1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on the call instruction's 106 /// argument attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 auto Attrs = Call->getAttributes(); 110 111 IsSExt = Attrs.hasParamAttribute(ArgIdx, Attribute::SExt); 112 IsZExt = Attrs.hasParamAttribute(ArgIdx, Attribute::ZExt); 113 IsInReg = Attrs.hasParamAttribute(ArgIdx, Attribute::InReg); 114 IsSRet = Attrs.hasParamAttribute(ArgIdx, Attribute::StructRet); 115 IsNest = Attrs.hasParamAttribute(ArgIdx, Attribute::Nest); 116 IsReturned = Attrs.hasParamAttribute(ArgIdx, Attribute::Returned); 117 IsSwiftSelf = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftSelf); 118 IsSwiftAsync = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftAsync); 119 IsSwiftError = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftError); 120 Alignment = Attrs.getParamStackAlignment(ArgIdx); 121 122 IsByVal = Attrs.hasParamAttribute(ArgIdx, Attribute::ByVal); 123 IsInAlloca = Attrs.hasParamAttribute(ArgIdx, Attribute::InAlloca); 124 IsPreallocated = Attrs.hasParamAttribute(ArgIdx, Attribute::Preallocated); 125 126 assert(IsByVal + IsInAlloca + IsPreallocated <= 1 && 127 "can't have multiple indirect attributes"); 128 IndirectType = nullptr; 129 if (IsByVal) { 130 IndirectType = Call->getParamByValType(ArgIdx); 131 assert(IndirectType && "no byval type?"); 132 if (!Alignment) 133 Alignment = Call->getParamAlign(ArgIdx); 134 } 135 if (IsInAlloca) { 136 IndirectType = Call->getParamInAllocaType(ArgIdx); 137 assert(IndirectType && "no inalloca type?"); 138 } 139 if (IsPreallocated) { 140 IndirectType = Call->getParamPreallocatedType(ArgIdx); 141 assert(IndirectType && "no preallocated type?"); 142 } 143 } 144 145 /// Generate a libcall taking the given operands as arguments and returning a 146 /// result of type RetVT. 147 std::pair<SDValue, SDValue> 148 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 149 ArrayRef<SDValue> Ops, 150 MakeLibCallOptions CallOptions, 151 const SDLoc &dl, 152 SDValue InChain) const { 153 if (!InChain) 154 InChain = DAG.getEntryNode(); 155 156 TargetLowering::ArgListTy Args; 157 Args.reserve(Ops.size()); 158 159 TargetLowering::ArgListEntry Entry; 160 for (unsigned i = 0; i < Ops.size(); ++i) { 161 SDValue NewOp = Ops[i]; 162 Entry.Node = NewOp; 163 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 164 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 165 CallOptions.IsSExt); 166 Entry.IsZExt = !Entry.IsSExt; 167 168 if (CallOptions.IsSoften && 169 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 170 Entry.IsSExt = Entry.IsZExt = false; 171 } 172 Args.push_back(Entry); 173 } 174 175 if (LC == RTLIB::UNKNOWN_LIBCALL) 176 report_fatal_error("Unsupported library call operation!"); 177 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 178 getPointerTy(DAG.getDataLayout())); 179 180 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 181 TargetLowering::CallLoweringInfo CLI(DAG); 182 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 183 bool zeroExtend = !signExtend; 184 185 if (CallOptions.IsSoften && 186 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 187 signExtend = zeroExtend = false; 188 } 189 190 CLI.setDebugLoc(dl) 191 .setChain(InChain) 192 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 193 .setNoReturn(CallOptions.DoesNotReturn) 194 .setDiscardResult(!CallOptions.IsReturnValueUsed) 195 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 196 .setSExtResult(signExtend) 197 .setZExtResult(zeroExtend); 198 return LowerCallTo(CLI); 199 } 200 201 bool TargetLowering::findOptimalMemOpLowering( 202 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 203 unsigned SrcAS, const AttributeList &FuncAttributes) const { 204 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 205 return false; 206 207 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 208 209 if (VT == MVT::Other) { 210 // Use the largest integer type whose alignment constraints are satisfied. 211 // We only need to check DstAlign here as SrcAlign is always greater or 212 // equal to DstAlign (or zero). 213 VT = MVT::i64; 214 if (Op.isFixedDstAlign()) 215 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 216 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 217 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 218 assert(VT.isInteger()); 219 220 // Find the largest legal integer type. 221 MVT LVT = MVT::i64; 222 while (!isTypeLegal(LVT)) 223 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 224 assert(LVT.isInteger()); 225 226 // If the type we've chosen is larger than the largest legal integer type 227 // then use that instead. 228 if (VT.bitsGT(LVT)) 229 VT = LVT; 230 } 231 232 unsigned NumMemOps = 0; 233 uint64_t Size = Op.size(); 234 while (Size) { 235 unsigned VTSize = VT.getSizeInBits() / 8; 236 while (VTSize > Size) { 237 // For now, only use non-vector load / store's for the left-over pieces. 238 EVT NewVT = VT; 239 unsigned NewVTSize; 240 241 bool Found = false; 242 if (VT.isVector() || VT.isFloatingPoint()) { 243 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 244 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 245 isSafeMemOpType(NewVT.getSimpleVT())) 246 Found = true; 247 else if (NewVT == MVT::i64 && 248 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 249 isSafeMemOpType(MVT::f64)) { 250 // i64 is usually not legal on 32-bit targets, but f64 may be. 251 NewVT = MVT::f64; 252 Found = true; 253 } 254 } 255 256 if (!Found) { 257 do { 258 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 259 if (NewVT == MVT::i8) 260 break; 261 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 262 } 263 NewVTSize = NewVT.getSizeInBits() / 8; 264 265 // If the new VT cannot cover all of the remaining bits, then consider 266 // issuing a (or a pair of) unaligned and overlapping load / store. 267 bool Fast; 268 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 269 allowsMisalignedMemoryAccesses( 270 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 271 MachineMemOperand::MONone, &Fast) && 272 Fast) 273 VTSize = Size; 274 else { 275 VT = NewVT; 276 VTSize = NewVTSize; 277 } 278 } 279 280 if (++NumMemOps > Limit) 281 return false; 282 283 MemOps.push_back(VT); 284 Size -= VTSize; 285 } 286 287 return true; 288 } 289 290 /// Soften the operands of a comparison. This code is shared among BR_CC, 291 /// SELECT_CC, and SETCC handlers. 292 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 293 SDValue &NewLHS, SDValue &NewRHS, 294 ISD::CondCode &CCCode, 295 const SDLoc &dl, const SDValue OldLHS, 296 const SDValue OldRHS) const { 297 SDValue Chain; 298 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 299 OldRHS, Chain); 300 } 301 302 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 303 SDValue &NewLHS, SDValue &NewRHS, 304 ISD::CondCode &CCCode, 305 const SDLoc &dl, const SDValue OldLHS, 306 const SDValue OldRHS, 307 SDValue &Chain, 308 bool IsSignaling) const { 309 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 310 // not supporting it. We can update this code when libgcc provides such 311 // functions. 312 313 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 314 && "Unsupported setcc type!"); 315 316 // Expand into one or more soft-fp libcall(s). 317 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 318 bool ShouldInvertCC = false; 319 switch (CCCode) { 320 case ISD::SETEQ: 321 case ISD::SETOEQ: 322 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 323 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 324 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 325 break; 326 case ISD::SETNE: 327 case ISD::SETUNE: 328 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 329 (VT == MVT::f64) ? RTLIB::UNE_F64 : 330 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 331 break; 332 case ISD::SETGE: 333 case ISD::SETOGE: 334 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 335 (VT == MVT::f64) ? RTLIB::OGE_F64 : 336 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 337 break; 338 case ISD::SETLT: 339 case ISD::SETOLT: 340 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 341 (VT == MVT::f64) ? RTLIB::OLT_F64 : 342 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 343 break; 344 case ISD::SETLE: 345 case ISD::SETOLE: 346 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 347 (VT == MVT::f64) ? RTLIB::OLE_F64 : 348 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 349 break; 350 case ISD::SETGT: 351 case ISD::SETOGT: 352 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 353 (VT == MVT::f64) ? RTLIB::OGT_F64 : 354 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 355 break; 356 case ISD::SETO: 357 ShouldInvertCC = true; 358 LLVM_FALLTHROUGH; 359 case ISD::SETUO: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 break; 364 case ISD::SETONE: 365 // SETONE = O && UNE 366 ShouldInvertCC = true; 367 LLVM_FALLTHROUGH; 368 case ISD::SETUEQ: 369 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 370 (VT == MVT::f64) ? RTLIB::UO_F64 : 371 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 372 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 373 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 374 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 375 break; 376 default: 377 // Invert CC for unordered comparisons 378 ShouldInvertCC = true; 379 switch (CCCode) { 380 case ISD::SETULT: 381 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 382 (VT == MVT::f64) ? RTLIB::OGE_F64 : 383 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 384 break; 385 case ISD::SETULE: 386 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 387 (VT == MVT::f64) ? RTLIB::OGT_F64 : 388 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 389 break; 390 case ISD::SETUGT: 391 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 392 (VT == MVT::f64) ? RTLIB::OLE_F64 : 393 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 394 break; 395 case ISD::SETUGE: 396 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 397 (VT == MVT::f64) ? RTLIB::OLT_F64 : 398 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 399 break; 400 default: llvm_unreachable("Do not know how to soften this setcc!"); 401 } 402 } 403 404 // Use the target specific return value for comparions lib calls. 405 EVT RetVT = getCmpLibcallReturnType(); 406 SDValue Ops[2] = {NewLHS, NewRHS}; 407 TargetLowering::MakeLibCallOptions CallOptions; 408 EVT OpsVT[2] = { OldLHS.getValueType(), 409 OldRHS.getValueType() }; 410 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 411 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 412 NewLHS = Call.first; 413 NewRHS = DAG.getConstant(0, dl, RetVT); 414 415 CCCode = getCmpLibcallCC(LC1); 416 if (ShouldInvertCC) { 417 assert(RetVT.isInteger()); 418 CCCode = getSetCCInverse(CCCode, RetVT); 419 } 420 421 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 422 // Update Chain. 423 Chain = Call.second; 424 } else { 425 EVT SetCCVT = 426 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 427 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 428 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 429 CCCode = getCmpLibcallCC(LC2); 430 if (ShouldInvertCC) 431 CCCode = getSetCCInverse(CCCode, RetVT); 432 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 433 if (Chain) 434 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 435 Call2.second); 436 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 437 Tmp.getValueType(), Tmp, NewLHS); 438 NewRHS = SDValue(); 439 } 440 } 441 442 /// Return the entry encoding for a jump table in the current function. The 443 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 444 unsigned TargetLowering::getJumpTableEncoding() const { 445 // In non-pic modes, just use the address of a block. 446 if (!isPositionIndependent()) 447 return MachineJumpTableInfo::EK_BlockAddress; 448 449 // In PIC mode, if the target supports a GPRel32 directive, use it. 450 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 451 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 452 453 // Otherwise, use a label difference. 454 return MachineJumpTableInfo::EK_LabelDifference32; 455 } 456 457 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 458 SelectionDAG &DAG) const { 459 // If our PIC model is GP relative, use the global offset table as the base. 460 unsigned JTEncoding = getJumpTableEncoding(); 461 462 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 463 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 464 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 465 466 return Table; 467 } 468 469 /// This returns the relocation base for the given PIC jumptable, the same as 470 /// getPICJumpTableRelocBase, but as an MCExpr. 471 const MCExpr * 472 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 473 unsigned JTI,MCContext &Ctx) const{ 474 // The normal PIC reloc base is the label at the start of the jump table. 475 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 476 } 477 478 bool 479 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 480 const TargetMachine &TM = getTargetMachine(); 481 const GlobalValue *GV = GA->getGlobal(); 482 483 // If the address is not even local to this DSO we will have to load it from 484 // a got and then add the offset. 485 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 486 return false; 487 488 // If the code is position independent we will have to add a base register. 489 if (isPositionIndependent()) 490 return false; 491 492 // Otherwise we can do it. 493 return true; 494 } 495 496 //===----------------------------------------------------------------------===// 497 // Optimization Methods 498 //===----------------------------------------------------------------------===// 499 500 /// If the specified instruction has a constant integer operand and there are 501 /// bits set in that constant that are not demanded, then clear those bits and 502 /// return true. 503 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 504 const APInt &DemandedBits, 505 const APInt &DemandedElts, 506 TargetLoweringOpt &TLO) const { 507 SDLoc DL(Op); 508 unsigned Opcode = Op.getOpcode(); 509 510 // Do target-specific constant optimization. 511 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 512 return TLO.New.getNode(); 513 514 // FIXME: ISD::SELECT, ISD::SELECT_CC 515 switch (Opcode) { 516 default: 517 break; 518 case ISD::XOR: 519 case ISD::AND: 520 case ISD::OR: { 521 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 522 if (!Op1C) 523 return false; 524 525 // If this is a 'not' op, don't touch it because that's a canonical form. 526 const APInt &C = Op1C->getAPIntValue(); 527 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 528 return false; 529 530 if (!C.isSubsetOf(DemandedBits)) { 531 EVT VT = Op.getValueType(); 532 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 533 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 534 return TLO.CombineTo(Op, NewOp); 535 } 536 537 break; 538 } 539 } 540 541 return false; 542 } 543 544 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 545 const APInt &DemandedBits, 546 TargetLoweringOpt &TLO) const { 547 EVT VT = Op.getValueType(); 548 APInt DemandedElts = VT.isVector() 549 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 550 : APInt(1, 1); 551 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 552 } 553 554 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 555 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 556 /// generalized for targets with other types of implicit widening casts. 557 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 558 const APInt &Demanded, 559 TargetLoweringOpt &TLO) const { 560 assert(Op.getNumOperands() == 2 && 561 "ShrinkDemandedOp only supports binary operators!"); 562 assert(Op.getNode()->getNumValues() == 1 && 563 "ShrinkDemandedOp only supports nodes with one result!"); 564 565 SelectionDAG &DAG = TLO.DAG; 566 SDLoc dl(Op); 567 568 // Early return, as this function cannot handle vector types. 569 if (Op.getValueType().isVector()) 570 return false; 571 572 // Don't do this if the node has another user, which may require the 573 // full value. 574 if (!Op.getNode()->hasOneUse()) 575 return false; 576 577 // Search for the smallest integer type with free casts to and from 578 // Op's type. For expedience, just check power-of-2 integer types. 579 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 580 unsigned DemandedSize = Demanded.getActiveBits(); 581 unsigned SmallVTBits = DemandedSize; 582 if (!isPowerOf2_32(SmallVTBits)) 583 SmallVTBits = NextPowerOf2(SmallVTBits); 584 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 585 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 586 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 587 TLI.isZExtFree(SmallVT, Op.getValueType())) { 588 // We found a type with free casts. 589 SDValue X = DAG.getNode( 590 Op.getOpcode(), dl, SmallVT, 591 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 592 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 593 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 594 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 595 return TLO.CombineTo(Op, Z); 596 } 597 } 598 return false; 599 } 600 601 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 602 DAGCombinerInfo &DCI) const { 603 SelectionDAG &DAG = DCI.DAG; 604 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 605 !DCI.isBeforeLegalizeOps()); 606 KnownBits Known; 607 608 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 609 if (Simplified) { 610 DCI.AddToWorklist(Op.getNode()); 611 DCI.CommitTargetLoweringOpt(TLO); 612 } 613 return Simplified; 614 } 615 616 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 617 KnownBits &Known, 618 TargetLoweringOpt &TLO, 619 unsigned Depth, 620 bool AssumeSingleUse) const { 621 EVT VT = Op.getValueType(); 622 623 // TODO: We can probably do more work on calculating the known bits and 624 // simplifying the operations for scalable vectors, but for now we just 625 // bail out. 626 if (VT.isScalableVector()) { 627 // Pretend we don't know anything for now. 628 Known = KnownBits(DemandedBits.getBitWidth()); 629 return false; 630 } 631 632 APInt DemandedElts = VT.isVector() 633 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 634 : APInt(1, 1); 635 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 636 AssumeSingleUse); 637 } 638 639 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 640 // TODO: Under what circumstances can we create nodes? Constant folding? 641 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 642 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 643 SelectionDAG &DAG, unsigned Depth) const { 644 // Limit search depth. 645 if (Depth >= SelectionDAG::MaxRecursionDepth) 646 return SDValue(); 647 648 // Ignore UNDEFs. 649 if (Op.isUndef()) 650 return SDValue(); 651 652 // Not demanding any bits/elts from Op. 653 if (DemandedBits == 0 || DemandedElts == 0) 654 return DAG.getUNDEF(Op.getValueType()); 655 656 unsigned NumElts = DemandedElts.getBitWidth(); 657 unsigned BitWidth = DemandedBits.getBitWidth(); 658 KnownBits LHSKnown, RHSKnown; 659 switch (Op.getOpcode()) { 660 case ISD::BITCAST: { 661 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 662 EVT SrcVT = Src.getValueType(); 663 EVT DstVT = Op.getValueType(); 664 if (SrcVT == DstVT) 665 return Src; 666 667 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 668 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 669 if (NumSrcEltBits == NumDstEltBits) 670 if (SDValue V = SimplifyMultipleUseDemandedBits( 671 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 672 return DAG.getBitcast(DstVT, V); 673 674 // TODO - bigendian once we have test coverage. 675 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 676 DAG.getDataLayout().isLittleEndian()) { 677 unsigned Scale = NumDstEltBits / NumSrcEltBits; 678 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 679 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 680 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 681 for (unsigned i = 0; i != Scale; ++i) { 682 unsigned Offset = i * NumSrcEltBits; 683 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 684 if (!Sub.isNullValue()) { 685 DemandedSrcBits |= Sub; 686 for (unsigned j = 0; j != NumElts; ++j) 687 if (DemandedElts[j]) 688 DemandedSrcElts.setBit((j * Scale) + i); 689 } 690 } 691 692 if (SDValue V = SimplifyMultipleUseDemandedBits( 693 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 694 return DAG.getBitcast(DstVT, V); 695 } 696 697 // TODO - bigendian once we have test coverage. 698 if ((NumSrcEltBits % NumDstEltBits) == 0 && 699 DAG.getDataLayout().isLittleEndian()) { 700 unsigned Scale = NumSrcEltBits / NumDstEltBits; 701 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 702 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 703 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 704 for (unsigned i = 0; i != NumElts; ++i) 705 if (DemandedElts[i]) { 706 unsigned Offset = (i % Scale) * NumDstEltBits; 707 DemandedSrcBits.insertBits(DemandedBits, Offset); 708 DemandedSrcElts.setBit(i / Scale); 709 } 710 711 if (SDValue V = SimplifyMultipleUseDemandedBits( 712 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 713 return DAG.getBitcast(DstVT, V); 714 } 715 716 break; 717 } 718 case ISD::AND: { 719 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 720 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 721 722 // If all of the demanded bits are known 1 on one side, return the other. 723 // These bits cannot contribute to the result of the 'and' in this 724 // context. 725 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 726 return Op.getOperand(0); 727 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 728 return Op.getOperand(1); 729 break; 730 } 731 case ISD::OR: { 732 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 733 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 734 735 // If all of the demanded bits are known zero on one side, return the 736 // other. These bits cannot contribute to the result of the 'or' in this 737 // context. 738 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 739 return Op.getOperand(0); 740 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 741 return Op.getOperand(1); 742 break; 743 } 744 case ISD::XOR: { 745 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 746 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 747 748 // If all of the demanded bits are known zero on one side, return the 749 // other. 750 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::SHL: { 757 // If we are only demanding sign bits then we can use the shift source 758 // directly. 759 if (const APInt *MaxSA = 760 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 761 SDValue Op0 = Op.getOperand(0); 762 unsigned ShAmt = MaxSA->getZExtValue(); 763 unsigned NumSignBits = 764 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 765 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 766 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 767 return Op0; 768 } 769 break; 770 } 771 case ISD::SETCC: { 772 SDValue Op0 = Op.getOperand(0); 773 SDValue Op1 = Op.getOperand(1); 774 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 775 // If (1) we only need the sign-bit, (2) the setcc operands are the same 776 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 777 // -1, we may be able to bypass the setcc. 778 if (DemandedBits.isSignMask() && 779 Op0.getScalarValueSizeInBits() == BitWidth && 780 getBooleanContents(Op0.getValueType()) == 781 BooleanContent::ZeroOrNegativeOneBooleanContent) { 782 // If we're testing X < 0, then this compare isn't needed - just use X! 783 // FIXME: We're limiting to integer types here, but this should also work 784 // if we don't care about FP signed-zero. The use of SETLT with FP means 785 // that we don't care about NaNs. 786 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 787 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 788 return Op0; 789 } 790 break; 791 } 792 case ISD::SIGN_EXTEND_INREG: { 793 // If none of the extended bits are demanded, eliminate the sextinreg. 794 SDValue Op0 = Op.getOperand(0); 795 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 796 unsigned ExBits = ExVT.getScalarSizeInBits(); 797 if (DemandedBits.getActiveBits() <= ExBits) 798 return Op0; 799 // If the input is already sign extended, just drop the extension. 800 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 801 if (NumSignBits >= (BitWidth - ExBits + 1)) 802 return Op0; 803 break; 804 } 805 case ISD::ANY_EXTEND_VECTOR_INREG: 806 case ISD::SIGN_EXTEND_VECTOR_INREG: 807 case ISD::ZERO_EXTEND_VECTOR_INREG: { 808 // If we only want the lowest element and none of extended bits, then we can 809 // return the bitcasted source vector. 810 SDValue Src = Op.getOperand(0); 811 EVT SrcVT = Src.getValueType(); 812 EVT DstVT = Op.getValueType(); 813 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 814 DAG.getDataLayout().isLittleEndian() && 815 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 816 return DAG.getBitcast(DstVT, Src); 817 } 818 break; 819 } 820 case ISD::INSERT_VECTOR_ELT: { 821 // If we don't demand the inserted element, return the base vector. 822 SDValue Vec = Op.getOperand(0); 823 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 824 EVT VecVT = Vec.getValueType(); 825 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 826 !DemandedElts[CIdx->getZExtValue()]) 827 return Vec; 828 break; 829 } 830 case ISD::INSERT_SUBVECTOR: { 831 // If we don't demand the inserted subvector, return the base vector. 832 SDValue Vec = Op.getOperand(0); 833 SDValue Sub = Op.getOperand(1); 834 uint64_t Idx = Op.getConstantOperandVal(2); 835 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 836 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 837 return Vec; 838 break; 839 } 840 case ISD::VECTOR_SHUFFLE: { 841 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 842 843 // If all the demanded elts are from one operand and are inline, 844 // then we can use the operand directly. 845 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 846 for (unsigned i = 0; i != NumElts; ++i) { 847 int M = ShuffleMask[i]; 848 if (M < 0 || !DemandedElts[i]) 849 continue; 850 AllUndef = false; 851 IdentityLHS &= (M == (int)i); 852 IdentityRHS &= ((M - NumElts) == i); 853 } 854 855 if (AllUndef) 856 return DAG.getUNDEF(Op.getValueType()); 857 if (IdentityLHS) 858 return Op.getOperand(0); 859 if (IdentityRHS) 860 return Op.getOperand(1); 861 break; 862 } 863 default: 864 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 865 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 866 Op, DemandedBits, DemandedElts, DAG, Depth)) 867 return V; 868 break; 869 } 870 return SDValue(); 871 } 872 873 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 874 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 875 unsigned Depth) const { 876 EVT VT = Op.getValueType(); 877 APInt DemandedElts = VT.isVector() 878 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 879 : APInt(1, 1); 880 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 881 Depth); 882 } 883 884 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 885 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 886 unsigned Depth) const { 887 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 888 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 889 Depth); 890 } 891 892 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 893 /// result of Op are ever used downstream. If we can use this information to 894 /// simplify Op, create a new simplified DAG node and return true, returning the 895 /// original and new nodes in Old and New. Otherwise, analyze the expression and 896 /// return a mask of Known bits for the expression (used to simplify the 897 /// caller). The Known bits may only be accurate for those bits in the 898 /// OriginalDemandedBits and OriginalDemandedElts. 899 bool TargetLowering::SimplifyDemandedBits( 900 SDValue Op, const APInt &OriginalDemandedBits, 901 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 902 unsigned Depth, bool AssumeSingleUse) const { 903 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 904 assert(Op.getScalarValueSizeInBits() == BitWidth && 905 "Mask size mismatches value type size!"); 906 907 // Don't know anything. 908 Known = KnownBits(BitWidth); 909 910 // TODO: We can probably do more work on calculating the known bits and 911 // simplifying the operations for scalable vectors, but for now we just 912 // bail out. 913 if (Op.getValueType().isScalableVector()) 914 return false; 915 916 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 917 assert((!Op.getValueType().isVector() || 918 NumElts == Op.getValueType().getVectorNumElements()) && 919 "Unexpected vector size"); 920 921 APInt DemandedBits = OriginalDemandedBits; 922 APInt DemandedElts = OriginalDemandedElts; 923 SDLoc dl(Op); 924 auto &DL = TLO.DAG.getDataLayout(); 925 926 // Undef operand. 927 if (Op.isUndef()) 928 return false; 929 930 if (Op.getOpcode() == ISD::Constant) { 931 // We know all of the bits for a constant! 932 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 933 return false; 934 } 935 936 if (Op.getOpcode() == ISD::ConstantFP) { 937 // We know all of the bits for a floating point constant! 938 Known = KnownBits::makeConstant( 939 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 940 return false; 941 } 942 943 // Other users may use these bits. 944 EVT VT = Op.getValueType(); 945 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 946 if (Depth != 0) { 947 // If not at the root, Just compute the Known bits to 948 // simplify things downstream. 949 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 950 return false; 951 } 952 // If this is the root being simplified, allow it to have multiple uses, 953 // just set the DemandedBits/Elts to all bits. 954 DemandedBits = APInt::getAllOnesValue(BitWidth); 955 DemandedElts = APInt::getAllOnesValue(NumElts); 956 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 957 // Not demanding any bits/elts from Op. 958 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 959 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 960 // Limit search depth. 961 return false; 962 } 963 964 KnownBits Known2; 965 switch (Op.getOpcode()) { 966 case ISD::TargetConstant: 967 llvm_unreachable("Can't simplify this node"); 968 case ISD::SCALAR_TO_VECTOR: { 969 if (!DemandedElts[0]) 970 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 971 972 KnownBits SrcKnown; 973 SDValue Src = Op.getOperand(0); 974 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 975 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 976 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 977 return true; 978 979 // Upper elements are undef, so only get the knownbits if we just demand 980 // the bottom element. 981 if (DemandedElts == 1) 982 Known = SrcKnown.anyextOrTrunc(BitWidth); 983 break; 984 } 985 case ISD::BUILD_VECTOR: 986 // Collect the known bits that are shared by every demanded element. 987 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 988 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 989 return false; // Don't fall through, will infinitely loop. 990 case ISD::LOAD: { 991 auto *LD = cast<LoadSDNode>(Op); 992 if (getTargetConstantFromLoad(LD)) { 993 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 994 return false; // Don't fall through, will infinitely loop. 995 } 996 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 997 // If this is a ZEXTLoad and we are looking at the loaded value. 998 EVT MemVT = LD->getMemoryVT(); 999 unsigned MemBits = MemVT.getScalarSizeInBits(); 1000 Known.Zero.setBitsFrom(MemBits); 1001 return false; // Don't fall through, will infinitely loop. 1002 } 1003 break; 1004 } 1005 case ISD::INSERT_VECTOR_ELT: { 1006 SDValue Vec = Op.getOperand(0); 1007 SDValue Scl = Op.getOperand(1); 1008 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1009 EVT VecVT = Vec.getValueType(); 1010 1011 // If index isn't constant, assume we need all vector elements AND the 1012 // inserted element. 1013 APInt DemandedVecElts(DemandedElts); 1014 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1015 unsigned Idx = CIdx->getZExtValue(); 1016 DemandedVecElts.clearBit(Idx); 1017 1018 // Inserted element is not required. 1019 if (!DemandedElts[Idx]) 1020 return TLO.CombineTo(Op, Vec); 1021 } 1022 1023 KnownBits KnownScl; 1024 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1025 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1026 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1027 return true; 1028 1029 Known = KnownScl.anyextOrTrunc(BitWidth); 1030 1031 KnownBits KnownVec; 1032 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1033 Depth + 1)) 1034 return true; 1035 1036 if (!!DemandedVecElts) 1037 Known = KnownBits::commonBits(Known, KnownVec); 1038 1039 return false; 1040 } 1041 case ISD::INSERT_SUBVECTOR: { 1042 // Demand any elements from the subvector and the remainder from the src its 1043 // inserted into. 1044 SDValue Src = Op.getOperand(0); 1045 SDValue Sub = Op.getOperand(1); 1046 uint64_t Idx = Op.getConstantOperandVal(2); 1047 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1048 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1049 APInt DemandedSrcElts = DemandedElts; 1050 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1051 1052 KnownBits KnownSub, KnownSrc; 1053 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1054 Depth + 1)) 1055 return true; 1056 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1057 Depth + 1)) 1058 return true; 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 if (!!DemandedSubElts) 1063 Known = KnownBits::commonBits(Known, KnownSub); 1064 if (!!DemandedSrcElts) 1065 Known = KnownBits::commonBits(Known, KnownSrc); 1066 1067 // Attempt to avoid multi-use src if we don't need anything from it. 1068 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1069 !DemandedSrcElts.isAllOnesValue()) { 1070 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1071 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1072 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1073 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1074 if (NewSub || NewSrc) { 1075 NewSub = NewSub ? NewSub : Sub; 1076 NewSrc = NewSrc ? NewSrc : Src; 1077 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1078 Op.getOperand(2)); 1079 return TLO.CombineTo(Op, NewOp); 1080 } 1081 } 1082 break; 1083 } 1084 case ISD::EXTRACT_SUBVECTOR: { 1085 // Offset the demanded elts by the subvector index. 1086 SDValue Src = Op.getOperand(0); 1087 if (Src.getValueType().isScalableVector()) 1088 break; 1089 uint64_t Idx = Op.getConstantOperandVal(1); 1090 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1091 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1092 1093 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1094 Depth + 1)) 1095 return true; 1096 1097 // Attempt to avoid multi-use src if we don't need anything from it. 1098 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1099 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1100 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1101 if (DemandedSrc) { 1102 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1103 Op.getOperand(1)); 1104 return TLO.CombineTo(Op, NewOp); 1105 } 1106 } 1107 break; 1108 } 1109 case ISD::CONCAT_VECTORS: { 1110 Known.Zero.setAllBits(); 1111 Known.One.setAllBits(); 1112 EVT SubVT = Op.getOperand(0).getValueType(); 1113 unsigned NumSubVecs = Op.getNumOperands(); 1114 unsigned NumSubElts = SubVT.getVectorNumElements(); 1115 for (unsigned i = 0; i != NumSubVecs; ++i) { 1116 APInt DemandedSubElts = 1117 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1118 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1119 Known2, TLO, Depth + 1)) 1120 return true; 1121 // Known bits are shared by every demanded subvector element. 1122 if (!!DemandedSubElts) 1123 Known = KnownBits::commonBits(Known, Known2); 1124 } 1125 break; 1126 } 1127 case ISD::VECTOR_SHUFFLE: { 1128 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1129 1130 // Collect demanded elements from shuffle operands.. 1131 APInt DemandedLHS(NumElts, 0); 1132 APInt DemandedRHS(NumElts, 0); 1133 for (unsigned i = 0; i != NumElts; ++i) { 1134 if (!DemandedElts[i]) 1135 continue; 1136 int M = ShuffleMask[i]; 1137 if (M < 0) { 1138 // For UNDEF elements, we don't know anything about the common state of 1139 // the shuffle result. 1140 DemandedLHS.clearAllBits(); 1141 DemandedRHS.clearAllBits(); 1142 break; 1143 } 1144 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1145 if (M < (int)NumElts) 1146 DemandedLHS.setBit(M); 1147 else 1148 DemandedRHS.setBit(M - NumElts); 1149 } 1150 1151 if (!!DemandedLHS || !!DemandedRHS) { 1152 SDValue Op0 = Op.getOperand(0); 1153 SDValue Op1 = Op.getOperand(1); 1154 1155 Known.Zero.setAllBits(); 1156 Known.One.setAllBits(); 1157 if (!!DemandedLHS) { 1158 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1159 Depth + 1)) 1160 return true; 1161 Known = KnownBits::commonBits(Known, Known2); 1162 } 1163 if (!!DemandedRHS) { 1164 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1165 Depth + 1)) 1166 return true; 1167 Known = KnownBits::commonBits(Known, Known2); 1168 } 1169 1170 // Attempt to avoid multi-use ops if we don't need anything from them. 1171 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1172 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1173 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1174 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1175 if (DemandedOp0 || DemandedOp1) { 1176 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1177 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1178 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1179 return TLO.CombineTo(Op, NewOp); 1180 } 1181 } 1182 break; 1183 } 1184 case ISD::AND: { 1185 SDValue Op0 = Op.getOperand(0); 1186 SDValue Op1 = Op.getOperand(1); 1187 1188 // If the RHS is a constant, check to see if the LHS would be zero without 1189 // using the bits from the RHS. Below, we use knowledge about the RHS to 1190 // simplify the LHS, here we're using information from the LHS to simplify 1191 // the RHS. 1192 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1193 // Do not increment Depth here; that can cause an infinite loop. 1194 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1195 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1196 if ((LHSKnown.Zero & DemandedBits) == 1197 (~RHSC->getAPIntValue() & DemandedBits)) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 // If any of the set bits in the RHS are known zero on the LHS, shrink 1201 // the constant. 1202 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1203 DemandedElts, TLO)) 1204 return true; 1205 1206 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1207 // constant, but if this 'and' is only clearing bits that were just set by 1208 // the xor, then this 'and' can be eliminated by shrinking the mask of 1209 // the xor. For example, for a 32-bit X: 1210 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1211 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1212 LHSKnown.One == ~RHSC->getAPIntValue()) { 1213 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1214 return TLO.CombineTo(Op, Xor); 1215 } 1216 } 1217 1218 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1219 Depth + 1)) 1220 return true; 1221 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1222 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1223 Known2, TLO, Depth + 1)) 1224 return true; 1225 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1226 1227 // Attempt to avoid multi-use ops if we don't need anything from them. 1228 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1229 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1230 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1231 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1232 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1233 if (DemandedOp0 || DemandedOp1) { 1234 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1235 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1236 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1237 return TLO.CombineTo(Op, NewOp); 1238 } 1239 } 1240 1241 // If all of the demanded bits are known one on one side, return the other. 1242 // These bits cannot contribute to the result of the 'and'. 1243 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1244 return TLO.CombineTo(Op, Op0); 1245 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1246 return TLO.CombineTo(Op, Op1); 1247 // If all of the demanded bits in the inputs are known zeros, return zero. 1248 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1249 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1250 // If the RHS is a constant, see if we can simplify it. 1251 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1252 TLO)) 1253 return true; 1254 // If the operation can be done in a smaller type, do so. 1255 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1256 return true; 1257 1258 Known &= Known2; 1259 break; 1260 } 1261 case ISD::OR: { 1262 SDValue Op0 = Op.getOperand(0); 1263 SDValue Op1 = Op.getOperand(1); 1264 1265 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1266 Depth + 1)) 1267 return true; 1268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1269 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1270 Known2, TLO, Depth + 1)) 1271 return true; 1272 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1273 1274 // Attempt to avoid multi-use ops if we don't need anything from them. 1275 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1276 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1277 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1278 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1279 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1280 if (DemandedOp0 || DemandedOp1) { 1281 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1282 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1283 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1284 return TLO.CombineTo(Op, NewOp); 1285 } 1286 } 1287 1288 // If all of the demanded bits are known zero on one side, return the other. 1289 // These bits cannot contribute to the result of the 'or'. 1290 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1291 return TLO.CombineTo(Op, Op0); 1292 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1293 return TLO.CombineTo(Op, Op1); 1294 // If the RHS is a constant, see if we can simplify it. 1295 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1296 return true; 1297 // If the operation can be done in a smaller type, do so. 1298 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1299 return true; 1300 1301 Known |= Known2; 1302 break; 1303 } 1304 case ISD::XOR: { 1305 SDValue Op0 = Op.getOperand(0); 1306 SDValue Op1 = Op.getOperand(1); 1307 1308 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1309 Depth + 1)) 1310 return true; 1311 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1312 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1313 Depth + 1)) 1314 return true; 1315 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1319 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1320 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1321 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1322 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1323 if (DemandedOp0 || DemandedOp1) { 1324 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1325 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1326 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1327 return TLO.CombineTo(Op, NewOp); 1328 } 1329 } 1330 1331 // If all of the demanded bits are known zero on one side, return the other. 1332 // These bits cannot contribute to the result of the 'xor'. 1333 if (DemandedBits.isSubsetOf(Known.Zero)) 1334 return TLO.CombineTo(Op, Op0); 1335 if (DemandedBits.isSubsetOf(Known2.Zero)) 1336 return TLO.CombineTo(Op, Op1); 1337 // If the operation can be done in a smaller type, do so. 1338 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1339 return true; 1340 1341 // If all of the unknown bits are known to be zero on one side or the other 1342 // turn this into an *inclusive* or. 1343 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1344 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1345 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1346 1347 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1348 if (C) { 1349 // If one side is a constant, and all of the set bits in the constant are 1350 // also known set on the other side, turn this into an AND, as we know 1351 // the bits will be cleared. 1352 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1353 // NB: it is okay if more bits are known than are requested 1354 if (C->getAPIntValue() == Known2.One) { 1355 SDValue ANDC = 1356 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1357 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1358 } 1359 1360 // If the RHS is a constant, see if we can change it. Don't alter a -1 1361 // constant because that's a 'not' op, and that is better for combining 1362 // and codegen. 1363 if (!C->isAllOnesValue() && 1364 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1365 // We're flipping all demanded bits. Flip the undemanded bits too. 1366 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1367 return TLO.CombineTo(Op, New); 1368 } 1369 } 1370 1371 // If we can't turn this into a 'not', try to shrink the constant. 1372 if (!C || !C->isAllOnesValue()) 1373 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1374 return true; 1375 1376 Known ^= Known2; 1377 break; 1378 } 1379 case ISD::SELECT: 1380 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1381 Depth + 1)) 1382 return true; 1383 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1384 Depth + 1)) 1385 return true; 1386 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1387 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1388 1389 // If the operands are constants, see if we can simplify them. 1390 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1391 return true; 1392 1393 // Only known if known in both the LHS and RHS. 1394 Known = KnownBits::commonBits(Known, Known2); 1395 break; 1396 case ISD::SELECT_CC: 1397 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1398 Depth + 1)) 1399 return true; 1400 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1401 Depth + 1)) 1402 return true; 1403 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1404 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1405 1406 // If the operands are constants, see if we can simplify them. 1407 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1408 return true; 1409 1410 // Only known if known in both the LHS and RHS. 1411 Known = KnownBits::commonBits(Known, Known2); 1412 break; 1413 case ISD::SETCC: { 1414 SDValue Op0 = Op.getOperand(0); 1415 SDValue Op1 = Op.getOperand(1); 1416 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1417 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1418 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1419 // -1, we may be able to bypass the setcc. 1420 if (DemandedBits.isSignMask() && 1421 Op0.getScalarValueSizeInBits() == BitWidth && 1422 getBooleanContents(Op0.getValueType()) == 1423 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1424 // If we're testing X < 0, then this compare isn't needed - just use X! 1425 // FIXME: We're limiting to integer types here, but this should also work 1426 // if we don't care about FP signed-zero. The use of SETLT with FP means 1427 // that we don't care about NaNs. 1428 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1429 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1430 return TLO.CombineTo(Op, Op0); 1431 1432 // TODO: Should we check for other forms of sign-bit comparisons? 1433 // Examples: X <= -1, X >= 0 1434 } 1435 if (getBooleanContents(Op0.getValueType()) == 1436 TargetLowering::ZeroOrOneBooleanContent && 1437 BitWidth > 1) 1438 Known.Zero.setBitsFrom(1); 1439 break; 1440 } 1441 case ISD::SHL: { 1442 SDValue Op0 = Op.getOperand(0); 1443 SDValue Op1 = Op.getOperand(1); 1444 EVT ShiftVT = Op1.getValueType(); 1445 1446 if (const APInt *SA = 1447 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1448 unsigned ShAmt = SA->getZExtValue(); 1449 if (ShAmt == 0) 1450 return TLO.CombineTo(Op, Op0); 1451 1452 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1453 // single shift. We can do this if the bottom bits (which are shifted 1454 // out) are never demanded. 1455 // TODO - support non-uniform vector amounts. 1456 if (Op0.getOpcode() == ISD::SRL) { 1457 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1458 if (const APInt *SA2 = 1459 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1460 unsigned C1 = SA2->getZExtValue(); 1461 unsigned Opc = ISD::SHL; 1462 int Diff = ShAmt - C1; 1463 if (Diff < 0) { 1464 Diff = -Diff; 1465 Opc = ISD::SRL; 1466 } 1467 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1468 return TLO.CombineTo( 1469 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1470 } 1471 } 1472 } 1473 1474 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1475 // are not demanded. This will likely allow the anyext to be folded away. 1476 // TODO - support non-uniform vector amounts. 1477 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1478 SDValue InnerOp = Op0.getOperand(0); 1479 EVT InnerVT = InnerOp.getValueType(); 1480 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1481 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1482 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1483 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1484 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1485 ShTy = InnerVT; 1486 SDValue NarrowShl = 1487 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1488 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1489 return TLO.CombineTo( 1490 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1491 } 1492 1493 // Repeat the SHL optimization above in cases where an extension 1494 // intervenes: (shl (anyext (shr x, c1)), c2) to 1495 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1496 // aren't demanded (as above) and that the shifted upper c1 bits of 1497 // x aren't demanded. 1498 // TODO - support non-uniform vector amounts. 1499 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1500 InnerOp.hasOneUse()) { 1501 if (const APInt *SA2 = 1502 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1503 unsigned InnerShAmt = SA2->getZExtValue(); 1504 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1505 DemandedBits.getActiveBits() <= 1506 (InnerBits - InnerShAmt + ShAmt) && 1507 DemandedBits.countTrailingZeros() >= ShAmt) { 1508 SDValue NewSA = 1509 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1510 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1511 InnerOp.getOperand(0)); 1512 return TLO.CombineTo( 1513 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1514 } 1515 } 1516 } 1517 } 1518 1519 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1520 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1521 Depth + 1)) 1522 return true; 1523 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1524 Known.Zero <<= ShAmt; 1525 Known.One <<= ShAmt; 1526 // low bits known zero. 1527 Known.Zero.setLowBits(ShAmt); 1528 1529 // Try shrinking the operation as long as the shift amount will still be 1530 // in range. 1531 if ((ShAmt < DemandedBits.getActiveBits()) && 1532 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1533 return true; 1534 } 1535 1536 // If we are only demanding sign bits then we can use the shift source 1537 // directly. 1538 if (const APInt *MaxSA = 1539 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1540 unsigned ShAmt = MaxSA->getZExtValue(); 1541 unsigned NumSignBits = 1542 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1543 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1544 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1545 return TLO.CombineTo(Op, Op0); 1546 } 1547 break; 1548 } 1549 case ISD::SRL: { 1550 SDValue Op0 = Op.getOperand(0); 1551 SDValue Op1 = Op.getOperand(1); 1552 EVT ShiftVT = Op1.getValueType(); 1553 1554 if (const APInt *SA = 1555 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1556 unsigned ShAmt = SA->getZExtValue(); 1557 if (ShAmt == 0) 1558 return TLO.CombineTo(Op, Op0); 1559 1560 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1561 // single shift. We can do this if the top bits (which are shifted out) 1562 // are never demanded. 1563 // TODO - support non-uniform vector amounts. 1564 if (Op0.getOpcode() == ISD::SHL) { 1565 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1566 if (const APInt *SA2 = 1567 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1568 unsigned C1 = SA2->getZExtValue(); 1569 unsigned Opc = ISD::SRL; 1570 int Diff = ShAmt - C1; 1571 if (Diff < 0) { 1572 Diff = -Diff; 1573 Opc = ISD::SHL; 1574 } 1575 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1576 return TLO.CombineTo( 1577 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1578 } 1579 } 1580 } 1581 1582 APInt InDemandedMask = (DemandedBits << ShAmt); 1583 1584 // If the shift is exact, then it does demand the low bits (and knows that 1585 // they are zero). 1586 if (Op->getFlags().hasExact()) 1587 InDemandedMask.setLowBits(ShAmt); 1588 1589 // Compute the new bits that are at the top now. 1590 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1591 Depth + 1)) 1592 return true; 1593 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1594 Known.Zero.lshrInPlace(ShAmt); 1595 Known.One.lshrInPlace(ShAmt); 1596 // High bits known zero. 1597 Known.Zero.setHighBits(ShAmt); 1598 } 1599 break; 1600 } 1601 case ISD::SRA: { 1602 SDValue Op0 = Op.getOperand(0); 1603 SDValue Op1 = Op.getOperand(1); 1604 EVT ShiftVT = Op1.getValueType(); 1605 1606 // If we only want bits that already match the signbit then we don't need 1607 // to shift. 1608 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1609 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1610 NumHiDemandedBits) 1611 return TLO.CombineTo(Op, Op0); 1612 1613 // If this is an arithmetic shift right and only the low-bit is set, we can 1614 // always convert this into a logical shr, even if the shift amount is 1615 // variable. The low bit of the shift cannot be an input sign bit unless 1616 // the shift amount is >= the size of the datatype, which is undefined. 1617 if (DemandedBits.isOneValue()) 1618 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1619 1620 if (const APInt *SA = 1621 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1622 unsigned ShAmt = SA->getZExtValue(); 1623 if (ShAmt == 0) 1624 return TLO.CombineTo(Op, Op0); 1625 1626 APInt InDemandedMask = (DemandedBits << ShAmt); 1627 1628 // If the shift is exact, then it does demand the low bits (and knows that 1629 // they are zero). 1630 if (Op->getFlags().hasExact()) 1631 InDemandedMask.setLowBits(ShAmt); 1632 1633 // If any of the demanded bits are produced by the sign extension, we also 1634 // demand the input sign bit. 1635 if (DemandedBits.countLeadingZeros() < ShAmt) 1636 InDemandedMask.setSignBit(); 1637 1638 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1639 Depth + 1)) 1640 return true; 1641 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1642 Known.Zero.lshrInPlace(ShAmt); 1643 Known.One.lshrInPlace(ShAmt); 1644 1645 // If the input sign bit is known to be zero, or if none of the top bits 1646 // are demanded, turn this into an unsigned shift right. 1647 if (Known.Zero[BitWidth - ShAmt - 1] || 1648 DemandedBits.countLeadingZeros() >= ShAmt) { 1649 SDNodeFlags Flags; 1650 Flags.setExact(Op->getFlags().hasExact()); 1651 return TLO.CombineTo( 1652 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1653 } 1654 1655 int Log2 = DemandedBits.exactLogBase2(); 1656 if (Log2 >= 0) { 1657 // The bit must come from the sign. 1658 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1659 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1660 } 1661 1662 if (Known.One[BitWidth - ShAmt - 1]) 1663 // New bits are known one. 1664 Known.One.setHighBits(ShAmt); 1665 1666 // Attempt to avoid multi-use ops if we don't need anything from them. 1667 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1668 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1669 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1670 if (DemandedOp0) { 1671 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1672 return TLO.CombineTo(Op, NewOp); 1673 } 1674 } 1675 } 1676 break; 1677 } 1678 case ISD::FSHL: 1679 case ISD::FSHR: { 1680 SDValue Op0 = Op.getOperand(0); 1681 SDValue Op1 = Op.getOperand(1); 1682 SDValue Op2 = Op.getOperand(2); 1683 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1684 1685 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1686 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1687 1688 // For fshl, 0-shift returns the 1st arg. 1689 // For fshr, 0-shift returns the 2nd arg. 1690 if (Amt == 0) { 1691 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1692 Known, TLO, Depth + 1)) 1693 return true; 1694 break; 1695 } 1696 1697 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1698 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1699 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1700 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1701 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1702 Depth + 1)) 1703 return true; 1704 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1705 Depth + 1)) 1706 return true; 1707 1708 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1709 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1710 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1711 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1712 Known.One |= Known2.One; 1713 Known.Zero |= Known2.Zero; 1714 } 1715 1716 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1717 if (isPowerOf2_32(BitWidth)) { 1718 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1719 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1720 Known2, TLO, Depth + 1)) 1721 return true; 1722 } 1723 break; 1724 } 1725 case ISD::ROTL: 1726 case ISD::ROTR: { 1727 SDValue Op0 = Op.getOperand(0); 1728 SDValue Op1 = Op.getOperand(1); 1729 1730 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1731 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1732 return TLO.CombineTo(Op, Op0); 1733 1734 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1735 if (isPowerOf2_32(BitWidth)) { 1736 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1737 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1738 Depth + 1)) 1739 return true; 1740 } 1741 break; 1742 } 1743 case ISD::UMIN: { 1744 // Check if one arg is always less than (or equal) to the other arg. 1745 SDValue Op0 = Op.getOperand(0); 1746 SDValue Op1 = Op.getOperand(1); 1747 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1748 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1749 Known = KnownBits::umin(Known0, Known1); 1750 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1751 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1752 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1753 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1754 break; 1755 } 1756 case ISD::UMAX: { 1757 // Check if one arg is always greater than (or equal) to the other arg. 1758 SDValue Op0 = Op.getOperand(0); 1759 SDValue Op1 = Op.getOperand(1); 1760 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1761 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1762 Known = KnownBits::umax(Known0, Known1); 1763 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1764 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1765 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1766 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1767 break; 1768 } 1769 case ISD::BITREVERSE: { 1770 SDValue Src = Op.getOperand(0); 1771 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1772 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1773 Depth + 1)) 1774 return true; 1775 Known.One = Known2.One.reverseBits(); 1776 Known.Zero = Known2.Zero.reverseBits(); 1777 break; 1778 } 1779 case ISD::BSWAP: { 1780 SDValue Src = Op.getOperand(0); 1781 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1782 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1783 Depth + 1)) 1784 return true; 1785 Known.One = Known2.One.byteSwap(); 1786 Known.Zero = Known2.Zero.byteSwap(); 1787 break; 1788 } 1789 case ISD::CTPOP: { 1790 // If only 1 bit is demanded, replace with PARITY as long as we're before 1791 // op legalization. 1792 // FIXME: Limit to scalars for now. 1793 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1794 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1795 Op.getOperand(0))); 1796 1797 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1798 break; 1799 } 1800 case ISD::SIGN_EXTEND_INREG: { 1801 SDValue Op0 = Op.getOperand(0); 1802 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1803 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1804 1805 // If we only care about the highest bit, don't bother shifting right. 1806 if (DemandedBits.isSignMask()) { 1807 unsigned NumSignBits = 1808 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1809 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1810 // However if the input is already sign extended we expect the sign 1811 // extension to be dropped altogether later and do not simplify. 1812 if (!AlreadySignExtended) { 1813 // Compute the correct shift amount type, which must be getShiftAmountTy 1814 // for scalar types after legalization. 1815 EVT ShiftAmtTy = VT; 1816 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1817 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1818 1819 SDValue ShiftAmt = 1820 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1821 return TLO.CombineTo(Op, 1822 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1823 } 1824 } 1825 1826 // If none of the extended bits are demanded, eliminate the sextinreg. 1827 if (DemandedBits.getActiveBits() <= ExVTBits) 1828 return TLO.CombineTo(Op, Op0); 1829 1830 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1831 1832 // Since the sign extended bits are demanded, we know that the sign 1833 // bit is demanded. 1834 InputDemandedBits.setBit(ExVTBits - 1); 1835 1836 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1837 return true; 1838 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1839 1840 // If the sign bit of the input is known set or clear, then we know the 1841 // top bits of the result. 1842 1843 // If the input sign bit is known zero, convert this into a zero extension. 1844 if (Known.Zero[ExVTBits - 1]) 1845 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1846 1847 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1848 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1849 Known.One.setBitsFrom(ExVTBits); 1850 Known.Zero &= Mask; 1851 } else { // Input sign bit unknown 1852 Known.Zero &= Mask; 1853 Known.One &= Mask; 1854 } 1855 break; 1856 } 1857 case ISD::BUILD_PAIR: { 1858 EVT HalfVT = Op.getOperand(0).getValueType(); 1859 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1860 1861 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1862 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1863 1864 KnownBits KnownLo, KnownHi; 1865 1866 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1867 return true; 1868 1869 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1870 return true; 1871 1872 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1873 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1874 1875 Known.One = KnownLo.One.zext(BitWidth) | 1876 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1877 break; 1878 } 1879 case ISD::ZERO_EXTEND: 1880 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1881 SDValue Src = Op.getOperand(0); 1882 EVT SrcVT = Src.getValueType(); 1883 unsigned InBits = SrcVT.getScalarSizeInBits(); 1884 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1885 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1886 1887 // If none of the top bits are demanded, convert this into an any_extend. 1888 if (DemandedBits.getActiveBits() <= InBits) { 1889 // If we only need the non-extended bits of the bottom element 1890 // then we can just bitcast to the result. 1891 if (IsVecInReg && DemandedElts == 1 && 1892 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1893 TLO.DAG.getDataLayout().isLittleEndian()) 1894 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1895 1896 unsigned Opc = 1897 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1898 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1899 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1900 } 1901 1902 APInt InDemandedBits = DemandedBits.trunc(InBits); 1903 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1904 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1905 Depth + 1)) 1906 return true; 1907 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1908 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1909 Known = Known.zext(BitWidth); 1910 1911 // Attempt to avoid multi-use ops if we don't need anything from them. 1912 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1913 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1914 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1915 break; 1916 } 1917 case ISD::SIGN_EXTEND: 1918 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1919 SDValue Src = Op.getOperand(0); 1920 EVT SrcVT = Src.getValueType(); 1921 unsigned InBits = SrcVT.getScalarSizeInBits(); 1922 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1923 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1924 1925 // If none of the top bits are demanded, convert this into an any_extend. 1926 if (DemandedBits.getActiveBits() <= InBits) { 1927 // If we only need the non-extended bits of the bottom element 1928 // then we can just bitcast to the result. 1929 if (IsVecInReg && DemandedElts == 1 && 1930 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1931 TLO.DAG.getDataLayout().isLittleEndian()) 1932 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1933 1934 unsigned Opc = 1935 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1936 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1937 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1938 } 1939 1940 APInt InDemandedBits = DemandedBits.trunc(InBits); 1941 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1942 1943 // Since some of the sign extended bits are demanded, we know that the sign 1944 // bit is demanded. 1945 InDemandedBits.setBit(InBits - 1); 1946 1947 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1948 Depth + 1)) 1949 return true; 1950 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1951 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1952 1953 // If the sign bit is known one, the top bits match. 1954 Known = Known.sext(BitWidth); 1955 1956 // If the sign bit is known zero, convert this to a zero extend. 1957 if (Known.isNonNegative()) { 1958 unsigned Opc = 1959 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1960 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1961 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1962 } 1963 1964 // Attempt to avoid multi-use ops if we don't need anything from them. 1965 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1966 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1967 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1968 break; 1969 } 1970 case ISD::ANY_EXTEND: 1971 case ISD::ANY_EXTEND_VECTOR_INREG: { 1972 SDValue Src = Op.getOperand(0); 1973 EVT SrcVT = Src.getValueType(); 1974 unsigned InBits = SrcVT.getScalarSizeInBits(); 1975 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1976 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1977 1978 // If we only need the bottom element then we can just bitcast. 1979 // TODO: Handle ANY_EXTEND? 1980 if (IsVecInReg && DemandedElts == 1 && 1981 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1982 TLO.DAG.getDataLayout().isLittleEndian()) 1983 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1984 1985 APInt InDemandedBits = DemandedBits.trunc(InBits); 1986 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1987 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1988 Depth + 1)) 1989 return true; 1990 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1991 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1992 Known = Known.anyext(BitWidth); 1993 1994 // Attempt to avoid multi-use ops if we don't need anything from them. 1995 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1996 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1997 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1998 break; 1999 } 2000 case ISD::TRUNCATE: { 2001 SDValue Src = Op.getOperand(0); 2002 2003 // Simplify the input, using demanded bit information, and compute the known 2004 // zero/one bits live out. 2005 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2006 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2007 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2008 Depth + 1)) 2009 return true; 2010 Known = Known.trunc(BitWidth); 2011 2012 // Attempt to avoid multi-use ops if we don't need anything from them. 2013 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2014 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2015 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2016 2017 // If the input is only used by this truncate, see if we can shrink it based 2018 // on the known demanded bits. 2019 if (Src.getNode()->hasOneUse()) { 2020 switch (Src.getOpcode()) { 2021 default: 2022 break; 2023 case ISD::SRL: 2024 // Shrink SRL by a constant if none of the high bits shifted in are 2025 // demanded. 2026 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2027 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2028 // undesirable. 2029 break; 2030 2031 const APInt *ShAmtC = 2032 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2033 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2034 break; 2035 uint64_t ShVal = ShAmtC->getZExtValue(); 2036 2037 APInt HighBits = 2038 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2039 HighBits.lshrInPlace(ShVal); 2040 HighBits = HighBits.trunc(BitWidth); 2041 2042 if (!(HighBits & DemandedBits)) { 2043 // None of the shifted in bits are needed. Add a truncate of the 2044 // shift input, then shift it. 2045 SDValue NewShAmt = TLO.DAG.getConstant( 2046 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2047 SDValue NewTrunc = 2048 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2049 return TLO.CombineTo( 2050 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2051 } 2052 break; 2053 } 2054 } 2055 2056 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2057 break; 2058 } 2059 case ISD::AssertZext: { 2060 // AssertZext demands all of the high bits, plus any of the low bits 2061 // demanded by its users. 2062 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2063 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2064 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2065 TLO, Depth + 1)) 2066 return true; 2067 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2068 2069 Known.Zero |= ~InMask; 2070 break; 2071 } 2072 case ISD::EXTRACT_VECTOR_ELT: { 2073 SDValue Src = Op.getOperand(0); 2074 SDValue Idx = Op.getOperand(1); 2075 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2076 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2077 2078 if (SrcEltCnt.isScalable()) 2079 return false; 2080 2081 // Demand the bits from every vector element without a constant index. 2082 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2083 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2084 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2085 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2086 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2087 2088 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2089 // anything about the extended bits. 2090 APInt DemandedSrcBits = DemandedBits; 2091 if (BitWidth > EltBitWidth) 2092 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2093 2094 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2095 Depth + 1)) 2096 return true; 2097 2098 // Attempt to avoid multi-use ops if we don't need anything from them. 2099 if (!DemandedSrcBits.isAllOnesValue() || 2100 !DemandedSrcElts.isAllOnesValue()) { 2101 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2102 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2103 SDValue NewOp = 2104 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2105 return TLO.CombineTo(Op, NewOp); 2106 } 2107 } 2108 2109 Known = Known2; 2110 if (BitWidth > EltBitWidth) 2111 Known = Known.anyext(BitWidth); 2112 break; 2113 } 2114 case ISD::BITCAST: { 2115 SDValue Src = Op.getOperand(0); 2116 EVT SrcVT = Src.getValueType(); 2117 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2118 2119 // If this is an FP->Int bitcast and if the sign bit is the only 2120 // thing demanded, turn this into a FGETSIGN. 2121 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2122 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2123 SrcVT.isFloatingPoint()) { 2124 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2125 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2126 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2127 SrcVT != MVT::f128) { 2128 // Cannot eliminate/lower SHL for f128 yet. 2129 EVT Ty = OpVTLegal ? VT : MVT::i32; 2130 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2131 // place. We expect the SHL to be eliminated by other optimizations. 2132 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2133 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2134 if (!OpVTLegal && OpVTSizeInBits > 32) 2135 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2136 unsigned ShVal = Op.getValueSizeInBits() - 1; 2137 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2138 return TLO.CombineTo(Op, 2139 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2140 } 2141 } 2142 2143 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2144 // Demand the elt/bit if any of the original elts/bits are demanded. 2145 // TODO - bigendian once we have test coverage. 2146 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2147 TLO.DAG.getDataLayout().isLittleEndian()) { 2148 unsigned Scale = BitWidth / NumSrcEltBits; 2149 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2150 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2151 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2152 for (unsigned i = 0; i != Scale; ++i) { 2153 unsigned Offset = i * NumSrcEltBits; 2154 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2155 if (!Sub.isNullValue()) { 2156 DemandedSrcBits |= Sub; 2157 for (unsigned j = 0; j != NumElts; ++j) 2158 if (DemandedElts[j]) 2159 DemandedSrcElts.setBit((j * Scale) + i); 2160 } 2161 } 2162 2163 APInt KnownSrcUndef, KnownSrcZero; 2164 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2165 KnownSrcZero, TLO, Depth + 1)) 2166 return true; 2167 2168 KnownBits KnownSrcBits; 2169 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2170 KnownSrcBits, TLO, Depth + 1)) 2171 return true; 2172 } else if ((NumSrcEltBits % BitWidth) == 0 && 2173 TLO.DAG.getDataLayout().isLittleEndian()) { 2174 unsigned Scale = NumSrcEltBits / BitWidth; 2175 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2176 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2177 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2178 for (unsigned i = 0; i != NumElts; ++i) 2179 if (DemandedElts[i]) { 2180 unsigned Offset = (i % Scale) * BitWidth; 2181 DemandedSrcBits.insertBits(DemandedBits, Offset); 2182 DemandedSrcElts.setBit(i / Scale); 2183 } 2184 2185 if (SrcVT.isVector()) { 2186 APInt KnownSrcUndef, KnownSrcZero; 2187 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2188 KnownSrcZero, TLO, Depth + 1)) 2189 return true; 2190 } 2191 2192 KnownBits KnownSrcBits; 2193 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2194 KnownSrcBits, TLO, Depth + 1)) 2195 return true; 2196 } 2197 2198 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2199 // recursive call where Known may be useful to the caller. 2200 if (Depth > 0) { 2201 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2202 return false; 2203 } 2204 break; 2205 } 2206 case ISD::ADD: 2207 case ISD::MUL: 2208 case ISD::SUB: { 2209 // Add, Sub, and Mul don't demand any bits in positions beyond that 2210 // of the highest bit demanded of them. 2211 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2212 SDNodeFlags Flags = Op.getNode()->getFlags(); 2213 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2214 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2215 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2216 Depth + 1) || 2217 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2218 Depth + 1) || 2219 // See if the operation should be performed at a smaller bit width. 2220 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2221 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2222 // Disable the nsw and nuw flags. We can no longer guarantee that we 2223 // won't wrap after simplification. 2224 Flags.setNoSignedWrap(false); 2225 Flags.setNoUnsignedWrap(false); 2226 SDValue NewOp = 2227 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2228 return TLO.CombineTo(Op, NewOp); 2229 } 2230 return true; 2231 } 2232 2233 // Attempt to avoid multi-use ops if we don't need anything from them. 2234 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2235 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2236 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2237 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2238 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2239 if (DemandedOp0 || DemandedOp1) { 2240 Flags.setNoSignedWrap(false); 2241 Flags.setNoUnsignedWrap(false); 2242 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2243 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2244 SDValue NewOp = 2245 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2246 return TLO.CombineTo(Op, NewOp); 2247 } 2248 } 2249 2250 // If we have a constant operand, we may be able to turn it into -1 if we 2251 // do not demand the high bits. This can make the constant smaller to 2252 // encode, allow more general folding, or match specialized instruction 2253 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2254 // is probably not useful (and could be detrimental). 2255 ConstantSDNode *C = isConstOrConstSplat(Op1); 2256 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2257 if (C && !C->isAllOnesValue() && !C->isOne() && 2258 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2259 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2260 // Disable the nsw and nuw flags. We can no longer guarantee that we 2261 // won't wrap after simplification. 2262 Flags.setNoSignedWrap(false); 2263 Flags.setNoUnsignedWrap(false); 2264 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2265 return TLO.CombineTo(Op, NewOp); 2266 } 2267 2268 LLVM_FALLTHROUGH; 2269 } 2270 default: 2271 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2272 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2273 Known, TLO, Depth)) 2274 return true; 2275 break; 2276 } 2277 2278 // Just use computeKnownBits to compute output bits. 2279 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2280 break; 2281 } 2282 2283 // If we know the value of all of the demanded bits, return this as a 2284 // constant. 2285 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2286 // Avoid folding to a constant if any OpaqueConstant is involved. 2287 const SDNode *N = Op.getNode(); 2288 for (SDNode *Op : 2289 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2290 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2291 if (C->isOpaque()) 2292 return false; 2293 } 2294 if (VT.isInteger()) 2295 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2296 if (VT.isFloatingPoint()) 2297 return TLO.CombineTo( 2298 Op, 2299 TLO.DAG.getConstantFP( 2300 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2301 } 2302 2303 return false; 2304 } 2305 2306 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2307 const APInt &DemandedElts, 2308 APInt &KnownUndef, 2309 APInt &KnownZero, 2310 DAGCombinerInfo &DCI) const { 2311 SelectionDAG &DAG = DCI.DAG; 2312 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2313 !DCI.isBeforeLegalizeOps()); 2314 2315 bool Simplified = 2316 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2317 if (Simplified) { 2318 DCI.AddToWorklist(Op.getNode()); 2319 DCI.CommitTargetLoweringOpt(TLO); 2320 } 2321 2322 return Simplified; 2323 } 2324 2325 /// Given a vector binary operation and known undefined elements for each input 2326 /// operand, compute whether each element of the output is undefined. 2327 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2328 const APInt &UndefOp0, 2329 const APInt &UndefOp1) { 2330 EVT VT = BO.getValueType(); 2331 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2332 "Vector binop only"); 2333 2334 EVT EltVT = VT.getVectorElementType(); 2335 unsigned NumElts = VT.getVectorNumElements(); 2336 assert(UndefOp0.getBitWidth() == NumElts && 2337 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2338 2339 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2340 const APInt &UndefVals) { 2341 if (UndefVals[Index]) 2342 return DAG.getUNDEF(EltVT); 2343 2344 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2345 // Try hard to make sure that the getNode() call is not creating temporary 2346 // nodes. Ignore opaque integers because they do not constant fold. 2347 SDValue Elt = BV->getOperand(Index); 2348 auto *C = dyn_cast<ConstantSDNode>(Elt); 2349 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2350 return Elt; 2351 } 2352 2353 return SDValue(); 2354 }; 2355 2356 APInt KnownUndef = APInt::getNullValue(NumElts); 2357 for (unsigned i = 0; i != NumElts; ++i) { 2358 // If both inputs for this element are either constant or undef and match 2359 // the element type, compute the constant/undef result for this element of 2360 // the vector. 2361 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2362 // not handle FP constants. The code within getNode() should be refactored 2363 // to avoid the danger of creating a bogus temporary node here. 2364 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2365 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2366 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2367 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2368 KnownUndef.setBit(i); 2369 } 2370 return KnownUndef; 2371 } 2372 2373 bool TargetLowering::SimplifyDemandedVectorElts( 2374 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2375 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2376 bool AssumeSingleUse) const { 2377 EVT VT = Op.getValueType(); 2378 unsigned Opcode = Op.getOpcode(); 2379 APInt DemandedElts = OriginalDemandedElts; 2380 unsigned NumElts = DemandedElts.getBitWidth(); 2381 assert(VT.isVector() && "Expected vector op"); 2382 2383 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2384 2385 // TODO: For now we assume we know nothing about scalable vectors. 2386 if (VT.isScalableVector()) 2387 return false; 2388 2389 assert(VT.getVectorNumElements() == NumElts && 2390 "Mask size mismatches value type element count!"); 2391 2392 // Undef operand. 2393 if (Op.isUndef()) { 2394 KnownUndef.setAllBits(); 2395 return false; 2396 } 2397 2398 // If Op has other users, assume that all elements are needed. 2399 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2400 DemandedElts.setAllBits(); 2401 2402 // Not demanding any elements from Op. 2403 if (DemandedElts == 0) { 2404 KnownUndef.setAllBits(); 2405 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2406 } 2407 2408 // Limit search depth. 2409 if (Depth >= SelectionDAG::MaxRecursionDepth) 2410 return false; 2411 2412 SDLoc DL(Op); 2413 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2414 2415 // Helper for demanding the specified elements and all the bits of both binary 2416 // operands. 2417 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2418 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2419 TLO.DAG, Depth + 1); 2420 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2421 TLO.DAG, Depth + 1); 2422 if (NewOp0 || NewOp1) { 2423 SDValue NewOp = TLO.DAG.getNode( 2424 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2425 return TLO.CombineTo(Op, NewOp); 2426 } 2427 return false; 2428 }; 2429 2430 switch (Opcode) { 2431 case ISD::SCALAR_TO_VECTOR: { 2432 if (!DemandedElts[0]) { 2433 KnownUndef.setAllBits(); 2434 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2435 } 2436 KnownUndef.setHighBits(NumElts - 1); 2437 break; 2438 } 2439 case ISD::BITCAST: { 2440 SDValue Src = Op.getOperand(0); 2441 EVT SrcVT = Src.getValueType(); 2442 2443 // We only handle vectors here. 2444 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2445 if (!SrcVT.isVector()) 2446 break; 2447 2448 // Fast handling of 'identity' bitcasts. 2449 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2450 if (NumSrcElts == NumElts) 2451 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2452 KnownZero, TLO, Depth + 1); 2453 2454 APInt SrcZero, SrcUndef; 2455 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2456 2457 // Bitcast from 'large element' src vector to 'small element' vector, we 2458 // must demand a source element if any DemandedElt maps to it. 2459 if ((NumElts % NumSrcElts) == 0) { 2460 unsigned Scale = NumElts / NumSrcElts; 2461 for (unsigned i = 0; i != NumElts; ++i) 2462 if (DemandedElts[i]) 2463 SrcDemandedElts.setBit(i / Scale); 2464 2465 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2466 TLO, Depth + 1)) 2467 return true; 2468 2469 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2470 // of the large element. 2471 // TODO - bigendian once we have test coverage. 2472 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2473 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2474 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2475 for (unsigned i = 0; i != NumElts; ++i) 2476 if (DemandedElts[i]) { 2477 unsigned Ofs = (i % Scale) * EltSizeInBits; 2478 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2479 } 2480 2481 KnownBits Known; 2482 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2483 TLO, Depth + 1)) 2484 return true; 2485 } 2486 2487 // If the src element is zero/undef then all the output elements will be - 2488 // only demanded elements are guaranteed to be correct. 2489 for (unsigned i = 0; i != NumSrcElts; ++i) { 2490 if (SrcDemandedElts[i]) { 2491 if (SrcZero[i]) 2492 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2493 if (SrcUndef[i]) 2494 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2495 } 2496 } 2497 } 2498 2499 // Bitcast from 'small element' src vector to 'large element' vector, we 2500 // demand all smaller source elements covered by the larger demanded element 2501 // of this vector. 2502 if ((NumSrcElts % NumElts) == 0) { 2503 unsigned Scale = NumSrcElts / NumElts; 2504 for (unsigned i = 0; i != NumElts; ++i) 2505 if (DemandedElts[i]) 2506 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2507 2508 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2509 TLO, Depth + 1)) 2510 return true; 2511 2512 // If all the src elements covering an output element are zero/undef, then 2513 // the output element will be as well, assuming it was demanded. 2514 for (unsigned i = 0; i != NumElts; ++i) { 2515 if (DemandedElts[i]) { 2516 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2517 KnownZero.setBit(i); 2518 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2519 KnownUndef.setBit(i); 2520 } 2521 } 2522 } 2523 break; 2524 } 2525 case ISD::BUILD_VECTOR: { 2526 // Check all elements and simplify any unused elements with UNDEF. 2527 if (!DemandedElts.isAllOnesValue()) { 2528 // Don't simplify BROADCASTS. 2529 if (llvm::any_of(Op->op_values(), 2530 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2531 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2532 bool Updated = false; 2533 for (unsigned i = 0; i != NumElts; ++i) { 2534 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2535 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2536 KnownUndef.setBit(i); 2537 Updated = true; 2538 } 2539 } 2540 if (Updated) 2541 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2542 } 2543 } 2544 for (unsigned i = 0; i != NumElts; ++i) { 2545 SDValue SrcOp = Op.getOperand(i); 2546 if (SrcOp.isUndef()) { 2547 KnownUndef.setBit(i); 2548 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2549 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2550 KnownZero.setBit(i); 2551 } 2552 } 2553 break; 2554 } 2555 case ISD::CONCAT_VECTORS: { 2556 EVT SubVT = Op.getOperand(0).getValueType(); 2557 unsigned NumSubVecs = Op.getNumOperands(); 2558 unsigned NumSubElts = SubVT.getVectorNumElements(); 2559 for (unsigned i = 0; i != NumSubVecs; ++i) { 2560 SDValue SubOp = Op.getOperand(i); 2561 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2562 APInt SubUndef, SubZero; 2563 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2564 Depth + 1)) 2565 return true; 2566 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2567 KnownZero.insertBits(SubZero, i * NumSubElts); 2568 } 2569 break; 2570 } 2571 case ISD::INSERT_SUBVECTOR: { 2572 // Demand any elements from the subvector and the remainder from the src its 2573 // inserted into. 2574 SDValue Src = Op.getOperand(0); 2575 SDValue Sub = Op.getOperand(1); 2576 uint64_t Idx = Op.getConstantOperandVal(2); 2577 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2578 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2579 APInt DemandedSrcElts = DemandedElts; 2580 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2581 2582 APInt SubUndef, SubZero; 2583 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2584 Depth + 1)) 2585 return true; 2586 2587 // If none of the src operand elements are demanded, replace it with undef. 2588 if (!DemandedSrcElts && !Src.isUndef()) 2589 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2590 TLO.DAG.getUNDEF(VT), Sub, 2591 Op.getOperand(2))); 2592 2593 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2594 TLO, Depth + 1)) 2595 return true; 2596 KnownUndef.insertBits(SubUndef, Idx); 2597 KnownZero.insertBits(SubZero, Idx); 2598 2599 // Attempt to avoid multi-use ops if we don't need anything from them. 2600 if (!DemandedSrcElts.isAllOnesValue() || 2601 !DemandedSubElts.isAllOnesValue()) { 2602 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2603 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2604 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2605 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2606 if (NewSrc || NewSub) { 2607 NewSrc = NewSrc ? NewSrc : Src; 2608 NewSub = NewSub ? NewSub : Sub; 2609 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2610 NewSub, Op.getOperand(2)); 2611 return TLO.CombineTo(Op, NewOp); 2612 } 2613 } 2614 break; 2615 } 2616 case ISD::EXTRACT_SUBVECTOR: { 2617 // Offset the demanded elts by the subvector index. 2618 SDValue Src = Op.getOperand(0); 2619 if (Src.getValueType().isScalableVector()) 2620 break; 2621 uint64_t Idx = Op.getConstantOperandVal(1); 2622 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2623 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2624 2625 APInt SrcUndef, SrcZero; 2626 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2627 Depth + 1)) 2628 return true; 2629 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2630 KnownZero = SrcZero.extractBits(NumElts, Idx); 2631 2632 // Attempt to avoid multi-use ops if we don't need anything from them. 2633 if (!DemandedElts.isAllOnesValue()) { 2634 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2635 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2636 if (NewSrc) { 2637 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2638 Op.getOperand(1)); 2639 return TLO.CombineTo(Op, NewOp); 2640 } 2641 } 2642 break; 2643 } 2644 case ISD::INSERT_VECTOR_ELT: { 2645 SDValue Vec = Op.getOperand(0); 2646 SDValue Scl = Op.getOperand(1); 2647 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2648 2649 // For a legal, constant insertion index, if we don't need this insertion 2650 // then strip it, else remove it from the demanded elts. 2651 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2652 unsigned Idx = CIdx->getZExtValue(); 2653 if (!DemandedElts[Idx]) 2654 return TLO.CombineTo(Op, Vec); 2655 2656 APInt DemandedVecElts(DemandedElts); 2657 DemandedVecElts.clearBit(Idx); 2658 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2659 KnownZero, TLO, Depth + 1)) 2660 return true; 2661 2662 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2663 2664 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2665 break; 2666 } 2667 2668 APInt VecUndef, VecZero; 2669 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2670 Depth + 1)) 2671 return true; 2672 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2673 break; 2674 } 2675 case ISD::VSELECT: { 2676 // Try to transform the select condition based on the current demanded 2677 // elements. 2678 // TODO: If a condition element is undef, we can choose from one arm of the 2679 // select (and if one arm is undef, then we can propagate that to the 2680 // result). 2681 // TODO - add support for constant vselect masks (see IR version of this). 2682 APInt UnusedUndef, UnusedZero; 2683 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2684 UnusedZero, TLO, Depth + 1)) 2685 return true; 2686 2687 // See if we can simplify either vselect operand. 2688 APInt DemandedLHS(DemandedElts); 2689 APInt DemandedRHS(DemandedElts); 2690 APInt UndefLHS, ZeroLHS; 2691 APInt UndefRHS, ZeroRHS; 2692 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2693 ZeroLHS, TLO, Depth + 1)) 2694 return true; 2695 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2696 ZeroRHS, TLO, Depth + 1)) 2697 return true; 2698 2699 KnownUndef = UndefLHS & UndefRHS; 2700 KnownZero = ZeroLHS & ZeroRHS; 2701 break; 2702 } 2703 case ISD::VECTOR_SHUFFLE: { 2704 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2705 2706 // Collect demanded elements from shuffle operands.. 2707 APInt DemandedLHS(NumElts, 0); 2708 APInt DemandedRHS(NumElts, 0); 2709 for (unsigned i = 0; i != NumElts; ++i) { 2710 int M = ShuffleMask[i]; 2711 if (M < 0 || !DemandedElts[i]) 2712 continue; 2713 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2714 if (M < (int)NumElts) 2715 DemandedLHS.setBit(M); 2716 else 2717 DemandedRHS.setBit(M - NumElts); 2718 } 2719 2720 // See if we can simplify either shuffle operand. 2721 APInt UndefLHS, ZeroLHS; 2722 APInt UndefRHS, ZeroRHS; 2723 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2724 ZeroLHS, TLO, Depth + 1)) 2725 return true; 2726 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2727 ZeroRHS, TLO, Depth + 1)) 2728 return true; 2729 2730 // Simplify mask using undef elements from LHS/RHS. 2731 bool Updated = false; 2732 bool IdentityLHS = true, IdentityRHS = true; 2733 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2734 for (unsigned i = 0; i != NumElts; ++i) { 2735 int &M = NewMask[i]; 2736 if (M < 0) 2737 continue; 2738 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2739 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2740 Updated = true; 2741 M = -1; 2742 } 2743 IdentityLHS &= (M < 0) || (M == (int)i); 2744 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2745 } 2746 2747 // Update legal shuffle masks based on demanded elements if it won't reduce 2748 // to Identity which can cause premature removal of the shuffle mask. 2749 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2750 SDValue LegalShuffle = 2751 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2752 NewMask, TLO.DAG); 2753 if (LegalShuffle) 2754 return TLO.CombineTo(Op, LegalShuffle); 2755 } 2756 2757 // Propagate undef/zero elements from LHS/RHS. 2758 for (unsigned i = 0; i != NumElts; ++i) { 2759 int M = ShuffleMask[i]; 2760 if (M < 0) { 2761 KnownUndef.setBit(i); 2762 } else if (M < (int)NumElts) { 2763 if (UndefLHS[M]) 2764 KnownUndef.setBit(i); 2765 if (ZeroLHS[M]) 2766 KnownZero.setBit(i); 2767 } else { 2768 if (UndefRHS[M - NumElts]) 2769 KnownUndef.setBit(i); 2770 if (ZeroRHS[M - NumElts]) 2771 KnownZero.setBit(i); 2772 } 2773 } 2774 break; 2775 } 2776 case ISD::ANY_EXTEND_VECTOR_INREG: 2777 case ISD::SIGN_EXTEND_VECTOR_INREG: 2778 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2779 APInt SrcUndef, SrcZero; 2780 SDValue Src = Op.getOperand(0); 2781 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2782 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2783 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2784 Depth + 1)) 2785 return true; 2786 KnownZero = SrcZero.zextOrTrunc(NumElts); 2787 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2788 2789 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2790 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2791 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2792 // aext - if we just need the bottom element then we can bitcast. 2793 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2794 } 2795 2796 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2797 // zext(undef) upper bits are guaranteed to be zero. 2798 if (DemandedElts.isSubsetOf(KnownUndef)) 2799 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2800 KnownUndef.clearAllBits(); 2801 } 2802 break; 2803 } 2804 2805 // TODO: There are more binop opcodes that could be handled here - MIN, 2806 // MAX, saturated math, etc. 2807 case ISD::OR: 2808 case ISD::XOR: 2809 case ISD::ADD: 2810 case ISD::SUB: 2811 case ISD::FADD: 2812 case ISD::FSUB: 2813 case ISD::FMUL: 2814 case ISD::FDIV: 2815 case ISD::FREM: { 2816 SDValue Op0 = Op.getOperand(0); 2817 SDValue Op1 = Op.getOperand(1); 2818 2819 APInt UndefRHS, ZeroRHS; 2820 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2821 Depth + 1)) 2822 return true; 2823 APInt UndefLHS, ZeroLHS; 2824 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2825 Depth + 1)) 2826 return true; 2827 2828 KnownZero = ZeroLHS & ZeroRHS; 2829 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2830 2831 // Attempt to avoid multi-use ops if we don't need anything from them. 2832 // TODO - use KnownUndef to relax the demandedelts? 2833 if (!DemandedElts.isAllOnesValue()) 2834 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2835 return true; 2836 break; 2837 } 2838 case ISD::SHL: 2839 case ISD::SRL: 2840 case ISD::SRA: 2841 case ISD::ROTL: 2842 case ISD::ROTR: { 2843 SDValue Op0 = Op.getOperand(0); 2844 SDValue Op1 = Op.getOperand(1); 2845 2846 APInt UndefRHS, ZeroRHS; 2847 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2848 Depth + 1)) 2849 return true; 2850 APInt UndefLHS, ZeroLHS; 2851 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2852 Depth + 1)) 2853 return true; 2854 2855 KnownZero = ZeroLHS; 2856 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2857 2858 // Attempt to avoid multi-use ops if we don't need anything from them. 2859 // TODO - use KnownUndef to relax the demandedelts? 2860 if (!DemandedElts.isAllOnesValue()) 2861 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2862 return true; 2863 break; 2864 } 2865 case ISD::MUL: 2866 case ISD::AND: { 2867 SDValue Op0 = Op.getOperand(0); 2868 SDValue Op1 = Op.getOperand(1); 2869 2870 APInt SrcUndef, SrcZero; 2871 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2872 Depth + 1)) 2873 return true; 2874 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2875 TLO, Depth + 1)) 2876 return true; 2877 2878 // If either side has a zero element, then the result element is zero, even 2879 // if the other is an UNDEF. 2880 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2881 // and then handle 'and' nodes with the rest of the binop opcodes. 2882 KnownZero |= SrcZero; 2883 KnownUndef &= SrcUndef; 2884 KnownUndef &= ~KnownZero; 2885 2886 // Attempt to avoid multi-use ops if we don't need anything from them. 2887 // TODO - use KnownUndef to relax the demandedelts? 2888 if (!DemandedElts.isAllOnesValue()) 2889 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2890 return true; 2891 break; 2892 } 2893 case ISD::TRUNCATE: 2894 case ISD::SIGN_EXTEND: 2895 case ISD::ZERO_EXTEND: 2896 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2897 KnownZero, TLO, Depth + 1)) 2898 return true; 2899 2900 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2901 // zext(undef) upper bits are guaranteed to be zero. 2902 if (DemandedElts.isSubsetOf(KnownUndef)) 2903 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2904 KnownUndef.clearAllBits(); 2905 } 2906 break; 2907 default: { 2908 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2909 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2910 KnownZero, TLO, Depth)) 2911 return true; 2912 } else { 2913 KnownBits Known; 2914 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2915 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2916 TLO, Depth, AssumeSingleUse)) 2917 return true; 2918 } 2919 break; 2920 } 2921 } 2922 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2923 2924 // Constant fold all undef cases. 2925 // TODO: Handle zero cases as well. 2926 if (DemandedElts.isSubsetOf(KnownUndef)) 2927 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2928 2929 return false; 2930 } 2931 2932 /// Determine which of the bits specified in Mask are known to be either zero or 2933 /// one and return them in the Known. 2934 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2935 KnownBits &Known, 2936 const APInt &DemandedElts, 2937 const SelectionDAG &DAG, 2938 unsigned Depth) const { 2939 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2940 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2941 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2942 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2943 "Should use MaskedValueIsZero if you don't know whether Op" 2944 " is a target node!"); 2945 Known.resetAll(); 2946 } 2947 2948 void TargetLowering::computeKnownBitsForTargetInstr( 2949 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2950 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2951 unsigned Depth) const { 2952 Known.resetAll(); 2953 } 2954 2955 void TargetLowering::computeKnownBitsForFrameIndex( 2956 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2957 // The low bits are known zero if the pointer is aligned. 2958 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2959 } 2960 2961 Align TargetLowering::computeKnownAlignForTargetInstr( 2962 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2963 unsigned Depth) const { 2964 return Align(1); 2965 } 2966 2967 /// This method can be implemented by targets that want to expose additional 2968 /// information about sign bits to the DAG Combiner. 2969 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2970 const APInt &, 2971 const SelectionDAG &, 2972 unsigned Depth) const { 2973 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2974 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2975 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2976 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2977 "Should use ComputeNumSignBits if you don't know whether Op" 2978 " is a target node!"); 2979 return 1; 2980 } 2981 2982 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2983 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2984 const MachineRegisterInfo &MRI, unsigned Depth) const { 2985 return 1; 2986 } 2987 2988 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2989 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2990 TargetLoweringOpt &TLO, unsigned Depth) const { 2991 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2992 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2993 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2994 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2995 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2996 " is a target node!"); 2997 return false; 2998 } 2999 3000 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3001 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3002 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3003 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3004 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3005 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3006 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3007 "Should use SimplifyDemandedBits if you don't know whether Op" 3008 " is a target node!"); 3009 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3010 return false; 3011 } 3012 3013 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3014 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3015 SelectionDAG &DAG, unsigned Depth) const { 3016 assert( 3017 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3018 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3019 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3020 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3021 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3022 " is a target node!"); 3023 return SDValue(); 3024 } 3025 3026 SDValue 3027 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3028 SDValue N1, MutableArrayRef<int> Mask, 3029 SelectionDAG &DAG) const { 3030 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3031 if (!LegalMask) { 3032 std::swap(N0, N1); 3033 ShuffleVectorSDNode::commuteMask(Mask); 3034 LegalMask = isShuffleMaskLegal(Mask, VT); 3035 } 3036 3037 if (!LegalMask) 3038 return SDValue(); 3039 3040 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3041 } 3042 3043 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3044 return nullptr; 3045 } 3046 3047 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3048 const SelectionDAG &DAG, 3049 bool SNaN, 3050 unsigned Depth) const { 3051 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3052 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3053 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3054 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3055 "Should use isKnownNeverNaN if you don't know whether Op" 3056 " is a target node!"); 3057 return false; 3058 } 3059 3060 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3061 // work with truncating build vectors and vectors with elements of less than 3062 // 8 bits. 3063 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3064 if (!N) 3065 return false; 3066 3067 APInt CVal; 3068 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3069 CVal = CN->getAPIntValue(); 3070 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3071 auto *CN = BV->getConstantSplatNode(); 3072 if (!CN) 3073 return false; 3074 3075 // If this is a truncating build vector, truncate the splat value. 3076 // Otherwise, we may fail to match the expected values below. 3077 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3078 CVal = CN->getAPIntValue(); 3079 if (BVEltWidth < CVal.getBitWidth()) 3080 CVal = CVal.trunc(BVEltWidth); 3081 } else { 3082 return false; 3083 } 3084 3085 switch (getBooleanContents(N->getValueType(0))) { 3086 case UndefinedBooleanContent: 3087 return CVal[0]; 3088 case ZeroOrOneBooleanContent: 3089 return CVal.isOneValue(); 3090 case ZeroOrNegativeOneBooleanContent: 3091 return CVal.isAllOnesValue(); 3092 } 3093 3094 llvm_unreachable("Invalid boolean contents"); 3095 } 3096 3097 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3098 if (!N) 3099 return false; 3100 3101 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3102 if (!CN) { 3103 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3104 if (!BV) 3105 return false; 3106 3107 // Only interested in constant splats, we don't care about undef 3108 // elements in identifying boolean constants and getConstantSplatNode 3109 // returns NULL if all ops are undef; 3110 CN = BV->getConstantSplatNode(); 3111 if (!CN) 3112 return false; 3113 } 3114 3115 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3116 return !CN->getAPIntValue()[0]; 3117 3118 return CN->isNullValue(); 3119 } 3120 3121 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3122 bool SExt) const { 3123 if (VT == MVT::i1) 3124 return N->isOne(); 3125 3126 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3127 switch (Cnt) { 3128 case TargetLowering::ZeroOrOneBooleanContent: 3129 // An extended value of 1 is always true, unless its original type is i1, 3130 // in which case it will be sign extended to -1. 3131 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3132 case TargetLowering::UndefinedBooleanContent: 3133 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3134 return N->isAllOnesValue() && SExt; 3135 } 3136 llvm_unreachable("Unexpected enumeration."); 3137 } 3138 3139 /// This helper function of SimplifySetCC tries to optimize the comparison when 3140 /// either operand of the SetCC node is a bitwise-and instruction. 3141 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3142 ISD::CondCode Cond, const SDLoc &DL, 3143 DAGCombinerInfo &DCI) const { 3144 // Match these patterns in any of their permutations: 3145 // (X & Y) == Y 3146 // (X & Y) != Y 3147 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3148 std::swap(N0, N1); 3149 3150 EVT OpVT = N0.getValueType(); 3151 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3152 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3153 return SDValue(); 3154 3155 SDValue X, Y; 3156 if (N0.getOperand(0) == N1) { 3157 X = N0.getOperand(1); 3158 Y = N0.getOperand(0); 3159 } else if (N0.getOperand(1) == N1) { 3160 X = N0.getOperand(0); 3161 Y = N0.getOperand(1); 3162 } else { 3163 return SDValue(); 3164 } 3165 3166 SelectionDAG &DAG = DCI.DAG; 3167 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3168 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3169 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3170 // Note that where Y is variable and is known to have at most one bit set 3171 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3172 // equivalent when Y == 0. 3173 assert(OpVT.isInteger()); 3174 Cond = ISD::getSetCCInverse(Cond, OpVT); 3175 if (DCI.isBeforeLegalizeOps() || 3176 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3177 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3178 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3179 // If the target supports an 'and-not' or 'and-complement' logic operation, 3180 // try to use that to make a comparison operation more efficient. 3181 // But don't do this transform if the mask is a single bit because there are 3182 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3183 // 'rlwinm' on PPC). 3184 3185 // Bail out if the compare operand that we want to turn into a zero is 3186 // already a zero (otherwise, infinite loop). 3187 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3188 if (YConst && YConst->isNullValue()) 3189 return SDValue(); 3190 3191 // Transform this into: ~X & Y == 0. 3192 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3193 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3194 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3195 } 3196 3197 return SDValue(); 3198 } 3199 3200 /// There are multiple IR patterns that could be checking whether certain 3201 /// truncation of a signed number would be lossy or not. The pattern which is 3202 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3203 /// We are looking for the following pattern: (KeptBits is a constant) 3204 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3205 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3206 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3207 /// We will unfold it into the natural trunc+sext pattern: 3208 /// ((%x << C) a>> C) dstcond %x 3209 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3210 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3211 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3212 const SDLoc &DL) const { 3213 // We must be comparing with a constant. 3214 ConstantSDNode *C1; 3215 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3216 return SDValue(); 3217 3218 // N0 should be: add %x, (1 << (KeptBits-1)) 3219 if (N0->getOpcode() != ISD::ADD) 3220 return SDValue(); 3221 3222 // And we must be 'add'ing a constant. 3223 ConstantSDNode *C01; 3224 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3225 return SDValue(); 3226 3227 SDValue X = N0->getOperand(0); 3228 EVT XVT = X.getValueType(); 3229 3230 // Validate constants ... 3231 3232 APInt I1 = C1->getAPIntValue(); 3233 3234 ISD::CondCode NewCond; 3235 if (Cond == ISD::CondCode::SETULT) { 3236 NewCond = ISD::CondCode::SETEQ; 3237 } else if (Cond == ISD::CondCode::SETULE) { 3238 NewCond = ISD::CondCode::SETEQ; 3239 // But need to 'canonicalize' the constant. 3240 I1 += 1; 3241 } else if (Cond == ISD::CondCode::SETUGT) { 3242 NewCond = ISD::CondCode::SETNE; 3243 // But need to 'canonicalize' the constant. 3244 I1 += 1; 3245 } else if (Cond == ISD::CondCode::SETUGE) { 3246 NewCond = ISD::CondCode::SETNE; 3247 } else 3248 return SDValue(); 3249 3250 APInt I01 = C01->getAPIntValue(); 3251 3252 auto checkConstants = [&I1, &I01]() -> bool { 3253 // Both of them must be power-of-two, and the constant from setcc is bigger. 3254 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3255 }; 3256 3257 if (checkConstants()) { 3258 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3259 } else { 3260 // What if we invert constants? (and the target predicate) 3261 I1.negate(); 3262 I01.negate(); 3263 assert(XVT.isInteger()); 3264 NewCond = getSetCCInverse(NewCond, XVT); 3265 if (!checkConstants()) 3266 return SDValue(); 3267 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3268 } 3269 3270 // They are power-of-two, so which bit is set? 3271 const unsigned KeptBits = I1.logBase2(); 3272 const unsigned KeptBitsMinusOne = I01.logBase2(); 3273 3274 // Magic! 3275 if (KeptBits != (KeptBitsMinusOne + 1)) 3276 return SDValue(); 3277 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3278 3279 // We don't want to do this in every single case. 3280 SelectionDAG &DAG = DCI.DAG; 3281 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3282 XVT, KeptBits)) 3283 return SDValue(); 3284 3285 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3286 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3287 3288 // Unfold into: ((%x << C) a>> C) cond %x 3289 // Where 'cond' will be either 'eq' or 'ne'. 3290 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3291 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3292 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3293 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3294 3295 return T2; 3296 } 3297 3298 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3299 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3300 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3301 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3302 assert(isConstOrConstSplat(N1C) && 3303 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3304 "Should be a comparison with 0."); 3305 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3306 "Valid only for [in]equality comparisons."); 3307 3308 unsigned NewShiftOpcode; 3309 SDValue X, C, Y; 3310 3311 SelectionDAG &DAG = DCI.DAG; 3312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3313 3314 // Look for '(C l>>/<< Y)'. 3315 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3316 // The shift should be one-use. 3317 if (!V.hasOneUse()) 3318 return false; 3319 unsigned OldShiftOpcode = V.getOpcode(); 3320 switch (OldShiftOpcode) { 3321 case ISD::SHL: 3322 NewShiftOpcode = ISD::SRL; 3323 break; 3324 case ISD::SRL: 3325 NewShiftOpcode = ISD::SHL; 3326 break; 3327 default: 3328 return false; // must be a logical shift. 3329 } 3330 // We should be shifting a constant. 3331 // FIXME: best to use isConstantOrConstantVector(). 3332 C = V.getOperand(0); 3333 ConstantSDNode *CC = 3334 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3335 if (!CC) 3336 return false; 3337 Y = V.getOperand(1); 3338 3339 ConstantSDNode *XC = 3340 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3341 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3342 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3343 }; 3344 3345 // LHS of comparison should be an one-use 'and'. 3346 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3347 return SDValue(); 3348 3349 X = N0.getOperand(0); 3350 SDValue Mask = N0.getOperand(1); 3351 3352 // 'and' is commutative! 3353 if (!Match(Mask)) { 3354 std::swap(X, Mask); 3355 if (!Match(Mask)) 3356 return SDValue(); 3357 } 3358 3359 EVT VT = X.getValueType(); 3360 3361 // Produce: 3362 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3363 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3364 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3365 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3366 return T2; 3367 } 3368 3369 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3370 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3371 /// handle the commuted versions of these patterns. 3372 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3373 ISD::CondCode Cond, const SDLoc &DL, 3374 DAGCombinerInfo &DCI) const { 3375 unsigned BOpcode = N0.getOpcode(); 3376 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3377 "Unexpected binop"); 3378 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3379 3380 // (X + Y) == X --> Y == 0 3381 // (X - Y) == X --> Y == 0 3382 // (X ^ Y) == X --> Y == 0 3383 SelectionDAG &DAG = DCI.DAG; 3384 EVT OpVT = N0.getValueType(); 3385 SDValue X = N0.getOperand(0); 3386 SDValue Y = N0.getOperand(1); 3387 if (X == N1) 3388 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3389 3390 if (Y != N1) 3391 return SDValue(); 3392 3393 // (X + Y) == Y --> X == 0 3394 // (X ^ Y) == Y --> X == 0 3395 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3396 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3397 3398 // The shift would not be valid if the operands are boolean (i1). 3399 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3400 return SDValue(); 3401 3402 // (X - Y) == Y --> X == Y << 1 3403 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3404 !DCI.isBeforeLegalize()); 3405 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3406 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3407 if (!DCI.isCalledByLegalizer()) 3408 DCI.AddToWorklist(YShl1.getNode()); 3409 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3410 } 3411 3412 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3413 SDValue N0, const APInt &C1, 3414 ISD::CondCode Cond, const SDLoc &dl, 3415 SelectionDAG &DAG) { 3416 // Look through truncs that don't change the value of a ctpop. 3417 // FIXME: Add vector support? Need to be careful with setcc result type below. 3418 SDValue CTPOP = N0; 3419 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3420 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3421 CTPOP = N0.getOperand(0); 3422 3423 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3424 return SDValue(); 3425 3426 EVT CTVT = CTPOP.getValueType(); 3427 SDValue CTOp = CTPOP.getOperand(0); 3428 3429 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3430 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3431 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3432 return SDValue(); 3433 3434 // (ctpop x) u< 2 -> (x & x-1) == 0 3435 // (ctpop x) u> 1 -> (x & x-1) != 0 3436 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3437 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3438 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3439 return SDValue(); 3440 if (C1 == 0 && (Cond == ISD::SETULT)) 3441 return SDValue(); // This is handled elsewhere. 3442 3443 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3444 3445 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3446 SDValue Result = CTOp; 3447 for (unsigned i = 0; i < Passes; i++) { 3448 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3449 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3450 } 3451 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3452 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3453 } 3454 3455 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3456 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3457 // For scalars, keep CTPOP if it is legal or custom. 3458 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3459 return SDValue(); 3460 // This is based on X86's custom lowering for CTPOP which produces more 3461 // instructions than the expansion here. 3462 3463 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3464 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3465 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3466 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3467 assert(CTVT.isInteger()); 3468 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3469 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3470 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3471 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3472 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3473 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3474 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3475 } 3476 3477 return SDValue(); 3478 } 3479 3480 /// Try to simplify a setcc built with the specified operands and cc. If it is 3481 /// unable to simplify it, return a null SDValue. 3482 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3483 ISD::CondCode Cond, bool foldBooleans, 3484 DAGCombinerInfo &DCI, 3485 const SDLoc &dl) const { 3486 SelectionDAG &DAG = DCI.DAG; 3487 const DataLayout &Layout = DAG.getDataLayout(); 3488 EVT OpVT = N0.getValueType(); 3489 3490 // Constant fold or commute setcc. 3491 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3492 return Fold; 3493 3494 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3495 // TODO: Handle non-splat vector constants. All undef causes trouble. 3496 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3497 // infinite loop here when we encounter one. 3498 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3499 if (isConstOrConstSplat(N0) && 3500 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3501 (DCI.isBeforeLegalizeOps() || 3502 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3503 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3504 3505 // If we have a subtract with the same 2 non-constant operands as this setcc 3506 // -- but in reverse order -- then try to commute the operands of this setcc 3507 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3508 // instruction on some targets. 3509 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3510 (DCI.isBeforeLegalizeOps() || 3511 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3512 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3513 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3514 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3515 3516 if (auto *N1C = isConstOrConstSplat(N1)) { 3517 const APInt &C1 = N1C->getAPIntValue(); 3518 3519 // Optimize some CTPOP cases. 3520 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3521 return V; 3522 3523 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3524 // equality comparison, then we're just comparing whether X itself is 3525 // zero. 3526 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3527 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3528 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3529 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3530 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3531 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3532 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3533 // (srl (ctlz x), 5) == 0 -> X != 0 3534 // (srl (ctlz x), 5) != 1 -> X != 0 3535 Cond = ISD::SETNE; 3536 } else { 3537 // (srl (ctlz x), 5) != 0 -> X == 0 3538 // (srl (ctlz x), 5) == 1 -> X == 0 3539 Cond = ISD::SETEQ; 3540 } 3541 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3542 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3543 Cond); 3544 } 3545 } 3546 } 3547 } 3548 3549 // FIXME: Support vectors. 3550 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3551 const APInt &C1 = N1C->getAPIntValue(); 3552 3553 // (zext x) == C --> x == (trunc C) 3554 // (sext x) == C --> x == (trunc C) 3555 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3556 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3557 unsigned MinBits = N0.getValueSizeInBits(); 3558 SDValue PreExt; 3559 bool Signed = false; 3560 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3561 // ZExt 3562 MinBits = N0->getOperand(0).getValueSizeInBits(); 3563 PreExt = N0->getOperand(0); 3564 } else if (N0->getOpcode() == ISD::AND) { 3565 // DAGCombine turns costly ZExts into ANDs 3566 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3567 if ((C->getAPIntValue()+1).isPowerOf2()) { 3568 MinBits = C->getAPIntValue().countTrailingOnes(); 3569 PreExt = N0->getOperand(0); 3570 } 3571 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3572 // SExt 3573 MinBits = N0->getOperand(0).getValueSizeInBits(); 3574 PreExt = N0->getOperand(0); 3575 Signed = true; 3576 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3577 // ZEXTLOAD / SEXTLOAD 3578 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3579 MinBits = LN0->getMemoryVT().getSizeInBits(); 3580 PreExt = N0; 3581 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3582 Signed = true; 3583 MinBits = LN0->getMemoryVT().getSizeInBits(); 3584 PreExt = N0; 3585 } 3586 } 3587 3588 // Figure out how many bits we need to preserve this constant. 3589 unsigned ReqdBits = Signed ? 3590 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3591 C1.getActiveBits(); 3592 3593 // Make sure we're not losing bits from the constant. 3594 if (MinBits > 0 && 3595 MinBits < C1.getBitWidth() && 3596 MinBits >= ReqdBits) { 3597 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3598 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3599 // Will get folded away. 3600 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3601 if (MinBits == 1 && C1 == 1) 3602 // Invert the condition. 3603 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3604 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3605 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3606 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3607 } 3608 3609 // If truncating the setcc operands is not desirable, we can still 3610 // simplify the expression in some cases: 3611 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3612 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3613 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3614 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3615 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3616 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3617 SDValue TopSetCC = N0->getOperand(0); 3618 unsigned N0Opc = N0->getOpcode(); 3619 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3620 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3621 TopSetCC.getOpcode() == ISD::SETCC && 3622 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3623 (isConstFalseVal(N1C) || 3624 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3625 3626 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3627 (!N1C->isNullValue() && Cond == ISD::SETNE); 3628 3629 if (!Inverse) 3630 return TopSetCC; 3631 3632 ISD::CondCode InvCond = ISD::getSetCCInverse( 3633 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3634 TopSetCC.getOperand(0).getValueType()); 3635 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3636 TopSetCC.getOperand(1), 3637 InvCond); 3638 } 3639 } 3640 } 3641 3642 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3643 // equality or unsigned, and all 1 bits of the const are in the same 3644 // partial word, see if we can shorten the load. 3645 if (DCI.isBeforeLegalize() && 3646 !ISD::isSignedIntSetCC(Cond) && 3647 N0.getOpcode() == ISD::AND && C1 == 0 && 3648 N0.getNode()->hasOneUse() && 3649 isa<LoadSDNode>(N0.getOperand(0)) && 3650 N0.getOperand(0).getNode()->hasOneUse() && 3651 isa<ConstantSDNode>(N0.getOperand(1))) { 3652 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3653 APInt bestMask; 3654 unsigned bestWidth = 0, bestOffset = 0; 3655 if (Lod->isSimple() && Lod->isUnindexed()) { 3656 unsigned origWidth = N0.getValueSizeInBits(); 3657 unsigned maskWidth = origWidth; 3658 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3659 // 8 bits, but have to be careful... 3660 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3661 origWidth = Lod->getMemoryVT().getSizeInBits(); 3662 const APInt &Mask = N0.getConstantOperandAPInt(1); 3663 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3664 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3665 for (unsigned offset=0; offset<origWidth/width; offset++) { 3666 if (Mask.isSubsetOf(newMask)) { 3667 if (Layout.isLittleEndian()) 3668 bestOffset = (uint64_t)offset * (width/8); 3669 else 3670 bestOffset = (origWidth/width - offset - 1) * (width/8); 3671 bestMask = Mask.lshr(offset * (width/8) * 8); 3672 bestWidth = width; 3673 break; 3674 } 3675 newMask <<= width; 3676 } 3677 } 3678 } 3679 if (bestWidth) { 3680 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3681 if (newVT.isRound() && 3682 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3683 SDValue Ptr = Lod->getBasePtr(); 3684 if (bestOffset != 0) 3685 Ptr = 3686 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3687 SDValue NewLoad = 3688 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3689 Lod->getPointerInfo().getWithOffset(bestOffset), 3690 Lod->getOriginalAlign()); 3691 return DAG.getSetCC(dl, VT, 3692 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3693 DAG.getConstant(bestMask.trunc(bestWidth), 3694 dl, newVT)), 3695 DAG.getConstant(0LL, dl, newVT), Cond); 3696 } 3697 } 3698 } 3699 3700 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3701 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3702 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3703 3704 // If the comparison constant has bits in the upper part, the 3705 // zero-extended value could never match. 3706 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3707 C1.getBitWidth() - InSize))) { 3708 switch (Cond) { 3709 case ISD::SETUGT: 3710 case ISD::SETUGE: 3711 case ISD::SETEQ: 3712 return DAG.getConstant(0, dl, VT); 3713 case ISD::SETULT: 3714 case ISD::SETULE: 3715 case ISD::SETNE: 3716 return DAG.getConstant(1, dl, VT); 3717 case ISD::SETGT: 3718 case ISD::SETGE: 3719 // True if the sign bit of C1 is set. 3720 return DAG.getConstant(C1.isNegative(), dl, VT); 3721 case ISD::SETLT: 3722 case ISD::SETLE: 3723 // True if the sign bit of C1 isn't set. 3724 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3725 default: 3726 break; 3727 } 3728 } 3729 3730 // Otherwise, we can perform the comparison with the low bits. 3731 switch (Cond) { 3732 case ISD::SETEQ: 3733 case ISD::SETNE: 3734 case ISD::SETUGT: 3735 case ISD::SETUGE: 3736 case ISD::SETULT: 3737 case ISD::SETULE: { 3738 EVT newVT = N0.getOperand(0).getValueType(); 3739 if (DCI.isBeforeLegalizeOps() || 3740 (isOperationLegal(ISD::SETCC, newVT) && 3741 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3742 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3743 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3744 3745 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3746 NewConst, Cond); 3747 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3748 } 3749 break; 3750 } 3751 default: 3752 break; // todo, be more careful with signed comparisons 3753 } 3754 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3755 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3756 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3757 OpVT)) { 3758 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3759 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3760 EVT ExtDstTy = N0.getValueType(); 3761 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3762 3763 // If the constant doesn't fit into the number of bits for the source of 3764 // the sign extension, it is impossible for both sides to be equal. 3765 if (C1.getMinSignedBits() > ExtSrcTyBits) 3766 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3767 3768 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3769 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3770 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3771 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3772 DAG.getConstant(Imm, dl, ExtDstTy)); 3773 if (!DCI.isCalledByLegalizer()) 3774 DCI.AddToWorklist(ZextOp.getNode()); 3775 // Otherwise, make this a use of a zext. 3776 return DAG.getSetCC(dl, VT, ZextOp, 3777 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3778 } else if ((N1C->isNullValue() || N1C->isOne()) && 3779 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3780 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3781 if (N0.getOpcode() == ISD::SETCC && 3782 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3783 (N0.getValueType() == MVT::i1 || 3784 getBooleanContents(N0.getOperand(0).getValueType()) == 3785 ZeroOrOneBooleanContent)) { 3786 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3787 if (TrueWhenTrue) 3788 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3789 // Invert the condition. 3790 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3791 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3792 if (DCI.isBeforeLegalizeOps() || 3793 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3794 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3795 } 3796 3797 if ((N0.getOpcode() == ISD::XOR || 3798 (N0.getOpcode() == ISD::AND && 3799 N0.getOperand(0).getOpcode() == ISD::XOR && 3800 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3801 isOneConstant(N0.getOperand(1))) { 3802 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3803 // can only do this if the top bits are known zero. 3804 unsigned BitWidth = N0.getValueSizeInBits(); 3805 if (DAG.MaskedValueIsZero(N0, 3806 APInt::getHighBitsSet(BitWidth, 3807 BitWidth-1))) { 3808 // Okay, get the un-inverted input value. 3809 SDValue Val; 3810 if (N0.getOpcode() == ISD::XOR) { 3811 Val = N0.getOperand(0); 3812 } else { 3813 assert(N0.getOpcode() == ISD::AND && 3814 N0.getOperand(0).getOpcode() == ISD::XOR); 3815 // ((X^1)&1)^1 -> X & 1 3816 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3817 N0.getOperand(0).getOperand(0), 3818 N0.getOperand(1)); 3819 } 3820 3821 return DAG.getSetCC(dl, VT, Val, N1, 3822 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3823 } 3824 } else if (N1C->isOne()) { 3825 SDValue Op0 = N0; 3826 if (Op0.getOpcode() == ISD::TRUNCATE) 3827 Op0 = Op0.getOperand(0); 3828 3829 if ((Op0.getOpcode() == ISD::XOR) && 3830 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3831 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3832 SDValue XorLHS = Op0.getOperand(0); 3833 SDValue XorRHS = Op0.getOperand(1); 3834 // Ensure that the input setccs return an i1 type or 0/1 value. 3835 if (Op0.getValueType() == MVT::i1 || 3836 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3837 ZeroOrOneBooleanContent && 3838 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3839 ZeroOrOneBooleanContent)) { 3840 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3841 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3842 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3843 } 3844 } 3845 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3846 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3847 if (Op0.getValueType().bitsGT(VT)) 3848 Op0 = DAG.getNode(ISD::AND, dl, VT, 3849 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3850 DAG.getConstant(1, dl, VT)); 3851 else if (Op0.getValueType().bitsLT(VT)) 3852 Op0 = DAG.getNode(ISD::AND, dl, VT, 3853 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3854 DAG.getConstant(1, dl, VT)); 3855 3856 return DAG.getSetCC(dl, VT, Op0, 3857 DAG.getConstant(0, dl, Op0.getValueType()), 3858 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3859 } 3860 if (Op0.getOpcode() == ISD::AssertZext && 3861 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3862 return DAG.getSetCC(dl, VT, Op0, 3863 DAG.getConstant(0, dl, Op0.getValueType()), 3864 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3865 } 3866 } 3867 3868 // Given: 3869 // icmp eq/ne (urem %x, %y), 0 3870 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3871 // icmp eq/ne %x, 0 3872 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3873 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3874 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3875 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3876 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3877 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3878 } 3879 3880 if (SDValue V = 3881 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3882 return V; 3883 } 3884 3885 // These simplifications apply to splat vectors as well. 3886 // TODO: Handle more splat vector cases. 3887 if (auto *N1C = isConstOrConstSplat(N1)) { 3888 const APInt &C1 = N1C->getAPIntValue(); 3889 3890 APInt MinVal, MaxVal; 3891 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3892 if (ISD::isSignedIntSetCC(Cond)) { 3893 MinVal = APInt::getSignedMinValue(OperandBitSize); 3894 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3895 } else { 3896 MinVal = APInt::getMinValue(OperandBitSize); 3897 MaxVal = APInt::getMaxValue(OperandBitSize); 3898 } 3899 3900 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3901 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3902 // X >= MIN --> true 3903 if (C1 == MinVal) 3904 return DAG.getBoolConstant(true, dl, VT, OpVT); 3905 3906 if (!VT.isVector()) { // TODO: Support this for vectors. 3907 // X >= C0 --> X > (C0 - 1) 3908 APInt C = C1 - 1; 3909 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3910 if ((DCI.isBeforeLegalizeOps() || 3911 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3912 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3913 isLegalICmpImmediate(C.getSExtValue())))) { 3914 return DAG.getSetCC(dl, VT, N0, 3915 DAG.getConstant(C, dl, N1.getValueType()), 3916 NewCC); 3917 } 3918 } 3919 } 3920 3921 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3922 // X <= MAX --> true 3923 if (C1 == MaxVal) 3924 return DAG.getBoolConstant(true, dl, VT, OpVT); 3925 3926 // X <= C0 --> X < (C0 + 1) 3927 if (!VT.isVector()) { // TODO: Support this for vectors. 3928 APInt C = C1 + 1; 3929 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3930 if ((DCI.isBeforeLegalizeOps() || 3931 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3932 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3933 isLegalICmpImmediate(C.getSExtValue())))) { 3934 return DAG.getSetCC(dl, VT, N0, 3935 DAG.getConstant(C, dl, N1.getValueType()), 3936 NewCC); 3937 } 3938 } 3939 } 3940 3941 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3942 if (C1 == MinVal) 3943 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3944 3945 // TODO: Support this for vectors after legalize ops. 3946 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3947 // Canonicalize setlt X, Max --> setne X, Max 3948 if (C1 == MaxVal) 3949 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3950 3951 // If we have setult X, 1, turn it into seteq X, 0 3952 if (C1 == MinVal+1) 3953 return DAG.getSetCC(dl, VT, N0, 3954 DAG.getConstant(MinVal, dl, N0.getValueType()), 3955 ISD::SETEQ); 3956 } 3957 } 3958 3959 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3960 if (C1 == MaxVal) 3961 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3962 3963 // TODO: Support this for vectors after legalize ops. 3964 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3965 // Canonicalize setgt X, Min --> setne X, Min 3966 if (C1 == MinVal) 3967 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3968 3969 // If we have setugt X, Max-1, turn it into seteq X, Max 3970 if (C1 == MaxVal-1) 3971 return DAG.getSetCC(dl, VT, N0, 3972 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3973 ISD::SETEQ); 3974 } 3975 } 3976 3977 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3978 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3979 if (C1.isNullValue()) 3980 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3981 VT, N0, N1, Cond, DCI, dl)) 3982 return CC; 3983 3984 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3985 // For example, when high 32-bits of i64 X are known clear: 3986 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3987 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 3988 bool CmpZero = N1C->getAPIntValue().isNullValue(); 3989 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 3990 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 3991 // Match or(lo,shl(hi,bw/2)) pattern. 3992 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 3993 unsigned EltBits = V.getScalarValueSizeInBits(); 3994 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 3995 return false; 3996 SDValue LHS = V.getOperand(0); 3997 SDValue RHS = V.getOperand(1); 3998 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 3999 // Unshifted element must have zero upperbits. 4000 if (RHS.getOpcode() == ISD::SHL && 4001 isa<ConstantSDNode>(RHS.getOperand(1)) && 4002 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4003 DAG.MaskedValueIsZero(LHS, HiBits)) { 4004 Lo = LHS; 4005 Hi = RHS.getOperand(0); 4006 return true; 4007 } 4008 if (LHS.getOpcode() == ISD::SHL && 4009 isa<ConstantSDNode>(LHS.getOperand(1)) && 4010 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4011 DAG.MaskedValueIsZero(RHS, HiBits)) { 4012 Lo = RHS; 4013 Hi = LHS.getOperand(0); 4014 return true; 4015 } 4016 return false; 4017 }; 4018 4019 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4020 unsigned EltBits = N0.getScalarValueSizeInBits(); 4021 unsigned HalfBits = EltBits / 2; 4022 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4023 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4024 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4025 SDValue NewN0 = 4026 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4027 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4028 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4029 }; 4030 4031 SDValue Lo, Hi; 4032 if (IsConcat(N0, Lo, Hi)) 4033 return MergeConcat(Lo, Hi); 4034 4035 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4036 SDValue Lo0, Lo1, Hi0, Hi1; 4037 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4038 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4039 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4040 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4041 } 4042 } 4043 } 4044 } 4045 4046 // If we have "setcc X, C0", check to see if we can shrink the immediate 4047 // by changing cc. 4048 // TODO: Support this for vectors after legalize ops. 4049 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4050 // SETUGT X, SINTMAX -> SETLT X, 0 4051 // SETUGE X, SINTMIN -> SETLT X, 0 4052 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4053 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4054 return DAG.getSetCC(dl, VT, N0, 4055 DAG.getConstant(0, dl, N1.getValueType()), 4056 ISD::SETLT); 4057 4058 // SETULT X, SINTMIN -> SETGT X, -1 4059 // SETULE X, SINTMAX -> SETGT X, -1 4060 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4061 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4062 return DAG.getSetCC(dl, VT, N0, 4063 DAG.getAllOnesConstant(dl, N1.getValueType()), 4064 ISD::SETGT); 4065 } 4066 } 4067 4068 // Back to non-vector simplifications. 4069 // TODO: Can we do these for vector splats? 4070 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4071 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4072 const APInt &C1 = N1C->getAPIntValue(); 4073 EVT ShValTy = N0.getValueType(); 4074 4075 // Fold bit comparisons when we can. This will result in an 4076 // incorrect value when boolean false is negative one, unless 4077 // the bitsize is 1 in which case the false value is the same 4078 // in practice regardless of the representation. 4079 if ((VT.getSizeInBits() == 1 || 4080 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4081 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4082 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4083 N0.getOpcode() == ISD::AND) { 4084 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4085 EVT ShiftTy = 4086 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4087 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4088 // Perform the xform if the AND RHS is a single bit. 4089 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4090 if (AndRHS->getAPIntValue().isPowerOf2() && 4091 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4092 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4093 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4094 DAG.getConstant(ShCt, dl, ShiftTy))); 4095 } 4096 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4097 // (X & 8) == 8 --> (X & 8) >> 3 4098 // Perform the xform if C1 is a single bit. 4099 unsigned ShCt = C1.logBase2(); 4100 if (C1.isPowerOf2() && 4101 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4102 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4103 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4104 DAG.getConstant(ShCt, dl, ShiftTy))); 4105 } 4106 } 4107 } 4108 } 4109 4110 if (C1.getMinSignedBits() <= 64 && 4111 !isLegalICmpImmediate(C1.getSExtValue())) { 4112 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4113 // (X & -256) == 256 -> (X >> 8) == 1 4114 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4115 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4116 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4117 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4118 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4119 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4120 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4121 SDValue Shift = 4122 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4123 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4124 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4125 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4126 } 4127 } 4128 } 4129 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4130 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4131 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4132 // X < 0x100000000 -> (X >> 32) < 1 4133 // X >= 0x100000000 -> (X >> 32) >= 1 4134 // X <= 0x0ffffffff -> (X >> 32) < 1 4135 // X > 0x0ffffffff -> (X >> 32) >= 1 4136 unsigned ShiftBits; 4137 APInt NewC = C1; 4138 ISD::CondCode NewCond = Cond; 4139 if (AdjOne) { 4140 ShiftBits = C1.countTrailingOnes(); 4141 NewC = NewC + 1; 4142 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4143 } else { 4144 ShiftBits = C1.countTrailingZeros(); 4145 } 4146 NewC.lshrInPlace(ShiftBits); 4147 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4148 isLegalICmpImmediate(NewC.getSExtValue()) && 4149 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4150 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4151 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4152 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4153 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4154 } 4155 } 4156 } 4157 } 4158 4159 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4160 auto *CFP = cast<ConstantFPSDNode>(N1); 4161 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4162 4163 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4164 // constant if knowing that the operand is non-nan is enough. We prefer to 4165 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4166 // materialize 0.0. 4167 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4168 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4169 4170 // setcc (fneg x), C -> setcc swap(pred) x, -C 4171 if (N0.getOpcode() == ISD::FNEG) { 4172 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4173 if (DCI.isBeforeLegalizeOps() || 4174 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4175 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4176 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4177 } 4178 } 4179 4180 // If the condition is not legal, see if we can find an equivalent one 4181 // which is legal. 4182 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4183 // If the comparison was an awkward floating-point == or != and one of 4184 // the comparison operands is infinity or negative infinity, convert the 4185 // condition to a less-awkward <= or >=. 4186 if (CFP->getValueAPF().isInfinity()) { 4187 bool IsNegInf = CFP->getValueAPF().isNegative(); 4188 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4189 switch (Cond) { 4190 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4191 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4192 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4193 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4194 default: break; 4195 } 4196 if (NewCond != ISD::SETCC_INVALID && 4197 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4198 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4199 } 4200 } 4201 } 4202 4203 if (N0 == N1) { 4204 // The sext(setcc()) => setcc() optimization relies on the appropriate 4205 // constant being emitted. 4206 assert(!N0.getValueType().isInteger() && 4207 "Integer types should be handled by FoldSetCC"); 4208 4209 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4210 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4211 if (UOF == 2) // FP operators that are undefined on NaNs. 4212 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4213 if (UOF == unsigned(EqTrue)) 4214 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4215 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4216 // if it is not already. 4217 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4218 if (NewCond != Cond && 4219 (DCI.isBeforeLegalizeOps() || 4220 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4221 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4222 } 4223 4224 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4225 N0.getValueType().isInteger()) { 4226 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4227 N0.getOpcode() == ISD::XOR) { 4228 // Simplify (X+Y) == (X+Z) --> Y == Z 4229 if (N0.getOpcode() == N1.getOpcode()) { 4230 if (N0.getOperand(0) == N1.getOperand(0)) 4231 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4232 if (N0.getOperand(1) == N1.getOperand(1)) 4233 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4234 if (isCommutativeBinOp(N0.getOpcode())) { 4235 // If X op Y == Y op X, try other combinations. 4236 if (N0.getOperand(0) == N1.getOperand(1)) 4237 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4238 Cond); 4239 if (N0.getOperand(1) == N1.getOperand(0)) 4240 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4241 Cond); 4242 } 4243 } 4244 4245 // If RHS is a legal immediate value for a compare instruction, we need 4246 // to be careful about increasing register pressure needlessly. 4247 bool LegalRHSImm = false; 4248 4249 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4250 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4251 // Turn (X+C1) == C2 --> X == C2-C1 4252 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4253 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4254 DAG.getConstant(RHSC->getAPIntValue()- 4255 LHSR->getAPIntValue(), 4256 dl, N0.getValueType()), Cond); 4257 } 4258 4259 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4260 if (N0.getOpcode() == ISD::XOR) 4261 // If we know that all of the inverted bits are zero, don't bother 4262 // performing the inversion. 4263 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4264 return 4265 DAG.getSetCC(dl, VT, N0.getOperand(0), 4266 DAG.getConstant(LHSR->getAPIntValue() ^ 4267 RHSC->getAPIntValue(), 4268 dl, N0.getValueType()), 4269 Cond); 4270 } 4271 4272 // Turn (C1-X) == C2 --> X == C1-C2 4273 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4274 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4275 return 4276 DAG.getSetCC(dl, VT, N0.getOperand(1), 4277 DAG.getConstant(SUBC->getAPIntValue() - 4278 RHSC->getAPIntValue(), 4279 dl, N0.getValueType()), 4280 Cond); 4281 } 4282 } 4283 4284 // Could RHSC fold directly into a compare? 4285 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4286 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4287 } 4288 4289 // (X+Y) == X --> Y == 0 and similar folds. 4290 // Don't do this if X is an immediate that can fold into a cmp 4291 // instruction and X+Y has other uses. It could be an induction variable 4292 // chain, and the transform would increase register pressure. 4293 if (!LegalRHSImm || N0.hasOneUse()) 4294 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4295 return V; 4296 } 4297 4298 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4299 N1.getOpcode() == ISD::XOR) 4300 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4301 return V; 4302 4303 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4304 return V; 4305 } 4306 4307 // Fold remainder of division by a constant. 4308 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4309 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4310 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4311 4312 // When division is cheap or optimizing for minimum size, 4313 // fall through to DIVREM creation by skipping this fold. 4314 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4315 if (N0.getOpcode() == ISD::UREM) { 4316 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4317 return Folded; 4318 } else if (N0.getOpcode() == ISD::SREM) { 4319 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4320 return Folded; 4321 } 4322 } 4323 } 4324 4325 // Fold away ALL boolean setcc's. 4326 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4327 SDValue Temp; 4328 switch (Cond) { 4329 default: llvm_unreachable("Unknown integer setcc!"); 4330 case ISD::SETEQ: // X == Y -> ~(X^Y) 4331 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4332 N0 = DAG.getNOT(dl, Temp, OpVT); 4333 if (!DCI.isCalledByLegalizer()) 4334 DCI.AddToWorklist(Temp.getNode()); 4335 break; 4336 case ISD::SETNE: // X != Y --> (X^Y) 4337 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4338 break; 4339 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4340 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4341 Temp = DAG.getNOT(dl, N0, OpVT); 4342 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4343 if (!DCI.isCalledByLegalizer()) 4344 DCI.AddToWorklist(Temp.getNode()); 4345 break; 4346 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4347 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4348 Temp = DAG.getNOT(dl, N1, OpVT); 4349 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4350 if (!DCI.isCalledByLegalizer()) 4351 DCI.AddToWorklist(Temp.getNode()); 4352 break; 4353 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4354 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4355 Temp = DAG.getNOT(dl, N0, OpVT); 4356 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4357 if (!DCI.isCalledByLegalizer()) 4358 DCI.AddToWorklist(Temp.getNode()); 4359 break; 4360 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4361 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4362 Temp = DAG.getNOT(dl, N1, OpVT); 4363 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4364 break; 4365 } 4366 if (VT.getScalarType() != MVT::i1) { 4367 if (!DCI.isCalledByLegalizer()) 4368 DCI.AddToWorklist(N0.getNode()); 4369 // FIXME: If running after legalize, we probably can't do this. 4370 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4371 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4372 } 4373 return N0; 4374 } 4375 4376 // Could not fold it. 4377 return SDValue(); 4378 } 4379 4380 /// Returns true (and the GlobalValue and the offset) if the node is a 4381 /// GlobalAddress + offset. 4382 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4383 int64_t &Offset) const { 4384 4385 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4386 4387 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4388 GA = GASD->getGlobal(); 4389 Offset += GASD->getOffset(); 4390 return true; 4391 } 4392 4393 if (N->getOpcode() == ISD::ADD) { 4394 SDValue N1 = N->getOperand(0); 4395 SDValue N2 = N->getOperand(1); 4396 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4397 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4398 Offset += V->getSExtValue(); 4399 return true; 4400 } 4401 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4402 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4403 Offset += V->getSExtValue(); 4404 return true; 4405 } 4406 } 4407 } 4408 4409 return false; 4410 } 4411 4412 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4413 DAGCombinerInfo &DCI) const { 4414 // Default implementation: no optimization. 4415 return SDValue(); 4416 } 4417 4418 //===----------------------------------------------------------------------===// 4419 // Inline Assembler Implementation Methods 4420 //===----------------------------------------------------------------------===// 4421 4422 TargetLowering::ConstraintType 4423 TargetLowering::getConstraintType(StringRef Constraint) const { 4424 unsigned S = Constraint.size(); 4425 4426 if (S == 1) { 4427 switch (Constraint[0]) { 4428 default: break; 4429 case 'r': 4430 return C_RegisterClass; 4431 case 'm': // memory 4432 case 'o': // offsetable 4433 case 'V': // not offsetable 4434 return C_Memory; 4435 case 'n': // Simple Integer 4436 case 'E': // Floating Point Constant 4437 case 'F': // Floating Point Constant 4438 return C_Immediate; 4439 case 'i': // Simple Integer or Relocatable Constant 4440 case 's': // Relocatable Constant 4441 case 'p': // Address. 4442 case 'X': // Allow ANY value. 4443 case 'I': // Target registers. 4444 case 'J': 4445 case 'K': 4446 case 'L': 4447 case 'M': 4448 case 'N': 4449 case 'O': 4450 case 'P': 4451 case '<': 4452 case '>': 4453 return C_Other; 4454 } 4455 } 4456 4457 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4458 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4459 return C_Memory; 4460 return C_Register; 4461 } 4462 return C_Unknown; 4463 } 4464 4465 /// Try to replace an X constraint, which matches anything, with another that 4466 /// has more specific requirements based on the type of the corresponding 4467 /// operand. 4468 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4469 if (ConstraintVT.isInteger()) 4470 return "r"; 4471 if (ConstraintVT.isFloatingPoint()) 4472 return "f"; // works for many targets 4473 return nullptr; 4474 } 4475 4476 SDValue TargetLowering::LowerAsmOutputForConstraint( 4477 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4478 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4479 return SDValue(); 4480 } 4481 4482 /// Lower the specified operand into the Ops vector. 4483 /// If it is invalid, don't add anything to Ops. 4484 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4485 std::string &Constraint, 4486 std::vector<SDValue> &Ops, 4487 SelectionDAG &DAG) const { 4488 4489 if (Constraint.length() > 1) return; 4490 4491 char ConstraintLetter = Constraint[0]; 4492 switch (ConstraintLetter) { 4493 default: break; 4494 case 'X': // Allows any operand; labels (basic block) use this. 4495 if (Op.getOpcode() == ISD::BasicBlock || 4496 Op.getOpcode() == ISD::TargetBlockAddress) { 4497 Ops.push_back(Op); 4498 return; 4499 } 4500 LLVM_FALLTHROUGH; 4501 case 'i': // Simple Integer or Relocatable Constant 4502 case 'n': // Simple Integer 4503 case 's': { // Relocatable Constant 4504 4505 GlobalAddressSDNode *GA; 4506 ConstantSDNode *C; 4507 BlockAddressSDNode *BA; 4508 uint64_t Offset = 0; 4509 4510 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4511 // etc., since getelementpointer is variadic. We can't use 4512 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4513 // while in this case the GA may be furthest from the root node which is 4514 // likely an ISD::ADD. 4515 while (1) { 4516 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4517 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4518 GA->getValueType(0), 4519 Offset + GA->getOffset())); 4520 return; 4521 } 4522 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4523 // gcc prints these as sign extended. Sign extend value to 64 bits 4524 // now; without this it would get ZExt'd later in 4525 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4526 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4527 BooleanContent BCont = getBooleanContents(MVT::i64); 4528 ISD::NodeType ExtOpc = 4529 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4530 int64_t ExtVal = 4531 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4532 Ops.push_back( 4533 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4534 return; 4535 } 4536 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4537 Ops.push_back(DAG.getTargetBlockAddress( 4538 BA->getBlockAddress(), BA->getValueType(0), 4539 Offset + BA->getOffset(), BA->getTargetFlags())); 4540 return; 4541 } 4542 const unsigned OpCode = Op.getOpcode(); 4543 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4544 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4545 Op = Op.getOperand(1); 4546 // Subtraction is not commutative. 4547 else if (OpCode == ISD::ADD && 4548 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4549 Op = Op.getOperand(0); 4550 else 4551 return; 4552 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4553 continue; 4554 } 4555 return; 4556 } 4557 break; 4558 } 4559 } 4560 } 4561 4562 std::pair<unsigned, const TargetRegisterClass *> 4563 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4564 StringRef Constraint, 4565 MVT VT) const { 4566 if (Constraint.empty() || Constraint[0] != '{') 4567 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4568 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4569 4570 // Remove the braces from around the name. 4571 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4572 4573 std::pair<unsigned, const TargetRegisterClass *> R = 4574 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4575 4576 // Figure out which register class contains this reg. 4577 for (const TargetRegisterClass *RC : RI->regclasses()) { 4578 // If none of the value types for this register class are valid, we 4579 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4580 if (!isLegalRC(*RI, *RC)) 4581 continue; 4582 4583 for (const MCPhysReg &PR : *RC) { 4584 if (RegName.equals_lower(RI->getRegAsmName(PR))) { 4585 std::pair<unsigned, const TargetRegisterClass *> S = 4586 std::make_pair(PR, RC); 4587 4588 // If this register class has the requested value type, return it, 4589 // otherwise keep searching and return the first class found 4590 // if no other is found which explicitly has the requested type. 4591 if (RI->isTypeLegalForClass(*RC, VT)) 4592 return S; 4593 if (!R.second) 4594 R = S; 4595 } 4596 } 4597 } 4598 4599 return R; 4600 } 4601 4602 //===----------------------------------------------------------------------===// 4603 // Constraint Selection. 4604 4605 /// Return true of this is an input operand that is a matching constraint like 4606 /// "4". 4607 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4608 assert(!ConstraintCode.empty() && "No known constraint!"); 4609 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4610 } 4611 4612 /// If this is an input matching constraint, this method returns the output 4613 /// operand it matches. 4614 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4615 assert(!ConstraintCode.empty() && "No known constraint!"); 4616 return atoi(ConstraintCode.c_str()); 4617 } 4618 4619 /// Split up the constraint string from the inline assembly value into the 4620 /// specific constraints and their prefixes, and also tie in the associated 4621 /// operand values. 4622 /// If this returns an empty vector, and if the constraint string itself 4623 /// isn't empty, there was an error parsing. 4624 TargetLowering::AsmOperandInfoVector 4625 TargetLowering::ParseConstraints(const DataLayout &DL, 4626 const TargetRegisterInfo *TRI, 4627 const CallBase &Call) const { 4628 /// Information about all of the constraints. 4629 AsmOperandInfoVector ConstraintOperands; 4630 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4631 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4632 4633 // Do a prepass over the constraints, canonicalizing them, and building up the 4634 // ConstraintOperands list. 4635 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4636 unsigned ResNo = 0; // ResNo - The result number of the next output. 4637 4638 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4639 ConstraintOperands.emplace_back(std::move(CI)); 4640 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4641 4642 // Update multiple alternative constraint count. 4643 if (OpInfo.multipleAlternatives.size() > maCount) 4644 maCount = OpInfo.multipleAlternatives.size(); 4645 4646 OpInfo.ConstraintVT = MVT::Other; 4647 4648 // Compute the value type for each operand. 4649 switch (OpInfo.Type) { 4650 case InlineAsm::isOutput: 4651 // Indirect outputs just consume an argument. 4652 if (OpInfo.isIndirect) { 4653 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4654 break; 4655 } 4656 4657 // The return value of the call is this value. As such, there is no 4658 // corresponding argument. 4659 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4660 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4661 OpInfo.ConstraintVT = 4662 getSimpleValueType(DL, STy->getElementType(ResNo)); 4663 } else { 4664 assert(ResNo == 0 && "Asm only has one result!"); 4665 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4666 } 4667 ++ResNo; 4668 break; 4669 case InlineAsm::isInput: 4670 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4671 break; 4672 case InlineAsm::isClobber: 4673 // Nothing to do. 4674 break; 4675 } 4676 4677 if (OpInfo.CallOperandVal) { 4678 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4679 if (OpInfo.isIndirect) { 4680 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4681 if (!PtrTy) 4682 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4683 OpTy = PtrTy->getElementType(); 4684 } 4685 4686 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4687 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4688 if (STy->getNumElements() == 1) 4689 OpTy = STy->getElementType(0); 4690 4691 // If OpTy is not a single value, it may be a struct/union that we 4692 // can tile with integers. 4693 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4694 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4695 switch (BitSize) { 4696 default: break; 4697 case 1: 4698 case 8: 4699 case 16: 4700 case 32: 4701 case 64: 4702 case 128: 4703 OpInfo.ConstraintVT = 4704 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4705 break; 4706 } 4707 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4708 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4709 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4710 } else { 4711 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4712 } 4713 } 4714 } 4715 4716 // If we have multiple alternative constraints, select the best alternative. 4717 if (!ConstraintOperands.empty()) { 4718 if (maCount) { 4719 unsigned bestMAIndex = 0; 4720 int bestWeight = -1; 4721 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4722 int weight = -1; 4723 unsigned maIndex; 4724 // Compute the sums of the weights for each alternative, keeping track 4725 // of the best (highest weight) one so far. 4726 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4727 int weightSum = 0; 4728 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4729 cIndex != eIndex; ++cIndex) { 4730 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4731 if (OpInfo.Type == InlineAsm::isClobber) 4732 continue; 4733 4734 // If this is an output operand with a matching input operand, 4735 // look up the matching input. If their types mismatch, e.g. one 4736 // is an integer, the other is floating point, or their sizes are 4737 // different, flag it as an maCantMatch. 4738 if (OpInfo.hasMatchingInput()) { 4739 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4740 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4741 if ((OpInfo.ConstraintVT.isInteger() != 4742 Input.ConstraintVT.isInteger()) || 4743 (OpInfo.ConstraintVT.getSizeInBits() != 4744 Input.ConstraintVT.getSizeInBits())) { 4745 weightSum = -1; // Can't match. 4746 break; 4747 } 4748 } 4749 } 4750 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4751 if (weight == -1) { 4752 weightSum = -1; 4753 break; 4754 } 4755 weightSum += weight; 4756 } 4757 // Update best. 4758 if (weightSum > bestWeight) { 4759 bestWeight = weightSum; 4760 bestMAIndex = maIndex; 4761 } 4762 } 4763 4764 // Now select chosen alternative in each constraint. 4765 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4766 cIndex != eIndex; ++cIndex) { 4767 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4768 if (cInfo.Type == InlineAsm::isClobber) 4769 continue; 4770 cInfo.selectAlternative(bestMAIndex); 4771 } 4772 } 4773 } 4774 4775 // Check and hook up tied operands, choose constraint code to use. 4776 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4777 cIndex != eIndex; ++cIndex) { 4778 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4779 4780 // If this is an output operand with a matching input operand, look up the 4781 // matching input. If their types mismatch, e.g. one is an integer, the 4782 // other is floating point, or their sizes are different, flag it as an 4783 // error. 4784 if (OpInfo.hasMatchingInput()) { 4785 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4786 4787 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4788 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4789 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4790 OpInfo.ConstraintVT); 4791 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4792 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4793 Input.ConstraintVT); 4794 if ((OpInfo.ConstraintVT.isInteger() != 4795 Input.ConstraintVT.isInteger()) || 4796 (MatchRC.second != InputRC.second)) { 4797 report_fatal_error("Unsupported asm: input constraint" 4798 " with a matching output constraint of" 4799 " incompatible type!"); 4800 } 4801 } 4802 } 4803 } 4804 4805 return ConstraintOperands; 4806 } 4807 4808 /// Return an integer indicating how general CT is. 4809 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4810 switch (CT) { 4811 case TargetLowering::C_Immediate: 4812 case TargetLowering::C_Other: 4813 case TargetLowering::C_Unknown: 4814 return 0; 4815 case TargetLowering::C_Register: 4816 return 1; 4817 case TargetLowering::C_RegisterClass: 4818 return 2; 4819 case TargetLowering::C_Memory: 4820 return 3; 4821 } 4822 llvm_unreachable("Invalid constraint type"); 4823 } 4824 4825 /// Examine constraint type and operand type and determine a weight value. 4826 /// This object must already have been set up with the operand type 4827 /// and the current alternative constraint selected. 4828 TargetLowering::ConstraintWeight 4829 TargetLowering::getMultipleConstraintMatchWeight( 4830 AsmOperandInfo &info, int maIndex) const { 4831 InlineAsm::ConstraintCodeVector *rCodes; 4832 if (maIndex >= (int)info.multipleAlternatives.size()) 4833 rCodes = &info.Codes; 4834 else 4835 rCodes = &info.multipleAlternatives[maIndex].Codes; 4836 ConstraintWeight BestWeight = CW_Invalid; 4837 4838 // Loop over the options, keeping track of the most general one. 4839 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4840 ConstraintWeight weight = 4841 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4842 if (weight > BestWeight) 4843 BestWeight = weight; 4844 } 4845 4846 return BestWeight; 4847 } 4848 4849 /// Examine constraint type and operand type and determine a weight value. 4850 /// This object must already have been set up with the operand type 4851 /// and the current alternative constraint selected. 4852 TargetLowering::ConstraintWeight 4853 TargetLowering::getSingleConstraintMatchWeight( 4854 AsmOperandInfo &info, const char *constraint) const { 4855 ConstraintWeight weight = CW_Invalid; 4856 Value *CallOperandVal = info.CallOperandVal; 4857 // If we don't have a value, we can't do a match, 4858 // but allow it at the lowest weight. 4859 if (!CallOperandVal) 4860 return CW_Default; 4861 // Look at the constraint type. 4862 switch (*constraint) { 4863 case 'i': // immediate integer. 4864 case 'n': // immediate integer with a known value. 4865 if (isa<ConstantInt>(CallOperandVal)) 4866 weight = CW_Constant; 4867 break; 4868 case 's': // non-explicit intregal immediate. 4869 if (isa<GlobalValue>(CallOperandVal)) 4870 weight = CW_Constant; 4871 break; 4872 case 'E': // immediate float if host format. 4873 case 'F': // immediate float. 4874 if (isa<ConstantFP>(CallOperandVal)) 4875 weight = CW_Constant; 4876 break; 4877 case '<': // memory operand with autodecrement. 4878 case '>': // memory operand with autoincrement. 4879 case 'm': // memory operand. 4880 case 'o': // offsettable memory operand 4881 case 'V': // non-offsettable memory operand 4882 weight = CW_Memory; 4883 break; 4884 case 'r': // general register. 4885 case 'g': // general register, memory operand or immediate integer. 4886 // note: Clang converts "g" to "imr". 4887 if (CallOperandVal->getType()->isIntegerTy()) 4888 weight = CW_Register; 4889 break; 4890 case 'X': // any operand. 4891 default: 4892 weight = CW_Default; 4893 break; 4894 } 4895 return weight; 4896 } 4897 4898 /// If there are multiple different constraints that we could pick for this 4899 /// operand (e.g. "imr") try to pick the 'best' one. 4900 /// This is somewhat tricky: constraints fall into four classes: 4901 /// Other -> immediates and magic values 4902 /// Register -> one specific register 4903 /// RegisterClass -> a group of regs 4904 /// Memory -> memory 4905 /// Ideally, we would pick the most specific constraint possible: if we have 4906 /// something that fits into a register, we would pick it. The problem here 4907 /// is that if we have something that could either be in a register or in 4908 /// memory that use of the register could cause selection of *other* 4909 /// operands to fail: they might only succeed if we pick memory. Because of 4910 /// this the heuristic we use is: 4911 /// 4912 /// 1) If there is an 'other' constraint, and if the operand is valid for 4913 /// that constraint, use it. This makes us take advantage of 'i' 4914 /// constraints when available. 4915 /// 2) Otherwise, pick the most general constraint present. This prefers 4916 /// 'm' over 'r', for example. 4917 /// 4918 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4919 const TargetLowering &TLI, 4920 SDValue Op, SelectionDAG *DAG) { 4921 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4922 unsigned BestIdx = 0; 4923 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4924 int BestGenerality = -1; 4925 4926 // Loop over the options, keeping track of the most general one. 4927 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4928 TargetLowering::ConstraintType CType = 4929 TLI.getConstraintType(OpInfo.Codes[i]); 4930 4931 // Indirect 'other' or 'immediate' constraints are not allowed. 4932 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4933 CType == TargetLowering::C_Register || 4934 CType == TargetLowering::C_RegisterClass)) 4935 continue; 4936 4937 // If this is an 'other' or 'immediate' constraint, see if the operand is 4938 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4939 // the operand is an integer in the range [0..31] we want to use I (saving a 4940 // load of a register), otherwise we must use 'r'. 4941 if ((CType == TargetLowering::C_Other || 4942 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4943 assert(OpInfo.Codes[i].size() == 1 && 4944 "Unhandled multi-letter 'other' constraint"); 4945 std::vector<SDValue> ResultOps; 4946 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4947 ResultOps, *DAG); 4948 if (!ResultOps.empty()) { 4949 BestType = CType; 4950 BestIdx = i; 4951 break; 4952 } 4953 } 4954 4955 // Things with matching constraints can only be registers, per gcc 4956 // documentation. This mainly affects "g" constraints. 4957 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4958 continue; 4959 4960 // This constraint letter is more general than the previous one, use it. 4961 int Generality = getConstraintGenerality(CType); 4962 if (Generality > BestGenerality) { 4963 BestType = CType; 4964 BestIdx = i; 4965 BestGenerality = Generality; 4966 } 4967 } 4968 4969 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4970 OpInfo.ConstraintType = BestType; 4971 } 4972 4973 /// Determines the constraint code and constraint type to use for the specific 4974 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4975 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4976 SDValue Op, 4977 SelectionDAG *DAG) const { 4978 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4979 4980 // Single-letter constraints ('r') are very common. 4981 if (OpInfo.Codes.size() == 1) { 4982 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4983 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4984 } else { 4985 ChooseConstraint(OpInfo, *this, Op, DAG); 4986 } 4987 4988 // 'X' matches anything. 4989 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4990 // Labels and constants are handled elsewhere ('X' is the only thing 4991 // that matches labels). For Functions, the type here is the type of 4992 // the result, which is not what we want to look at; leave them alone. 4993 Value *v = OpInfo.CallOperandVal; 4994 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4995 OpInfo.CallOperandVal = v; 4996 return; 4997 } 4998 4999 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 5000 return; 5001 5002 // Otherwise, try to resolve it to something we know about by looking at 5003 // the actual operand type. 5004 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5005 OpInfo.ConstraintCode = Repl; 5006 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5007 } 5008 } 5009 } 5010 5011 /// Given an exact SDIV by a constant, create a multiplication 5012 /// with the multiplicative inverse of the constant. 5013 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5014 const SDLoc &dl, SelectionDAG &DAG, 5015 SmallVectorImpl<SDNode *> &Created) { 5016 SDValue Op0 = N->getOperand(0); 5017 SDValue Op1 = N->getOperand(1); 5018 EVT VT = N->getValueType(0); 5019 EVT SVT = VT.getScalarType(); 5020 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5021 EVT ShSVT = ShVT.getScalarType(); 5022 5023 bool UseSRA = false; 5024 SmallVector<SDValue, 16> Shifts, Factors; 5025 5026 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5027 if (C->isNullValue()) 5028 return false; 5029 APInt Divisor = C->getAPIntValue(); 5030 unsigned Shift = Divisor.countTrailingZeros(); 5031 if (Shift) { 5032 Divisor.ashrInPlace(Shift); 5033 UseSRA = true; 5034 } 5035 // Calculate the multiplicative inverse, using Newton's method. 5036 APInt t; 5037 APInt Factor = Divisor; 5038 while ((t = Divisor * Factor) != 1) 5039 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5040 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5041 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5042 return true; 5043 }; 5044 5045 // Collect all magic values from the build vector. 5046 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5047 return SDValue(); 5048 5049 SDValue Shift, Factor; 5050 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5051 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5052 Factor = DAG.getBuildVector(VT, dl, Factors); 5053 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5054 assert(Shifts.size() == 1 && Factors.size() == 1 && 5055 "Expected matchUnaryPredicate to return one element for scalable " 5056 "vectors"); 5057 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5058 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5059 } else { 5060 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5061 Shift = Shifts[0]; 5062 Factor = Factors[0]; 5063 } 5064 5065 SDValue Res = Op0; 5066 5067 // Shift the value upfront if it is even, so the LSB is one. 5068 if (UseSRA) { 5069 // TODO: For UDIV use SRL instead of SRA. 5070 SDNodeFlags Flags; 5071 Flags.setExact(true); 5072 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5073 Created.push_back(Res.getNode()); 5074 } 5075 5076 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5077 } 5078 5079 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5080 SelectionDAG &DAG, 5081 SmallVectorImpl<SDNode *> &Created) const { 5082 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5083 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5084 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5085 return SDValue(N, 0); // Lower SDIV as SDIV 5086 return SDValue(); 5087 } 5088 5089 /// Given an ISD::SDIV node expressing a divide by constant, 5090 /// return a DAG expression to select that will generate the same value by 5091 /// multiplying by a magic number. 5092 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5093 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5094 bool IsAfterLegalization, 5095 SmallVectorImpl<SDNode *> &Created) const { 5096 SDLoc dl(N); 5097 EVT VT = N->getValueType(0); 5098 EVT SVT = VT.getScalarType(); 5099 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5100 EVT ShSVT = ShVT.getScalarType(); 5101 unsigned EltBits = VT.getScalarSizeInBits(); 5102 EVT MulVT; 5103 5104 // Check to see if we can do this. 5105 // FIXME: We should be more aggressive here. 5106 if (!isTypeLegal(VT)) { 5107 // Limit this to simple scalars for now. 5108 if (VT.isVector() || !VT.isSimple()) 5109 return SDValue(); 5110 5111 // If this type will be promoted to a large enough type with a legal 5112 // multiply operation, we can go ahead and do this transform. 5113 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5114 return SDValue(); 5115 5116 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5117 if (MulVT.getSizeInBits() < (2 * EltBits) || 5118 !isOperationLegal(ISD::MUL, MulVT)) 5119 return SDValue(); 5120 } 5121 5122 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5123 if (N->getFlags().hasExact()) 5124 return BuildExactSDIV(*this, N, dl, DAG, Created); 5125 5126 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5127 5128 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5129 if (C->isNullValue()) 5130 return false; 5131 5132 const APInt &Divisor = C->getAPIntValue(); 5133 APInt::ms magics = Divisor.magic(); 5134 int NumeratorFactor = 0; 5135 int ShiftMask = -1; 5136 5137 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5138 // If d is +1/-1, we just multiply the numerator by +1/-1. 5139 NumeratorFactor = Divisor.getSExtValue(); 5140 magics.m = 0; 5141 magics.s = 0; 5142 ShiftMask = 0; 5143 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5144 // If d > 0 and m < 0, add the numerator. 5145 NumeratorFactor = 1; 5146 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5147 // If d < 0 and m > 0, subtract the numerator. 5148 NumeratorFactor = -1; 5149 } 5150 5151 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5152 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5153 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5154 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5155 return true; 5156 }; 5157 5158 SDValue N0 = N->getOperand(0); 5159 SDValue N1 = N->getOperand(1); 5160 5161 // Collect the shifts / magic values from each element. 5162 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5163 return SDValue(); 5164 5165 SDValue MagicFactor, Factor, Shift, ShiftMask; 5166 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5167 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5168 Factor = DAG.getBuildVector(VT, dl, Factors); 5169 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5170 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5171 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5172 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5173 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5174 "Expected matchUnaryPredicate to return one element for scalable " 5175 "vectors"); 5176 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5177 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5178 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5179 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5180 } else { 5181 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5182 MagicFactor = MagicFactors[0]; 5183 Factor = Factors[0]; 5184 Shift = Shifts[0]; 5185 ShiftMask = ShiftMasks[0]; 5186 } 5187 5188 // Multiply the numerator (operand 0) by the magic value. 5189 // FIXME: We should support doing a MUL in a wider type. 5190 auto GetMULHS = [&](SDValue X, SDValue Y) { 5191 // If the type isn't legal, use a wider mul of the the type calculated 5192 // earlier. 5193 if (!isTypeLegal(VT)) { 5194 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5195 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5196 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5197 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5198 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5199 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5200 } 5201 5202 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5203 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5204 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5205 SDValue LoHi = 5206 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5207 return SDValue(LoHi.getNode(), 1); 5208 } 5209 return SDValue(); 5210 }; 5211 5212 SDValue Q = GetMULHS(N0, MagicFactor); 5213 if (!Q) 5214 return SDValue(); 5215 5216 Created.push_back(Q.getNode()); 5217 5218 // (Optionally) Add/subtract the numerator using Factor. 5219 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5220 Created.push_back(Factor.getNode()); 5221 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5222 Created.push_back(Q.getNode()); 5223 5224 // Shift right algebraic by shift value. 5225 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5226 Created.push_back(Q.getNode()); 5227 5228 // Extract the sign bit, mask it and add it to the quotient. 5229 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5230 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5231 Created.push_back(T.getNode()); 5232 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5233 Created.push_back(T.getNode()); 5234 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5235 } 5236 5237 /// Given an ISD::UDIV node expressing a divide by constant, 5238 /// return a DAG expression to select that will generate the same value by 5239 /// multiplying by a magic number. 5240 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5241 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5242 bool IsAfterLegalization, 5243 SmallVectorImpl<SDNode *> &Created) const { 5244 SDLoc dl(N); 5245 EVT VT = N->getValueType(0); 5246 EVT SVT = VT.getScalarType(); 5247 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5248 EVT ShSVT = ShVT.getScalarType(); 5249 unsigned EltBits = VT.getScalarSizeInBits(); 5250 EVT MulVT; 5251 5252 // Check to see if we can do this. 5253 // FIXME: We should be more aggressive here. 5254 if (!isTypeLegal(VT)) { 5255 // Limit this to simple scalars for now. 5256 if (VT.isVector() || !VT.isSimple()) 5257 return SDValue(); 5258 5259 // If this type will be promoted to a large enough type with a legal 5260 // multiply operation, we can go ahead and do this transform. 5261 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5262 return SDValue(); 5263 5264 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5265 if (MulVT.getSizeInBits() < (2 * EltBits) || 5266 !isOperationLegal(ISD::MUL, MulVT)) 5267 return SDValue(); 5268 } 5269 5270 bool UseNPQ = false; 5271 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5272 5273 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5274 if (C->isNullValue()) 5275 return false; 5276 // FIXME: We should use a narrower constant when the upper 5277 // bits are known to be zero. 5278 const APInt& Divisor = C->getAPIntValue(); 5279 APInt::mu magics = Divisor.magicu(); 5280 unsigned PreShift = 0, PostShift = 0; 5281 5282 // If the divisor is even, we can avoid using the expensive fixup by 5283 // shifting the divided value upfront. 5284 if (magics.a != 0 && !Divisor[0]) { 5285 PreShift = Divisor.countTrailingZeros(); 5286 // Get magic number for the shifted divisor. 5287 magics = Divisor.lshr(PreShift).magicu(PreShift); 5288 assert(magics.a == 0 && "Should use cheap fixup now"); 5289 } 5290 5291 APInt Magic = magics.m; 5292 5293 unsigned SelNPQ; 5294 if (magics.a == 0 || Divisor.isOneValue()) { 5295 assert(magics.s < Divisor.getBitWidth() && 5296 "We shouldn't generate an undefined shift!"); 5297 PostShift = magics.s; 5298 SelNPQ = false; 5299 } else { 5300 PostShift = magics.s - 1; 5301 SelNPQ = true; 5302 } 5303 5304 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5305 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5306 NPQFactors.push_back( 5307 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5308 : APInt::getNullValue(EltBits), 5309 dl, SVT)); 5310 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5311 UseNPQ |= SelNPQ; 5312 return true; 5313 }; 5314 5315 SDValue N0 = N->getOperand(0); 5316 SDValue N1 = N->getOperand(1); 5317 5318 // Collect the shifts/magic values from each element. 5319 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5320 return SDValue(); 5321 5322 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5323 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5324 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5325 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5326 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5327 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5328 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5329 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5330 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5331 "Expected matchUnaryPredicate to return one for scalable vectors"); 5332 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5333 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5334 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5335 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5336 } else { 5337 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5338 PreShift = PreShifts[0]; 5339 MagicFactor = MagicFactors[0]; 5340 PostShift = PostShifts[0]; 5341 } 5342 5343 SDValue Q = N0; 5344 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5345 Created.push_back(Q.getNode()); 5346 5347 // FIXME: We should support doing a MUL in a wider type. 5348 auto GetMULHU = [&](SDValue X, SDValue Y) { 5349 // If the type isn't legal, use a wider mul of the the type calculated 5350 // earlier. 5351 if (!isTypeLegal(VT)) { 5352 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5353 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5354 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5355 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5356 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5357 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5358 } 5359 5360 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5361 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5362 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5363 SDValue LoHi = 5364 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5365 return SDValue(LoHi.getNode(), 1); 5366 } 5367 return SDValue(); // No mulhu or equivalent 5368 }; 5369 5370 // Multiply the numerator (operand 0) by the magic value. 5371 Q = GetMULHU(Q, MagicFactor); 5372 if (!Q) 5373 return SDValue(); 5374 5375 Created.push_back(Q.getNode()); 5376 5377 if (UseNPQ) { 5378 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5379 Created.push_back(NPQ.getNode()); 5380 5381 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5382 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5383 if (VT.isVector()) 5384 NPQ = GetMULHU(NPQ, NPQFactor); 5385 else 5386 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5387 5388 Created.push_back(NPQ.getNode()); 5389 5390 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5391 Created.push_back(Q.getNode()); 5392 } 5393 5394 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5395 Created.push_back(Q.getNode()); 5396 5397 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5398 5399 SDValue One = DAG.getConstant(1, dl, VT); 5400 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5401 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5402 } 5403 5404 /// If all values in Values that *don't* match the predicate are same 'splat' 5405 /// value, then replace all values with that splat value. 5406 /// Else, if AlternativeReplacement was provided, then replace all values that 5407 /// do match predicate with AlternativeReplacement value. 5408 static void 5409 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5410 std::function<bool(SDValue)> Predicate, 5411 SDValue AlternativeReplacement = SDValue()) { 5412 SDValue Replacement; 5413 // Is there a value for which the Predicate does *NOT* match? What is it? 5414 auto SplatValue = llvm::find_if_not(Values, Predicate); 5415 if (SplatValue != Values.end()) { 5416 // Does Values consist only of SplatValue's and values matching Predicate? 5417 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5418 return Value == *SplatValue || Predicate(Value); 5419 })) // Then we shall replace values matching predicate with SplatValue. 5420 Replacement = *SplatValue; 5421 } 5422 if (!Replacement) { 5423 // Oops, we did not find the "baseline" splat value. 5424 if (!AlternativeReplacement) 5425 return; // Nothing to do. 5426 // Let's replace with provided value then. 5427 Replacement = AlternativeReplacement; 5428 } 5429 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5430 } 5431 5432 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5433 /// where the divisor is constant and the comparison target is zero, 5434 /// return a DAG expression that will generate the same comparison result 5435 /// using only multiplications, additions and shifts/rotations. 5436 /// Ref: "Hacker's Delight" 10-17. 5437 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5438 SDValue CompTargetNode, 5439 ISD::CondCode Cond, 5440 DAGCombinerInfo &DCI, 5441 const SDLoc &DL) const { 5442 SmallVector<SDNode *, 5> Built; 5443 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5444 DCI, DL, Built)) { 5445 for (SDNode *N : Built) 5446 DCI.AddToWorklist(N); 5447 return Folded; 5448 } 5449 5450 return SDValue(); 5451 } 5452 5453 SDValue 5454 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5455 SDValue CompTargetNode, ISD::CondCode Cond, 5456 DAGCombinerInfo &DCI, const SDLoc &DL, 5457 SmallVectorImpl<SDNode *> &Created) const { 5458 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5459 // - D must be constant, with D = D0 * 2^K where D0 is odd 5460 // - P is the multiplicative inverse of D0 modulo 2^W 5461 // - Q = floor(((2^W) - 1) / D) 5462 // where W is the width of the common type of N and D. 5463 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5464 "Only applicable for (in)equality comparisons."); 5465 5466 SelectionDAG &DAG = DCI.DAG; 5467 5468 EVT VT = REMNode.getValueType(); 5469 EVT SVT = VT.getScalarType(); 5470 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5471 EVT ShSVT = ShVT.getScalarType(); 5472 5473 // If MUL is unavailable, we cannot proceed in any case. 5474 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5475 return SDValue(); 5476 5477 bool ComparingWithAllZeros = true; 5478 bool AllComparisonsWithNonZerosAreTautological = true; 5479 bool HadTautologicalLanes = false; 5480 bool AllLanesAreTautological = true; 5481 bool HadEvenDivisor = false; 5482 bool AllDivisorsArePowerOfTwo = true; 5483 bool HadTautologicalInvertedLanes = false; 5484 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5485 5486 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5487 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5488 if (CDiv->isNullValue()) 5489 return false; 5490 5491 const APInt &D = CDiv->getAPIntValue(); 5492 const APInt &Cmp = CCmp->getAPIntValue(); 5493 5494 ComparingWithAllZeros &= Cmp.isNullValue(); 5495 5496 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5497 // if C2 is not less than C1, the comparison is always false. 5498 // But we will only be able to produce the comparison that will give the 5499 // opposive tautological answer. So this lane would need to be fixed up. 5500 bool TautologicalInvertedLane = D.ule(Cmp); 5501 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5502 5503 // If all lanes are tautological (either all divisors are ones, or divisor 5504 // is not greater than the constant we are comparing with), 5505 // we will prefer to avoid the fold. 5506 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5507 HadTautologicalLanes |= TautologicalLane; 5508 AllLanesAreTautological &= TautologicalLane; 5509 5510 // If we are comparing with non-zero, we need'll need to subtract said 5511 // comparison value from the LHS. But there is no point in doing that if 5512 // every lane where we are comparing with non-zero is tautological.. 5513 if (!Cmp.isNullValue()) 5514 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5515 5516 // Decompose D into D0 * 2^K 5517 unsigned K = D.countTrailingZeros(); 5518 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5519 APInt D0 = D.lshr(K); 5520 5521 // D is even if it has trailing zeros. 5522 HadEvenDivisor |= (K != 0); 5523 // D is a power-of-two if D0 is one. 5524 // If all divisors are power-of-two, we will prefer to avoid the fold. 5525 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5526 5527 // P = inv(D0, 2^W) 5528 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5529 unsigned W = D.getBitWidth(); 5530 APInt P = D0.zext(W + 1) 5531 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5532 .trunc(W); 5533 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5534 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5535 5536 // Q = floor((2^W - 1) u/ D) 5537 // R = ((2^W - 1) u% D) 5538 APInt Q, R; 5539 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5540 5541 // If we are comparing with zero, then that comparison constant is okay, 5542 // else it may need to be one less than that. 5543 if (Cmp.ugt(R)) 5544 Q -= 1; 5545 5546 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5547 "We are expecting that K is always less than all-ones for ShSVT"); 5548 5549 // If the lane is tautological the result can be constant-folded. 5550 if (TautologicalLane) { 5551 // Set P and K amount to a bogus values so we can try to splat them. 5552 P = 0; 5553 K = -1; 5554 // And ensure that comparison constant is tautological, 5555 // it will always compare true/false. 5556 Q = -1; 5557 } 5558 5559 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5560 KAmts.push_back( 5561 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5562 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5563 return true; 5564 }; 5565 5566 SDValue N = REMNode.getOperand(0); 5567 SDValue D = REMNode.getOperand(1); 5568 5569 // Collect the values from each element. 5570 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5571 return SDValue(); 5572 5573 // If all lanes are tautological, the result can be constant-folded. 5574 if (AllLanesAreTautological) 5575 return SDValue(); 5576 5577 // If this is a urem by a powers-of-two, avoid the fold since it can be 5578 // best implemented as a bit test. 5579 if (AllDivisorsArePowerOfTwo) 5580 return SDValue(); 5581 5582 SDValue PVal, KVal, QVal; 5583 if (VT.isVector()) { 5584 if (HadTautologicalLanes) { 5585 // Try to turn PAmts into a splat, since we don't care about the values 5586 // that are currently '0'. If we can't, just keep '0'`s. 5587 turnVectorIntoSplatVector(PAmts, isNullConstant); 5588 // Try to turn KAmts into a splat, since we don't care about the values 5589 // that are currently '-1'. If we can't, change them to '0'`s. 5590 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5591 DAG.getConstant(0, DL, ShSVT)); 5592 } 5593 5594 PVal = DAG.getBuildVector(VT, DL, PAmts); 5595 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5596 QVal = DAG.getBuildVector(VT, DL, QAmts); 5597 } else { 5598 PVal = PAmts[0]; 5599 KVal = KAmts[0]; 5600 QVal = QAmts[0]; 5601 } 5602 5603 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5604 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5605 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5606 assert(CompTargetNode.getValueType() == N.getValueType() && 5607 "Expecting that the types on LHS and RHS of comparisons match."); 5608 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5609 } 5610 5611 // (mul N, P) 5612 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5613 Created.push_back(Op0.getNode()); 5614 5615 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5616 // divisors as a performance improvement, since rotating by 0 is a no-op. 5617 if (HadEvenDivisor) { 5618 // We need ROTR to do this. 5619 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5620 return SDValue(); 5621 SDNodeFlags Flags; 5622 Flags.setExact(true); 5623 // UREM: (rotr (mul N, P), K) 5624 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5625 Created.push_back(Op0.getNode()); 5626 } 5627 5628 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5629 SDValue NewCC = 5630 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5631 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5632 if (!HadTautologicalInvertedLanes) 5633 return NewCC; 5634 5635 // If any lanes previously compared always-false, the NewCC will give 5636 // always-true result for them, so we need to fixup those lanes. 5637 // Or the other way around for inequality predicate. 5638 assert(VT.isVector() && "Can/should only get here for vectors."); 5639 Created.push_back(NewCC.getNode()); 5640 5641 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5642 // if C2 is not less than C1, the comparison is always false. 5643 // But we have produced the comparison that will give the 5644 // opposive tautological answer. So these lanes would need to be fixed up. 5645 SDValue TautologicalInvertedChannels = 5646 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5647 Created.push_back(TautologicalInvertedChannels.getNode()); 5648 5649 // NOTE: we avoid letting illegal types through even if we're before legalize 5650 // ops – legalization has a hard time producing good code for this. 5651 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5652 // If we have a vector select, let's replace the comparison results in the 5653 // affected lanes with the correct tautological result. 5654 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5655 DL, SETCCVT, SETCCVT); 5656 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5657 Replacement, NewCC); 5658 } 5659 5660 // Else, we can just invert the comparison result in the appropriate lanes. 5661 // 5662 // NOTE: see the note above VSELECT above. 5663 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5664 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5665 TautologicalInvertedChannels); 5666 5667 return SDValue(); // Don't know how to lower. 5668 } 5669 5670 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5671 /// where the divisor is constant and the comparison target is zero, 5672 /// return a DAG expression that will generate the same comparison result 5673 /// using only multiplications, additions and shifts/rotations. 5674 /// Ref: "Hacker's Delight" 10-17. 5675 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5676 SDValue CompTargetNode, 5677 ISD::CondCode Cond, 5678 DAGCombinerInfo &DCI, 5679 const SDLoc &DL) const { 5680 SmallVector<SDNode *, 7> Built; 5681 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5682 DCI, DL, Built)) { 5683 assert(Built.size() <= 7 && "Max size prediction failed."); 5684 for (SDNode *N : Built) 5685 DCI.AddToWorklist(N); 5686 return Folded; 5687 } 5688 5689 return SDValue(); 5690 } 5691 5692 SDValue 5693 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5694 SDValue CompTargetNode, ISD::CondCode Cond, 5695 DAGCombinerInfo &DCI, const SDLoc &DL, 5696 SmallVectorImpl<SDNode *> &Created) const { 5697 // Fold: 5698 // (seteq/ne (srem N, D), 0) 5699 // To: 5700 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5701 // 5702 // - D must be constant, with D = D0 * 2^K where D0 is odd 5703 // - P is the multiplicative inverse of D0 modulo 2^W 5704 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5705 // - Q = floor((2 * A) / (2^K)) 5706 // where W is the width of the common type of N and D. 5707 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5708 "Only applicable for (in)equality comparisons."); 5709 5710 SelectionDAG &DAG = DCI.DAG; 5711 5712 EVT VT = REMNode.getValueType(); 5713 EVT SVT = VT.getScalarType(); 5714 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5715 EVT ShSVT = ShVT.getScalarType(); 5716 5717 // If we are after ops legalization, and MUL is unavailable, we can not 5718 // proceed. 5719 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5720 return SDValue(); 5721 5722 // TODO: Could support comparing with non-zero too. 5723 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5724 if (!CompTarget || !CompTarget->isNullValue()) 5725 return SDValue(); 5726 5727 bool HadIntMinDivisor = false; 5728 bool HadOneDivisor = false; 5729 bool AllDivisorsAreOnes = true; 5730 bool HadEvenDivisor = false; 5731 bool NeedToApplyOffset = false; 5732 bool AllDivisorsArePowerOfTwo = true; 5733 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5734 5735 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5736 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5737 if (C->isNullValue()) 5738 return false; 5739 5740 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5741 5742 // WARNING: this fold is only valid for positive divisors! 5743 APInt D = C->getAPIntValue(); 5744 if (D.isNegative()) 5745 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5746 5747 HadIntMinDivisor |= D.isMinSignedValue(); 5748 5749 // If all divisors are ones, we will prefer to avoid the fold. 5750 HadOneDivisor |= D.isOneValue(); 5751 AllDivisorsAreOnes &= D.isOneValue(); 5752 5753 // Decompose D into D0 * 2^K 5754 unsigned K = D.countTrailingZeros(); 5755 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5756 APInt D0 = D.lshr(K); 5757 5758 if (!D.isMinSignedValue()) { 5759 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5760 // we don't care about this lane in this fold, we'll special-handle it. 5761 HadEvenDivisor |= (K != 0); 5762 } 5763 5764 // D is a power-of-two if D0 is one. This includes INT_MIN. 5765 // If all divisors are power-of-two, we will prefer to avoid the fold. 5766 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5767 5768 // P = inv(D0, 2^W) 5769 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5770 unsigned W = D.getBitWidth(); 5771 APInt P = D0.zext(W + 1) 5772 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5773 .trunc(W); 5774 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5775 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5776 5777 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5778 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5779 A.clearLowBits(K); 5780 5781 if (!D.isMinSignedValue()) { 5782 // If divisor INT_MIN, then we don't care about this lane in this fold, 5783 // we'll special-handle it. 5784 NeedToApplyOffset |= A != 0; 5785 } 5786 5787 // Q = floor((2 * A) / (2^K)) 5788 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5789 5790 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5791 "We are expecting that A is always less than all-ones for SVT"); 5792 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5793 "We are expecting that K is always less than all-ones for ShSVT"); 5794 5795 // If the divisor is 1 the result can be constant-folded. Likewise, we 5796 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5797 if (D.isOneValue()) { 5798 // Set P, A and K to a bogus values so we can try to splat them. 5799 P = 0; 5800 A = -1; 5801 K = -1; 5802 5803 // x ?% 1 == 0 <--> true <--> x u<= -1 5804 Q = -1; 5805 } 5806 5807 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5808 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5809 KAmts.push_back( 5810 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5811 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5812 return true; 5813 }; 5814 5815 SDValue N = REMNode.getOperand(0); 5816 SDValue D = REMNode.getOperand(1); 5817 5818 // Collect the values from each element. 5819 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5820 return SDValue(); 5821 5822 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5823 if (AllDivisorsAreOnes) 5824 return SDValue(); 5825 5826 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5827 // since it can be best implemented as a bit test. 5828 if (AllDivisorsArePowerOfTwo) 5829 return SDValue(); 5830 5831 SDValue PVal, AVal, KVal, QVal; 5832 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5833 if (HadOneDivisor) { 5834 // Try to turn PAmts into a splat, since we don't care about the values 5835 // that are currently '0'. If we can't, just keep '0'`s. 5836 turnVectorIntoSplatVector(PAmts, isNullConstant); 5837 // Try to turn AAmts into a splat, since we don't care about the 5838 // values that are currently '-1'. If we can't, change them to '0'`s. 5839 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5840 DAG.getConstant(0, DL, SVT)); 5841 // Try to turn KAmts into a splat, since we don't care about the values 5842 // that are currently '-1'. If we can't, change them to '0'`s. 5843 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5844 DAG.getConstant(0, DL, ShSVT)); 5845 } 5846 5847 PVal = DAG.getBuildVector(VT, DL, PAmts); 5848 AVal = DAG.getBuildVector(VT, DL, AAmts); 5849 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5850 QVal = DAG.getBuildVector(VT, DL, QAmts); 5851 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5852 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5853 QAmts.size() == 1 && 5854 "Expected matchUnaryPredicate to return one element for scalable " 5855 "vectors"); 5856 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5857 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5858 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5859 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5860 } else { 5861 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5862 PVal = PAmts[0]; 5863 AVal = AAmts[0]; 5864 KVal = KAmts[0]; 5865 QVal = QAmts[0]; 5866 } 5867 5868 // (mul N, P) 5869 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5870 Created.push_back(Op0.getNode()); 5871 5872 if (NeedToApplyOffset) { 5873 // We need ADD to do this. 5874 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5875 return SDValue(); 5876 5877 // (add (mul N, P), A) 5878 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5879 Created.push_back(Op0.getNode()); 5880 } 5881 5882 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5883 // divisors as a performance improvement, since rotating by 0 is a no-op. 5884 if (HadEvenDivisor) { 5885 // We need ROTR to do this. 5886 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5887 return SDValue(); 5888 SDNodeFlags Flags; 5889 Flags.setExact(true); 5890 // SREM: (rotr (add (mul N, P), A), K) 5891 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5892 Created.push_back(Op0.getNode()); 5893 } 5894 5895 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5896 SDValue Fold = 5897 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5898 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5899 5900 // If we didn't have lanes with INT_MIN divisor, then we're done. 5901 if (!HadIntMinDivisor) 5902 return Fold; 5903 5904 // That fold is only valid for positive divisors. Which effectively means, 5905 // it is invalid for INT_MIN divisors. So if we have such a lane, 5906 // we must fix-up results for said lanes. 5907 assert(VT.isVector() && "Can/should only get here for vectors."); 5908 5909 // NOTE: we avoid letting illegal types through even if we're before legalize 5910 // ops – legalization has a hard time producing good code for the code that 5911 // follows. 5912 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5913 !isOperationLegalOrCustom(ISD::AND, VT) || 5914 !isOperationLegalOrCustom(Cond, VT) || 5915 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5916 return SDValue(); 5917 5918 Created.push_back(Fold.getNode()); 5919 5920 SDValue IntMin = DAG.getConstant( 5921 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5922 SDValue IntMax = DAG.getConstant( 5923 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5924 SDValue Zero = 5925 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5926 5927 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5928 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5929 Created.push_back(DivisorIsIntMin.getNode()); 5930 5931 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5932 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5933 Created.push_back(Masked.getNode()); 5934 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5935 Created.push_back(MaskedIsZero.getNode()); 5936 5937 // To produce final result we need to blend 2 vectors: 'SetCC' and 5938 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5939 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5940 // constant-folded, select can get lowered to a shuffle with constant mask. 5941 SDValue Blended = 5942 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5943 5944 return Blended; 5945 } 5946 5947 bool TargetLowering:: 5948 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5949 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5950 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5951 "be a constant integer"); 5952 return true; 5953 } 5954 5955 return false; 5956 } 5957 5958 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5959 const DenormalMode &Mode) const { 5960 SDLoc DL(Op); 5961 EVT VT = Op.getValueType(); 5962 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5963 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 5964 // Testing it with denormal inputs to avoid wrong estimate. 5965 if (Mode.Input == DenormalMode::IEEE) { 5966 // This is specifically a check for the handling of denormal inputs, 5967 // not the result. 5968 5969 // Test = fabs(X) < SmallestNormal 5970 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 5971 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 5972 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 5973 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 5974 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 5975 } 5976 // Test = X == 0.0 5977 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 5978 } 5979 5980 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5981 bool LegalOps, bool OptForSize, 5982 NegatibleCost &Cost, 5983 unsigned Depth) const { 5984 // fneg is removable even if it has multiple uses. 5985 if (Op.getOpcode() == ISD::FNEG) { 5986 Cost = NegatibleCost::Cheaper; 5987 return Op.getOperand(0); 5988 } 5989 5990 // Don't recurse exponentially. 5991 if (Depth > SelectionDAG::MaxRecursionDepth) 5992 return SDValue(); 5993 5994 // Pre-increment recursion depth for use in recursive calls. 5995 ++Depth; 5996 const SDNodeFlags Flags = Op->getFlags(); 5997 const TargetOptions &Options = DAG.getTarget().Options; 5998 EVT VT = Op.getValueType(); 5999 unsigned Opcode = Op.getOpcode(); 6000 6001 // Don't allow anything with multiple uses unless we know it is free. 6002 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6003 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6004 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6005 if (!IsFreeExtend) 6006 return SDValue(); 6007 } 6008 6009 auto RemoveDeadNode = [&](SDValue N) { 6010 if (N && N.getNode()->use_empty()) 6011 DAG.RemoveDeadNode(N.getNode()); 6012 }; 6013 6014 SDLoc DL(Op); 6015 6016 // Because getNegatedExpression can delete nodes we need a handle to keep 6017 // temporary nodes alive in case the recursion manages to create an identical 6018 // node. 6019 std::list<HandleSDNode> Handles; 6020 6021 switch (Opcode) { 6022 case ISD::ConstantFP: { 6023 // Don't invert constant FP values after legalization unless the target says 6024 // the negated constant is legal. 6025 bool IsOpLegal = 6026 isOperationLegal(ISD::ConstantFP, VT) || 6027 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6028 OptForSize); 6029 6030 if (LegalOps && !IsOpLegal) 6031 break; 6032 6033 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6034 V.changeSign(); 6035 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6036 6037 // If we already have the use of the negated floating constant, it is free 6038 // to negate it even it has multiple uses. 6039 if (!Op.hasOneUse() && CFP.use_empty()) 6040 break; 6041 Cost = NegatibleCost::Neutral; 6042 return CFP; 6043 } 6044 case ISD::BUILD_VECTOR: { 6045 // Only permit BUILD_VECTOR of constants. 6046 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6047 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6048 })) 6049 break; 6050 6051 bool IsOpLegal = 6052 (isOperationLegal(ISD::ConstantFP, VT) && 6053 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6054 llvm::all_of(Op->op_values(), [&](SDValue N) { 6055 return N.isUndef() || 6056 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6057 OptForSize); 6058 }); 6059 6060 if (LegalOps && !IsOpLegal) 6061 break; 6062 6063 SmallVector<SDValue, 4> Ops; 6064 for (SDValue C : Op->op_values()) { 6065 if (C.isUndef()) { 6066 Ops.push_back(C); 6067 continue; 6068 } 6069 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6070 V.changeSign(); 6071 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6072 } 6073 Cost = NegatibleCost::Neutral; 6074 return DAG.getBuildVector(VT, DL, Ops); 6075 } 6076 case ISD::FADD: { 6077 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6078 break; 6079 6080 // After operation legalization, it might not be legal to create new FSUBs. 6081 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6082 break; 6083 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6084 6085 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6086 NegatibleCost CostX = NegatibleCost::Expensive; 6087 SDValue NegX = 6088 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6089 // Prevent this node from being deleted by the next call. 6090 if (NegX) 6091 Handles.emplace_back(NegX); 6092 6093 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6094 NegatibleCost CostY = NegatibleCost::Expensive; 6095 SDValue NegY = 6096 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6097 6098 // We're done with the handles. 6099 Handles.clear(); 6100 6101 // Negate the X if its cost is less or equal than Y. 6102 if (NegX && (CostX <= CostY)) { 6103 Cost = CostX; 6104 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6105 if (NegY != N) 6106 RemoveDeadNode(NegY); 6107 return N; 6108 } 6109 6110 // Negate the Y if it is not expensive. 6111 if (NegY) { 6112 Cost = CostY; 6113 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6114 if (NegX != N) 6115 RemoveDeadNode(NegX); 6116 return N; 6117 } 6118 break; 6119 } 6120 case ISD::FSUB: { 6121 // We can't turn -(A-B) into B-A when we honor signed zeros. 6122 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6123 break; 6124 6125 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6126 // fold (fneg (fsub 0, Y)) -> Y 6127 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6128 if (C->isZero()) { 6129 Cost = NegatibleCost::Cheaper; 6130 return Y; 6131 } 6132 6133 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6134 Cost = NegatibleCost::Neutral; 6135 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6136 } 6137 case ISD::FMUL: 6138 case ISD::FDIV: { 6139 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6140 6141 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6142 NegatibleCost CostX = NegatibleCost::Expensive; 6143 SDValue NegX = 6144 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6145 // Prevent this node from being deleted by the next call. 6146 if (NegX) 6147 Handles.emplace_back(NegX); 6148 6149 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6150 NegatibleCost CostY = NegatibleCost::Expensive; 6151 SDValue NegY = 6152 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6153 6154 // We're done with the handles. 6155 Handles.clear(); 6156 6157 // Negate the X if its cost is less or equal than Y. 6158 if (NegX && (CostX <= CostY)) { 6159 Cost = CostX; 6160 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6161 if (NegY != N) 6162 RemoveDeadNode(NegY); 6163 return N; 6164 } 6165 6166 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6167 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6168 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6169 break; 6170 6171 // Negate the Y if it is not expensive. 6172 if (NegY) { 6173 Cost = CostY; 6174 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6175 if (NegX != N) 6176 RemoveDeadNode(NegX); 6177 return N; 6178 } 6179 break; 6180 } 6181 case ISD::FMA: 6182 case ISD::FMAD: { 6183 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6184 break; 6185 6186 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6187 NegatibleCost CostZ = NegatibleCost::Expensive; 6188 SDValue NegZ = 6189 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6190 // Give up if fail to negate the Z. 6191 if (!NegZ) 6192 break; 6193 6194 // Prevent this node from being deleted by the next two calls. 6195 Handles.emplace_back(NegZ); 6196 6197 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6198 NegatibleCost CostX = NegatibleCost::Expensive; 6199 SDValue NegX = 6200 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6201 // Prevent this node from being deleted by the next call. 6202 if (NegX) 6203 Handles.emplace_back(NegX); 6204 6205 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6206 NegatibleCost CostY = NegatibleCost::Expensive; 6207 SDValue NegY = 6208 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6209 6210 // We're done with the handles. 6211 Handles.clear(); 6212 6213 // Negate the X if its cost is less or equal than Y. 6214 if (NegX && (CostX <= CostY)) { 6215 Cost = std::min(CostX, CostZ); 6216 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6217 if (NegY != N) 6218 RemoveDeadNode(NegY); 6219 return N; 6220 } 6221 6222 // Negate the Y if it is not expensive. 6223 if (NegY) { 6224 Cost = std::min(CostY, CostZ); 6225 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6226 if (NegX != N) 6227 RemoveDeadNode(NegX); 6228 return N; 6229 } 6230 break; 6231 } 6232 6233 case ISD::FP_EXTEND: 6234 case ISD::FSIN: 6235 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6236 OptForSize, Cost, Depth)) 6237 return DAG.getNode(Opcode, DL, VT, NegV); 6238 break; 6239 case ISD::FP_ROUND: 6240 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6241 OptForSize, Cost, Depth)) 6242 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6243 break; 6244 } 6245 6246 return SDValue(); 6247 } 6248 6249 //===----------------------------------------------------------------------===// 6250 // Legalization Utilities 6251 //===----------------------------------------------------------------------===// 6252 6253 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6254 SDValue LHS, SDValue RHS, 6255 SmallVectorImpl<SDValue> &Result, 6256 EVT HiLoVT, SelectionDAG &DAG, 6257 MulExpansionKind Kind, SDValue LL, 6258 SDValue LH, SDValue RL, SDValue RH) const { 6259 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6260 Opcode == ISD::SMUL_LOHI); 6261 6262 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6263 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6264 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6265 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6266 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6267 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6268 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6269 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6270 6271 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6272 return false; 6273 6274 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6275 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6276 6277 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6278 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6279 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6280 6281 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6282 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6283 bool Signed) -> bool { 6284 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6285 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6286 Hi = SDValue(Lo.getNode(), 1); 6287 return true; 6288 } 6289 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6290 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6291 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6292 return true; 6293 } 6294 return false; 6295 }; 6296 6297 SDValue Lo, Hi; 6298 6299 if (!LL.getNode() && !RL.getNode() && 6300 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6301 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6302 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6303 } 6304 6305 if (!LL.getNode()) 6306 return false; 6307 6308 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6309 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6310 DAG.MaskedValueIsZero(RHS, HighMask)) { 6311 // The inputs are both zero-extended. 6312 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6313 Result.push_back(Lo); 6314 Result.push_back(Hi); 6315 if (Opcode != ISD::MUL) { 6316 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6317 Result.push_back(Zero); 6318 Result.push_back(Zero); 6319 } 6320 return true; 6321 } 6322 } 6323 6324 if (!VT.isVector() && Opcode == ISD::MUL && 6325 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6326 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6327 // The input values are both sign-extended. 6328 // TODO non-MUL case? 6329 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6330 Result.push_back(Lo); 6331 Result.push_back(Hi); 6332 return true; 6333 } 6334 } 6335 6336 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6337 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6338 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6339 // FIXME getShiftAmountTy does not always return a sensible result when VT 6340 // is an illegal type, and so the type may be too small to fit the shift 6341 // amount. Override it with i32. The shift will have to be legalized. 6342 ShiftAmountTy = MVT::i32; 6343 } 6344 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6345 6346 if (!LH.getNode() && !RH.getNode() && 6347 isOperationLegalOrCustom(ISD::SRL, VT) && 6348 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6349 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6350 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6351 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6352 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6353 } 6354 6355 if (!LH.getNode()) 6356 return false; 6357 6358 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6359 return false; 6360 6361 Result.push_back(Lo); 6362 6363 if (Opcode == ISD::MUL) { 6364 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6365 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6366 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6367 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6368 Result.push_back(Hi); 6369 return true; 6370 } 6371 6372 // Compute the full width result. 6373 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6374 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6375 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6376 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6377 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6378 }; 6379 6380 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6381 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6382 return false; 6383 6384 // This is effectively the add part of a multiply-add of half-sized operands, 6385 // so it cannot overflow. 6386 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6387 6388 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6389 return false; 6390 6391 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6392 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6393 6394 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6395 isOperationLegalOrCustom(ISD::ADDE, VT)); 6396 if (UseGlue) 6397 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6398 Merge(Lo, Hi)); 6399 else 6400 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6401 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6402 6403 SDValue Carry = Next.getValue(1); 6404 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6405 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6406 6407 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6408 return false; 6409 6410 if (UseGlue) 6411 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6412 Carry); 6413 else 6414 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6415 Zero, Carry); 6416 6417 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6418 6419 if (Opcode == ISD::SMUL_LOHI) { 6420 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6421 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6422 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6423 6424 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6425 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6426 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6427 } 6428 6429 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6430 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6431 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6432 return true; 6433 } 6434 6435 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6436 SelectionDAG &DAG, MulExpansionKind Kind, 6437 SDValue LL, SDValue LH, SDValue RL, 6438 SDValue RH) const { 6439 SmallVector<SDValue, 2> Result; 6440 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6441 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6442 DAG, Kind, LL, LH, RL, RH); 6443 if (Ok) { 6444 assert(Result.size() == 2); 6445 Lo = Result[0]; 6446 Hi = Result[1]; 6447 } 6448 return Ok; 6449 } 6450 6451 // Check that (every element of) Z is undef or not an exact multiple of BW. 6452 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6453 return ISD::matchUnaryPredicate( 6454 Z, 6455 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6456 true); 6457 } 6458 6459 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6460 SelectionDAG &DAG) const { 6461 EVT VT = Node->getValueType(0); 6462 6463 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6464 !isOperationLegalOrCustom(ISD::SRL, VT) || 6465 !isOperationLegalOrCustom(ISD::SUB, VT) || 6466 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6467 return false; 6468 6469 SDValue X = Node->getOperand(0); 6470 SDValue Y = Node->getOperand(1); 6471 SDValue Z = Node->getOperand(2); 6472 6473 unsigned BW = VT.getScalarSizeInBits(); 6474 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6475 SDLoc DL(SDValue(Node, 0)); 6476 6477 EVT ShVT = Z.getValueType(); 6478 6479 // If a funnel shift in the other direction is more supported, use it. 6480 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6481 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6482 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6483 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6484 // fshl X, Y, Z -> fshr X, Y, -Z 6485 // fshr X, Y, Z -> fshl X, Y, -Z 6486 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6487 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6488 } else { 6489 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6490 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6491 SDValue One = DAG.getConstant(1, DL, ShVT); 6492 if (IsFSHL) { 6493 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6494 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6495 } else { 6496 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6497 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6498 } 6499 Z = DAG.getNOT(DL, Z, ShVT); 6500 } 6501 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6502 return true; 6503 } 6504 6505 SDValue ShX, ShY; 6506 SDValue ShAmt, InvShAmt; 6507 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6508 // fshl: X << C | Y >> (BW - C) 6509 // fshr: X << (BW - C) | Y >> C 6510 // where C = Z % BW is not zero 6511 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6512 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6513 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6514 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6515 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6516 } else { 6517 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6518 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6519 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6520 if (isPowerOf2_32(BW)) { 6521 // Z % BW -> Z & (BW - 1) 6522 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6523 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6524 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6525 } else { 6526 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6527 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6528 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6529 } 6530 6531 SDValue One = DAG.getConstant(1, DL, ShVT); 6532 if (IsFSHL) { 6533 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6534 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6535 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6536 } else { 6537 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6538 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6539 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6540 } 6541 } 6542 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6543 return true; 6544 } 6545 6546 // TODO: Merge with expandFunnelShift. 6547 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6548 SDValue &Result, SelectionDAG &DAG) const { 6549 EVT VT = Node->getValueType(0); 6550 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6551 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6552 SDValue Op0 = Node->getOperand(0); 6553 SDValue Op1 = Node->getOperand(1); 6554 SDLoc DL(SDValue(Node, 0)); 6555 6556 EVT ShVT = Op1.getValueType(); 6557 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6558 6559 // If a rotate in the other direction is supported, use it. 6560 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6561 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6562 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6563 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6564 return true; 6565 } 6566 6567 if (!AllowVectorOps && VT.isVector() && 6568 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6569 !isOperationLegalOrCustom(ISD::SRL, VT) || 6570 !isOperationLegalOrCustom(ISD::SUB, VT) || 6571 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6572 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6573 return false; 6574 6575 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6576 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6577 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6578 SDValue ShVal; 6579 SDValue HsVal; 6580 if (isPowerOf2_32(EltSizeInBits)) { 6581 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6582 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6583 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6584 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6585 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6586 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6587 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6588 } else { 6589 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6590 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6591 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6592 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6593 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6594 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6595 SDValue One = DAG.getConstant(1, DL, ShVT); 6596 HsVal = 6597 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6598 } 6599 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6600 return true; 6601 } 6602 6603 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6604 SelectionDAG &DAG) const { 6605 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6606 EVT VT = Node->getValueType(0); 6607 unsigned VTBits = VT.getScalarSizeInBits(); 6608 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6609 6610 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6611 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6612 SDValue ShOpLo = Node->getOperand(0); 6613 SDValue ShOpHi = Node->getOperand(1); 6614 SDValue ShAmt = Node->getOperand(2); 6615 EVT ShAmtVT = ShAmt.getValueType(); 6616 EVT ShAmtCCVT = 6617 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6618 SDLoc dl(Node); 6619 6620 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6621 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6622 // away during isel. 6623 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6624 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6625 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6626 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6627 : DAG.getConstant(0, dl, VT); 6628 6629 SDValue Tmp2, Tmp3; 6630 if (IsSHL) { 6631 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6632 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6633 } else { 6634 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6635 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6636 } 6637 6638 // If the shift amount is larger or equal than the width of a part we don't 6639 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6640 // values for large shift amounts. 6641 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6642 DAG.getConstant(VTBits, dl, ShAmtVT)); 6643 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6644 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6645 6646 if (IsSHL) { 6647 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6648 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6649 } else { 6650 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6651 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6652 } 6653 } 6654 6655 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6656 SelectionDAG &DAG) const { 6657 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6658 SDValue Src = Node->getOperand(OpNo); 6659 EVT SrcVT = Src.getValueType(); 6660 EVT DstVT = Node->getValueType(0); 6661 SDLoc dl(SDValue(Node, 0)); 6662 6663 // FIXME: Only f32 to i64 conversions are supported. 6664 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6665 return false; 6666 6667 if (Node->isStrictFPOpcode()) 6668 // When a NaN is converted to an integer a trap is allowed. We can't 6669 // use this expansion here because it would eliminate that trap. Other 6670 // traps are also allowed and cannot be eliminated. See 6671 // IEEE 754-2008 sec 5.8. 6672 return false; 6673 6674 // Expand f32 -> i64 conversion 6675 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6676 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6677 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6678 EVT IntVT = SrcVT.changeTypeToInteger(); 6679 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6680 6681 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6682 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6683 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6684 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6685 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6686 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6687 6688 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6689 6690 SDValue ExponentBits = DAG.getNode( 6691 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6692 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6693 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6694 6695 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6696 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6697 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6698 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6699 6700 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6701 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6702 DAG.getConstant(0x00800000, dl, IntVT)); 6703 6704 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6705 6706 R = DAG.getSelectCC( 6707 dl, Exponent, ExponentLoBit, 6708 DAG.getNode(ISD::SHL, dl, DstVT, R, 6709 DAG.getZExtOrTrunc( 6710 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6711 dl, IntShVT)), 6712 DAG.getNode(ISD::SRL, dl, DstVT, R, 6713 DAG.getZExtOrTrunc( 6714 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6715 dl, IntShVT)), 6716 ISD::SETGT); 6717 6718 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6719 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6720 6721 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6722 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6723 return true; 6724 } 6725 6726 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6727 SDValue &Chain, 6728 SelectionDAG &DAG) const { 6729 SDLoc dl(SDValue(Node, 0)); 6730 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6731 SDValue Src = Node->getOperand(OpNo); 6732 6733 EVT SrcVT = Src.getValueType(); 6734 EVT DstVT = Node->getValueType(0); 6735 EVT SetCCVT = 6736 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6737 EVT DstSetCCVT = 6738 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6739 6740 // Only expand vector types if we have the appropriate vector bit operations. 6741 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6742 ISD::FP_TO_SINT; 6743 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6744 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6745 return false; 6746 6747 // If the maximum float value is smaller then the signed integer range, 6748 // the destination signmask can't be represented by the float, so we can 6749 // just use FP_TO_SINT directly. 6750 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6751 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6752 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6753 if (APFloat::opOverflow & 6754 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6755 if (Node->isStrictFPOpcode()) { 6756 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6757 { Node->getOperand(0), Src }); 6758 Chain = Result.getValue(1); 6759 } else 6760 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6761 return true; 6762 } 6763 6764 // Don't expand it if there isn't cheap fsub instruction. 6765 if (!isOperationLegalOrCustom( 6766 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6767 return false; 6768 6769 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6770 SDValue Sel; 6771 6772 if (Node->isStrictFPOpcode()) { 6773 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6774 Node->getOperand(0), /*IsSignaling*/ true); 6775 Chain = Sel.getValue(1); 6776 } else { 6777 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6778 } 6779 6780 bool Strict = Node->isStrictFPOpcode() || 6781 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6782 6783 if (Strict) { 6784 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6785 // signmask then offset (the result of which should be fully representable). 6786 // Sel = Src < 0x8000000000000000 6787 // FltOfs = select Sel, 0, 0x8000000000000000 6788 // IntOfs = select Sel, 0, 0x8000000000000000 6789 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6790 6791 // TODO: Should any fast-math-flags be set for the FSUB? 6792 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6793 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6794 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6795 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6796 DAG.getConstant(0, dl, DstVT), 6797 DAG.getConstant(SignMask, dl, DstVT)); 6798 SDValue SInt; 6799 if (Node->isStrictFPOpcode()) { 6800 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6801 { Chain, Src, FltOfs }); 6802 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6803 { Val.getValue(1), Val }); 6804 Chain = SInt.getValue(1); 6805 } else { 6806 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6807 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6808 } 6809 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6810 } else { 6811 // Expand based on maximum range of FP_TO_SINT: 6812 // True = fp_to_sint(Src) 6813 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6814 // Result = select (Src < 0x8000000000000000), True, False 6815 6816 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6817 // TODO: Should any fast-math-flags be set for the FSUB? 6818 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6819 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6820 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6821 DAG.getConstant(SignMask, dl, DstVT)); 6822 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6823 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6824 } 6825 return true; 6826 } 6827 6828 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6829 SDValue &Chain, 6830 SelectionDAG &DAG) const { 6831 // This transform is not correct for converting 0 when rounding mode is set 6832 // to round toward negative infinity which will produce -0.0. So disable under 6833 // strictfp. 6834 if (Node->isStrictFPOpcode()) 6835 return false; 6836 6837 SDValue Src = Node->getOperand(0); 6838 EVT SrcVT = Src.getValueType(); 6839 EVT DstVT = Node->getValueType(0); 6840 6841 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6842 return false; 6843 6844 // Only expand vector types if we have the appropriate vector bit operations. 6845 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6846 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6847 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6848 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6849 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6850 return false; 6851 6852 SDLoc dl(SDValue(Node, 0)); 6853 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6854 6855 // Implementation of unsigned i64 to f64 following the algorithm in 6856 // __floatundidf in compiler_rt. This implementation performs rounding 6857 // correctly in all rounding modes with the exception of converting 0 6858 // when rounding toward negative infinity. In that case the fsub will produce 6859 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6860 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6861 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6862 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6863 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6864 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6865 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6866 6867 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6868 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6869 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6870 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6871 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6872 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6873 SDValue HiSub = 6874 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6875 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6876 return true; 6877 } 6878 6879 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6880 SelectionDAG &DAG) const { 6881 SDLoc dl(Node); 6882 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6883 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6884 EVT VT = Node->getValueType(0); 6885 6886 if (VT.isScalableVector()) 6887 report_fatal_error( 6888 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6889 6890 if (isOperationLegalOrCustom(NewOp, VT)) { 6891 SDValue Quiet0 = Node->getOperand(0); 6892 SDValue Quiet1 = Node->getOperand(1); 6893 6894 if (!Node->getFlags().hasNoNaNs()) { 6895 // Insert canonicalizes if it's possible we need to quiet to get correct 6896 // sNaN behavior. 6897 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6898 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6899 Node->getFlags()); 6900 } 6901 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6902 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6903 Node->getFlags()); 6904 } 6905 } 6906 6907 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6908 } 6909 6910 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6911 // instead if there are no NaNs. 6912 if (Node->getFlags().hasNoNaNs()) { 6913 unsigned IEEE2018Op = 6914 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6915 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6916 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6917 Node->getOperand(1), Node->getFlags()); 6918 } 6919 } 6920 6921 // If none of the above worked, but there are no NaNs, then expand to 6922 // a compare/select sequence. This is required for correctness since 6923 // InstCombine might have canonicalized a fcmp+select sequence to a 6924 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6925 // expansion to libcall, we might introduce a link-time dependency 6926 // on libm into a file that originally did not have one. 6927 if (Node->getFlags().hasNoNaNs()) { 6928 ISD::CondCode Pred = 6929 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6930 SDValue Op1 = Node->getOperand(0); 6931 SDValue Op2 = Node->getOperand(1); 6932 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6933 // Copy FMF flags, but always set the no-signed-zeros flag 6934 // as this is implied by the FMINNUM/FMAXNUM semantics. 6935 SDNodeFlags Flags = Node->getFlags(); 6936 Flags.setNoSignedZeros(true); 6937 SelCC->setFlags(Flags); 6938 return SelCC; 6939 } 6940 6941 return SDValue(); 6942 } 6943 6944 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6945 SelectionDAG &DAG) const { 6946 SDLoc dl(Node); 6947 EVT VT = Node->getValueType(0); 6948 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6949 SDValue Op = Node->getOperand(0); 6950 unsigned Len = VT.getScalarSizeInBits(); 6951 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6952 6953 // TODO: Add support for irregular type lengths. 6954 if (!(Len <= 128 && Len % 8 == 0)) 6955 return false; 6956 6957 // Only expand vector types if we have the appropriate vector bit operations. 6958 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6959 !isOperationLegalOrCustom(ISD::SUB, VT) || 6960 !isOperationLegalOrCustom(ISD::SRL, VT) || 6961 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6962 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6963 return false; 6964 6965 // This is the "best" algorithm from 6966 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6967 SDValue Mask55 = 6968 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6969 SDValue Mask33 = 6970 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6971 SDValue Mask0F = 6972 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6973 SDValue Mask01 = 6974 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6975 6976 // v = v - ((v >> 1) & 0x55555555...) 6977 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6978 DAG.getNode(ISD::AND, dl, VT, 6979 DAG.getNode(ISD::SRL, dl, VT, Op, 6980 DAG.getConstant(1, dl, ShVT)), 6981 Mask55)); 6982 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6983 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6984 DAG.getNode(ISD::AND, dl, VT, 6985 DAG.getNode(ISD::SRL, dl, VT, Op, 6986 DAG.getConstant(2, dl, ShVT)), 6987 Mask33)); 6988 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6989 Op = DAG.getNode(ISD::AND, dl, VT, 6990 DAG.getNode(ISD::ADD, dl, VT, Op, 6991 DAG.getNode(ISD::SRL, dl, VT, Op, 6992 DAG.getConstant(4, dl, ShVT))), 6993 Mask0F); 6994 // v = (v * 0x01010101...) >> (Len - 8) 6995 if (Len > 8) 6996 Op = 6997 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6998 DAG.getConstant(Len - 8, dl, ShVT)); 6999 7000 Result = Op; 7001 return true; 7002 } 7003 7004 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 7005 SelectionDAG &DAG) const { 7006 SDLoc dl(Node); 7007 EVT VT = Node->getValueType(0); 7008 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7009 SDValue Op = Node->getOperand(0); 7010 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7011 7012 // If the non-ZERO_UNDEF version is supported we can use that instead. 7013 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7014 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7015 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7016 return true; 7017 } 7018 7019 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7020 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7021 EVT SetCCVT = 7022 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7023 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7024 SDValue Zero = DAG.getConstant(0, dl, VT); 7025 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7026 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7027 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7028 return true; 7029 } 7030 7031 // Only expand vector types if we have the appropriate vector bit operations. 7032 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7033 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7034 !isOperationLegalOrCustom(ISD::SRL, VT) || 7035 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7036 return false; 7037 7038 // for now, we do this: 7039 // x = x | (x >> 1); 7040 // x = x | (x >> 2); 7041 // ... 7042 // x = x | (x >>16); 7043 // x = x | (x >>32); // for 64-bit input 7044 // return popcount(~x); 7045 // 7046 // Ref: "Hacker's Delight" by Henry Warren 7047 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7048 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7049 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7050 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7051 } 7052 Op = DAG.getNOT(dl, Op, VT); 7053 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7054 return true; 7055 } 7056 7057 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7058 SelectionDAG &DAG) const { 7059 SDLoc dl(Node); 7060 EVT VT = Node->getValueType(0); 7061 SDValue Op = Node->getOperand(0); 7062 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7063 7064 // If the non-ZERO_UNDEF version is supported we can use that instead. 7065 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7066 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7067 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7068 return true; 7069 } 7070 7071 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7072 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7073 EVT SetCCVT = 7074 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7075 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7076 SDValue Zero = DAG.getConstant(0, dl, VT); 7077 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7078 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7079 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7080 return true; 7081 } 7082 7083 // Only expand vector types if we have the appropriate vector bit operations. 7084 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7085 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7086 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7087 !isOperationLegalOrCustom(ISD::SUB, VT) || 7088 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7089 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7090 return false; 7091 7092 // for now, we use: { return popcount(~x & (x - 1)); } 7093 // unless the target has ctlz but not ctpop, in which case we use: 7094 // { return 32 - nlz(~x & (x-1)); } 7095 // Ref: "Hacker's Delight" by Henry Warren 7096 SDValue Tmp = DAG.getNode( 7097 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7098 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7099 7100 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7101 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7102 Result = 7103 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7104 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7105 return true; 7106 } 7107 7108 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7109 return true; 7110 } 7111 7112 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7113 SelectionDAG &DAG, bool IsNegative) const { 7114 SDLoc dl(N); 7115 EVT VT = N->getValueType(0); 7116 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7117 SDValue Op = N->getOperand(0); 7118 7119 // abs(x) -> smax(x,sub(0,x)) 7120 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7121 isOperationLegal(ISD::SMAX, VT)) { 7122 SDValue Zero = DAG.getConstant(0, dl, VT); 7123 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7124 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7125 return true; 7126 } 7127 7128 // abs(x) -> umin(x,sub(0,x)) 7129 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7130 isOperationLegal(ISD::UMIN, VT)) { 7131 SDValue Zero = DAG.getConstant(0, dl, VT); 7132 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7133 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7134 return true; 7135 } 7136 7137 // 0 - abs(x) -> smin(x, sub(0,x)) 7138 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7139 isOperationLegal(ISD::SMIN, VT)) { 7140 SDValue Zero = DAG.getConstant(0, dl, VT); 7141 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7142 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7143 return true; 7144 } 7145 7146 // Only expand vector types if we have the appropriate vector operations. 7147 if (VT.isVector() && 7148 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7149 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7150 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7151 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7152 return false; 7153 7154 SDValue Shift = 7155 DAG.getNode(ISD::SRA, dl, VT, Op, 7156 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7157 if (!IsNegative) { 7158 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7159 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7160 } else { 7161 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7162 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7163 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7164 } 7165 return true; 7166 } 7167 7168 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7169 SDLoc dl(N); 7170 EVT VT = N->getValueType(0); 7171 SDValue Op = N->getOperand(0); 7172 7173 if (!VT.isSimple()) 7174 return SDValue(); 7175 7176 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7177 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7178 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7179 default: 7180 return SDValue(); 7181 case MVT::i16: 7182 // Use a rotate by 8. This can be further expanded if necessary. 7183 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7184 case MVT::i32: 7185 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7186 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7187 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7188 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7189 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7190 DAG.getConstant(0xFF0000, dl, VT)); 7191 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7192 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7193 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7194 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7195 case MVT::i64: 7196 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7197 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7198 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7199 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7200 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7201 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7202 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7203 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7204 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7205 DAG.getConstant(255ULL<<48, dl, VT)); 7206 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7207 DAG.getConstant(255ULL<<40, dl, VT)); 7208 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7209 DAG.getConstant(255ULL<<32, dl, VT)); 7210 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7211 DAG.getConstant(255ULL<<24, dl, VT)); 7212 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7213 DAG.getConstant(255ULL<<16, dl, VT)); 7214 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7215 DAG.getConstant(255ULL<<8 , dl, VT)); 7216 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7217 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7218 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7219 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7220 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7221 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7222 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7223 } 7224 } 7225 7226 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7227 SDLoc dl(N); 7228 EVT VT = N->getValueType(0); 7229 SDValue Op = N->getOperand(0); 7230 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7231 unsigned Sz = VT.getScalarSizeInBits(); 7232 7233 SDValue Tmp, Tmp2, Tmp3; 7234 7235 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7236 // and finally the i1 pairs. 7237 // TODO: We can easily support i4/i2 legal types if any target ever does. 7238 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7239 // Create the masks - repeating the pattern every byte. 7240 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 7241 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 7242 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 7243 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7244 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7245 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7246 7247 // BSWAP if the type is wider than a single byte. 7248 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7249 7250 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 7251 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 7252 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 7253 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 7254 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7255 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7256 7257 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 7258 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 7259 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 7260 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 7261 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7262 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7263 7264 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 7265 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 7266 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 7267 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 7268 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7269 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7270 return Tmp; 7271 } 7272 7273 Tmp = DAG.getConstant(0, dl, VT); 7274 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7275 if (I < J) 7276 Tmp2 = 7277 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7278 else 7279 Tmp2 = 7280 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7281 7282 APInt Shift(Sz, 1); 7283 Shift <<= J; 7284 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7285 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7286 } 7287 7288 return Tmp; 7289 } 7290 7291 std::pair<SDValue, SDValue> 7292 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7293 SelectionDAG &DAG) const { 7294 SDLoc SL(LD); 7295 SDValue Chain = LD->getChain(); 7296 SDValue BasePTR = LD->getBasePtr(); 7297 EVT SrcVT = LD->getMemoryVT(); 7298 EVT DstVT = LD->getValueType(0); 7299 ISD::LoadExtType ExtType = LD->getExtensionType(); 7300 7301 if (SrcVT.isScalableVector()) 7302 report_fatal_error("Cannot scalarize scalable vector loads"); 7303 7304 unsigned NumElem = SrcVT.getVectorNumElements(); 7305 7306 EVT SrcEltVT = SrcVT.getScalarType(); 7307 EVT DstEltVT = DstVT.getScalarType(); 7308 7309 // A vector must always be stored in memory as-is, i.e. without any padding 7310 // between the elements, since various code depend on it, e.g. in the 7311 // handling of a bitcast of a vector type to int, which may be done with a 7312 // vector store followed by an integer load. A vector that does not have 7313 // elements that are byte-sized must therefore be stored as an integer 7314 // built out of the extracted vector elements. 7315 if (!SrcEltVT.isByteSized()) { 7316 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7317 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7318 7319 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7320 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7321 7322 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7323 SDValue SrcEltBitMask = DAG.getConstant( 7324 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7325 7326 // Load the whole vector and avoid masking off the top bits as it makes 7327 // the codegen worse. 7328 SDValue Load = 7329 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7330 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7331 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7332 7333 SmallVector<SDValue, 8> Vals; 7334 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7335 unsigned ShiftIntoIdx = 7336 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7337 SDValue ShiftAmount = 7338 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7339 LoadVT, SL, /*LegalTypes=*/false); 7340 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7341 SDValue Elt = 7342 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7343 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7344 7345 if (ExtType != ISD::NON_EXTLOAD) { 7346 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7347 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7348 } 7349 7350 Vals.push_back(Scalar); 7351 } 7352 7353 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7354 return std::make_pair(Value, Load.getValue(1)); 7355 } 7356 7357 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7358 assert(SrcEltVT.isByteSized()); 7359 7360 SmallVector<SDValue, 8> Vals; 7361 SmallVector<SDValue, 8> LoadChains; 7362 7363 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7364 SDValue ScalarLoad = 7365 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7366 LD->getPointerInfo().getWithOffset(Idx * Stride), 7367 SrcEltVT, LD->getOriginalAlign(), 7368 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7369 7370 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7371 7372 Vals.push_back(ScalarLoad.getValue(0)); 7373 LoadChains.push_back(ScalarLoad.getValue(1)); 7374 } 7375 7376 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7377 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7378 7379 return std::make_pair(Value, NewChain); 7380 } 7381 7382 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7383 SelectionDAG &DAG) const { 7384 SDLoc SL(ST); 7385 7386 SDValue Chain = ST->getChain(); 7387 SDValue BasePtr = ST->getBasePtr(); 7388 SDValue Value = ST->getValue(); 7389 EVT StVT = ST->getMemoryVT(); 7390 7391 if (StVT.isScalableVector()) 7392 report_fatal_error("Cannot scalarize scalable vector stores"); 7393 7394 // The type of the data we want to save 7395 EVT RegVT = Value.getValueType(); 7396 EVT RegSclVT = RegVT.getScalarType(); 7397 7398 // The type of data as saved in memory. 7399 EVT MemSclVT = StVT.getScalarType(); 7400 7401 unsigned NumElem = StVT.getVectorNumElements(); 7402 7403 // A vector must always be stored in memory as-is, i.e. without any padding 7404 // between the elements, since various code depend on it, e.g. in the 7405 // handling of a bitcast of a vector type to int, which may be done with a 7406 // vector store followed by an integer load. A vector that does not have 7407 // elements that are byte-sized must therefore be stored as an integer 7408 // built out of the extracted vector elements. 7409 if (!MemSclVT.isByteSized()) { 7410 unsigned NumBits = StVT.getSizeInBits(); 7411 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7412 7413 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7414 7415 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7416 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7417 DAG.getVectorIdxConstant(Idx, SL)); 7418 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7419 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7420 unsigned ShiftIntoIdx = 7421 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7422 SDValue ShiftAmount = 7423 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7424 SDValue ShiftedElt = 7425 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7426 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7427 } 7428 7429 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7430 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7431 ST->getAAInfo()); 7432 } 7433 7434 // Store Stride in bytes 7435 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7436 assert(Stride && "Zero stride!"); 7437 // Extract each of the elements from the original vector and save them into 7438 // memory individually. 7439 SmallVector<SDValue, 8> Stores; 7440 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7441 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7442 DAG.getVectorIdxConstant(Idx, SL)); 7443 7444 SDValue Ptr = 7445 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7446 7447 // This scalar TruncStore may be illegal, but we legalize it later. 7448 SDValue Store = DAG.getTruncStore( 7449 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7450 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7451 ST->getAAInfo()); 7452 7453 Stores.push_back(Store); 7454 } 7455 7456 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7457 } 7458 7459 std::pair<SDValue, SDValue> 7460 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7461 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7462 "unaligned indexed loads not implemented!"); 7463 SDValue Chain = LD->getChain(); 7464 SDValue Ptr = LD->getBasePtr(); 7465 EVT VT = LD->getValueType(0); 7466 EVT LoadedVT = LD->getMemoryVT(); 7467 SDLoc dl(LD); 7468 auto &MF = DAG.getMachineFunction(); 7469 7470 if (VT.isFloatingPoint() || VT.isVector()) { 7471 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7472 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7473 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7474 LoadedVT.isVector()) { 7475 // Scalarize the load and let the individual components be handled. 7476 return scalarizeVectorLoad(LD, DAG); 7477 } 7478 7479 // Expand to a (misaligned) integer load of the same size, 7480 // then bitconvert to floating point or vector. 7481 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7482 LD->getMemOperand()); 7483 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7484 if (LoadedVT != VT) 7485 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7486 ISD::ANY_EXTEND, dl, VT, Result); 7487 7488 return std::make_pair(Result, newLoad.getValue(1)); 7489 } 7490 7491 // Copy the value to a (aligned) stack slot using (unaligned) integer 7492 // loads and stores, then do a (aligned) load from the stack slot. 7493 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7494 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7495 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7496 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7497 7498 // Make sure the stack slot is also aligned for the register type. 7499 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7500 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7501 SmallVector<SDValue, 8> Stores; 7502 SDValue StackPtr = StackBase; 7503 unsigned Offset = 0; 7504 7505 EVT PtrVT = Ptr.getValueType(); 7506 EVT StackPtrVT = StackPtr.getValueType(); 7507 7508 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7509 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7510 7511 // Do all but one copies using the full register width. 7512 for (unsigned i = 1; i < NumRegs; i++) { 7513 // Load one integer register's worth from the original location. 7514 SDValue Load = DAG.getLoad( 7515 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7516 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7517 LD->getAAInfo()); 7518 // Follow the load with a store to the stack slot. Remember the store. 7519 Stores.push_back(DAG.getStore( 7520 Load.getValue(1), dl, Load, StackPtr, 7521 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7522 // Increment the pointers. 7523 Offset += RegBytes; 7524 7525 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7526 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7527 } 7528 7529 // The last copy may be partial. Do an extending load. 7530 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7531 8 * (LoadedBytes - Offset)); 7532 SDValue Load = 7533 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7534 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7535 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7536 LD->getAAInfo()); 7537 // Follow the load with a store to the stack slot. Remember the store. 7538 // On big-endian machines this requires a truncating store to ensure 7539 // that the bits end up in the right place. 7540 Stores.push_back(DAG.getTruncStore( 7541 Load.getValue(1), dl, Load, StackPtr, 7542 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7543 7544 // The order of the stores doesn't matter - say it with a TokenFactor. 7545 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7546 7547 // Finally, perform the original load only redirected to the stack slot. 7548 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7549 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7550 LoadedVT); 7551 7552 // Callers expect a MERGE_VALUES node. 7553 return std::make_pair(Load, TF); 7554 } 7555 7556 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7557 "Unaligned load of unsupported type."); 7558 7559 // Compute the new VT that is half the size of the old one. This is an 7560 // integer MVT. 7561 unsigned NumBits = LoadedVT.getSizeInBits(); 7562 EVT NewLoadedVT; 7563 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7564 NumBits >>= 1; 7565 7566 Align Alignment = LD->getOriginalAlign(); 7567 unsigned IncrementSize = NumBits / 8; 7568 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7569 7570 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7571 if (HiExtType == ISD::NON_EXTLOAD) 7572 HiExtType = ISD::ZEXTLOAD; 7573 7574 // Load the value in two parts 7575 SDValue Lo, Hi; 7576 if (DAG.getDataLayout().isLittleEndian()) { 7577 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7578 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7579 LD->getAAInfo()); 7580 7581 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7582 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7583 LD->getPointerInfo().getWithOffset(IncrementSize), 7584 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7585 LD->getAAInfo()); 7586 } else { 7587 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7588 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7589 LD->getAAInfo()); 7590 7591 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7592 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7593 LD->getPointerInfo().getWithOffset(IncrementSize), 7594 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7595 LD->getAAInfo()); 7596 } 7597 7598 // aggregate the two parts 7599 SDValue ShiftAmount = 7600 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7601 DAG.getDataLayout())); 7602 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7603 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7604 7605 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7606 Hi.getValue(1)); 7607 7608 return std::make_pair(Result, TF); 7609 } 7610 7611 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7612 SelectionDAG &DAG) const { 7613 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7614 "unaligned indexed stores not implemented!"); 7615 SDValue Chain = ST->getChain(); 7616 SDValue Ptr = ST->getBasePtr(); 7617 SDValue Val = ST->getValue(); 7618 EVT VT = Val.getValueType(); 7619 Align Alignment = ST->getOriginalAlign(); 7620 auto &MF = DAG.getMachineFunction(); 7621 EVT StoreMemVT = ST->getMemoryVT(); 7622 7623 SDLoc dl(ST); 7624 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7625 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7626 if (isTypeLegal(intVT)) { 7627 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7628 StoreMemVT.isVector()) { 7629 // Scalarize the store and let the individual components be handled. 7630 SDValue Result = scalarizeVectorStore(ST, DAG); 7631 return Result; 7632 } 7633 // Expand to a bitconvert of the value to the integer type of the 7634 // same size, then a (misaligned) int store. 7635 // FIXME: Does not handle truncating floating point stores! 7636 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7637 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7638 Alignment, ST->getMemOperand()->getFlags()); 7639 return Result; 7640 } 7641 // Do a (aligned) store to a stack slot, then copy from the stack slot 7642 // to the final destination using (unaligned) integer loads and stores. 7643 MVT RegVT = getRegisterType( 7644 *DAG.getContext(), 7645 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7646 EVT PtrVT = Ptr.getValueType(); 7647 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7648 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7649 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7650 7651 // Make sure the stack slot is also aligned for the register type. 7652 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7653 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7654 7655 // Perform the original store, only redirected to the stack slot. 7656 SDValue Store = DAG.getTruncStore( 7657 Chain, dl, Val, StackPtr, 7658 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7659 7660 EVT StackPtrVT = StackPtr.getValueType(); 7661 7662 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7663 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7664 SmallVector<SDValue, 8> Stores; 7665 unsigned Offset = 0; 7666 7667 // Do all but one copies using the full register width. 7668 for (unsigned i = 1; i < NumRegs; i++) { 7669 // Load one integer register's worth from the stack slot. 7670 SDValue Load = DAG.getLoad( 7671 RegVT, dl, Store, StackPtr, 7672 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7673 // Store it to the final location. Remember the store. 7674 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7675 ST->getPointerInfo().getWithOffset(Offset), 7676 ST->getOriginalAlign(), 7677 ST->getMemOperand()->getFlags())); 7678 // Increment the pointers. 7679 Offset += RegBytes; 7680 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7681 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7682 } 7683 7684 // The last store may be partial. Do a truncating store. On big-endian 7685 // machines this requires an extending load from the stack slot to ensure 7686 // that the bits are in the right place. 7687 EVT LoadMemVT = 7688 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7689 7690 // Load from the stack slot. 7691 SDValue Load = DAG.getExtLoad( 7692 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7693 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7694 7695 Stores.push_back( 7696 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7697 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7698 ST->getOriginalAlign(), 7699 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7700 // The order of the stores doesn't matter - say it with a TokenFactor. 7701 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7702 return Result; 7703 } 7704 7705 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7706 "Unaligned store of unknown type."); 7707 // Get the half-size VT 7708 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7709 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7710 unsigned IncrementSize = NumBits / 8; 7711 7712 // Divide the stored value in two parts. 7713 SDValue ShiftAmount = DAG.getConstant( 7714 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7715 SDValue Lo = Val; 7716 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7717 7718 // Store the two parts 7719 SDValue Store1, Store2; 7720 Store1 = DAG.getTruncStore(Chain, dl, 7721 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7722 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7723 ST->getMemOperand()->getFlags()); 7724 7725 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7726 Store2 = DAG.getTruncStore( 7727 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7728 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7729 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7730 7731 SDValue Result = 7732 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7733 return Result; 7734 } 7735 7736 SDValue 7737 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7738 const SDLoc &DL, EVT DataVT, 7739 SelectionDAG &DAG, 7740 bool IsCompressedMemory) const { 7741 SDValue Increment; 7742 EVT AddrVT = Addr.getValueType(); 7743 EVT MaskVT = Mask.getValueType(); 7744 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7745 "Incompatible types of Data and Mask"); 7746 if (IsCompressedMemory) { 7747 if (DataVT.isScalableVector()) 7748 report_fatal_error( 7749 "Cannot currently handle compressed memory with scalable vectors"); 7750 // Incrementing the pointer according to number of '1's in the mask. 7751 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7752 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7753 if (MaskIntVT.getSizeInBits() < 32) { 7754 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7755 MaskIntVT = MVT::i32; 7756 } 7757 7758 // Count '1's with POPCNT. 7759 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7760 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7761 // Scale is an element size in bytes. 7762 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7763 AddrVT); 7764 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7765 } else if (DataVT.isScalableVector()) { 7766 Increment = DAG.getVScale(DL, AddrVT, 7767 APInt(AddrVT.getFixedSizeInBits(), 7768 DataVT.getStoreSize().getKnownMinSize())); 7769 } else 7770 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7771 7772 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7773 } 7774 7775 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7776 SDValue Idx, 7777 EVT VecVT, 7778 const SDLoc &dl) { 7779 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7780 return Idx; 7781 7782 EVT IdxVT = Idx.getValueType(); 7783 unsigned NElts = VecVT.getVectorMinNumElements(); 7784 if (VecVT.isScalableVector()) { 7785 // If this is a constant index and we know the value is less than the 7786 // minimum number of elements then it's safe to return Idx. 7787 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7788 if (IdxCst->getZExtValue() < NElts) 7789 return Idx; 7790 SDValue VS = 7791 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7792 SDValue Sub = 7793 DAG.getNode(ISD::SUB, dl, IdxVT, VS, DAG.getConstant(1, dl, IdxVT)); 7794 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7795 } 7796 if (isPowerOf2_32(NElts)) { 7797 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7798 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7799 DAG.getConstant(Imm, dl, IdxVT)); 7800 } 7801 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7802 DAG.getConstant(NElts - 1, dl, IdxVT)); 7803 } 7804 7805 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7806 SDValue VecPtr, EVT VecVT, 7807 SDValue Index) const { 7808 SDLoc dl(Index); 7809 // Make sure the index type is big enough to compute in. 7810 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7811 7812 EVT EltVT = VecVT.getVectorElementType(); 7813 7814 // Calculate the element offset and add it to the pointer. 7815 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7816 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7817 "Converting bits to bytes lost precision"); 7818 7819 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7820 7821 EVT IdxVT = Index.getValueType(); 7822 7823 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7824 DAG.getConstant(EltSize, dl, IdxVT)); 7825 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7826 } 7827 7828 //===----------------------------------------------------------------------===// 7829 // Implementation of Emulated TLS Model 7830 //===----------------------------------------------------------------------===// 7831 7832 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7833 SelectionDAG &DAG) const { 7834 // Access to address of TLS varialbe xyz is lowered to a function call: 7835 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7836 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7837 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7838 SDLoc dl(GA); 7839 7840 ArgListTy Args; 7841 ArgListEntry Entry; 7842 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7843 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7844 StringRef EmuTlsVarName(NameString); 7845 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7846 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7847 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7848 Entry.Ty = VoidPtrType; 7849 Args.push_back(Entry); 7850 7851 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7852 7853 TargetLowering::CallLoweringInfo CLI(DAG); 7854 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7855 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7856 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7857 7858 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7859 // At last for X86 targets, maybe good for other targets too? 7860 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7861 MFI.setAdjustsStack(true); // Is this only for X86 target? 7862 MFI.setHasCalls(true); 7863 7864 assert((GA->getOffset() == 0) && 7865 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7866 return CallResult.first; 7867 } 7868 7869 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7870 SelectionDAG &DAG) const { 7871 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7872 if (!isCtlzFast()) 7873 return SDValue(); 7874 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7875 SDLoc dl(Op); 7876 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7877 if (C->isNullValue() && CC == ISD::SETEQ) { 7878 EVT VT = Op.getOperand(0).getValueType(); 7879 SDValue Zext = Op.getOperand(0); 7880 if (VT.bitsLT(MVT::i32)) { 7881 VT = MVT::i32; 7882 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7883 } 7884 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7885 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7886 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7887 DAG.getConstant(Log2b, dl, MVT::i32)); 7888 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7889 } 7890 } 7891 return SDValue(); 7892 } 7893 7894 // Convert redundant addressing modes (e.g. scaling is redundant 7895 // when accessing bytes). 7896 ISD::MemIndexType 7897 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7898 SDValue Offsets) const { 7899 bool IsScaledIndex = 7900 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7901 bool IsSignedIndex = 7902 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7903 7904 // Scaling is unimportant for bytes, canonicalize to unscaled. 7905 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7906 IsScaledIndex = false; 7907 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7908 } 7909 7910 return IndexType; 7911 } 7912 7913 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7914 SDValue Op0 = Node->getOperand(0); 7915 SDValue Op1 = Node->getOperand(1); 7916 EVT VT = Op0.getValueType(); 7917 unsigned Opcode = Node->getOpcode(); 7918 SDLoc DL(Node); 7919 7920 // umin(x,y) -> sub(x,usubsat(x,y)) 7921 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7922 isOperationLegal(ISD::USUBSAT, VT)) { 7923 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7924 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7925 } 7926 7927 // umax(x,y) -> add(x,usubsat(y,x)) 7928 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7929 isOperationLegal(ISD::USUBSAT, VT)) { 7930 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7931 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7932 } 7933 7934 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7935 ISD::CondCode CC; 7936 switch (Opcode) { 7937 default: llvm_unreachable("How did we get here?"); 7938 case ISD::SMAX: CC = ISD::SETGT; break; 7939 case ISD::SMIN: CC = ISD::SETLT; break; 7940 case ISD::UMAX: CC = ISD::SETUGT; break; 7941 case ISD::UMIN: CC = ISD::SETULT; break; 7942 } 7943 7944 // FIXME: Should really try to split the vector in case it's legal on a 7945 // subvector. 7946 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7947 return DAG.UnrollVectorOp(Node); 7948 7949 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7950 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7951 } 7952 7953 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7954 unsigned Opcode = Node->getOpcode(); 7955 SDValue LHS = Node->getOperand(0); 7956 SDValue RHS = Node->getOperand(1); 7957 EVT VT = LHS.getValueType(); 7958 SDLoc dl(Node); 7959 7960 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7961 assert(VT.isInteger() && "Expected operands to be integers"); 7962 7963 // usub.sat(a, b) -> umax(a, b) - b 7964 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7965 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7966 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7967 } 7968 7969 // uadd.sat(a, b) -> umin(a, ~b) + b 7970 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7971 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7972 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7973 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7974 } 7975 7976 unsigned OverflowOp; 7977 switch (Opcode) { 7978 case ISD::SADDSAT: 7979 OverflowOp = ISD::SADDO; 7980 break; 7981 case ISD::UADDSAT: 7982 OverflowOp = ISD::UADDO; 7983 break; 7984 case ISD::SSUBSAT: 7985 OverflowOp = ISD::SSUBO; 7986 break; 7987 case ISD::USUBSAT: 7988 OverflowOp = ISD::USUBO; 7989 break; 7990 default: 7991 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7992 "addition or subtraction node."); 7993 } 7994 7995 // FIXME: Should really try to split the vector in case it's legal on a 7996 // subvector. 7997 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7998 return DAG.UnrollVectorOp(Node); 7999 8000 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8001 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8002 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8003 SDValue SumDiff = Result.getValue(0); 8004 SDValue Overflow = Result.getValue(1); 8005 SDValue Zero = DAG.getConstant(0, dl, VT); 8006 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8007 8008 if (Opcode == ISD::UADDSAT) { 8009 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8010 // (LHS + RHS) | OverflowMask 8011 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8012 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8013 } 8014 // Overflow ? 0xffff.... : (LHS + RHS) 8015 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8016 } 8017 8018 if (Opcode == ISD::USUBSAT) { 8019 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8020 // (LHS - RHS) & ~OverflowMask 8021 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8022 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8023 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8024 } 8025 // Overflow ? 0 : (LHS - RHS) 8026 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8027 } 8028 8029 // SatMax -> Overflow && SumDiff < 0 8030 // SatMin -> Overflow && SumDiff >= 0 8031 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8032 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 8033 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8034 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8035 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 8036 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 8037 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8038 } 8039 8040 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8041 unsigned Opcode = Node->getOpcode(); 8042 bool IsSigned = Opcode == ISD::SSHLSAT; 8043 SDValue LHS = Node->getOperand(0); 8044 SDValue RHS = Node->getOperand(1); 8045 EVT VT = LHS.getValueType(); 8046 SDLoc dl(Node); 8047 8048 assert((Node->getOpcode() == ISD::SSHLSAT || 8049 Node->getOpcode() == ISD::USHLSAT) && 8050 "Expected a SHLSAT opcode"); 8051 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8052 assert(VT.isInteger() && "Expected operands to be integers"); 8053 8054 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8055 8056 unsigned BW = VT.getScalarSizeInBits(); 8057 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8058 SDValue Orig = 8059 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8060 8061 SDValue SatVal; 8062 if (IsSigned) { 8063 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8064 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8065 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8066 SatMin, SatMax, ISD::SETLT); 8067 } else { 8068 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8069 } 8070 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8071 8072 return Result; 8073 } 8074 8075 SDValue 8076 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8077 assert((Node->getOpcode() == ISD::SMULFIX || 8078 Node->getOpcode() == ISD::UMULFIX || 8079 Node->getOpcode() == ISD::SMULFIXSAT || 8080 Node->getOpcode() == ISD::UMULFIXSAT) && 8081 "Expected a fixed point multiplication opcode"); 8082 8083 SDLoc dl(Node); 8084 SDValue LHS = Node->getOperand(0); 8085 SDValue RHS = Node->getOperand(1); 8086 EVT VT = LHS.getValueType(); 8087 unsigned Scale = Node->getConstantOperandVal(2); 8088 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8089 Node->getOpcode() == ISD::UMULFIXSAT); 8090 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8091 Node->getOpcode() == ISD::SMULFIXSAT); 8092 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8093 unsigned VTSize = VT.getScalarSizeInBits(); 8094 8095 if (!Scale) { 8096 // [us]mul.fix(a, b, 0) -> mul(a, b) 8097 if (!Saturating) { 8098 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8099 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8100 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8101 SDValue Result = 8102 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8103 SDValue Product = Result.getValue(0); 8104 SDValue Overflow = Result.getValue(1); 8105 SDValue Zero = DAG.getConstant(0, dl, VT); 8106 8107 APInt MinVal = APInt::getSignedMinValue(VTSize); 8108 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8109 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8110 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8111 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 8112 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 8113 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8114 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8115 SDValue Result = 8116 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8117 SDValue Product = Result.getValue(0); 8118 SDValue Overflow = Result.getValue(1); 8119 8120 APInt MaxVal = APInt::getMaxValue(VTSize); 8121 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8122 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8123 } 8124 } 8125 8126 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8127 "Expected scale to be less than the number of bits if signed or at " 8128 "most the number of bits if unsigned."); 8129 assert(LHS.getValueType() == RHS.getValueType() && 8130 "Expected both operands to be the same type"); 8131 8132 // Get the upper and lower bits of the result. 8133 SDValue Lo, Hi; 8134 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8135 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8136 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8137 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8138 Lo = Result.getValue(0); 8139 Hi = Result.getValue(1); 8140 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8141 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8142 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8143 } else if (VT.isVector()) { 8144 return SDValue(); 8145 } else { 8146 report_fatal_error("Unable to expand fixed point multiplication."); 8147 } 8148 8149 if (Scale == VTSize) 8150 // Result is just the top half since we'd be shifting by the width of the 8151 // operand. Overflow impossible so this works for both UMULFIX and 8152 // UMULFIXSAT. 8153 return Hi; 8154 8155 // The result will need to be shifted right by the scale since both operands 8156 // are scaled. The result is given to us in 2 halves, so we only want part of 8157 // both in the result. 8158 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8159 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8160 DAG.getConstant(Scale, dl, ShiftTy)); 8161 if (!Saturating) 8162 return Result; 8163 8164 if (!Signed) { 8165 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8166 // widened multiplication) aren't all zeroes. 8167 8168 // Saturate to max if ((Hi >> Scale) != 0), 8169 // which is the same as if (Hi > ((1 << Scale) - 1)) 8170 APInt MaxVal = APInt::getMaxValue(VTSize); 8171 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8172 dl, VT); 8173 Result = DAG.getSelectCC(dl, Hi, LowMask, 8174 DAG.getConstant(MaxVal, dl, VT), Result, 8175 ISD::SETUGT); 8176 8177 return Result; 8178 } 8179 8180 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8181 // widened multiplication) aren't all ones or all zeroes. 8182 8183 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8184 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8185 8186 if (Scale == 0) { 8187 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8188 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8189 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8190 // Saturated to SatMin if wide product is negative, and SatMax if wide 8191 // product is positive ... 8192 SDValue Zero = DAG.getConstant(0, dl, VT); 8193 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8194 ISD::SETLT); 8195 // ... but only if we overflowed. 8196 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8197 } 8198 8199 // We handled Scale==0 above so all the bits to examine is in Hi. 8200 8201 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8202 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8203 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8204 dl, VT); 8205 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8206 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8207 // which is the same as if (HI < (-1 << (Scale - 1)) 8208 SDValue HighMask = 8209 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8210 dl, VT); 8211 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8212 return Result; 8213 } 8214 8215 SDValue 8216 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8217 SDValue LHS, SDValue RHS, 8218 unsigned Scale, SelectionDAG &DAG) const { 8219 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8220 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8221 "Expected a fixed point division opcode"); 8222 8223 EVT VT = LHS.getValueType(); 8224 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8225 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8226 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8227 8228 // If there is enough room in the type to upscale the LHS or downscale the 8229 // RHS before the division, we can perform it in this type without having to 8230 // resize. For signed operations, the LHS headroom is the number of 8231 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8232 // The headroom for the RHS is the number of trailing zeroes. 8233 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8234 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8235 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8236 8237 // For signed saturating operations, we need to be able to detect true integer 8238 // division overflow; that is, when you have MIN / -EPS. However, this 8239 // is undefined behavior and if we emit divisions that could take such 8240 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8241 // example). 8242 // Avoid this by requiring an extra bit so that we never get this case. 8243 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8244 // signed saturating division, we need to emit a whopping 32-bit division. 8245 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8246 return SDValue(); 8247 8248 unsigned LHSShift = std::min(LHSLead, Scale); 8249 unsigned RHSShift = Scale - LHSShift; 8250 8251 // At this point, we know that if we shift the LHS up by LHSShift and the 8252 // RHS down by RHSShift, we can emit a regular division with a final scaling 8253 // factor of Scale. 8254 8255 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8256 if (LHSShift) 8257 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8258 DAG.getConstant(LHSShift, dl, ShiftTy)); 8259 if (RHSShift) 8260 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8261 DAG.getConstant(RHSShift, dl, ShiftTy)); 8262 8263 SDValue Quot; 8264 if (Signed) { 8265 // For signed operations, if the resulting quotient is negative and the 8266 // remainder is nonzero, subtract 1 from the quotient to round towards 8267 // negative infinity. 8268 SDValue Rem; 8269 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8270 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8271 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8272 if (isTypeLegal(VT) && 8273 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8274 Quot = DAG.getNode(ISD::SDIVREM, dl, 8275 DAG.getVTList(VT, VT), 8276 LHS, RHS); 8277 Rem = Quot.getValue(1); 8278 Quot = Quot.getValue(0); 8279 } else { 8280 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8281 LHS, RHS); 8282 Rem = DAG.getNode(ISD::SREM, dl, VT, 8283 LHS, RHS); 8284 } 8285 SDValue Zero = DAG.getConstant(0, dl, VT); 8286 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8287 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8288 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8289 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8290 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8291 DAG.getConstant(1, dl, VT)); 8292 Quot = DAG.getSelect(dl, VT, 8293 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8294 Sub1, Quot); 8295 } else 8296 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8297 LHS, RHS); 8298 8299 return Quot; 8300 } 8301 8302 void TargetLowering::expandUADDSUBO( 8303 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8304 SDLoc dl(Node); 8305 SDValue LHS = Node->getOperand(0); 8306 SDValue RHS = Node->getOperand(1); 8307 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8308 8309 // If ADD/SUBCARRY is legal, use that instead. 8310 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8311 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8312 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8313 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8314 { LHS, RHS, CarryIn }); 8315 Result = SDValue(NodeCarry.getNode(), 0); 8316 Overflow = SDValue(NodeCarry.getNode(), 1); 8317 return; 8318 } 8319 8320 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8321 LHS.getValueType(), LHS, RHS); 8322 8323 EVT ResultType = Node->getValueType(1); 8324 EVT SetCCType = getSetCCResultType( 8325 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8326 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8327 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8328 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8329 } 8330 8331 void TargetLowering::expandSADDSUBO( 8332 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8333 SDLoc dl(Node); 8334 SDValue LHS = Node->getOperand(0); 8335 SDValue RHS = Node->getOperand(1); 8336 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8337 8338 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8339 LHS.getValueType(), LHS, RHS); 8340 8341 EVT ResultType = Node->getValueType(1); 8342 EVT OType = getSetCCResultType( 8343 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8344 8345 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8346 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8347 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8348 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8349 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8350 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8351 return; 8352 } 8353 8354 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8355 8356 // For an addition, the result should be less than one of the operands (LHS) 8357 // if and only if the other operand (RHS) is negative, otherwise there will 8358 // be overflow. 8359 // For a subtraction, the result should be less than one of the operands 8360 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8361 // otherwise there will be overflow. 8362 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8363 SDValue ConditionRHS = 8364 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8365 8366 Overflow = DAG.getBoolExtOrTrunc( 8367 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8368 ResultType, ResultType); 8369 } 8370 8371 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8372 SDValue &Overflow, SelectionDAG &DAG) const { 8373 SDLoc dl(Node); 8374 EVT VT = Node->getValueType(0); 8375 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8376 SDValue LHS = Node->getOperand(0); 8377 SDValue RHS = Node->getOperand(1); 8378 bool isSigned = Node->getOpcode() == ISD::SMULO; 8379 8380 // For power-of-two multiplications we can use a simpler shift expansion. 8381 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8382 const APInt &C = RHSC->getAPIntValue(); 8383 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8384 if (C.isPowerOf2()) { 8385 // smulo(x, signed_min) is same as umulo(x, signed_min). 8386 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8387 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8388 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8389 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8390 Overflow = DAG.getSetCC(dl, SetCCVT, 8391 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8392 dl, VT, Result, ShiftAmt), 8393 LHS, ISD::SETNE); 8394 return true; 8395 } 8396 } 8397 8398 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8399 if (VT.isVector()) 8400 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8401 VT.getVectorNumElements()); 8402 8403 SDValue BottomHalf; 8404 SDValue TopHalf; 8405 static const unsigned Ops[2][3] = 8406 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8407 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8408 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8409 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8410 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8411 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8412 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8413 RHS); 8414 TopHalf = BottomHalf.getValue(1); 8415 } else if (isTypeLegal(WideVT)) { 8416 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8417 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8418 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8419 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8420 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8421 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8422 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8423 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8424 } else { 8425 if (VT.isVector()) 8426 return false; 8427 8428 // We can fall back to a libcall with an illegal type for the MUL if we 8429 // have a libcall big enough. 8430 // Also, we can fall back to a division in some cases, but that's a big 8431 // performance hit in the general case. 8432 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8433 if (WideVT == MVT::i16) 8434 LC = RTLIB::MUL_I16; 8435 else if (WideVT == MVT::i32) 8436 LC = RTLIB::MUL_I32; 8437 else if (WideVT == MVT::i64) 8438 LC = RTLIB::MUL_I64; 8439 else if (WideVT == MVT::i128) 8440 LC = RTLIB::MUL_I128; 8441 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8442 8443 SDValue HiLHS; 8444 SDValue HiRHS; 8445 if (isSigned) { 8446 // The high part is obtained by SRA'ing all but one of the bits of low 8447 // part. 8448 unsigned LoSize = VT.getFixedSizeInBits(); 8449 HiLHS = 8450 DAG.getNode(ISD::SRA, dl, VT, LHS, 8451 DAG.getConstant(LoSize - 1, dl, 8452 getPointerTy(DAG.getDataLayout()))); 8453 HiRHS = 8454 DAG.getNode(ISD::SRA, dl, VT, RHS, 8455 DAG.getConstant(LoSize - 1, dl, 8456 getPointerTy(DAG.getDataLayout()))); 8457 } else { 8458 HiLHS = DAG.getConstant(0, dl, VT); 8459 HiRHS = DAG.getConstant(0, dl, VT); 8460 } 8461 8462 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8463 // pre-lowered to the correct types. This all depends upon WideVT not 8464 // being a legal type for the architecture and thus has to be split to 8465 // two arguments. 8466 SDValue Ret; 8467 TargetLowering::MakeLibCallOptions CallOptions; 8468 CallOptions.setSExt(isSigned); 8469 CallOptions.setIsPostTypeLegalization(true); 8470 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8471 // Halves of WideVT are packed into registers in different order 8472 // depending on platform endianness. This is usually handled by 8473 // the C calling convention, but we can't defer to it in 8474 // the legalizer. 8475 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8476 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8477 } else { 8478 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8479 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8480 } 8481 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8482 "Ret value is a collection of constituent nodes holding result."); 8483 if (DAG.getDataLayout().isLittleEndian()) { 8484 // Same as above. 8485 BottomHalf = Ret.getOperand(0); 8486 TopHalf = Ret.getOperand(1); 8487 } else { 8488 BottomHalf = Ret.getOperand(1); 8489 TopHalf = Ret.getOperand(0); 8490 } 8491 } 8492 8493 Result = BottomHalf; 8494 if (isSigned) { 8495 SDValue ShiftAmt = DAG.getConstant( 8496 VT.getScalarSizeInBits() - 1, dl, 8497 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8498 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8499 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8500 } else { 8501 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8502 DAG.getConstant(0, dl, VT), ISD::SETNE); 8503 } 8504 8505 // Truncate the result if SetCC returns a larger type than needed. 8506 EVT RType = Node->getValueType(1); 8507 if (RType.bitsLT(Overflow.getValueType())) 8508 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8509 8510 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8511 "Unexpected result type for S/UMULO legalization"); 8512 return true; 8513 } 8514 8515 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8516 SDLoc dl(Node); 8517 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8518 SDValue Op = Node->getOperand(0); 8519 EVT VT = Op.getValueType(); 8520 8521 if (VT.isScalableVector()) 8522 report_fatal_error( 8523 "Expanding reductions for scalable vectors is undefined."); 8524 8525 // Try to use a shuffle reduction for power of two vectors. 8526 if (VT.isPow2VectorType()) { 8527 while (VT.getVectorNumElements() > 1) { 8528 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8529 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8530 break; 8531 8532 SDValue Lo, Hi; 8533 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8534 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8535 VT = HalfVT; 8536 } 8537 } 8538 8539 EVT EltVT = VT.getVectorElementType(); 8540 unsigned NumElts = VT.getVectorNumElements(); 8541 8542 SmallVector<SDValue, 8> Ops; 8543 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8544 8545 SDValue Res = Ops[0]; 8546 for (unsigned i = 1; i < NumElts; i++) 8547 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8548 8549 // Result type may be wider than element type. 8550 if (EltVT != Node->getValueType(0)) 8551 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8552 return Res; 8553 } 8554 8555 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8556 SDLoc dl(Node); 8557 SDValue AccOp = Node->getOperand(0); 8558 SDValue VecOp = Node->getOperand(1); 8559 SDNodeFlags Flags = Node->getFlags(); 8560 8561 EVT VT = VecOp.getValueType(); 8562 EVT EltVT = VT.getVectorElementType(); 8563 8564 if (VT.isScalableVector()) 8565 report_fatal_error( 8566 "Expanding reductions for scalable vectors is undefined."); 8567 8568 unsigned NumElts = VT.getVectorNumElements(); 8569 8570 SmallVector<SDValue, 8> Ops; 8571 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8572 8573 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8574 8575 SDValue Res = AccOp; 8576 for (unsigned i = 0; i < NumElts; i++) 8577 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8578 8579 return Res; 8580 } 8581 8582 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8583 SelectionDAG &DAG) const { 8584 EVT VT = Node->getValueType(0); 8585 SDLoc dl(Node); 8586 bool isSigned = Node->getOpcode() == ISD::SREM; 8587 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8588 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8589 SDValue Dividend = Node->getOperand(0); 8590 SDValue Divisor = Node->getOperand(1); 8591 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8592 SDVTList VTs = DAG.getVTList(VT, VT); 8593 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8594 return true; 8595 } 8596 if (isOperationLegalOrCustom(DivOpc, VT)) { 8597 // X % Y -> X-X/Y*Y 8598 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8599 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8600 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8601 return true; 8602 } 8603 return false; 8604 } 8605 8606 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8607 SelectionDAG &DAG) const { 8608 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8609 SDLoc dl(SDValue(Node, 0)); 8610 SDValue Src = Node->getOperand(0); 8611 8612 // DstVT is the result type, while SatVT is the size to which we saturate 8613 EVT SrcVT = Src.getValueType(); 8614 EVT DstVT = Node->getValueType(0); 8615 8616 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8617 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8618 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8619 assert(SatWidth <= DstWidth && 8620 "Expected saturation width smaller than result width"); 8621 8622 // Determine minimum and maximum integer values and their corresponding 8623 // floating-point values. 8624 APInt MinInt, MaxInt; 8625 if (IsSigned) { 8626 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8627 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8628 } else { 8629 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8630 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8631 } 8632 8633 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8634 // libcall emission cannot handle this. Large result types will fail. 8635 if (SrcVT == MVT::f16) { 8636 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8637 SrcVT = Src.getValueType(); 8638 } 8639 8640 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8641 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8642 8643 APFloat::opStatus MinStatus = 8644 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8645 APFloat::opStatus MaxStatus = 8646 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8647 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8648 !(MaxStatus & APFloat::opStatus::opInexact); 8649 8650 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8651 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8652 8653 // If the integer bounds are exactly representable as floats and min/max are 8654 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8655 // of comparisons and selects. 8656 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8657 isOperationLegal(ISD::FMAXNUM, SrcVT); 8658 if (AreExactFloatBounds && MinMaxLegal) { 8659 SDValue Clamped = Src; 8660 8661 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8662 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8663 // Clamp by MaxFloat from above. NaN cannot occur. 8664 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8665 // Convert clamped value to integer. 8666 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8667 dl, DstVT, Clamped); 8668 8669 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8670 // which will cast to zero. 8671 if (!IsSigned) 8672 return FpToInt; 8673 8674 // Otherwise, select 0 if Src is NaN. 8675 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8676 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8677 ISD::CondCode::SETUO); 8678 } 8679 8680 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8681 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8682 8683 // Result of direct conversion. The assumption here is that the operation is 8684 // non-trapping and it's fine to apply it to an out-of-range value if we 8685 // select it away later. 8686 SDValue FpToInt = 8687 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8688 8689 SDValue Select = FpToInt; 8690 8691 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8692 // MinInt if Src is NaN. 8693 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8694 ISD::CondCode::SETULT); 8695 // If Src OGT MaxFloat, select MaxInt. 8696 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8697 ISD::CondCode::SETOGT); 8698 8699 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8700 // is already zero. 8701 if (!IsSigned) 8702 return Select; 8703 8704 // Otherwise, select 0 if Src is NaN. 8705 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8706 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8707 } 8708 8709 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8710 SelectionDAG &DAG) const { 8711 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8712 assert(Node->getValueType(0).isScalableVector() && 8713 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8714 8715 EVT VT = Node->getValueType(0); 8716 SDValue V1 = Node->getOperand(0); 8717 SDValue V2 = Node->getOperand(1); 8718 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8719 SDLoc DL(Node); 8720 8721 // Expand through memory thusly: 8722 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8723 // Store V1, Ptr 8724 // Store V2, Ptr + sizeof(V1) 8725 // If (Imm < 0) 8726 // TrailingElts = -Imm 8727 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8728 // else 8729 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8730 // Res = Load Ptr 8731 8732 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8733 8734 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8735 VT.getVectorElementCount() * 2); 8736 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8737 EVT PtrVT = StackPtr.getValueType(); 8738 auto &MF = DAG.getMachineFunction(); 8739 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8740 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8741 8742 // Store the lo part of CONCAT_VECTORS(V1, V2) 8743 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8744 // Store the hi part of CONCAT_VECTORS(V1, V2) 8745 SDValue OffsetToV2 = DAG.getVScale( 8746 DL, PtrVT, 8747 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8748 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8749 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8750 8751 if (Imm >= 0) { 8752 // Load back the required element. getVectorElementPointer takes care of 8753 // clamping the index if it's out-of-bounds. 8754 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8755 // Load the spliced result 8756 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8757 MachinePointerInfo::getUnknownStack(MF)); 8758 } 8759 8760 uint64_t TrailingElts = -Imm; 8761 8762 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8763 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8764 SDValue TrailingBytes = 8765 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8766 8767 if (TrailingElts > VT.getVectorMinNumElements()) { 8768 SDValue VLBytes = DAG.getVScale( 8769 DL, PtrVT, 8770 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8771 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8772 } 8773 8774 // Calculate the start address of the spliced result. 8775 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8776 8777 // Load the spliced result 8778 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8779 MachinePointerInfo::getUnknownStack(MF)); 8780 } 8781 8782 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8783 SDValue &LHS, SDValue &RHS, 8784 SDValue &CC, bool &NeedInvert, 8785 const SDLoc &dl, SDValue &Chain, 8786 bool IsSignaling) const { 8787 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8788 MVT OpVT = LHS.getSimpleValueType(); 8789 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8790 NeedInvert = false; 8791 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8792 default: 8793 llvm_unreachable("Unknown condition code action!"); 8794 case TargetLowering::Legal: 8795 // Nothing to do. 8796 break; 8797 case TargetLowering::Expand: { 8798 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8799 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8800 std::swap(LHS, RHS); 8801 CC = DAG.getCondCode(InvCC); 8802 return true; 8803 } 8804 // Swapping operands didn't work. Try inverting the condition. 8805 bool NeedSwap = false; 8806 InvCC = getSetCCInverse(CCCode, OpVT); 8807 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8808 // If inverting the condition is not enough, try swapping operands 8809 // on top of it. 8810 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8811 NeedSwap = true; 8812 } 8813 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8814 CC = DAG.getCondCode(InvCC); 8815 NeedInvert = true; 8816 if (NeedSwap) 8817 std::swap(LHS, RHS); 8818 return true; 8819 } 8820 8821 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8822 unsigned Opc = 0; 8823 switch (CCCode) { 8824 default: 8825 llvm_unreachable("Don't know how to expand this condition!"); 8826 case ISD::SETUO: 8827 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8828 CC1 = ISD::SETUNE; 8829 CC2 = ISD::SETUNE; 8830 Opc = ISD::OR; 8831 break; 8832 } 8833 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8834 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8835 NeedInvert = true; 8836 LLVM_FALLTHROUGH; 8837 case ISD::SETO: 8838 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8839 "If SETO is expanded, SETOEQ must be legal!"); 8840 CC1 = ISD::SETOEQ; 8841 CC2 = ISD::SETOEQ; 8842 Opc = ISD::AND; 8843 break; 8844 case ISD::SETONE: 8845 case ISD::SETUEQ: 8846 // If the SETUO or SETO CC isn't legal, we might be able to use 8847 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8848 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8849 // the operands. 8850 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8851 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8852 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8853 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8854 CC1 = ISD::SETOGT; 8855 CC2 = ISD::SETOLT; 8856 Opc = ISD::OR; 8857 NeedInvert = ((unsigned)CCCode & 0x8U); 8858 break; 8859 } 8860 LLVM_FALLTHROUGH; 8861 case ISD::SETOEQ: 8862 case ISD::SETOGT: 8863 case ISD::SETOGE: 8864 case ISD::SETOLT: 8865 case ISD::SETOLE: 8866 case ISD::SETUNE: 8867 case ISD::SETUGT: 8868 case ISD::SETUGE: 8869 case ISD::SETULT: 8870 case ISD::SETULE: 8871 // If we are floating point, assign and break, otherwise fall through. 8872 if (!OpVT.isInteger()) { 8873 // We can use the 4th bit to tell if we are the unordered 8874 // or ordered version of the opcode. 8875 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8876 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8877 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8878 break; 8879 } 8880 // Fallthrough if we are unsigned integer. 8881 LLVM_FALLTHROUGH; 8882 case ISD::SETLE: 8883 case ISD::SETGT: 8884 case ISD::SETGE: 8885 case ISD::SETLT: 8886 case ISD::SETNE: 8887 case ISD::SETEQ: 8888 // If all combinations of inverting the condition and swapping operands 8889 // didn't work then we have no means to expand the condition. 8890 llvm_unreachable("Don't know how to expand this condition!"); 8891 } 8892 8893 SDValue SetCC1, SetCC2; 8894 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8895 // If we aren't the ordered or unorder operation, 8896 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8897 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8898 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8899 } else { 8900 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8901 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8902 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8903 } 8904 if (Chain) 8905 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8906 SetCC2.getValue(1)); 8907 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8908 RHS = SDValue(); 8909 CC = SDValue(); 8910 return true; 8911 } 8912 } 8913 return false; 8914 } 8915