xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/CodeGen/InterleavedAccessPass.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
17330f729Sjoerg //===- InterleavedAccessPass.cpp ------------------------------------------===//
27330f729Sjoerg //
37330f729Sjoerg // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
47330f729Sjoerg // See https://llvm.org/LICENSE.txt for license information.
57330f729Sjoerg // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
67330f729Sjoerg //
77330f729Sjoerg //===----------------------------------------------------------------------===//
87330f729Sjoerg //
97330f729Sjoerg // This file implements the Interleaved Access pass, which identifies
107330f729Sjoerg // interleaved memory accesses and transforms them into target specific
117330f729Sjoerg // intrinsics.
127330f729Sjoerg //
137330f729Sjoerg // An interleaved load reads data from memory into several vectors, with
147330f729Sjoerg // DE-interleaving the data on a factor. An interleaved store writes several
157330f729Sjoerg // vectors to memory with RE-interleaving the data on a factor.
167330f729Sjoerg //
177330f729Sjoerg // As interleaved accesses are difficult to identified in CodeGen (mainly
187330f729Sjoerg // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
197330f729Sjoerg // IR), we identify and transform them to intrinsics in this pass so the
207330f729Sjoerg // intrinsics can be easily matched into target specific instructions later in
217330f729Sjoerg // CodeGen.
227330f729Sjoerg //
237330f729Sjoerg // E.g. An interleaved load (Factor = 2):
247330f729Sjoerg //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25*82d56013Sjoerg //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26*82d56013Sjoerg //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
277330f729Sjoerg //
287330f729Sjoerg // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
297330f729Sjoerg // intrinsic in ARM backend.
307330f729Sjoerg //
317330f729Sjoerg // In X86, this can be further optimized into a set of target
327330f729Sjoerg // specific loads followed by an optimized sequence of shuffles.
337330f729Sjoerg //
347330f729Sjoerg // E.g. An interleaved store (Factor = 3):
357330f729Sjoerg //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
367330f729Sjoerg //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
377330f729Sjoerg //        store <12 x i32> %i.vec, <12 x i32>* %ptr
387330f729Sjoerg //
397330f729Sjoerg // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
407330f729Sjoerg // intrinsic in ARM backend.
417330f729Sjoerg //
427330f729Sjoerg // Similarly, a set of interleaved stores can be transformed into an optimized
437330f729Sjoerg // sequence of shuffles followed by a set of target specific stores for X86.
447330f729Sjoerg //
457330f729Sjoerg //===----------------------------------------------------------------------===//
467330f729Sjoerg 
477330f729Sjoerg #include "llvm/ADT/ArrayRef.h"
487330f729Sjoerg #include "llvm/ADT/DenseMap.h"
497330f729Sjoerg #include "llvm/ADT/SmallVector.h"
507330f729Sjoerg #include "llvm/CodeGen/TargetLowering.h"
517330f729Sjoerg #include "llvm/CodeGen/TargetPassConfig.h"
527330f729Sjoerg #include "llvm/CodeGen/TargetSubtargetInfo.h"
537330f729Sjoerg #include "llvm/IR/Constants.h"
547330f729Sjoerg #include "llvm/IR/Dominators.h"
557330f729Sjoerg #include "llvm/IR/Function.h"
567330f729Sjoerg #include "llvm/IR/IRBuilder.h"
577330f729Sjoerg #include "llvm/IR/InstIterator.h"
587330f729Sjoerg #include "llvm/IR/Instruction.h"
597330f729Sjoerg #include "llvm/IR/Instructions.h"
607330f729Sjoerg #include "llvm/IR/Type.h"
61*82d56013Sjoerg #include "llvm/InitializePasses.h"
627330f729Sjoerg #include "llvm/Pass.h"
637330f729Sjoerg #include "llvm/Support/Casting.h"
647330f729Sjoerg #include "llvm/Support/CommandLine.h"
657330f729Sjoerg #include "llvm/Support/Debug.h"
667330f729Sjoerg #include "llvm/Support/MathExtras.h"
677330f729Sjoerg #include "llvm/Support/raw_ostream.h"
687330f729Sjoerg #include "llvm/Target/TargetMachine.h"
69*82d56013Sjoerg #include "llvm/Transforms/Utils/Local.h"
707330f729Sjoerg #include <cassert>
717330f729Sjoerg #include <utility>
727330f729Sjoerg 
737330f729Sjoerg using namespace llvm;
747330f729Sjoerg 
757330f729Sjoerg #define DEBUG_TYPE "interleaved-access"
767330f729Sjoerg 
777330f729Sjoerg static cl::opt<bool> LowerInterleavedAccesses(
787330f729Sjoerg     "lower-interleaved-accesses",
797330f729Sjoerg     cl::desc("Enable lowering interleaved accesses to intrinsics"),
807330f729Sjoerg     cl::init(true), cl::Hidden);
817330f729Sjoerg 
827330f729Sjoerg namespace {
837330f729Sjoerg 
847330f729Sjoerg class InterleavedAccess : public FunctionPass {
857330f729Sjoerg public:
867330f729Sjoerg   static char ID;
877330f729Sjoerg 
InterleavedAccess()887330f729Sjoerg   InterleavedAccess() : FunctionPass(ID) {
897330f729Sjoerg     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
907330f729Sjoerg   }
917330f729Sjoerg 
getPassName() const927330f729Sjoerg   StringRef getPassName() const override { return "Interleaved Access Pass"; }
937330f729Sjoerg 
947330f729Sjoerg   bool runOnFunction(Function &F) override;
957330f729Sjoerg 
getAnalysisUsage(AnalysisUsage & AU) const967330f729Sjoerg   void getAnalysisUsage(AnalysisUsage &AU) const override {
977330f729Sjoerg     AU.addRequired<DominatorTreeWrapperPass>();
987330f729Sjoerg     AU.addPreserved<DominatorTreeWrapperPass>();
997330f729Sjoerg   }
1007330f729Sjoerg 
1017330f729Sjoerg private:
1027330f729Sjoerg   DominatorTree *DT = nullptr;
1037330f729Sjoerg   const TargetLowering *TLI = nullptr;
1047330f729Sjoerg 
1057330f729Sjoerg   /// The maximum supported interleave factor.
1067330f729Sjoerg   unsigned MaxFactor;
1077330f729Sjoerg 
1087330f729Sjoerg   /// Transform an interleaved load into target specific intrinsics.
1097330f729Sjoerg   bool lowerInterleavedLoad(LoadInst *LI,
1107330f729Sjoerg                             SmallVector<Instruction *, 32> &DeadInsts);
1117330f729Sjoerg 
1127330f729Sjoerg   /// Transform an interleaved store into target specific intrinsics.
1137330f729Sjoerg   bool lowerInterleavedStore(StoreInst *SI,
1147330f729Sjoerg                              SmallVector<Instruction *, 32> &DeadInsts);
1157330f729Sjoerg 
1167330f729Sjoerg   /// Returns true if the uses of an interleaved load by the
1177330f729Sjoerg   /// extractelement instructions in \p Extracts can be replaced by uses of the
1187330f729Sjoerg   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
1197330f729Sjoerg   /// replacements are also performed.
1207330f729Sjoerg   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
1217330f729Sjoerg                           ArrayRef<ShuffleVectorInst *> Shuffles);
122*82d56013Sjoerg 
123*82d56013Sjoerg   /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
124*82d56013Sjoerg   /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
125*82d56013Sjoerg   /// interleaving load. Any newly created shuffles that operate on \p LI will
126*82d56013Sjoerg   /// be added to \p Shuffles. Returns true, if any changes to the IR have been
127*82d56013Sjoerg   /// made.
128*82d56013Sjoerg   bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
129*82d56013Sjoerg                             SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
130*82d56013Sjoerg                             LoadInst *LI);
1317330f729Sjoerg };
1327330f729Sjoerg 
1337330f729Sjoerg } // end anonymous namespace.
1347330f729Sjoerg 
1357330f729Sjoerg char InterleavedAccess::ID = 0;
1367330f729Sjoerg 
1377330f729Sjoerg INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
1387330f729Sjoerg     "Lower interleaved memory accesses to target specific intrinsics", false,
1397330f729Sjoerg     false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)1407330f729Sjoerg INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1417330f729Sjoerg INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
1427330f729Sjoerg     "Lower interleaved memory accesses to target specific intrinsics", false,
1437330f729Sjoerg     false)
1447330f729Sjoerg 
1457330f729Sjoerg FunctionPass *llvm::createInterleavedAccessPass() {
1467330f729Sjoerg   return new InterleavedAccess();
1477330f729Sjoerg }
1487330f729Sjoerg 
1497330f729Sjoerg /// Check if the mask is a DE-interleave mask of the given factor
1507330f729Sjoerg /// \p Factor like:
1517330f729Sjoerg ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
isDeInterleaveMaskOfFactor(ArrayRef<int> Mask,unsigned Factor,unsigned & Index)1527330f729Sjoerg static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
1537330f729Sjoerg                                        unsigned &Index) {
1547330f729Sjoerg   // Check all potential start indices from 0 to (Factor - 1).
1557330f729Sjoerg   for (Index = 0; Index < Factor; Index++) {
1567330f729Sjoerg     unsigned i = 0;
1577330f729Sjoerg 
1587330f729Sjoerg     // Check that elements are in ascending order by Factor. Ignore undef
1597330f729Sjoerg     // elements.
1607330f729Sjoerg     for (; i < Mask.size(); i++)
1617330f729Sjoerg       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
1627330f729Sjoerg         break;
1637330f729Sjoerg 
1647330f729Sjoerg     if (i == Mask.size())
1657330f729Sjoerg       return true;
1667330f729Sjoerg   }
1677330f729Sjoerg 
1687330f729Sjoerg   return false;
1697330f729Sjoerg }
1707330f729Sjoerg 
1717330f729Sjoerg /// Check if the mask is a DE-interleave mask for an interleaved load.
1727330f729Sjoerg ///
1737330f729Sjoerg /// E.g. DE-interleave masks (Factor = 2) could be:
1747330f729Sjoerg ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
1757330f729Sjoerg ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
isDeInterleaveMask(ArrayRef<int> Mask,unsigned & Factor,unsigned & Index,unsigned MaxFactor,unsigned NumLoadElements)1767330f729Sjoerg static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
1777330f729Sjoerg                                unsigned &Index, unsigned MaxFactor,
1787330f729Sjoerg                                unsigned NumLoadElements) {
1797330f729Sjoerg   if (Mask.size() < 2)
1807330f729Sjoerg     return false;
1817330f729Sjoerg 
1827330f729Sjoerg   // Check potential Factors.
1837330f729Sjoerg   for (Factor = 2; Factor <= MaxFactor; Factor++) {
1847330f729Sjoerg     // Make sure we don't produce a load wider than the input load.
1857330f729Sjoerg     if (Mask.size() * Factor > NumLoadElements)
1867330f729Sjoerg       return false;
1877330f729Sjoerg     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
1887330f729Sjoerg       return true;
1897330f729Sjoerg   }
1907330f729Sjoerg 
1917330f729Sjoerg   return false;
1927330f729Sjoerg }
1937330f729Sjoerg 
1947330f729Sjoerg /// Check if the mask can be used in an interleaved store.
1957330f729Sjoerg //
1967330f729Sjoerg /// It checks for a more general pattern than the RE-interleave mask.
1977330f729Sjoerg /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
1987330f729Sjoerg /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
1997330f729Sjoerg /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
2007330f729Sjoerg /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
2017330f729Sjoerg ///
2027330f729Sjoerg /// The particular case of an RE-interleave mask is:
2037330f729Sjoerg /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
2047330f729Sjoerg /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
isReInterleaveMask(ArrayRef<int> Mask,unsigned & Factor,unsigned MaxFactor,unsigned OpNumElts)2057330f729Sjoerg static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
2067330f729Sjoerg                                unsigned MaxFactor, unsigned OpNumElts) {
2077330f729Sjoerg   unsigned NumElts = Mask.size();
2087330f729Sjoerg   if (NumElts < 4)
2097330f729Sjoerg     return false;
2107330f729Sjoerg 
2117330f729Sjoerg   // Check potential Factors.
2127330f729Sjoerg   for (Factor = 2; Factor <= MaxFactor; Factor++) {
2137330f729Sjoerg     if (NumElts % Factor)
2147330f729Sjoerg       continue;
2157330f729Sjoerg 
2167330f729Sjoerg     unsigned LaneLen = NumElts / Factor;
2177330f729Sjoerg     if (!isPowerOf2_32(LaneLen))
2187330f729Sjoerg       continue;
2197330f729Sjoerg 
2207330f729Sjoerg     // Check whether each element matches the general interleaved rule.
2217330f729Sjoerg     // Ignore undef elements, as long as the defined elements match the rule.
2227330f729Sjoerg     // Outer loop processes all factors (x, y, z in the above example)
2237330f729Sjoerg     unsigned I = 0, J;
2247330f729Sjoerg     for (; I < Factor; I++) {
2257330f729Sjoerg       unsigned SavedLaneValue;
2267330f729Sjoerg       unsigned SavedNoUndefs = 0;
2277330f729Sjoerg 
2287330f729Sjoerg       // Inner loop processes consecutive accesses (x, x+1... in the example)
2297330f729Sjoerg       for (J = 0; J < LaneLen - 1; J++) {
2307330f729Sjoerg         // Lane computes x's position in the Mask
2317330f729Sjoerg         unsigned Lane = J * Factor + I;
2327330f729Sjoerg         unsigned NextLane = Lane + Factor;
2337330f729Sjoerg         int LaneValue = Mask[Lane];
2347330f729Sjoerg         int NextLaneValue = Mask[NextLane];
2357330f729Sjoerg 
2367330f729Sjoerg         // If both are defined, values must be sequential
2377330f729Sjoerg         if (LaneValue >= 0 && NextLaneValue >= 0 &&
2387330f729Sjoerg             LaneValue + 1 != NextLaneValue)
2397330f729Sjoerg           break;
2407330f729Sjoerg 
2417330f729Sjoerg         // If the next value is undef, save the current one as reference
2427330f729Sjoerg         if (LaneValue >= 0 && NextLaneValue < 0) {
2437330f729Sjoerg           SavedLaneValue = LaneValue;
2447330f729Sjoerg           SavedNoUndefs = 1;
2457330f729Sjoerg         }
2467330f729Sjoerg 
2477330f729Sjoerg         // Undefs are allowed, but defined elements must still be consecutive:
2487330f729Sjoerg         // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
2497330f729Sjoerg         // Verify this by storing the last non-undef followed by an undef
2507330f729Sjoerg         // Check that following non-undef masks are incremented with the
2517330f729Sjoerg         // corresponding distance.
2527330f729Sjoerg         if (SavedNoUndefs > 0 && LaneValue < 0) {
2537330f729Sjoerg           SavedNoUndefs++;
2547330f729Sjoerg           if (NextLaneValue >= 0 &&
2557330f729Sjoerg               SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
2567330f729Sjoerg             break;
2577330f729Sjoerg         }
2587330f729Sjoerg       }
2597330f729Sjoerg 
2607330f729Sjoerg       if (J < LaneLen - 1)
2617330f729Sjoerg         break;
2627330f729Sjoerg 
2637330f729Sjoerg       int StartMask = 0;
2647330f729Sjoerg       if (Mask[I] >= 0) {
2657330f729Sjoerg         // Check that the start of the I range (J=0) is greater than 0
2667330f729Sjoerg         StartMask = Mask[I];
2677330f729Sjoerg       } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
2687330f729Sjoerg         // StartMask defined by the last value in lane
2697330f729Sjoerg         StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
2707330f729Sjoerg       } else if (SavedNoUndefs > 0) {
2717330f729Sjoerg         // StartMask defined by some non-zero value in the j loop
2727330f729Sjoerg         StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2737330f729Sjoerg       }
2747330f729Sjoerg       // else StartMask remains set to 0, i.e. all elements are undefs
2757330f729Sjoerg 
2767330f729Sjoerg       if (StartMask < 0)
2777330f729Sjoerg         break;
2787330f729Sjoerg       // We must stay within the vectors; This case can happen with undefs.
2797330f729Sjoerg       if (StartMask + LaneLen > OpNumElts*2)
2807330f729Sjoerg         break;
2817330f729Sjoerg     }
2827330f729Sjoerg 
2837330f729Sjoerg     // Found an interleaved mask of current factor.
2847330f729Sjoerg     if (I == Factor)
2857330f729Sjoerg       return true;
2867330f729Sjoerg   }
2877330f729Sjoerg 
2887330f729Sjoerg   return false;
2897330f729Sjoerg }
2907330f729Sjoerg 
lowerInterleavedLoad(LoadInst * LI,SmallVector<Instruction *,32> & DeadInsts)2917330f729Sjoerg bool InterleavedAccess::lowerInterleavedLoad(
2927330f729Sjoerg     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
293*82d56013Sjoerg   if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
2947330f729Sjoerg     return false;
2957330f729Sjoerg 
296*82d56013Sjoerg   // Check if all users of this load are shufflevectors. If we encounter any
297*82d56013Sjoerg   // users that are extractelement instructions or binary operators, we save
298*82d56013Sjoerg   // them to later check if they can be modified to extract from one of the
299*82d56013Sjoerg   // shufflevectors instead of the load.
300*82d56013Sjoerg 
3017330f729Sjoerg   SmallVector<ShuffleVectorInst *, 4> Shuffles;
3027330f729Sjoerg   SmallVector<ExtractElementInst *, 4> Extracts;
303*82d56013Sjoerg   // BinOpShuffles need to be handled a single time in case both operands of the
304*82d56013Sjoerg   // binop are the same load.
305*82d56013Sjoerg   SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
3067330f729Sjoerg 
307*82d56013Sjoerg   for (auto *User : LI->users()) {
308*82d56013Sjoerg     auto *Extract = dyn_cast<ExtractElementInst>(User);
3097330f729Sjoerg     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
3107330f729Sjoerg       Extracts.push_back(Extract);
3117330f729Sjoerg       continue;
3127330f729Sjoerg     }
313*82d56013Sjoerg     auto *BI = dyn_cast<BinaryOperator>(User);
314*82d56013Sjoerg     if (BI && BI->hasOneUse()) {
315*82d56013Sjoerg       if (auto *SVI = dyn_cast<ShuffleVectorInst>(*BI->user_begin())) {
316*82d56013Sjoerg         BinOpShuffles.insert(SVI);
317*82d56013Sjoerg         continue;
318*82d56013Sjoerg       }
319*82d56013Sjoerg     }
320*82d56013Sjoerg     auto *SVI = dyn_cast<ShuffleVectorInst>(User);
3217330f729Sjoerg     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
3227330f729Sjoerg       return false;
3237330f729Sjoerg 
3247330f729Sjoerg     Shuffles.push_back(SVI);
3257330f729Sjoerg   }
3267330f729Sjoerg 
327*82d56013Sjoerg   if (Shuffles.empty() && BinOpShuffles.empty())
3287330f729Sjoerg     return false;
3297330f729Sjoerg 
3307330f729Sjoerg   unsigned Factor, Index;
3317330f729Sjoerg 
332*82d56013Sjoerg   unsigned NumLoadElements =
333*82d56013Sjoerg       cast<FixedVectorType>(LI->getType())->getNumElements();
334*82d56013Sjoerg   auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
3357330f729Sjoerg   // Check if the first shufflevector is DE-interleave shuffle.
336*82d56013Sjoerg   if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
337*82d56013Sjoerg                           NumLoadElements))
3387330f729Sjoerg     return false;
3397330f729Sjoerg 
3407330f729Sjoerg   // Holds the corresponding index for each DE-interleave shuffle.
3417330f729Sjoerg   SmallVector<unsigned, 4> Indices;
3427330f729Sjoerg 
343*82d56013Sjoerg   Type *VecTy = FirstSVI->getType();
3447330f729Sjoerg 
3457330f729Sjoerg   // Check if other shufflevectors are also DE-interleaved of the same type
3467330f729Sjoerg   // and factor as the first shufflevector.
347*82d56013Sjoerg   for (auto *Shuffle : Shuffles) {
348*82d56013Sjoerg     if (Shuffle->getType() != VecTy)
3497330f729Sjoerg       return false;
350*82d56013Sjoerg     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
3517330f729Sjoerg                                     Index))
3527330f729Sjoerg       return false;
3537330f729Sjoerg 
354*82d56013Sjoerg     assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
355*82d56013Sjoerg     Indices.push_back(Index);
356*82d56013Sjoerg   }
357*82d56013Sjoerg   for (auto *Shuffle : BinOpShuffles) {
358*82d56013Sjoerg     if (Shuffle->getType() != VecTy)
359*82d56013Sjoerg       return false;
360*82d56013Sjoerg     if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
361*82d56013Sjoerg                                     Index))
362*82d56013Sjoerg       return false;
363*82d56013Sjoerg 
364*82d56013Sjoerg     assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
365*82d56013Sjoerg 
366*82d56013Sjoerg     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
367*82d56013Sjoerg       Indices.push_back(Index);
368*82d56013Sjoerg     if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
3697330f729Sjoerg       Indices.push_back(Index);
3707330f729Sjoerg   }
3717330f729Sjoerg 
3727330f729Sjoerg   // Try and modify users of the load that are extractelement instructions to
3737330f729Sjoerg   // use the shufflevector instructions instead of the load.
3747330f729Sjoerg   if (!tryReplaceExtracts(Extracts, Shuffles))
3757330f729Sjoerg     return false;
3767330f729Sjoerg 
377*82d56013Sjoerg   bool BinOpShuffleChanged =
378*82d56013Sjoerg       replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
379*82d56013Sjoerg 
3807330f729Sjoerg   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
3817330f729Sjoerg 
3827330f729Sjoerg   // Try to create target specific intrinsics to replace the load and shuffles.
383*82d56013Sjoerg   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
384*82d56013Sjoerg     // If Extracts is not empty, tryReplaceExtracts made changes earlier.
385*82d56013Sjoerg     return !Extracts.empty() || BinOpShuffleChanged;
386*82d56013Sjoerg   }
3877330f729Sjoerg 
388*82d56013Sjoerg   append_range(DeadInsts, Shuffles);
3897330f729Sjoerg 
3907330f729Sjoerg   DeadInsts.push_back(LI);
3917330f729Sjoerg   return true;
3927330f729Sjoerg }
3937330f729Sjoerg 
replaceBinOpShuffles(ArrayRef<ShuffleVectorInst * > BinOpShuffles,SmallVectorImpl<ShuffleVectorInst * > & Shuffles,LoadInst * LI)394*82d56013Sjoerg bool InterleavedAccess::replaceBinOpShuffles(
395*82d56013Sjoerg     ArrayRef<ShuffleVectorInst *> BinOpShuffles,
396*82d56013Sjoerg     SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
397*82d56013Sjoerg   for (auto *SVI : BinOpShuffles) {
398*82d56013Sjoerg     BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
399*82d56013Sjoerg     Type *BIOp0Ty = BI->getOperand(0)->getType();
400*82d56013Sjoerg     ArrayRef<int> Mask = SVI->getShuffleMask();
401*82d56013Sjoerg     assert(all_of(Mask, [&](int Idx) {
402*82d56013Sjoerg       return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
403*82d56013Sjoerg     }));
404*82d56013Sjoerg 
405*82d56013Sjoerg     auto *NewSVI1 =
406*82d56013Sjoerg         new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
407*82d56013Sjoerg                               Mask, SVI->getName(), SVI);
408*82d56013Sjoerg     auto *NewSVI2 = new ShuffleVectorInst(
409*82d56013Sjoerg         BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
410*82d56013Sjoerg         SVI->getName(), SVI);
411*82d56013Sjoerg     Value *NewBI = BinaryOperator::Create(BI->getOpcode(), NewSVI1, NewSVI2,
412*82d56013Sjoerg                                           BI->getName(), SVI);
413*82d56013Sjoerg     SVI->replaceAllUsesWith(NewBI);
414*82d56013Sjoerg     LLVM_DEBUG(dbgs() << "  Replaced: " << *BI << "\n    And   : " << *SVI
415*82d56013Sjoerg                       << "\n  With    : " << *NewSVI1 << "\n    And   : "
416*82d56013Sjoerg                       << *NewSVI2 << "\n    And   : " << *NewBI << "\n");
417*82d56013Sjoerg     RecursivelyDeleteTriviallyDeadInstructions(SVI);
418*82d56013Sjoerg     if (NewSVI1->getOperand(0) == LI)
419*82d56013Sjoerg       Shuffles.push_back(NewSVI1);
420*82d56013Sjoerg     if (NewSVI2->getOperand(0) == LI)
421*82d56013Sjoerg       Shuffles.push_back(NewSVI2);
422*82d56013Sjoerg   }
423*82d56013Sjoerg 
424*82d56013Sjoerg   return !BinOpShuffles.empty();
425*82d56013Sjoerg }
426*82d56013Sjoerg 
tryReplaceExtracts(ArrayRef<ExtractElementInst * > Extracts,ArrayRef<ShuffleVectorInst * > Shuffles)4277330f729Sjoerg bool InterleavedAccess::tryReplaceExtracts(
4287330f729Sjoerg     ArrayRef<ExtractElementInst *> Extracts,
4297330f729Sjoerg     ArrayRef<ShuffleVectorInst *> Shuffles) {
4307330f729Sjoerg   // If there aren't any extractelement instructions to modify, there's nothing
4317330f729Sjoerg   // to do.
4327330f729Sjoerg   if (Extracts.empty())
4337330f729Sjoerg     return true;
4347330f729Sjoerg 
4357330f729Sjoerg   // Maps extractelement instructions to vector-index pairs. The extractlement
4367330f729Sjoerg   // instructions will be modified to use the new vector and index operands.
4377330f729Sjoerg   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
4387330f729Sjoerg 
4397330f729Sjoerg   for (auto *Extract : Extracts) {
4407330f729Sjoerg     // The vector index that is extracted.
4417330f729Sjoerg     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
4427330f729Sjoerg     auto Index = IndexOperand->getSExtValue();
4437330f729Sjoerg 
4447330f729Sjoerg     // Look for a suitable shufflevector instruction. The goal is to modify the
4457330f729Sjoerg     // extractelement instruction (which uses an interleaved load) to use one
4467330f729Sjoerg     // of the shufflevector instructions instead of the load.
4477330f729Sjoerg     for (auto *Shuffle : Shuffles) {
4487330f729Sjoerg       // If the shufflevector instruction doesn't dominate the extract, we
4497330f729Sjoerg       // can't create a use of it.
4507330f729Sjoerg       if (!DT->dominates(Shuffle, Extract))
4517330f729Sjoerg         continue;
4527330f729Sjoerg 
4537330f729Sjoerg       // Inspect the indices of the shufflevector instruction. If the shuffle
4547330f729Sjoerg       // selects the same index that is extracted, we can modify the
4557330f729Sjoerg       // extractelement instruction.
4567330f729Sjoerg       SmallVector<int, 4> Indices;
4577330f729Sjoerg       Shuffle->getShuffleMask(Indices);
4587330f729Sjoerg       for (unsigned I = 0; I < Indices.size(); ++I)
4597330f729Sjoerg         if (Indices[I] == Index) {
4607330f729Sjoerg           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
4617330f729Sjoerg                  "Vector operations do not match");
4627330f729Sjoerg           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
4637330f729Sjoerg           break;
4647330f729Sjoerg         }
4657330f729Sjoerg 
4667330f729Sjoerg       // If we found a suitable shufflevector instruction, stop looking.
4677330f729Sjoerg       if (ReplacementMap.count(Extract))
4687330f729Sjoerg         break;
4697330f729Sjoerg     }
4707330f729Sjoerg 
4717330f729Sjoerg     // If we did not find a suitable shufflevector instruction, the
4727330f729Sjoerg     // extractelement instruction cannot be modified, so we must give up.
4737330f729Sjoerg     if (!ReplacementMap.count(Extract))
4747330f729Sjoerg       return false;
4757330f729Sjoerg   }
4767330f729Sjoerg 
4777330f729Sjoerg   // Finally, perform the replacements.
4787330f729Sjoerg   IRBuilder<> Builder(Extracts[0]->getContext());
4797330f729Sjoerg   for (auto &Replacement : ReplacementMap) {
4807330f729Sjoerg     auto *Extract = Replacement.first;
4817330f729Sjoerg     auto *Vector = Replacement.second.first;
4827330f729Sjoerg     auto Index = Replacement.second.second;
4837330f729Sjoerg     Builder.SetInsertPoint(Extract);
4847330f729Sjoerg     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
4857330f729Sjoerg     Extract->eraseFromParent();
4867330f729Sjoerg   }
4877330f729Sjoerg 
4887330f729Sjoerg   return true;
4897330f729Sjoerg }
4907330f729Sjoerg 
lowerInterleavedStore(StoreInst * SI,SmallVector<Instruction *,32> & DeadInsts)4917330f729Sjoerg bool InterleavedAccess::lowerInterleavedStore(
4927330f729Sjoerg     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
4937330f729Sjoerg   if (!SI->isSimple())
4947330f729Sjoerg     return false;
4957330f729Sjoerg 
496*82d56013Sjoerg   auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
497*82d56013Sjoerg   if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
4987330f729Sjoerg     return false;
4997330f729Sjoerg 
5007330f729Sjoerg   // Check if the shufflevector is RE-interleave shuffle.
5017330f729Sjoerg   unsigned Factor;
502*82d56013Sjoerg   unsigned OpNumElts =
503*82d56013Sjoerg       cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
5047330f729Sjoerg   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
5057330f729Sjoerg     return false;
5067330f729Sjoerg 
5077330f729Sjoerg   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
5087330f729Sjoerg 
5097330f729Sjoerg   // Try to create target specific intrinsics to replace the store and shuffle.
5107330f729Sjoerg   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
5117330f729Sjoerg     return false;
5127330f729Sjoerg 
5137330f729Sjoerg   // Already have a new target specific interleaved store. Erase the old store.
5147330f729Sjoerg   DeadInsts.push_back(SI);
5157330f729Sjoerg   DeadInsts.push_back(SVI);
5167330f729Sjoerg   return true;
5177330f729Sjoerg }
5187330f729Sjoerg 
runOnFunction(Function & F)5197330f729Sjoerg bool InterleavedAccess::runOnFunction(Function &F) {
5207330f729Sjoerg   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
5217330f729Sjoerg   if (!TPC || !LowerInterleavedAccesses)
5227330f729Sjoerg     return false;
5237330f729Sjoerg 
5247330f729Sjoerg   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
5257330f729Sjoerg 
5267330f729Sjoerg   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5277330f729Sjoerg   auto &TM = TPC->getTM<TargetMachine>();
5287330f729Sjoerg   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
5297330f729Sjoerg   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
5307330f729Sjoerg 
5317330f729Sjoerg   // Holds dead instructions that will be erased later.
5327330f729Sjoerg   SmallVector<Instruction *, 32> DeadInsts;
5337330f729Sjoerg   bool Changed = false;
5347330f729Sjoerg 
5357330f729Sjoerg   for (auto &I : instructions(F)) {
536*82d56013Sjoerg     if (auto *LI = dyn_cast<LoadInst>(&I))
5377330f729Sjoerg       Changed |= lowerInterleavedLoad(LI, DeadInsts);
5387330f729Sjoerg 
539*82d56013Sjoerg     if (auto *SI = dyn_cast<StoreInst>(&I))
5407330f729Sjoerg       Changed |= lowerInterleavedStore(SI, DeadInsts);
5417330f729Sjoerg   }
5427330f729Sjoerg 
5437330f729Sjoerg   for (auto I : DeadInsts)
5447330f729Sjoerg     I->eraseFromParent();
5457330f729Sjoerg 
5467330f729Sjoerg   return Changed;
5477330f729Sjoerg }
548