1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Parallel JIT 10 // 11 // This test program creates two LLVM functions then calls them from three 12 // separate threads. It requires the pthreads library. 13 // The three threads are created and then block waiting on a condition variable. 14 // Once all threads are blocked on the conditional variable, the main thread 15 // wakes them up. This complicated work is performed so that all three threads 16 // call into the JIT at the same time (or the best possible approximation of the 17 // same time). This test had assertion errors until I got the locking right. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ExecutionEngine/ExecutionEngine.h" 24 #include "llvm/ExecutionEngine/GenericValue.h" 25 #include "llvm/ExecutionEngine/MCJIT.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/TargetSelect.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <cstddef> 42 #include <cstdint> 43 #include <iostream> 44 #include <memory> 45 #include <vector> 46 #include <pthread.h> 47 48 using namespace llvm; 49 50 static Function* createAdd1(Module *M) { 51 LLVMContext &Context = M->getContext(); 52 // Create the add1 function entry and insert this entry into module M. The 53 // function will have a return type of "int" and take an argument of "int". 54 Function *Add1F = 55 Function::Create(FunctionType::get(Type::getInt32Ty(Context), 56 {Type::getInt32Ty(Context)}, false), 57 Function::ExternalLinkage, "add1", M); 58 59 // Add a basic block to the function. As before, it automatically inserts 60 // because of the last argument. 61 BasicBlock *BB = BasicBlock::Create(Context, "EntryBlock", Add1F); 62 63 // Get pointers to the constant `1'. 64 Value *One = ConstantInt::get(Type::getInt32Ty(Context), 1); 65 66 // Get pointers to the integer argument of the add1 function... 67 assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg 68 Argument *ArgX = &*Add1F->arg_begin(); // Get the arg 69 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 70 71 // Create the add instruction, inserting it into the end of BB. 72 Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB); 73 74 // Create the return instruction and add it to the basic block 75 ReturnInst::Create(Context, Add, BB); 76 77 // Now, function add1 is ready. 78 return Add1F; 79 } 80 81 static Function *CreateFibFunction(Module *M) { 82 LLVMContext &Context = M->getContext(); 83 // Create the fib function and insert it into module M. This function is said 84 // to return an int and take an int parameter. 85 FunctionType *FibFTy = FunctionType::get(Type::getInt32Ty(Context), 86 {Type::getInt32Ty(Context)}, false); 87 Function *FibF = 88 Function::Create(FibFTy, Function::ExternalLinkage, "fib", M); 89 90 // Add a basic block to the function. 91 BasicBlock *BB = BasicBlock::Create(Context, "EntryBlock", FibF); 92 93 // Get pointers to the constants. 94 Value *One = ConstantInt::get(Type::getInt32Ty(Context), 1); 95 Value *Two = ConstantInt::get(Type::getInt32Ty(Context), 2); 96 97 // Get pointer to the integer argument of the add1 function... 98 Argument *ArgX = &*FibF->arg_begin(); // Get the arg. 99 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 100 101 // Create the true_block. 102 BasicBlock *RetBB = BasicBlock::Create(Context, "return", FibF); 103 // Create an exit block. 104 BasicBlock *RecurseBB = BasicBlock::Create(Context, "recurse", FibF); 105 106 // Create the "if (arg < 2) goto exitbb" 107 Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond"); 108 BranchInst::Create(RetBB, RecurseBB, CondInst, BB); 109 110 // Create: ret int 1 111 ReturnInst::Create(Context, One, RetBB); 112 113 // create fib(x-1) 114 Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB); 115 Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB); 116 117 // create fib(x-2) 118 Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB); 119 Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB); 120 121 // fib(x-1)+fib(x-2) 122 Value *Sum = 123 BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); 124 125 // Create the return instruction and add it to the basic block 126 ReturnInst::Create(Context, Sum, RecurseBB); 127 128 return FibF; 129 } 130 131 struct threadParams { 132 ExecutionEngine* EE; 133 Function* F; 134 int value; 135 }; 136 137 // We block the subthreads just before they begin to execute: 138 // we want all of them to call into the JIT at the same time, 139 // to verify that the locking is working correctly. 140 class WaitForThreads 141 { 142 public: 143 WaitForThreads() 144 { 145 n = 0; 146 waitFor = 0; 147 148 int result = pthread_cond_init( &condition, nullptr ); 149 (void)result; 150 assert( result == 0 ); 151 152 result = pthread_mutex_init( &mutex, nullptr ); 153 assert( result == 0 ); 154 } 155 156 ~WaitForThreads() 157 { 158 int result = pthread_cond_destroy( &condition ); 159 (void)result; 160 assert( result == 0 ); 161 162 result = pthread_mutex_destroy( &mutex ); 163 assert( result == 0 ); 164 } 165 166 // All threads will stop here until another thread calls releaseThreads 167 void block() 168 { 169 int result = pthread_mutex_lock( &mutex ); 170 (void)result; 171 assert( result == 0 ); 172 n ++; 173 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; 174 175 assert( waitFor == 0 || n <= waitFor ); 176 if ( waitFor > 0 && n == waitFor ) 177 { 178 // There are enough threads blocked that we can release all of them 179 std::cout << "Unblocking threads from block()" << std::endl; 180 unblockThreads(); 181 } 182 else 183 { 184 // We just need to wait until someone unblocks us 185 result = pthread_cond_wait( &condition, &mutex ); 186 assert( result == 0 ); 187 } 188 189 // unlock the mutex before returning 190 result = pthread_mutex_unlock( &mutex ); 191 assert( result == 0 ); 192 } 193 194 // If there are num or more threads blocked, it will signal them all 195 // Otherwise, this thread blocks until there are enough OTHER threads 196 // blocked 197 void releaseThreads( size_t num ) 198 { 199 int result = pthread_mutex_lock( &mutex ); 200 (void)result; 201 assert( result == 0 ); 202 203 if ( n >= num ) { 204 std::cout << "Unblocking threads from releaseThreads()" << std::endl; 205 unblockThreads(); 206 } 207 else 208 { 209 waitFor = num; 210 pthread_cond_wait( &condition, &mutex ); 211 } 212 213 // unlock the mutex before returning 214 result = pthread_mutex_unlock( &mutex ); 215 assert( result == 0 ); 216 } 217 218 private: 219 void unblockThreads() 220 { 221 // Reset the counters to zero: this way, if any new threads 222 // enter while threads are exiting, they will block instead 223 // of triggering a new release of threads 224 n = 0; 225 226 // Reset waitFor to zero: this way, if waitFor threads enter 227 // while threads are exiting, they will block instead of 228 // triggering a new release of threads 229 waitFor = 0; 230 231 int result = pthread_cond_broadcast( &condition ); 232 (void)result; 233 assert(result == 0); 234 } 235 236 size_t n; 237 size_t waitFor; 238 pthread_cond_t condition; 239 pthread_mutex_t mutex; 240 }; 241 242 static WaitForThreads synchronize; 243 244 void* callFunc( void* param ) 245 { 246 struct threadParams* p = (struct threadParams*) param; 247 248 // Call the `foo' function with no arguments: 249 std::vector<GenericValue> Args(1); 250 Args[0].IntVal = APInt(32, p->value); 251 252 synchronize.block(); // wait until other threads are at this point 253 GenericValue gv = p->EE->runFunction(p->F, Args); 254 255 return (void*)(intptr_t)gv.IntVal.getZExtValue(); 256 } 257 258 int main() { 259 InitializeNativeTarget(); 260 LLVMInitializeNativeAsmPrinter(); 261 LLVMContext Context; 262 263 // Create some module to put our function into it. 264 std::unique_ptr<Module> Owner = std::make_unique<Module>("test", Context); 265 Module *M = Owner.get(); 266 267 Function* add1F = createAdd1( M ); 268 Function* fibF = CreateFibFunction( M ); 269 270 // Now we create the JIT. 271 ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create(); 272 273 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M; 274 //~ std::cout << "\n\nRunning foo: " << std::flush; 275 276 // Create one thread for add1 and two threads for fib 277 struct threadParams add1 = { EE, add1F, 1000 }; 278 struct threadParams fib1 = { EE, fibF, 39 }; 279 struct threadParams fib2 = { EE, fibF, 42 }; 280 281 pthread_t add1Thread; 282 int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 ); 283 if ( result != 0 ) { 284 std::cerr << "Could not create thread" << std::endl; 285 return 1; 286 } 287 288 pthread_t fibThread1; 289 result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 ); 290 if ( result != 0 ) { 291 std::cerr << "Could not create thread" << std::endl; 292 return 1; 293 } 294 295 pthread_t fibThread2; 296 result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 ); 297 if ( result != 0 ) { 298 std::cerr << "Could not create thread" << std::endl; 299 return 1; 300 } 301 302 synchronize.releaseThreads(3); // wait until other threads are at this point 303 304 void* returnValue; 305 result = pthread_join( add1Thread, &returnValue ); 306 if ( result != 0 ) { 307 std::cerr << "Could not join thread" << std::endl; 308 return 1; 309 } 310 std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; 311 312 result = pthread_join( fibThread1, &returnValue ); 313 if ( result != 0 ) { 314 std::cerr << "Could not join thread" << std::endl; 315 return 1; 316 } 317 std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; 318 319 result = pthread_join( fibThread2, &returnValue ); 320 if ( result != 0 ) { 321 std::cerr << "Could not join thread" << std::endl; 322 return 1; 323 } 324 std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; 325 326 return 0; 327 } 328