedExpression(Op.getOperand(0), DAG,
5499                                               LegalOperations, ForCodeSize,
5500                                               Depth + 1),
5501                          Op.getOperand(1), Flags);
5502     // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
5503     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5504                        getNegatedExpression(Op.getOperand(1), DAG,
5505                                             LegalOperations, ForCodeSize,
5506                                             Depth + 1),
5507                        Op.getOperand(0), Flags);
5508   case ISD::FSUB:
5509     // fold (fneg (fsub 0, B)) -> B
5510     if (ConstantFPSDNode *N0CFP =
5511             isConstOrConstSplatFP(Op.getOperand(0), /*AllowUndefs*/ true))
5512       if (N0CFP->isZero())
5513         return Op.getOperand(1);
5514 
5515     // fold (fneg (fsub A, B)) -> (fsub B, A)
5516     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
5517                        Op.getOperand(1), Op.getOperand(0), Flags);
5518 
5519   case ISD::FMUL:
5520   case ISD::FDIV:
5521     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5522     if (isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations, ForCodeSize,
5523                            Depth + 1))
5524       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5525                          getNegatedExpression(Op.getOperand(0), DAG,
5526                                               LegalOperations, ForCodeSize,
5527                                               Depth + 1),
5528                          Op.getOperand(1), Flags);
5529 
5530     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5531     return DAG.getNode(
5532         Op.getOpcode(), SDLoc(Op), Op.getValueType(), Op.getOperand(0),
5533         getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5534                              ForCodeSize, Depth + 1),
5535         Flags);
5536 
5537   case ISD::FMA:
5538   case ISD::FMAD: {
5539     assert((DAG.getTarget().Options.NoSignedZerosFPMath ||
5540             Flags.hasNoSignedZeros()) &&
5541            "Expected NSZ fp-flag");
5542 
5543     SDValue Neg2 = getNegatedExpression(Op.getOperand(2), DAG, LegalOperations,
5544                                         ForCodeSize, Depth + 1);
5545 
5546     char V0 = isNegatibleForFree(Op.getOperand(0), DAG, LegalOperations,
5547                                  ForCodeSize, Depth + 1);
5548     char V1 = isNegatibleForFree(Op.getOperand(1), DAG, LegalOperations,
5549                                  ForCodeSize, Depth + 1);
5550     if (V0 >= V1) {
5551       // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5552       SDValue Neg0 = getNegatedExpression(
5553           Op.getOperand(0), DAG, LegalOperations, ForCodeSize, Depth + 1);
5554       return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), Neg0,
5555                          Op.getOperand(1), Neg2, Flags);
5556     }
5557 
5558     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5559     SDValue Neg1 = getNegatedExpression(Op.getOperand(1), DAG, LegalOperations,
5560                                         ForCodeSize, Depth + 1);
5561     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5562                        Op.getOperand(0), Neg1, Neg2, Flags);
5563   }
5564 
5565   case ISD::FP_EXTEND:
5566   case ISD::FSIN:
5567     return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
5568                        getNegatedExpression(Op.getOperand(0), DAG,
5569                                             LegalOperations, ForCodeSize,
5570                                             Depth + 1));
5571   case ISD::FP_ROUND:
5572     return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
5573                        getNegatedExpression(Op.getOperand(0), DAG,
5574                                             LegalOperations, ForCodeSize,
5575                                             Depth + 1),
5576                        Op.getOperand(1));
5577   }
5578 
5579   llvm_unreachable("Unknown code");
5580 }
5581 
5582 //===----------------------------------------------------------------------===//
5583 // Legalization Utilities
5584 //===----------------------------------------------------------------------===//
5585 
5586 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5587                                     SDValue LHS, SDValue RHS,
5588                                     SmallVectorImpl<SDValue> &Result,
5589                                     EVT HiLoVT, SelectionDAG &DAG,
5590                                     MulExpansionKind Kind, SDValue LL,
5591                                     SDValue LH, SDValue RL, SDValue RH) const {
5592   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5593          Opcode == ISD::SMUL_LOHI);
5594 
5595   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5596                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5597   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5598                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5599   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5600                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5601   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5602                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5603 
5604   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5605     return false;
5606 
5607   unsigned OuterBitSize = VT.getScalarSizeInBits();
5608   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5609   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5610   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5611 
5612   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5613   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5614          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5615 
5616   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5617   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5618                           bool Signed) -> bool {
5619     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5620       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5621       Hi = SDValue(Lo.getNode(), 1);
5622       return true;
5623     }
5624     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5625       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5626       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5627       return true;
5628     }
5629     return false;
5630   };
5631 
5632   SDValue Lo, Hi;
5633 
5634   if (!LL.getNode() && !RL.getNode() &&
5635       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5636     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5637     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5638   }
5639 
5640   if (!LL.getNode())
5641     return false;
5642 
5643   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5644   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5645       DAG.MaskedValueIsZero(RHS, HighMask)) {
5646     // The inputs are both zero-extended.
5647     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5648       Result.push_back(Lo);
5649       Result.push_back(Hi);
5650       if (Opcode != ISD::MUL) {
5651         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5652         Result.push_back(Zero);
5653         Result.push_back(Zero);
5654       }
5655       return true;
5656     }
5657   }
5658 
5659   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5660       RHSSB > InnerBitSize) {
5661     // The input values are both sign-extended.
5662     // TODO non-MUL case?
5663     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5664       Result.push_back(Lo);
5665       Result.push_back(Hi);
5666       return true;
5667     }
5668   }
5669 
5670   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5671   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5672   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5673     // FIXME getShiftAmountTy does not always return a sensible result when VT
5674     // is an illegal type, and so the type may be too small to fit the shift
5675     // amount. Override it with i32. The shift will have to be legalized.
5676     ShiftAmountTy = MVT::i32;
5677   }
5678   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5679 
5680   if (!LH.getNode() && !RH.getNode() &&
5681       isOperationLegalOrCustom(ISD::SRL, VT) &&
5682       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5683     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5684     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5685     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5686     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5687   }
5688 
5689   if (!LH.getNode())
5690     return false;
5691 
5692   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5693     return false;
5694 
5695   Result.push_back(Lo);
5696 
5697   if (Opcode == ISD::MUL) {
5698     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5699     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5700     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5701     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5702     Result.push_back(Hi);
5703     return true;
5704   }
5705 
5706   // Compute the full width result.
5707   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5708     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5709     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5710     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5711     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5712   };
5713 
5714   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5715   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5716     return false;
5717 
5718   // This is effectively the add part of a multiply-add of half-sized operands,
5719   // so it cannot overflow.
5720   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5721 
5722   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5723     return false;
5724 
5725   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5726   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5727 
5728   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5729                   isOperationLegalOrCustom(ISD::ADDE, VT));
5730   if (UseGlue)
5731     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5732                        Merge(Lo, Hi));
5733   else
5734     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5735                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5736 
5737   SDValue Carry = Next.getValue(1);
5738   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5739   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5740 
5741   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5742     return false;
5743 
5744   if (UseGlue)
5745     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5746                      Carry);
5747   else
5748     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5749                      Zero, Carry);
5750 
5751   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5752 
5753   if (Opcode == ISD::SMUL_LOHI) {
5754     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5755                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5756     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5757 
5758     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5759                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5760     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5761   }
5762 
5763   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5764   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5765   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5766   return true;
5767 }
5768 
5769 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5770                                SelectionDAG &DAG, MulExpansionKind Kind,
5771                                SDValue LL, SDValue LH, SDValue RL,
5772                                SDValue RH) const {
5773   SmallVector<SDValue, 2> Result;
5774   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5775                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5776                            DAG, Kind, LL, LH, RL, RH);
5777   if (Ok) {
5778     assert(Result.size() == 2);
5779     Lo = Result[0];
5780     Hi = Result[1];
5781   }
5782   return Ok;
5783 }
5784 
5785 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5786                                        SelectionDAG &DAG) const {
5787   EVT VT = Node->getValueType(0);
5788 
5789   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5790                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5791                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5792                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5793     return false;
5794 
5795   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5796   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5797   SDValue X = Node->getOperand(0);
5798   SDValue Y = Node->getOperand(1);
5799   SDValue Z = Node->getOperand(2);
5800 
5801   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5802   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5803   SDLoc DL(SDValue(Node, 0));
5804 
5805   EVT ShVT = Z.getValueType();
5806   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5807   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5808 
5809   SDValue ShAmt;
5810   if (isPowerOf2_32(EltSizeInBits)) {
5811     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5812     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5813   } else {
5814     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5815   }
5816 
5817   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5818   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5819   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5820   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5821 
5822   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5823   // and that is undefined. We must compare and select to avoid UB.
5824   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5825 
5826   // For fshl, 0-shift returns the 1st arg (X).
5827   // For fshr, 0-shift returns the 2nd arg (Y).
5828   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5829   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5830   return true;
5831 }
5832 
5833 // TODO: Merge with expandFunnelShift.
5834 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5835                                SelectionDAG &DAG) const {
5836   EVT VT = Node->getValueType(0);
5837   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5838   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5839   SDValue Op0 = Node->getOperand(0);
5840   SDValue Op1 = Node->getOperand(1);
5841   SDLoc DL(SDValue(Node, 0));
5842 
5843   EVT ShVT = Op1.getValueType();
5844   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5845 
5846   // If a rotate in the other direction is legal, use it.
5847   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5848   if (isOperationLegal(RevRot, VT)) {
5849     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5850     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5851     return true;
5852   }
5853 
5854   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5855                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5856                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5857                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5858                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5859     return false;
5860 
5861   // Otherwise,
5862   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5863   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5864   //
5865   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5866          "Expecting the type bitwidth to be a power of 2");
5867   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5868   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5869   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5870   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5871   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5872   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5873   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5874                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
5875   return true;
5876 }
5877 
5878 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5879                                       SelectionDAG &DAG) const {
5880   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5881   SDValue Src = Node->getOperand(OpNo);
5882   EVT SrcVT = Src.getValueType();
5883   EVT DstVT = Node->getValueType(0);
5884   SDLoc dl(SDValue(Node, 0));
5885 
5886   // FIXME: Only f32 to i64 conversions are supported.
5887   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5888     return false;
5889 
5890   if (Node->isStrictFPOpcode())
5891     // When a NaN is converted to an integer a trap is allowed. We can't
5892     // use this expansion here because it would eliminate that trap. Other
5893     // traps are also allowed and cannot be eliminated. See
5894     // IEEE 754-2008 sec 5.8.
5895     return false;
5896 
5897   // Expand f32 -> i64 conversion
5898   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5899   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5900   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5901   EVT IntVT = SrcVT.changeTypeToInteger();
5902   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5903 
5904   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5905   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5906   SDValue Bias = DAG.getConstant(127, dl, IntVT);
5907   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5908   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5909   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5910 
5911   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5912 
5913   SDValue ExponentBits = DAG.getNode(
5914       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5915       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5916   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5917 
5918   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5919                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5920                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5921   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5922 
5923   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5924                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5925                           DAG.getConstant(0x00800000, dl, IntVT));
5926 
5927   R = DAG.getZExtOrTrunc(R, dl, DstVT);
5928 
5929   R = DAG.getSelectCC(
5930       dl, Exponent, ExponentLoBit,
5931       DAG.getNode(ISD::SHL, dl, DstVT, R,
5932                   DAG.getZExtOrTrunc(
5933                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5934                       dl, IntShVT)),
5935       DAG.getNode(ISD::SRL, dl, DstVT, R,
5936                   DAG.getZExtOrTrunc(
5937                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5938                       dl, IntShVT)),
5939       ISD::SETGT);
5940 
5941   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5942                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5943 
5944   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5945                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5946   return true;
5947 }
5948 
5949 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5950                                       SDValue &Chain,
5951                                       SelectionDAG &DAG) const {
5952   SDLoc dl(SDValue(Node, 0));
5953   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5954   SDValue Src = Node->getOperand(OpNo);
5955 
5956   EVT SrcVT = Src.getValueType();
5957   EVT DstVT = Node->getValueType(0);
5958   EVT SetCCVT =
5959       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5960 
5961   // Only expand vector types if we have the appropriate vector bit operations.
5962   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
5963                                                    ISD::FP_TO_SINT;
5964   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
5965                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5966     return false;
5967 
5968   // If the maximum float value is smaller then the signed integer range,
5969   // the destination signmask can't be represented by the float, so we can
5970   // just use FP_TO_SINT directly.
5971   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5972   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5973   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5974   if (APFloat::opOverflow &
5975       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5976     if (Node->isStrictFPOpcode()) {
5977       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5978                            { Node->getOperand(0), Src });
5979       Chain = Result.getValue(1);
5980     } else
5981       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5982     return true;
5983   }
5984 
5985   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5986   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5987 
5988   bool Strict = Node->isStrictFPOpcode() ||
5989                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5990 
5991   if (Strict) {
5992     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5993     // signmask then offset (the result of which should be fully representable).
5994     // Sel = Src < 0x8000000000000000
5995     // Val = select Sel, Src, Src - 0x8000000000000000
5996     // Ofs = select Sel, 0, 0x8000000000000000
5997     // Result = fp_to_sint(Val) ^ Ofs
5998 
5999     // TODO: Should any fast-math-flags be set for the FSUB?
6000     SDValue SrcBiased;
6001     if (Node->isStrictFPOpcode())
6002       SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6003                               { Node->getOperand(0), Src, Cst });
6004     else
6005       SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst);
6006     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased);
6007     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
6008                                 DAG.getConstant(SignMask, dl, DstVT));
6009     SDValue SInt;
6010     if (Node->isStrictFPOpcode()) {
6011       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6012                          { SrcBiased.getValue(1), Val });
6013       Chain = SInt.getValue(1);
6014     } else
6015       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6016     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs);
6017   } else {
6018     // Expand based on maximum range of FP_TO_SINT:
6019     // True = fp_to_sint(Src)
6020     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6021     // Result = select (Src < 0x8000000000000000), True, False
6022 
6023     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6024     // TODO: Should any fast-math-flags be set for the FSUB?
6025     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6026                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6027     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6028                         DAG.getConstant(SignMask, dl, DstVT));
6029     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6030   }
6031   return true;
6032 }
6033 
6034 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6035                                       SelectionDAG &DAG) const {
6036   SDValue Src = Node->getOperand(0);
6037   EVT SrcVT = Src.getValueType();
6038   EVT DstVT = Node->getValueType(0);
6039 
6040   if (SrcVT.getScalarType() != MVT::i64)
6041     return false;
6042 
6043   SDLoc dl(SDValue(Node, 0));
6044   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6045 
6046   if (DstVT.getScalarType() == MVT::f32) {
6047     // Only expand vector types if we have the appropriate vector bit
6048     // operations.
6049     if (SrcVT.isVector() &&
6050         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6051          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6052          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
6053          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6054          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6055       return false;
6056 
6057     // For unsigned conversions, convert them to signed conversions using the
6058     // algorithm from the x86_64 __floatundidf in compiler_rt.
6059     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
6060 
6061     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
6062     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
6063     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
6064     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
6065     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
6066 
6067     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
6068     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
6069 
6070     // TODO: This really should be implemented using a branch rather than a
6071     // select.  We happen to get lucky and machinesink does the right
6072     // thing most of the time.  This would be a good candidate for a
6073     // pseudo-op, or, even better, for whole-function isel.
6074     EVT SetCCVT =
6075         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6076 
6077     SDValue SignBitTest = DAG.getSetCC(
6078         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
6079     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
6080     return true;
6081   }
6082 
6083   if (DstVT.getScalarType() == MVT::f64) {
6084     // Only expand vector types if we have the appropriate vector bit
6085     // operations.
6086     if (SrcVT.isVector() &&
6087         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6088          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6089          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6090          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6091          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6092       return false;
6093 
6094     // Implementation of unsigned i64 to f64 following the algorithm in
6095     // __floatundidf in compiler_rt. This implementation has the advantage
6096     // of performing rounding correctly, both in the default rounding mode
6097     // and in all alternate rounding modes.
6098     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6099     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6100         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6101     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6102     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6103     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6104 
6105     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6106     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6107     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6108     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6109     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6110     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6111     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6112     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6113     return true;
6114   }
6115 
6116   return false;
6117 }
6118 
6119 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6120                                               SelectionDAG &DAG) const {
6121   SDLoc dl(Node);
6122   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6123     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6124   EVT VT = Node->getValueType(0);
6125   if (isOperationLegalOrCustom(NewOp, VT)) {
6126     SDValue Quiet0 = Node->getOperand(0);
6127     SDValue Quiet1 = Node->getOperand(1);
6128 
6129     if (!Node->getFlags().hasNoNaNs()) {
6130       // Insert canonicalizes if it's possible we need to quiet to get correct
6131       // sNaN behavior.
6132       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6133         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6134                              Node->getFlags());
6135       }
6136       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6137         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6138                              Node->getFlags());
6139       }
6140     }
6141 
6142     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6143   }
6144 
6145   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6146   // instead if there are no NaNs.
6147   if (Node->getFlags().hasNoNaNs()) {
6148     unsigned IEEE2018Op =
6149         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6150     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6151       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6152                          Node->getOperand(1), Node->getFlags());
6153     }
6154   }
6155 
6156   return SDValue();
6157 }
6158 
6159 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6160                                  SelectionDAG &DAG) const {
6161   SDLoc dl(Node);
6162   EVT VT = Node->getValueType(0);
6163   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6164   SDValue Op = Node->getOperand(0);
6165   unsigned Len = VT.getScalarSizeInBits();
6166   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6167 
6168   // TODO: Add support for irregular type lengths.
6169   if (!(Len <= 128 && Len % 8 == 0))
6170     return false;
6171 
6172   // Only expand vector types if we have the appropriate vector bit operations.
6173   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6174                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6175                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6176                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6177                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6178     return false;
6179 
6180   // This is the "best" algorithm from
6181   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6182   SDValue Mask55 =
6183       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6184   SDValue Mask33 =
6185       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6186   SDValue Mask0F =
6187       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6188   SDValue Mask01 =
6189       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6190 
6191   // v = v - ((v >> 1) & 0x55555555...)
6192   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6193                    DAG.getNode(ISD::AND, dl, VT,
6194                                DAG.getNode(ISD::SRL, dl, VT, Op,
6195                                            DAG.getConstant(1, dl, ShVT)),
6196                                Mask55));
6197   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6198   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6199                    DAG.getNode(ISD::AND, dl, VT,
6200                                DAG.getNode(ISD::SRL, dl, VT, Op,
6201                                            DAG.getConstant(2, dl, ShVT)),
6202                                Mask33));
6203   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6204   Op = DAG.getNode(ISD::AND, dl, VT,
6205                    DAG.getNode(ISD::ADD, dl, VT, Op,
6206                                DAG.getNode(ISD::SRL, dl, VT, Op,
6207                                            DAG.getConstant(4, dl, ShVT))),
6208                    Mask0F);
6209   // v = (v * 0x01010101...) >> (Len - 8)
6210   if (Len > 8)
6211     Op =
6212         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6213                     DAG.getConstant(Len - 8, dl, ShVT));
6214 
6215   Result = Op;
6216   return true;
6217 }
6218 
6219 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6220                                 SelectionDAG &DAG) const {
6221   SDLoc dl(Node);
6222   EVT VT = Node->getValueType(0);
6223   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6224   SDValue Op = Node->getOperand(0);
6225   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6226 
6227   // If the non-ZERO_UNDEF version is supported we can use that instead.
6228   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6229       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6230     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6231     return true;
6232   }
6233 
6234   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6235   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6236     EVT SetCCVT =
6237         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6238     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6239     SDValue Zero = DAG.getConstant(0, dl, VT);
6240     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6241     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6242                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6243     return true;
6244   }
6245 
6246   // Only expand vector types if we have the appropriate vector bit operations.
6247   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6248                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6249                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6250                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6251     return false;
6252 
6253   // for now, we do this:
6254   // x = x | (x >> 1);
6255   // x = x | (x >> 2);
6256   // ...
6257   // x = x | (x >>16);
6258   // x = x | (x >>32); // for 64-bit input
6259   // return popcount(~x);
6260   //
6261   // Ref: "Hacker's Delight" by Henry Warren
6262   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6263     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6264     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6265                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6266   }
6267   Op = DAG.getNOT(dl, Op, VT);
6268   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6269   return true;
6270 }
6271 
6272 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6273                                 SelectionDAG &DAG) const {
6274   SDLoc dl(Node);
6275   EVT VT = Node->getValueType(0);
6276   SDValue Op = Node->getOperand(0);
6277   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6278 
6279   // If the non-ZERO_UNDEF version is supported we can use that instead.
6280   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6281       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6282     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6283     return true;
6284   }
6285 
6286   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6287   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6288     EVT SetCCVT =
6289         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6290     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6291     SDValue Zero = DAG.getConstant(0, dl, VT);
6292     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6293     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6294                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6295     return true;
6296   }
6297 
6298   // Only expand vector types if we have the appropriate vector bit operations.
6299   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6300                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6301                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6302                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6303                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6304                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6305     return false;
6306 
6307   // for now, we use: { return popcount(~x & (x - 1)); }
6308   // unless the target has ctlz but not ctpop, in which case we use:
6309   // { return 32 - nlz(~x & (x-1)); }
6310   // Ref: "Hacker's Delight" by Henry Warren
6311   SDValue Tmp = DAG.getNode(
6312       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6313       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6314 
6315   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6316   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6317     Result =
6318         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6319                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6320     return true;
6321   }
6322 
6323   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6324   return true;
6325 }
6326 
6327 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6328                                SelectionDAG &DAG) const {
6329   SDLoc dl(N);
6330   EVT VT = N->getValueType(0);
6331   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6332   SDValue Op = N->getOperand(0);
6333 
6334   // Only expand vector types if we have the appropriate vector operations.
6335   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6336                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6337                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6338     return false;
6339 
6340   SDValue Shift =
6341       DAG.getNode(ISD::SRA, dl, VT, Op,
6342                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6343   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6344   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6345   return true;
6346 }
6347 
6348 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6349                                             SelectionDAG &DAG) const {
6350   SDLoc SL(LD);
6351   SDValue Chain = LD->getChain();
6352   SDValue BasePTR = LD->getBasePtr();
6353   EVT SrcVT = LD->getMemoryVT();
6354   ISD::LoadExtType ExtType = LD->getExtensionType();
6355 
6356   unsigned NumElem = SrcVT.getVectorNumElements();
6357 
6358   EVT SrcEltVT = SrcVT.getScalarType();
6359   EVT DstEltVT = LD->getValueType(0).getScalarType();
6360 
6361   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6362   assert(SrcEltVT.isByteSized());
6363 
6364   SmallVector<SDValue, 8> Vals;
6365   SmallVector<SDValue, 8> LoadChains;
6366 
6367   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6368     SDValue ScalarLoad =
6369         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6370                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6371                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6372                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6373 
6374     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6375 
6376     Vals.push_back(ScalarLoad.getValue(0));
6377     LoadChains.push_back(ScalarLoad.getValue(1));
6378   }
6379 
6380   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6381   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6382 
6383   return DAG.getMergeValues({Value, NewChain}, SL);
6384 }
6385 
6386 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6387                                              SelectionDAG &DAG) const {
6388   SDLoc SL(ST);
6389 
6390   SDValue Chain = ST->getChain();
6391   SDValue BasePtr = ST->getBasePtr();
6392   SDValue Value = ST->getValue();
6393   EVT StVT = ST->getMemoryVT();
6394 
6395   // The type of the data we want to save
6396   EVT RegVT = Value.getValueType();
6397   EVT RegSclVT = RegVT.getScalarType();
6398 
6399   // The type of data as saved in memory.
6400   EVT MemSclVT = StVT.getScalarType();
6401 
6402   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6403   unsigned NumElem = StVT.getVectorNumElements();
6404 
6405   // A vector must always be stored in memory as-is, i.e. without any padding
6406   // between the elements, since various code depend on it, e.g. in the
6407   // handling of a bitcast of a vector type to int, which may be done with a
6408   // vector store followed by an integer load. A vector that does not have
6409   // elements that are byte-sized must therefore be stored as an integer
6410   // built out of the extracted vector elements.
6411   if (!MemSclVT.isByteSized()) {
6412     unsigned NumBits = StVT.getSizeInBits();
6413     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6414 
6415     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6416 
6417     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6418       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6419                                 DAG.getConstant(Idx, SL, IdxVT));
6420       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6421       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6422       unsigned ShiftIntoIdx =
6423           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6424       SDValue ShiftAmount =
6425           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6426       SDValue ShiftedElt =
6427           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6428       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6429     }
6430 
6431     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6432                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6433                         ST->getAAInfo());
6434   }
6435 
6436   // Store Stride in bytes
6437   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6438   assert(Stride && "Zero stride!");
6439   // Extract each of the elements from the original vector and save them into
6440   // memory individually.
6441   SmallVector<SDValue, 8> Stores;
6442   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6443     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6444                               DAG.getConstant(Idx, SL, IdxVT));
6445 
6446     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6447 
6448     // This scalar TruncStore may be illegal, but we legalize it later.
6449     SDValue Store = DAG.getTruncStore(
6450         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6451         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6452         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6453 
6454     Stores.push_back(Store);
6455   }
6456 
6457   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6458 }
6459 
6460 std::pair<SDValue, SDValue>
6461 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6462   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6463          "unaligned indexed loads not implemented!");
6464   SDValue Chain = LD->getChain();
6465   SDValue Ptr = LD->getBasePtr();
6466   EVT VT = LD->getValueType(0);
6467   EVT LoadedVT = LD->getMemoryVT();
6468   SDLoc dl(LD);
6469   auto &MF = DAG.getMachineFunction();
6470 
6471   if (VT.isFloatingPoint() || VT.isVector()) {
6472     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6473     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6474       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6475           LoadedVT.isVector()) {
6476         // Scalarize the load and let the individual components be handled.
6477         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
6478         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
6479           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
6480         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
6481       }
6482 
6483       // Expand to a (misaligned) integer load of the same size,
6484       // then bitconvert to floating point or vector.
6485       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6486                                     LD->getMemOperand());
6487       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6488       if (LoadedVT != VT)
6489         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6490                              ISD::ANY_EXTEND, dl, VT, Result);
6491 
6492       return std::make_pair(Result, newLoad.getValue(1));
6493     }
6494 
6495     // Copy the value to a (aligned) stack slot using (unaligned) integer
6496     // loads and stores, then do a (aligned) load from the stack slot.
6497     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6498     unsigned LoadedBytes = LoadedVT.getStoreSize();
6499     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6500     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6501 
6502     // Make sure the stack slot is also aligned for the register type.
6503     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6504     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6505     SmallVector<SDValue, 8> Stores;
6506     SDValue StackPtr = StackBase;
6507     unsigned Offset = 0;
6508 
6509     EVT PtrVT = Ptr.getValueType();
6510     EVT StackPtrVT = StackPtr.getValueType();
6511 
6512     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6513     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6514 
6515     // Do all but one copies using the full register width.
6516     for (unsigned i = 1; i < NumRegs; i++) {
6517       // Load one integer register's worth from the original location.
6518       SDValue Load = DAG.getLoad(
6519           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6520           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6521           LD->getAAInfo());
6522       // Follow the load with a store to the stack slot.  Remember the store.
6523       Stores.push_back(DAG.getStore(
6524           Load.getValue(1), dl, Load, StackPtr,
6525           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6526       // Increment the pointers.
6527       Offset += RegBytes;
6528 
6529       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6530       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6531     }
6532 
6533     // The last copy may be partial.  Do an extending load.
6534     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6535                                   8 * (LoadedBytes - Offset));
6536     SDValue Load =
6537         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6538                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6539                        MinAlign(LD->getAlignment(), Offset),
6540                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6541     // Follow the load with a store to the stack slot.  Remember the store.
6542     // On big-endian machines this requires a truncating store to ensure
6543     // that the bits end up in the right place.
6544     Stores.push_back(DAG.getTruncStore(
6545         Load.getValue(1), dl, Load, StackPtr,
6546         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6547 
6548     // The order of the stores doesn't matter - say it with a TokenFactor.
6549     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6550 
6551     // Finally, perform the original load only redirected to the stack slot.
6552     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6553                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6554                           LoadedVT);
6555 
6556     // Callers expect a MERGE_VALUES node.
6557     return std::make_pair(Load, TF);
6558   }
6559 
6560   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6561          "Unaligned load of unsupported type.");
6562 
6563   // Compute the new VT that is half the size of the old one.  This is an
6564   // integer MVT.
6565   unsigned NumBits = LoadedVT.getSizeInBits();
6566   EVT NewLoadedVT;
6567   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6568   NumBits >>= 1;
6569 
6570   unsigned Alignment = LD->getAlignment();
6571   unsigned IncrementSize = NumBits / 8;
6572   ISD::LoadExtType HiExtType = LD->getExtensionType();
6573 
6574   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6575   if (HiExtType == ISD::NON_EXTLOAD)
6576     HiExtType = ISD::ZEXTLOAD;
6577 
6578   // Load the value in two parts
6579   SDValue Lo, Hi;
6580   if (DAG.getDataLayout().isLittleEndian()) {
6581     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6582                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6583                         LD->getAAInfo());
6584 
6585     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6586     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6587                         LD->getPointerInfo().getWithOffset(IncrementSize),
6588                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6589                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6590   } else {
6591     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6592                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6593                         LD->getAAInfo());
6594 
6595     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6596     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6597                         LD->getPointerInfo().getWithOffset(IncrementSize),
6598                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6599                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6600   }
6601 
6602   // aggregate the two parts
6603   SDValue ShiftAmount =
6604       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6605                                                     DAG.getDataLayout()));
6606   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6607   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6608 
6609   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6610                              Hi.getValue(1));
6611 
6612   return std::make_pair(Result, TF);
6613 }
6614 
6615 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6616                                              SelectionDAG &DAG) const {
6617   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6618          "unaligned indexed stores not implemented!");
6619   SDValue Chain = ST->getChain();
6620   SDValue Ptr = ST->getBasePtr();
6621   SDValue Val = ST->getValue();
6622   EVT VT = Val.getValueType();
6623   int Alignment = ST->getAlignment();
6624   auto &MF = DAG.getMachineFunction();
6625   EVT StoreMemVT = ST->getMemoryVT();
6626 
6627   SDLoc dl(ST);
6628   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6629     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6630     if (isTypeLegal(intVT)) {
6631       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6632           StoreMemVT.isVector()) {
6633         // Scalarize the store and let the individual components be handled.
6634         SDValue Result = scalarizeVectorStore(ST, DAG);
6635         return Result;
6636       }
6637       // Expand to a bitconvert of the value to the integer type of the
6638       // same size, then a (misaligned) int store.
6639       // FIXME: Does not handle truncating floating point stores!
6640       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6641       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6642                             Alignment, ST->getMemOperand()->getFlags());
6643       return Result;
6644     }
6645     // Do a (aligned) store to a stack slot, then copy from the stack slot
6646     // to the final destination using (unaligned) integer loads and stores.
6647     MVT RegVT = getRegisterType(
6648         *DAG.getContext(),
6649         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6650     EVT PtrVT = Ptr.getValueType();
6651     unsigned StoredBytes = StoreMemVT.getStoreSize();
6652     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6653     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6654 
6655     // Make sure the stack slot is also aligned for the register type.
6656     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6657     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6658 
6659     // Perform the original store, only redirected to the stack slot.
6660     SDValue Store = DAG.getTruncStore(
6661         Chain, dl, Val, StackPtr,
6662         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6663 
6664     EVT StackPtrVT = StackPtr.getValueType();
6665 
6666     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6667     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6668     SmallVector<SDValue, 8> Stores;
6669     unsigned Offset = 0;
6670 
6671     // Do all but one copies using the full register width.
6672     for (unsigned i = 1; i < NumRegs; i++) {
6673       // Load one integer register's worth from the stack slot.
6674       SDValue Load = DAG.getLoad(
6675           RegVT, dl, Store, StackPtr,
6676           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6677       // Store it to the final location.  Remember the store.
6678       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6679                                     ST->getPointerInfo().getWithOffset(Offset),
6680                                     MinAlign(ST->getAlignment(), Offset),
6681                                     ST->getMemOperand()->getFlags()));
6682       // Increment the pointers.
6683       Offset += RegBytes;
6684       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6685       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6686     }
6687 
6688     // The last store may be partial.  Do a truncating store.  On big-endian
6689     // machines this requires an extending load from the stack slot to ensure
6690     // that the bits are in the right place.
6691     EVT LoadMemVT =
6692         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6693 
6694     // Load from the stack slot.
6695     SDValue Load = DAG.getExtLoad(
6696         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6697         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6698 
6699     Stores.push_back(
6700         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6701                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6702                           MinAlign(ST->getAlignment(), Offset),
6703                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6704     // The order of the stores doesn't matter - say it with a TokenFactor.
6705     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6706     return Result;
6707   }
6708 
6709   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6710          "Unaligned store of unknown type.");
6711   // Get the half-size VT
6712   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6713   int NumBits = NewStoredVT.getSizeInBits();
6714   int IncrementSize = NumBits / 8;
6715 
6716   // Divide the stored value in two parts.
6717   SDValue ShiftAmount = DAG.getConstant(
6718       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6719   SDValue Lo = Val;
6720   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6721 
6722   // Store the two parts
6723   SDValue Store1, Store2;
6724   Store1 = DAG.getTruncStore(Chain, dl,
6725                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6726                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6727                              ST->getMemOperand()->getFlags());
6728 
6729   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6730   Alignment = MinAlign(Alignment, IncrementSize);
6731   Store2 = DAG.getTruncStore(
6732       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6733       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6734       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6735 
6736   SDValue Result =
6737       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6738   return Result;
6739 }
6740 
6741 SDValue
6742 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6743                                        const SDLoc &DL, EVT DataVT,
6744                                        SelectionDAG &DAG,
6745                                        bool IsCompressedMemory) const {
6746   SDValue Increment;
6747   EVT AddrVT = Addr.getValueType();
6748   EVT MaskVT = Mask.getValueType();
6749   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6750          "Incompatible types of Data and Mask");
6751   if (IsCompressedMemory) {
6752     // Incrementing the pointer according to number of '1's in the mask.
6753     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6754     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6755     if (MaskIntVT.getSizeInBits() < 32) {
6756       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6757       MaskIntVT = MVT::i32;
6758     }
6759 
6760     // Count '1's with POPCNT.
6761     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6762     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6763     // Scale is an element size in bytes.
6764     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6765                                     AddrVT);
6766     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6767   } else
6768     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6769 
6770   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6771 }
6772 
6773 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6774                                        SDValue Idx,
6775                                        EVT VecVT,
6776                                        const SDLoc &dl) {
6777   if (isa<ConstantSDNode>(Idx))
6778     return Idx;
6779 
6780   EVT IdxVT = Idx.getValueType();
6781   unsigned NElts = VecVT.getVectorNumElements();
6782   if (isPowerOf2_32(NElts)) {
6783     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6784                                      Log2_32(NElts));
6785     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6786                        DAG.getConstant(Imm, dl, IdxVT));
6787   }
6788 
6789   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6790                      DAG.getConstant(NElts - 1, dl, IdxVT));
6791 }
6792 
6793 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6794                                                 SDValue VecPtr, EVT VecVT,
6795                                                 SDValue Index) const {
6796   SDLoc dl(Index);
6797   // Make sure the index type is big enough to compute in.
6798   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6799 
6800   EVT EltVT = VecVT.getVectorElementType();
6801 
6802   // Calculate the element offset and add it to the pointer.
6803   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6804   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6805          "Converting bits to bytes lost precision");
6806 
6807   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6808 
6809   EVT IdxVT = Index.getValueType();
6810 
6811   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6812                       DAG.getConstant(EltSize, dl, IdxVT));
6813   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6814 }
6815 
6816 //===----------------------------------------------------------------------===//
6817 // Implementation of Emulated TLS Model
6818 //===----------------------------------------------------------------------===//
6819 
6820 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6821                                                 SelectionDAG &DAG) const {
6822   // Access to address of TLS varialbe xyz is lowered to a function call:
6823   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6824   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6825   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6826   SDLoc dl(GA);
6827 
6828   ArgListTy Args;
6829   ArgListEntry Entry;
6830   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6831   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6832   StringRef EmuTlsVarName(NameString);
6833   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6834   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6835   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6836   Entry.Ty = VoidPtrType;
6837   Args.push_back(Entry);
6838 
6839   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6840 
6841   TargetLowering::CallLoweringInfo CLI(DAG);
6842   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6843   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6844   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6845 
6846   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6847   // At last for X86 targets, maybe good for other targets too?
6848   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6849   MFI.setAdjustsStack(true); // Is this only for X86 target?
6850   MFI.setHasCalls(true);
6851 
6852   assert((GA->getOffset() == 0) &&
6853          "Emulated TLS must have zero offset in GlobalAddressSDNode");
6854   return CallResult.first;
6855 }
6856 
6857 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6858                                                 SelectionDAG &DAG) const {
6859   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6860   if (!isCtlzFast())
6861     return SDValue();
6862   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6863   SDLoc dl(Op);
6864   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6865     if (C->isNullValue() && CC == ISD::SETEQ) {
6866       EVT VT = Op.getOperand(0).getValueType();
6867       SDValue Zext = Op.getOperand(0);
6868       if (VT.bitsLT(MVT::i32)) {
6869         VT = MVT::i32;
6870         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6871       }
6872       unsigned Log2b = Log2_32(VT.getSizeInBits());
6873       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6874       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6875                                 DAG.getConstant(Log2b, dl, MVT::i32));
6876       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6877     }
6878   }
6879   return SDValue();
6880 }
6881 
6882 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6883   unsigned Opcode = Node->getOpcode();
6884   SDValue LHS = Node->getOperand(0);
6885   SDValue RHS = Node->getOperand(1);
6886   EVT VT = LHS.getValueType();
6887   SDLoc dl(Node);
6888 
6889   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6890   assert(VT.isInteger() && "Expected operands to be integers");
6891 
6892   // usub.sat(a, b) -> umax(a, b) - b
6893   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6894     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6895     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6896   }
6897 
6898   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6899     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6900     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6901     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6902   }
6903 
6904   unsigned OverflowOp;
6905   switch (Opcode) {
6906   case ISD::SADDSAT:
6907     OverflowOp = ISD::SADDO;
6908     break;
6909   case ISD::UADDSAT:
6910     OverflowOp = ISD::UADDO;
6911     break;
6912   case ISD::SSUBSAT:
6913     OverflowOp = ISD::SSUBO;
6914     break;
6915   case ISD::USUBSAT:
6916     OverflowOp = ISD::USUBO;
6917     break;
6918   default:
6919     llvm_unreachable("Expected method to receive signed or unsigned saturation "
6920                      "addition or subtraction node.");
6921   }
6922 
6923   unsigned BitWidth = LHS.getScalarValueSizeInBits();
6924   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6925   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6926                                LHS, RHS);
6927   SDValue SumDiff = Result.getValue(0);
6928   SDValue Overflow = Result.getValue(1);
6929   SDValue Zero = DAG.getConstant(0, dl, VT);
6930   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6931 
6932   if (Opcode == ISD::UADDSAT) {
6933     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6934       // (LHS + RHS) | OverflowMask
6935       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6936       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6937     }
6938     // Overflow ? 0xffff.... : (LHS + RHS)
6939     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6940   } else if (Opcode == ISD::USUBSAT) {
6941     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6942       // (LHS - RHS) & ~OverflowMask
6943       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6944       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6945       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6946     }
6947     // Overflow ? 0 : (LHS - RHS)
6948     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6949   } else {
6950     // SatMax -> Overflow && SumDiff < 0
6951     // SatMin -> Overflow && SumDiff >= 0
6952     APInt MinVal = APInt::getSignedMinValue(BitWidth);
6953     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6954     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6955     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6956     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6957     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6958     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6959   }
6960 }
6961 
6962 SDValue
6963 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6964   assert((Node->getOpcode() == ISD::SMULFIX ||
6965           Node->getOpcode() == ISD::UMULFIX ||
6966           Node->getOpcode() == ISD::SMULFIXSAT ||
6967           Node->getOpcode() == ISD::UMULFIXSAT) &&
6968          "Expected a fixed point multiplication opcode");
6969 
6970   SDLoc dl(Node);
6971   SDValue LHS = Node->getOperand(0);
6972   SDValue RHS = Node->getOperand(1);
6973   EVT VT = LHS.getValueType();
6974   unsigned Scale = Node->getConstantOperandVal(2);
6975   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
6976                      Node->getOpcode() == ISD::UMULFIXSAT);
6977   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
6978                  Node->getOpcode() == ISD::SMULFIXSAT);
6979   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6980   unsigned VTSize = VT.getScalarSizeInBits();
6981 
6982   if (!Scale) {
6983     // [us]mul.fix(a, b, 0) -> mul(a, b)
6984     if (!Saturating) {
6985       if (isOperationLegalOrCustom(ISD::MUL, VT))
6986         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6987     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6988       SDValue Result =
6989           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6990       SDValue Product = Result.getValue(0);
6991       SDValue Overflow = Result.getValue(1);
6992       SDValue Zero = DAG.getConstant(0, dl, VT);
6993 
6994       APInt MinVal = APInt::getSignedMinValue(VTSize);
6995       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6996       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6997       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6998       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6999       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7000       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7001     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7002       SDValue Result =
7003           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7004       SDValue Product = Result.getValue(0);
7005       SDValue Overflow = Result.getValue(1);
7006 
7007       APInt MaxVal = APInt::getMaxValue(VTSize);
7008       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7009       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7010     }
7011   }
7012 
7013   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7014          "Expected scale to be less than the number of bits if signed or at "
7015          "most the number of bits if unsigned.");
7016   assert(LHS.getValueType() == RHS.getValueType() &&
7017          "Expected both operands to be the same type");
7018 
7019   // Get the upper and lower bits of the result.
7020   SDValue Lo, Hi;
7021   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7022   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7023   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7024     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7025     Lo = Result.getValue(0);
7026     Hi = Result.getValue(1);
7027   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7028     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7029     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7030   } else if (VT.isVector()) {
7031     return SDValue();
7032   } else {
7033     report_fatal_error("Unable to expand fixed point multiplication.");
7034   }
7035 
7036   if (Scale == VTSize)
7037     // Result is just the top half since we'd be shifting by the width of the
7038     // operand. Overflow impossible so this works for both UMULFIX and
7039     // UMULFIXSAT.
7040     return Hi;
7041 
7042   // The result will need to be shifted right by the scale since both operands
7043   // are scaled. The result is given to us in 2 halves, so we only want part of
7044   // both in the result.
7045   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7046   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7047                                DAG.getConstant(Scale, dl, ShiftTy));
7048   if (!Saturating)
7049     return Result;
7050 
7051   if (!Signed) {
7052     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7053     // widened multiplication) aren't all zeroes.
7054 
7055     // Saturate to max if ((Hi >> Scale) != 0),
7056     // which is the same as if (Hi > ((1 << Scale) - 1))
7057     APInt MaxVal = APInt::getMaxValue(VTSize);
7058     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7059                                       dl, VT);
7060     Result = DAG.getSelectCC(dl, Hi, LowMask,
7061                              DAG.getConstant(MaxVal, dl, VT), Result,
7062                              ISD::SETUGT);
7063 
7064     return Result;
7065   }
7066 
7067   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7068   // widened multiplication) aren't all ones or all zeroes.
7069 
7070   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7071   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7072 
7073   if (Scale == 0) {
7074     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7075                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7076     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7077     // Saturated to SatMin if wide product is negative, and SatMax if wide
7078     // product is positive ...
7079     SDValue Zero = DAG.getConstant(0, dl, VT);
7080     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7081                                                ISD::SETLT);
7082     // ... but only if we overflowed.
7083     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7084   }
7085 
7086   //  We handled Scale==0 above so all the bits to examine is in Hi.
7087 
7088   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7089   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7090   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7091                                     dl, VT);
7092   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7093   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7094   // which is the same as if (HI < (-1 << (Scale - 1))
7095   SDValue HighMask =
7096       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7097                       dl, VT);
7098   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7099   return Result;
7100 }
7101 
7102 void TargetLowering::expandUADDSUBO(
7103     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7104   SDLoc dl(Node);
7105   SDValue LHS = Node->getOperand(0);
7106   SDValue RHS = Node->getOperand(1);
7107   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7108 
7109   // If ADD/SUBCARRY is legal, use that instead.
7110   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7111   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7112     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7113     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7114                                     { LHS, RHS, CarryIn });
7115     Result = SDValue(NodeCarry.getNode(), 0);
7116     Overflow = SDValue(NodeCarry.getNode(), 1);
7117     return;
7118   }
7119 
7120   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7121                             LHS.getValueType(), LHS, RHS);
7122 
7123   EVT ResultType = Node->getValueType(1);
7124   EVT SetCCType = getSetCCResultType(
7125       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7126   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7127   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7128   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7129 }
7130 
7131 void TargetLowering::expandSADDSUBO(
7132     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7133   SDLoc dl(Node);
7134   SDValue LHS = Node->getOperand(0);
7135   SDValue RHS = Node->getOperand(1);
7136   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7137 
7138   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7139                             LHS.getValueType(), LHS, RHS);
7140 
7141   EVT ResultType = Node->getValueType(1);
7142   EVT OType = getSetCCResultType(
7143       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7144 
7145   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7146   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7147   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7148     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7149     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7150     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7151     return;
7152   }
7153 
7154   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7155 
7156   // For an addition, the result should be less than one of the operands (LHS)
7157   // if and only if the other operand (RHS) is negative, otherwise there will
7158   // be overflow.
7159   // For a subtraction, the result should be less than one of the operands
7160   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7161   // otherwise there will be overflow.
7162   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7163   SDValue ConditionRHS =
7164       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7165 
7166   Overflow = DAG.getBoolExtOrTrunc(
7167       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7168       ResultType, ResultType);
7169 }
7170 
7171 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7172                                 SDValue &Overflow, SelectionDAG &DAG) const {
7173   SDLoc dl(Node);
7174   EVT VT = Node->getValueType(0);
7175   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7176   SDValue LHS = Node->getOperand(0);
7177   SDValue RHS = Node->getOperand(1);
7178   bool isSigned = Node->getOpcode() == ISD::SMULO;
7179 
7180   // For power-of-two multiplications we can use a simpler shift expansion.
7181   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7182     const APInt &C = RHSC->getAPIntValue();
7183     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7184     if (C.isPowerOf2()) {
7185       // smulo(x, signed_min) is same as umulo(x, signed_min).
7186       bool UseArithShift = isSigned && !C.isMinSignedValue();
7187       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7188       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7189       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7190       Overflow = DAG.getSetCC(dl, SetCCVT,
7191           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7192                       dl, VT, Result, ShiftAmt),
7193           LHS, ISD::SETNE);
7194       return true;
7195     }
7196   }
7197 
7198   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7199   if (VT.isVector())
7200     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7201                               VT.getVectorNumElements());
7202 
7203   SDValue BottomHalf;
7204   SDValue TopHalf;
7205   static const unsigned Ops[2][3] =
7206       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7207         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7208   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7209     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7210     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7211   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7212     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7213                              RHS);
7214     TopHalf = BottomHalf.getValue(1);
7215   } else if (isTypeLegal(WideVT)) {
7216     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7217     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7218     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7219     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7220     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7221         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7222     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7223                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7224   } else {
7225     if (VT.isVector())
7226       return false;
7227 
7228     // We can fall back to a libcall with an illegal type for the MUL if we
7229     // have a libcall big enough.
7230     // Also, we can fall back to a division in some cases, but that's a big
7231     // performance hit in the general case.
7232     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7233     if (WideVT == MVT::i16)
7234       LC = RTLIB::MUL_I16;
7235     else if (WideVT == MVT::i32)
7236       LC = RTLIB::MUL_I32;
7237     else if (WideVT == MVT::i64)
7238       LC = RTLIB::MUL_I64;
7239     else if (WideVT == MVT::i128)
7240       LC = RTLIB::MUL_I128;
7241     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7242 
7243     SDValue HiLHS;
7244     SDValue HiRHS;
7245     if (isSigned) {
7246       // The high part is obtained by SRA'ing all but one of the bits of low
7247       // part.
7248       unsigned LoSize = VT.getSizeInBits();
7249       HiLHS =
7250           DAG.getNode(ISD::SRA, dl, VT, LHS,
7251                       DAG.getConstant(LoSize - 1, dl,
7252                                       getPointerTy(DAG.getDataLayout())));
7253       HiRHS =
7254           DAG.getNode(ISD::SRA, dl, VT, RHS,
7255                       DAG.getConstant(LoSize - 1, dl,
7256                                       getPointerTy(DAG.getDataLayout())));
7257     } else {
7258         HiLHS = DAG.getConstant(0, dl, VT);
7259         HiRHS = DAG.getConstant(0, dl, VT);
7260     }
7261 
7262     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7263     // pre-lowered to the correct types. This all depends upon WideVT not
7264     // being a legal type for the architecture and thus has to be split to
7265     // two arguments.
7266     SDValue Ret;
7267     TargetLowering::MakeLibCallOptions CallOptions;
7268     CallOptions.setSExt(isSigned);
7269     CallOptions.setIsPostTypeLegalization(true);
7270     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7271       // Halves of WideVT are packed into registers in different order
7272       // depending on platform endianness. This is usually handled by
7273       // the C calling convention, but we can't defer to it in
7274       // the legalizer.
7275       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7276       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7277     } else {
7278       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7279       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7280     }
7281     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7282            "Ret value is a collection of constituent nodes holding result.");
7283     if (DAG.getDataLayout().isLittleEndian()) {
7284       // Same as above.
7285       BottomHalf = Ret.getOperand(0);
7286       TopHalf = Ret.getOperand(1);
7287     } else {
7288       BottomHalf = Ret.getOperand(1);
7289       TopHalf = Ret.getOperand(0);
7290     }
7291   }
7292 
7293   Result = BottomHalf;
7294   if (isSigned) {
7295     SDValue ShiftAmt = DAG.getConstant(
7296         VT.getScalarSizeInBits() - 1, dl,
7297         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7298     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7299     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7300   } else {
7301     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7302                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7303   }
7304 
7305   // Truncate the result if SetCC returns a larger type than needed.
7306   EVT RType = Node->getValueType(1);
7307   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7308     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7309 
7310   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7311          "Unexpected result type for S/UMULO legalization");
7312   return true;
7313 }
7314 
7315 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7316   SDLoc dl(Node);
7317   bool NoNaN = Node->getFlags().hasNoNaNs();
7318   unsigned BaseOpcode = 0;
7319   switch (Node->getOpcode()) {
7320   default: llvm_unreachable("Expected VECREDUCE opcode");
7321   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7322   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7323   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7324   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7325   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7326   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7327   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7328   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7329   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7330   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7331   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7332   case ISD::VECREDUCE_FMAX:
7333     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7334     break;
7335   case ISD::VECREDUCE_FMIN:
7336     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7337     break;
7338   }
7339 
7340   SDValue Op = Node->getOperand(0);
7341   EVT VT = Op.getValueType();
7342 
7343   // Try to use a shuffle reduction for power of two vectors.
7344   if (VT.isPow2VectorType()) {
7345     while (VT.getVectorNumElements() > 1) {
7346       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7347       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7348         break;
7349 
7350       SDValue Lo, Hi;
7351       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7352       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7353       VT = HalfVT;
7354     }
7355   }
7356 
7357   EVT EltVT = VT.getVectorElementType();
7358   unsigned NumElts = VT.getVectorNumElements();
7359 
7360   SmallVector<SDValue, 8> Ops;
7361   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7362 
7363   SDValue Res = Ops[0];
7364   for (unsigned i = 1; i < NumElts; i++)
7365     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7366 
7367   // Result type may be wider than element type.
7368   if (EltVT != Node->getValueType(0))
7369     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7370   return Res;
7371 }
7372