1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCleanup.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/FrontendDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 44 /// markers. 45 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 46 const LangOptions &LangOpts) { 47 if (CGOpts.DisableLifetimeMarkers) 48 return false; 49 50 // Sanitizers may use markers. 51 if (CGOpts.SanitizeAddressUseAfterScope || 52 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 53 LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return true; 55 56 // For now, only in optimized builds. 57 return CGOpts.OptimizationLevel != 0; 58 } 59 60 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 61 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 62 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 63 CGBuilderInserterTy(this)), 64 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 65 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 66 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 67 if (!suppressNewContext) 68 CGM.getCXXABI().getMangleContext().startNewFunction(); 69 70 llvm::FastMathFlags FMF; 71 if (CGM.getLangOpts().FastMath) 72 FMF.setFast(); 73 if (CGM.getLangOpts().FiniteMathOnly) { 74 FMF.setNoNaNs(); 75 FMF.setNoInfs(); 76 } 77 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 78 FMF.setNoNaNs(); 79 } 80 if (CGM.getCodeGenOpts().NoSignedZeros) { 81 FMF.setNoSignedZeros(); 82 } 83 if (CGM.getCodeGenOpts().ReciprocalMath) { 84 FMF.setAllowReciprocal(); 85 } 86 if (CGM.getCodeGenOpts().Reassociate) { 87 FMF.setAllowReassoc(); 88 } 89 Builder.setFastMathFlags(FMF); 90 } 91 92 CodeGenFunction::~CodeGenFunction() { 93 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 94 95 // If there are any unclaimed block infos, go ahead and destroy them 96 // now. This can happen if IR-gen gets clever and skips evaluating 97 // something. 98 if (FirstBlockInfo) 99 destroyBlockInfos(FirstBlockInfo); 100 101 if (getLangOpts().OpenMP && CurFn) 102 CGM.getOpenMPRuntime().functionFinished(*this); 103 } 104 105 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 106 LValueBaseInfo *BaseInfo, 107 TBAAAccessInfo *TBAAInfo) { 108 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 109 /* forPointeeType= */ true); 110 } 111 112 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 113 LValueBaseInfo *BaseInfo, 114 TBAAAccessInfo *TBAAInfo, 115 bool forPointeeType) { 116 if (TBAAInfo) 117 *TBAAInfo = CGM.getTBAAAccessInfo(T); 118 119 // Honor alignment typedef attributes even on incomplete types. 120 // We also honor them straight for C++ class types, even as pointees; 121 // there's an expressivity gap here. 122 if (auto TT = T->getAs<TypedefType>()) { 123 if (auto Align = TT->getDecl()->getMaxAlignment()) { 124 if (BaseInfo) 125 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 126 return getContext().toCharUnitsFromBits(Align); 127 } 128 } 129 130 if (BaseInfo) 131 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 132 133 CharUnits Alignment; 134 if (T->isIncompleteType()) { 135 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 136 } else { 137 // For C++ class pointees, we don't know whether we're pointing at a 138 // base or a complete object, so we generally need to use the 139 // non-virtual alignment. 140 const CXXRecordDecl *RD; 141 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 142 Alignment = CGM.getClassPointerAlignment(RD); 143 } else { 144 Alignment = getContext().getTypeAlignInChars(T); 145 if (T.getQualifiers().hasUnaligned()) 146 Alignment = CharUnits::One(); 147 } 148 149 // Cap to the global maximum type alignment unless the alignment 150 // was somehow explicit on the type. 151 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 152 if (Alignment.getQuantity() > MaxAlign && 153 !getContext().isAlignmentRequired(T)) 154 Alignment = CharUnits::fromQuantity(MaxAlign); 155 } 156 } 157 return Alignment; 158 } 159 160 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 161 LValueBaseInfo BaseInfo; 162 TBAAAccessInfo TBAAInfo; 163 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 164 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 165 TBAAInfo); 166 } 167 168 /// Given a value of type T* that may not be to a complete object, 169 /// construct an l-value with the natural pointee alignment of T. 170 LValue 171 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 172 LValueBaseInfo BaseInfo; 173 TBAAAccessInfo TBAAInfo; 174 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 175 /* forPointeeType= */ true); 176 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 177 } 178 179 180 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 181 return CGM.getTypes().ConvertTypeForMem(T); 182 } 183 184 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 185 return CGM.getTypes().ConvertType(T); 186 } 187 188 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 189 type = type.getCanonicalType(); 190 while (true) { 191 switch (type->getTypeClass()) { 192 #define TYPE(name, parent) 193 #define ABSTRACT_TYPE(name, parent) 194 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 195 #define DEPENDENT_TYPE(name, parent) case Type::name: 196 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 197 #include "clang/AST/TypeNodes.inc" 198 llvm_unreachable("non-canonical or dependent type in IR-generation"); 199 200 case Type::Auto: 201 case Type::DeducedTemplateSpecialization: 202 llvm_unreachable("undeduced type in IR-generation"); 203 204 // Various scalar types. 205 case Type::Builtin: 206 case Type::Pointer: 207 case Type::BlockPointer: 208 case Type::LValueReference: 209 case Type::RValueReference: 210 case Type::MemberPointer: 211 case Type::Vector: 212 case Type::ExtVector: 213 case Type::FunctionProto: 214 case Type::FunctionNoProto: 215 case Type::Enum: 216 case Type::ObjCObjectPointer: 217 case Type::Pipe: 218 return TEK_Scalar; 219 220 // Complexes. 221 case Type::Complex: 222 return TEK_Complex; 223 224 // Arrays, records, and Objective-C objects. 225 case Type::ConstantArray: 226 case Type::IncompleteArray: 227 case Type::VariableArray: 228 case Type::Record: 229 case Type::ObjCObject: 230 case Type::ObjCInterface: 231 return TEK_Aggregate; 232 233 // We operate on atomic values according to their underlying type. 234 case Type::Atomic: 235 type = cast<AtomicType>(type)->getValueType(); 236 continue; 237 } 238 llvm_unreachable("unknown type kind!"); 239 } 240 } 241 242 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 243 // For cleanliness, we try to avoid emitting the return block for 244 // simple cases. 245 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 246 247 if (CurBB) { 248 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 249 250 // We have a valid insert point, reuse it if it is empty or there are no 251 // explicit jumps to the return block. 252 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 253 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 254 delete ReturnBlock.getBlock(); 255 ReturnBlock = JumpDest(); 256 } else 257 EmitBlock(ReturnBlock.getBlock()); 258 return llvm::DebugLoc(); 259 } 260 261 // Otherwise, if the return block is the target of a single direct 262 // branch then we can just put the code in that block instead. This 263 // cleans up functions which started with a unified return block. 264 if (ReturnBlock.getBlock()->hasOneUse()) { 265 llvm::BranchInst *BI = 266 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 267 if (BI && BI->isUnconditional() && 268 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 269 // Record/return the DebugLoc of the simple 'return' expression to be used 270 // later by the actual 'ret' instruction. 271 llvm::DebugLoc Loc = BI->getDebugLoc(); 272 Builder.SetInsertPoint(BI->getParent()); 273 BI->eraseFromParent(); 274 delete ReturnBlock.getBlock(); 275 ReturnBlock = JumpDest(); 276 return Loc; 277 } 278 } 279 280 // FIXME: We are at an unreachable point, there is no reason to emit the block 281 // unless it has uses. However, we still need a place to put the debug 282 // region.end for now. 283 284 EmitBlock(ReturnBlock.getBlock()); 285 return llvm::DebugLoc(); 286 } 287 288 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 289 if (!BB) return; 290 if (!BB->use_empty()) 291 return CGF.CurFn->getBasicBlockList().push_back(BB); 292 delete BB; 293 } 294 295 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 296 assert(BreakContinueStack.empty() && 297 "mismatched push/pop in break/continue stack!"); 298 299 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 300 && NumSimpleReturnExprs == NumReturnExprs 301 && ReturnBlock.getBlock()->use_empty(); 302 // Usually the return expression is evaluated before the cleanup 303 // code. If the function contains only a simple return statement, 304 // such as a constant, the location before the cleanup code becomes 305 // the last useful breakpoint in the function, because the simple 306 // return expression will be evaluated after the cleanup code. To be 307 // safe, set the debug location for cleanup code to the location of 308 // the return statement. Otherwise the cleanup code should be at the 309 // end of the function's lexical scope. 310 // 311 // If there are multiple branches to the return block, the branch 312 // instructions will get the location of the return statements and 313 // all will be fine. 314 if (CGDebugInfo *DI = getDebugInfo()) { 315 if (OnlySimpleReturnStmts) 316 DI->EmitLocation(Builder, LastStopPoint); 317 else 318 DI->EmitLocation(Builder, EndLoc); 319 } 320 321 // Pop any cleanups that might have been associated with the 322 // parameters. Do this in whatever block we're currently in; it's 323 // important to do this before we enter the return block or return 324 // edges will be *really* confused. 325 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 326 bool HasOnlyLifetimeMarkers = 327 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 328 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 329 if (HasCleanups) { 330 // Make sure the line table doesn't jump back into the body for 331 // the ret after it's been at EndLoc. 332 if (CGDebugInfo *DI = getDebugInfo()) 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, EndLoc); 335 336 PopCleanupBlocks(PrologueCleanupDepth); 337 } 338 339 // Emit function epilog (to return). 340 llvm::DebugLoc Loc = EmitReturnBlock(); 341 342 if (ShouldInstrumentFunction()) { 343 if (CGM.getCodeGenOpts().InstrumentFunctions) 344 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 345 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 346 CurFn->addFnAttr("instrument-function-exit-inlined", 347 "__cyg_profile_func_exit"); 348 } 349 350 // Emit debug descriptor for function end. 351 if (CGDebugInfo *DI = getDebugInfo()) 352 DI->EmitFunctionEnd(Builder, CurFn); 353 354 // Reset the debug location to that of the simple 'return' expression, if any 355 // rather than that of the end of the function's scope '}'. 356 ApplyDebugLocation AL(*this, Loc); 357 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 358 EmitEndEHSpec(CurCodeDecl); 359 360 assert(EHStack.empty() && 361 "did not remove all scopes from cleanup stack!"); 362 363 // If someone did an indirect goto, emit the indirect goto block at the end of 364 // the function. 365 if (IndirectBranch) { 366 EmitBlock(IndirectBranch->getParent()); 367 Builder.ClearInsertionPoint(); 368 } 369 370 // If some of our locals escaped, insert a call to llvm.localescape in the 371 // entry block. 372 if (!EscapedLocals.empty()) { 373 // Invert the map from local to index into a simple vector. There should be 374 // no holes. 375 SmallVector<llvm::Value *, 4> EscapeArgs; 376 EscapeArgs.resize(EscapedLocals.size()); 377 for (auto &Pair : EscapedLocals) 378 EscapeArgs[Pair.second] = Pair.first; 379 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 380 &CGM.getModule(), llvm::Intrinsic::localescape); 381 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 382 } 383 384 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 385 llvm::Instruction *Ptr = AllocaInsertPt; 386 AllocaInsertPt = nullptr; 387 Ptr->eraseFromParent(); 388 389 // If someone took the address of a label but never did an indirect goto, we 390 // made a zero entry PHI node, which is illegal, zap it now. 391 if (IndirectBranch) { 392 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 393 if (PN->getNumIncomingValues() == 0) { 394 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 395 PN->eraseFromParent(); 396 } 397 } 398 399 EmitIfUsed(*this, EHResumeBlock); 400 EmitIfUsed(*this, TerminateLandingPad); 401 EmitIfUsed(*this, TerminateHandler); 402 EmitIfUsed(*this, UnreachableBlock); 403 404 for (const auto &FuncletAndParent : TerminateFunclets) 405 EmitIfUsed(*this, FuncletAndParent.second); 406 407 if (CGM.getCodeGenOpts().EmitDeclMetadata) 408 EmitDeclMetadata(); 409 410 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 411 I = DeferredReplacements.begin(), 412 E = DeferredReplacements.end(); 413 I != E; ++I) { 414 I->first->replaceAllUsesWith(I->second); 415 I->first->eraseFromParent(); 416 } 417 418 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 419 // PHIs if the current function is a coroutine. We don't do it for all 420 // functions as it may result in slight increase in numbers of instructions 421 // if compiled with no optimizations. We do it for coroutine as the lifetime 422 // of CleanupDestSlot alloca make correct coroutine frame building very 423 // difficult. 424 if (NormalCleanupDest.isValid() && isCoroutine()) { 425 llvm::DominatorTree DT(*CurFn); 426 llvm::PromoteMemToReg( 427 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 428 NormalCleanupDest = Address::invalid(); 429 } 430 431 // Scan function arguments for vector width. 432 for (llvm::Argument &A : CurFn->args()) 433 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 434 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 435 VT->getPrimitiveSizeInBits().getFixedSize()); 436 437 // Update vector width based on return type. 438 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 439 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 440 VT->getPrimitiveSizeInBits().getFixedSize()); 441 442 // Add the required-vector-width attribute. This contains the max width from: 443 // 1. min-vector-width attribute used in the source program. 444 // 2. Any builtins used that have a vector width specified. 445 // 3. Values passed in and out of inline assembly. 446 // 4. Width of vector arguments and return types for this function. 447 // 5. Width of vector aguments and return types for functions called by this 448 // function. 449 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 450 451 // If we generated an unreachable return block, delete it now. 452 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 453 Builder.ClearInsertionPoint(); 454 ReturnBlock.getBlock()->eraseFromParent(); 455 } 456 if (ReturnValue.isValid()) { 457 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 458 if (RetAlloca && RetAlloca->use_empty()) { 459 RetAlloca->eraseFromParent(); 460 ReturnValue = Address::invalid(); 461 } 462 } 463 } 464 465 /// ShouldInstrumentFunction - Return true if the current function should be 466 /// instrumented with __cyg_profile_func_* calls 467 bool CodeGenFunction::ShouldInstrumentFunction() { 468 if (!CGM.getCodeGenOpts().InstrumentFunctions && 469 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 470 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 471 return false; 472 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 473 return false; 474 return true; 475 } 476 477 /// ShouldXRayInstrument - Return true if the current function should be 478 /// instrumented with XRay nop sleds. 479 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 480 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 481 } 482 483 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 484 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 485 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 486 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 487 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 488 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 489 XRayInstrKind::Custom); 490 } 491 492 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 493 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 494 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 495 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 496 XRayInstrKind::Typed); 497 } 498 499 llvm::Constant * 500 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 501 llvm::Constant *Addr) { 502 // Addresses stored in prologue data can't require run-time fixups and must 503 // be PC-relative. Run-time fixups are undesirable because they necessitate 504 // writable text segments, which are unsafe. And absolute addresses are 505 // undesirable because they break PIE mode. 506 507 // Add a layer of indirection through a private global. Taking its address 508 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 509 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 510 /*isConstant=*/true, 511 llvm::GlobalValue::PrivateLinkage, Addr); 512 513 // Create a PC-relative address. 514 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 515 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 516 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 517 return (IntPtrTy == Int32Ty) 518 ? PCRelAsInt 519 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 520 } 521 522 llvm::Value * 523 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 524 llvm::Value *EncodedAddr) { 525 // Reconstruct the address of the global. 526 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 527 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 528 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 529 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 530 531 // Load the original pointer through the global. 532 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 533 "decoded_addr"); 534 } 535 536 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 537 llvm::Function *Fn) 538 { 539 if (!FD->hasAttr<OpenCLKernelAttr>()) 540 return; 541 542 llvm::LLVMContext &Context = getLLVMContext(); 543 544 CGM.GenOpenCLArgMetadata(Fn, FD, this); 545 546 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 547 QualType HintQTy = A->getTypeHint(); 548 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 549 bool IsSignedInteger = 550 HintQTy->isSignedIntegerType() || 551 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 552 llvm::Metadata *AttrMDArgs[] = { 553 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 554 CGM.getTypes().ConvertType(A->getTypeHint()))), 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 llvm::IntegerType::get(Context, 32), 557 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 558 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 559 } 560 561 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 562 llvm::Metadata *AttrMDArgs[] = { 563 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 564 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 565 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 566 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 567 } 568 569 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 570 llvm::Metadata *AttrMDArgs[] = { 571 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 572 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 573 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 574 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 575 } 576 577 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 578 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 579 llvm::Metadata *AttrMDArgs[] = { 580 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 581 Fn->setMetadata("intel_reqd_sub_group_size", 582 llvm::MDNode::get(Context, AttrMDArgs)); 583 } 584 } 585 586 /// Determine whether the function F ends with a return stmt. 587 static bool endsWithReturn(const Decl* F) { 588 const Stmt *Body = nullptr; 589 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 590 Body = FD->getBody(); 591 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 592 Body = OMD->getBody(); 593 594 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 595 auto LastStmt = CS->body_rbegin(); 596 if (LastStmt != CS->body_rend()) 597 return isa<ReturnStmt>(*LastStmt); 598 } 599 return false; 600 } 601 602 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 603 if (SanOpts.has(SanitizerKind::Thread)) { 604 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 605 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 606 } 607 } 608 609 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 610 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 611 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 612 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 613 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 614 return false; 615 616 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 617 return false; 618 619 if (MD->getNumParams() == 2) { 620 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 621 if (!PT || !PT->isVoidPointerType() || 622 !PT->getPointeeType().isConstQualified()) 623 return false; 624 } 625 626 return true; 627 } 628 629 /// Return the UBSan prologue signature for \p FD if one is available. 630 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 631 const FunctionDecl *FD) { 632 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 633 if (!MD->isStatic()) 634 return nullptr; 635 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 636 } 637 638 void CodeGenFunction::StartFunction(GlobalDecl GD, 639 QualType RetTy, 640 llvm::Function *Fn, 641 const CGFunctionInfo &FnInfo, 642 const FunctionArgList &Args, 643 SourceLocation Loc, 644 SourceLocation StartLoc) { 645 assert(!CurFn && 646 "Do not use a CodeGenFunction object for more than one function"); 647 648 const Decl *D = GD.getDecl(); 649 650 DidCallStackSave = false; 651 CurCodeDecl = D; 652 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 653 if (FD->usesSEHTry()) 654 CurSEHParent = FD; 655 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 656 FnRetTy = RetTy; 657 CurFn = Fn; 658 CurFnInfo = &FnInfo; 659 assert(CurFn->isDeclaration() && "Function already has body?"); 660 661 // If this function has been blacklisted for any of the enabled sanitizers, 662 // disable the sanitizer for the function. 663 do { 664 #define SANITIZER(NAME, ID) \ 665 if (SanOpts.empty()) \ 666 break; \ 667 if (SanOpts.has(SanitizerKind::ID)) \ 668 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 669 SanOpts.set(SanitizerKind::ID, false); 670 671 #include "clang/Basic/Sanitizers.def" 672 #undef SANITIZER 673 } while (0); 674 675 if (D) { 676 // Apply the no_sanitize* attributes to SanOpts. 677 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 678 SanitizerMask mask = Attr->getMask(); 679 SanOpts.Mask &= ~mask; 680 if (mask & SanitizerKind::Address) 681 SanOpts.set(SanitizerKind::KernelAddress, false); 682 if (mask & SanitizerKind::KernelAddress) 683 SanOpts.set(SanitizerKind::Address, false); 684 if (mask & SanitizerKind::HWAddress) 685 SanOpts.set(SanitizerKind::KernelHWAddress, false); 686 if (mask & SanitizerKind::KernelHWAddress) 687 SanOpts.set(SanitizerKind::HWAddress, false); 688 } 689 } 690 691 // Apply sanitizer attributes to the function. 692 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 693 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 694 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 695 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 696 if (SanOpts.has(SanitizerKind::MemTag)) 697 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 698 if (SanOpts.has(SanitizerKind::Thread)) 699 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 700 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 701 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 702 if (SanOpts.has(SanitizerKind::SafeStack)) 703 Fn->addFnAttr(llvm::Attribute::SafeStack); 704 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 705 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 706 707 // Apply fuzzing attribute to the function. 708 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 709 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 710 711 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 712 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 713 if (SanOpts.has(SanitizerKind::Thread)) { 714 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 715 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 716 if (OMD->getMethodFamily() == OMF_dealloc || 717 OMD->getMethodFamily() == OMF_initialize || 718 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 719 markAsIgnoreThreadCheckingAtRuntime(Fn); 720 } 721 } 722 } 723 724 // Ignore unrelated casts in STL allocate() since the allocator must cast 725 // from void* to T* before object initialization completes. Don't match on the 726 // namespace because not all allocators are in std:: 727 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 728 if (matchesStlAllocatorFn(D, getContext())) 729 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 730 } 731 732 // Ignore null checks in coroutine functions since the coroutines passes 733 // are not aware of how to move the extra UBSan instructions across the split 734 // coroutine boundaries. 735 if (D && SanOpts.has(SanitizerKind::Null)) 736 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 737 if (FD->getBody() && 738 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 739 SanOpts.Mask &= ~SanitizerKind::Null; 740 741 // Apply xray attributes to the function (as a string, for now) 742 if (D) { 743 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 744 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 745 XRayInstrKind::Function)) { 746 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 747 Fn->addFnAttr("function-instrument", "xray-always"); 748 if (XRayAttr->neverXRayInstrument()) 749 Fn->addFnAttr("function-instrument", "xray-never"); 750 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 751 if (ShouldXRayInstrumentFunction()) 752 Fn->addFnAttr("xray-log-args", 753 llvm::utostr(LogArgs->getArgumentCount())); 754 } 755 } else { 756 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 757 Fn->addFnAttr( 758 "xray-instruction-threshold", 759 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 760 } 761 } 762 763 // Add no-jump-tables value. 764 Fn->addFnAttr("no-jump-tables", 765 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 766 767 // Add profile-sample-accurate value. 768 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 769 Fn->addFnAttr("profile-sample-accurate"); 770 771 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 772 Fn->addFnAttr("cfi-canonical-jump-table"); 773 774 if (getLangOpts().OpenCL) { 775 // Add metadata for a kernel function. 776 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 777 EmitOpenCLKernelMetadata(FD, Fn); 778 } 779 780 // If we are checking function types, emit a function type signature as 781 // prologue data. 782 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 783 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 784 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 785 // Remove any (C++17) exception specifications, to allow calling e.g. a 786 // noexcept function through a non-noexcept pointer. 787 auto ProtoTy = 788 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 789 EST_None); 790 llvm::Constant *FTRTTIConst = 791 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 792 llvm::Constant *FTRTTIConstEncoded = 793 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 794 llvm::Constant *PrologueStructElems[] = {PrologueSig, 795 FTRTTIConstEncoded}; 796 llvm::Constant *PrologueStructConst = 797 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 798 Fn->setPrologueData(PrologueStructConst); 799 } 800 } 801 } 802 803 // If we're checking nullability, we need to know whether we can check the 804 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 805 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 806 auto Nullability = FnRetTy->getNullability(getContext()); 807 if (Nullability && *Nullability == NullabilityKind::NonNull) { 808 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 809 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 810 RetValNullabilityPrecondition = 811 llvm::ConstantInt::getTrue(getLLVMContext()); 812 } 813 } 814 815 // If we're in C++ mode and the function name is "main", it is guaranteed 816 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 817 // used within a program"). 818 if (getLangOpts().CPlusPlus) 819 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 820 if (FD->isMain()) 821 Fn->addFnAttr(llvm::Attribute::NoRecurse); 822 823 // If a custom alignment is used, force realigning to this alignment on 824 // any main function which certainly will need it. 825 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 826 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 827 CGM.getCodeGenOpts().StackAlignment) 828 Fn->addFnAttr("stackrealign"); 829 830 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 831 832 // Create a marker to make it easy to insert allocas into the entryblock 833 // later. Don't create this with the builder, because we don't want it 834 // folded. 835 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 836 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 837 838 ReturnBlock = getJumpDestInCurrentScope("return"); 839 840 Builder.SetInsertPoint(EntryBB); 841 842 // If we're checking the return value, allocate space for a pointer to a 843 // precise source location of the checked return statement. 844 if (requiresReturnValueCheck()) { 845 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 846 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 847 } 848 849 // Emit subprogram debug descriptor. 850 if (CGDebugInfo *DI = getDebugInfo()) { 851 // Reconstruct the type from the argument list so that implicit parameters, 852 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 853 // convention. 854 CallingConv CC = CallingConv::CC_C; 855 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 856 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 857 CC = SrcFnTy->getCallConv(); 858 SmallVector<QualType, 16> ArgTypes; 859 for (const VarDecl *VD : Args) 860 ArgTypes.push_back(VD->getType()); 861 QualType FnType = getContext().getFunctionType( 862 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 863 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 864 Builder); 865 } 866 867 if (ShouldInstrumentFunction()) { 868 if (CGM.getCodeGenOpts().InstrumentFunctions) 869 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 870 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 871 CurFn->addFnAttr("instrument-function-entry-inlined", 872 "__cyg_profile_func_enter"); 873 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 874 CurFn->addFnAttr("instrument-function-entry-inlined", 875 "__cyg_profile_func_enter_bare"); 876 } 877 878 // Since emitting the mcount call here impacts optimizations such as function 879 // inlining, we just add an attribute to insert a mcount call in backend. 880 // The attribute "counting-function" is set to mcount function name which is 881 // architecture dependent. 882 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 883 // Calls to fentry/mcount should not be generated if function has 884 // the no_instrument_function attribute. 885 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 886 if (CGM.getCodeGenOpts().CallFEntry) 887 Fn->addFnAttr("fentry-call", "true"); 888 else { 889 Fn->addFnAttr("instrument-function-entry-inlined", 890 getTarget().getMCountName()); 891 } 892 } 893 } 894 895 if (RetTy->isVoidType()) { 896 // Void type; nothing to return. 897 ReturnValue = Address::invalid(); 898 899 // Count the implicit return. 900 if (!endsWithReturn(D)) 901 ++NumReturnExprs; 902 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 903 // Indirect return; emit returned value directly into sret slot. 904 // This reduces code size, and affects correctness in C++. 905 auto AI = CurFn->arg_begin(); 906 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 907 ++AI; 908 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 909 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 910 ReturnValuePointer = 911 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 912 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 913 ReturnValue.getPointer(), Int8PtrTy), 914 ReturnValuePointer); 915 } 916 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 917 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 918 // Load the sret pointer from the argument struct and return into that. 919 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 920 llvm::Function::arg_iterator EI = CurFn->arg_end(); 921 --EI; 922 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 923 ReturnValuePointer = Address(Addr, getPointerAlign()); 924 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 925 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 926 } else { 927 ReturnValue = CreateIRTemp(RetTy, "retval"); 928 929 // Tell the epilog emitter to autorelease the result. We do this 930 // now so that various specialized functions can suppress it 931 // during their IR-generation. 932 if (getLangOpts().ObjCAutoRefCount && 933 !CurFnInfo->isReturnsRetained() && 934 RetTy->isObjCRetainableType()) 935 AutoreleaseResult = true; 936 } 937 938 EmitStartEHSpec(CurCodeDecl); 939 940 PrologueCleanupDepth = EHStack.stable_begin(); 941 942 // Emit OpenMP specific initialization of the device functions. 943 if (getLangOpts().OpenMP && CurCodeDecl) 944 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 945 946 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 947 948 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 949 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 950 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 951 if (MD->getParent()->isLambda() && 952 MD->getOverloadedOperator() == OO_Call) { 953 // We're in a lambda; figure out the captures. 954 MD->getParent()->getCaptureFields(LambdaCaptureFields, 955 LambdaThisCaptureField); 956 if (LambdaThisCaptureField) { 957 // If the lambda captures the object referred to by '*this' - either by 958 // value or by reference, make sure CXXThisValue points to the correct 959 // object. 960 961 // Get the lvalue for the field (which is a copy of the enclosing object 962 // or contains the address of the enclosing object). 963 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 964 if (!LambdaThisCaptureField->getType()->isPointerType()) { 965 // If the enclosing object was captured by value, just use its address. 966 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 967 } else { 968 // Load the lvalue pointed to by the field, since '*this' was captured 969 // by reference. 970 CXXThisValue = 971 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 972 } 973 } 974 for (auto *FD : MD->getParent()->fields()) { 975 if (FD->hasCapturedVLAType()) { 976 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 977 SourceLocation()).getScalarVal(); 978 auto VAT = FD->getCapturedVLAType(); 979 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 980 } 981 } 982 } else { 983 // Not in a lambda; just use 'this' from the method. 984 // FIXME: Should we generate a new load for each use of 'this'? The 985 // fast register allocator would be happier... 986 CXXThisValue = CXXABIThisValue; 987 } 988 989 // Check the 'this' pointer once per function, if it's available. 990 if (CXXABIThisValue) { 991 SanitizerSet SkippedChecks; 992 SkippedChecks.set(SanitizerKind::ObjectSize, true); 993 QualType ThisTy = MD->getThisType(); 994 995 // If this is the call operator of a lambda with no capture-default, it 996 // may have a static invoker function, which may call this operator with 997 // a null 'this' pointer. 998 if (isLambdaCallOperator(MD) && 999 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1000 SkippedChecks.set(SanitizerKind::Null, true); 1001 1002 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1003 : TCK_MemberCall, 1004 Loc, CXXABIThisValue, ThisTy, 1005 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1006 SkippedChecks); 1007 } 1008 } 1009 1010 // If any of the arguments have a variably modified type, make sure to 1011 // emit the type size. 1012 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1013 i != e; ++i) { 1014 const VarDecl *VD = *i; 1015 1016 // Dig out the type as written from ParmVarDecls; it's unclear whether 1017 // the standard (C99 6.9.1p10) requires this, but we're following the 1018 // precedent set by gcc. 1019 QualType Ty; 1020 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1021 Ty = PVD->getOriginalType(); 1022 else 1023 Ty = VD->getType(); 1024 1025 if (Ty->isVariablyModifiedType()) 1026 EmitVariablyModifiedType(Ty); 1027 } 1028 // Emit a location at the end of the prologue. 1029 if (CGDebugInfo *DI = getDebugInfo()) 1030 DI->EmitLocation(Builder, StartLoc); 1031 1032 // TODO: Do we need to handle this in two places like we do with 1033 // target-features/target-cpu? 1034 if (CurFuncDecl) 1035 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1036 LargestVectorWidth = VecWidth->getVectorWidth(); 1037 } 1038 1039 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1040 incrementProfileCounter(Body); 1041 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1042 EmitCompoundStmtWithoutScope(*S); 1043 else 1044 EmitStmt(Body); 1045 } 1046 1047 /// When instrumenting to collect profile data, the counts for some blocks 1048 /// such as switch cases need to not include the fall-through counts, so 1049 /// emit a branch around the instrumentation code. When not instrumenting, 1050 /// this just calls EmitBlock(). 1051 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1052 const Stmt *S) { 1053 llvm::BasicBlock *SkipCountBB = nullptr; 1054 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1055 // When instrumenting for profiling, the fallthrough to certain 1056 // statements needs to skip over the instrumentation code so that we 1057 // get an accurate count. 1058 SkipCountBB = createBasicBlock("skipcount"); 1059 EmitBranch(SkipCountBB); 1060 } 1061 EmitBlock(BB); 1062 uint64_t CurrentCount = getCurrentProfileCount(); 1063 incrementProfileCounter(S); 1064 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1065 if (SkipCountBB) 1066 EmitBlock(SkipCountBB); 1067 } 1068 1069 /// Tries to mark the given function nounwind based on the 1070 /// non-existence of any throwing calls within it. We believe this is 1071 /// lightweight enough to do at -O0. 1072 static void TryMarkNoThrow(llvm::Function *F) { 1073 // LLVM treats 'nounwind' on a function as part of the type, so we 1074 // can't do this on functions that can be overwritten. 1075 if (F->isInterposable()) return; 1076 1077 for (llvm::BasicBlock &BB : *F) 1078 for (llvm::Instruction &I : BB) 1079 if (I.mayThrow()) 1080 return; 1081 1082 F->setDoesNotThrow(); 1083 } 1084 1085 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1086 FunctionArgList &Args) { 1087 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1088 QualType ResTy = FD->getReturnType(); 1089 1090 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1091 if (MD && MD->isInstance()) { 1092 if (CGM.getCXXABI().HasThisReturn(GD)) 1093 ResTy = MD->getThisType(); 1094 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1095 ResTy = CGM.getContext().VoidPtrTy; 1096 CGM.getCXXABI().buildThisParam(*this, Args); 1097 } 1098 1099 // The base version of an inheriting constructor whose constructed base is a 1100 // virtual base is not passed any arguments (because it doesn't actually call 1101 // the inherited constructor). 1102 bool PassedParams = true; 1103 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1104 if (auto Inherited = CD->getInheritedConstructor()) 1105 PassedParams = 1106 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1107 1108 if (PassedParams) { 1109 for (auto *Param : FD->parameters()) { 1110 Args.push_back(Param); 1111 if (!Param->hasAttr<PassObjectSizeAttr>()) 1112 continue; 1113 1114 auto *Implicit = ImplicitParamDecl::Create( 1115 getContext(), Param->getDeclContext(), Param->getLocation(), 1116 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1117 SizeArguments[Param] = Implicit; 1118 Args.push_back(Implicit); 1119 } 1120 } 1121 1122 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1123 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1124 1125 return ResTy; 1126 } 1127 1128 static bool 1129 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1130 const ASTContext &Context) { 1131 QualType T = FD->getReturnType(); 1132 // Avoid the optimization for functions that return a record type with a 1133 // trivial destructor or another trivially copyable type. 1134 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1135 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1136 return !ClassDecl->hasTrivialDestructor(); 1137 } 1138 return !T.isTriviallyCopyableType(Context); 1139 } 1140 1141 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1142 const CGFunctionInfo &FnInfo) { 1143 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1144 CurGD = GD; 1145 1146 FunctionArgList Args; 1147 QualType ResTy = BuildFunctionArgList(GD, Args); 1148 1149 // Check if we should generate debug info for this function. 1150 if (FD->hasAttr<NoDebugAttr>()) 1151 DebugInfo = nullptr; // disable debug info indefinitely for this function 1152 1153 // The function might not have a body if we're generating thunks for a 1154 // function declaration. 1155 SourceRange BodyRange; 1156 if (Stmt *Body = FD->getBody()) 1157 BodyRange = Body->getSourceRange(); 1158 else 1159 BodyRange = FD->getLocation(); 1160 CurEHLocation = BodyRange.getEnd(); 1161 1162 // Use the location of the start of the function to determine where 1163 // the function definition is located. By default use the location 1164 // of the declaration as the location for the subprogram. A function 1165 // may lack a declaration in the source code if it is created by code 1166 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1167 SourceLocation Loc = FD->getLocation(); 1168 1169 // If this is a function specialization then use the pattern body 1170 // as the location for the function. 1171 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1172 if (SpecDecl->hasBody(SpecDecl)) 1173 Loc = SpecDecl->getLocation(); 1174 1175 Stmt *Body = FD->getBody(); 1176 1177 // Initialize helper which will detect jumps which can cause invalid lifetime 1178 // markers. 1179 if (Body && ShouldEmitLifetimeMarkers) 1180 Bypasses.Init(Body); 1181 1182 // Emit the standard function prologue. 1183 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1184 1185 // Generate the body of the function. 1186 PGO.assignRegionCounters(GD, CurFn); 1187 if (isa<CXXDestructorDecl>(FD)) 1188 EmitDestructorBody(Args); 1189 else if (isa<CXXConstructorDecl>(FD)) 1190 EmitConstructorBody(Args); 1191 else if (getLangOpts().CUDA && 1192 !getLangOpts().CUDAIsDevice && 1193 FD->hasAttr<CUDAGlobalAttr>()) 1194 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1195 else if (isa<CXXMethodDecl>(FD) && 1196 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1197 // The lambda static invoker function is special, because it forwards or 1198 // clones the body of the function call operator (but is actually static). 1199 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1200 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1201 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1202 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1203 // Implicit copy-assignment gets the same special treatment as implicit 1204 // copy-constructors. 1205 emitImplicitAssignmentOperatorBody(Args); 1206 } else if (Body) { 1207 EmitFunctionBody(Body); 1208 } else 1209 llvm_unreachable("no definition for emitted function"); 1210 1211 // C++11 [stmt.return]p2: 1212 // Flowing off the end of a function [...] results in undefined behavior in 1213 // a value-returning function. 1214 // C11 6.9.1p12: 1215 // If the '}' that terminates a function is reached, and the value of the 1216 // function call is used by the caller, the behavior is undefined. 1217 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1218 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1219 bool ShouldEmitUnreachable = 1220 CGM.getCodeGenOpts().StrictReturn || 1221 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1222 if (SanOpts.has(SanitizerKind::Return)) { 1223 SanitizerScope SanScope(this); 1224 llvm::Value *IsFalse = Builder.getFalse(); 1225 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1226 SanitizerHandler::MissingReturn, 1227 EmitCheckSourceLocation(FD->getLocation()), None); 1228 } else if (ShouldEmitUnreachable) { 1229 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1230 EmitTrapCall(llvm::Intrinsic::trap); 1231 } 1232 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1233 Builder.CreateUnreachable(); 1234 Builder.ClearInsertionPoint(); 1235 } 1236 } 1237 1238 // Emit the standard function epilogue. 1239 FinishFunction(BodyRange.getEnd()); 1240 1241 // If we haven't marked the function nothrow through other means, do 1242 // a quick pass now to see if we can. 1243 if (!CurFn->doesNotThrow()) 1244 TryMarkNoThrow(CurFn); 1245 } 1246 1247 /// ContainsLabel - Return true if the statement contains a label in it. If 1248 /// this statement is not executed normally, it not containing a label means 1249 /// that we can just remove the code. 1250 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1251 // Null statement, not a label! 1252 if (!S) return false; 1253 1254 // If this is a label, we have to emit the code, consider something like: 1255 // if (0) { ... foo: bar(); } goto foo; 1256 // 1257 // TODO: If anyone cared, we could track __label__'s, since we know that you 1258 // can't jump to one from outside their declared region. 1259 if (isa<LabelStmt>(S)) 1260 return true; 1261 1262 // If this is a case/default statement, and we haven't seen a switch, we have 1263 // to emit the code. 1264 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1265 return true; 1266 1267 // If this is a switch statement, we want to ignore cases below it. 1268 if (isa<SwitchStmt>(S)) 1269 IgnoreCaseStmts = true; 1270 1271 // Scan subexpressions for verboten labels. 1272 for (const Stmt *SubStmt : S->children()) 1273 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1274 return true; 1275 1276 return false; 1277 } 1278 1279 /// containsBreak - Return true if the statement contains a break out of it. 1280 /// If the statement (recursively) contains a switch or loop with a break 1281 /// inside of it, this is fine. 1282 bool CodeGenFunction::containsBreak(const Stmt *S) { 1283 // Null statement, not a label! 1284 if (!S) return false; 1285 1286 // If this is a switch or loop that defines its own break scope, then we can 1287 // include it and anything inside of it. 1288 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1289 isa<ForStmt>(S)) 1290 return false; 1291 1292 if (isa<BreakStmt>(S)) 1293 return true; 1294 1295 // Scan subexpressions for verboten breaks. 1296 for (const Stmt *SubStmt : S->children()) 1297 if (containsBreak(SubStmt)) 1298 return true; 1299 1300 return false; 1301 } 1302 1303 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1304 if (!S) return false; 1305 1306 // Some statement kinds add a scope and thus never add a decl to the current 1307 // scope. Note, this list is longer than the list of statements that might 1308 // have an unscoped decl nested within them, but this way is conservatively 1309 // correct even if more statement kinds are added. 1310 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1311 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1312 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1313 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1314 return false; 1315 1316 if (isa<DeclStmt>(S)) 1317 return true; 1318 1319 for (const Stmt *SubStmt : S->children()) 1320 if (mightAddDeclToScope(SubStmt)) 1321 return true; 1322 1323 return false; 1324 } 1325 1326 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1327 /// to a constant, or if it does but contains a label, return false. If it 1328 /// constant folds return true and set the boolean result in Result. 1329 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1330 bool &ResultBool, 1331 bool AllowLabels) { 1332 llvm::APSInt ResultInt; 1333 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1334 return false; 1335 1336 ResultBool = ResultInt.getBoolValue(); 1337 return true; 1338 } 1339 1340 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1341 /// to a constant, or if it does but contains a label, return false. If it 1342 /// constant folds return true and set the folded value. 1343 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1344 llvm::APSInt &ResultInt, 1345 bool AllowLabels) { 1346 // FIXME: Rename and handle conversion of other evaluatable things 1347 // to bool. 1348 Expr::EvalResult Result; 1349 if (!Cond->EvaluateAsInt(Result, getContext())) 1350 return false; // Not foldable, not integer or not fully evaluatable. 1351 1352 llvm::APSInt Int = Result.Val.getInt(); 1353 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1354 return false; // Contains a label. 1355 1356 ResultInt = Int; 1357 return true; 1358 } 1359 1360 1361 1362 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1363 /// statement) to the specified blocks. Based on the condition, this might try 1364 /// to simplify the codegen of the conditional based on the branch. 1365 /// 1366 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1367 llvm::BasicBlock *TrueBlock, 1368 llvm::BasicBlock *FalseBlock, 1369 uint64_t TrueCount) { 1370 Cond = Cond->IgnoreParens(); 1371 1372 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1373 1374 // Handle X && Y in a condition. 1375 if (CondBOp->getOpcode() == BO_LAnd) { 1376 // If we have "1 && X", simplify the code. "0 && X" would have constant 1377 // folded if the case was simple enough. 1378 bool ConstantBool = false; 1379 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1380 ConstantBool) { 1381 // br(1 && X) -> br(X). 1382 incrementProfileCounter(CondBOp); 1383 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1384 TrueCount); 1385 } 1386 1387 // If we have "X && 1", simplify the code to use an uncond branch. 1388 // "X && 0" would have been constant folded to 0. 1389 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1390 ConstantBool) { 1391 // br(X && 1) -> br(X). 1392 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1393 TrueCount); 1394 } 1395 1396 // Emit the LHS as a conditional. If the LHS conditional is false, we 1397 // want to jump to the FalseBlock. 1398 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1399 // The counter tells us how often we evaluate RHS, and all of TrueCount 1400 // can be propagated to that branch. 1401 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1402 1403 ConditionalEvaluation eval(*this); 1404 { 1405 ApplyDebugLocation DL(*this, Cond); 1406 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1407 EmitBlock(LHSTrue); 1408 } 1409 1410 incrementProfileCounter(CondBOp); 1411 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1412 1413 // Any temporaries created here are conditional. 1414 eval.begin(*this); 1415 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1416 eval.end(*this); 1417 1418 return; 1419 } 1420 1421 if (CondBOp->getOpcode() == BO_LOr) { 1422 // If we have "0 || X", simplify the code. "1 || X" would have constant 1423 // folded if the case was simple enough. 1424 bool ConstantBool = false; 1425 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1426 !ConstantBool) { 1427 // br(0 || X) -> br(X). 1428 incrementProfileCounter(CondBOp); 1429 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1430 TrueCount); 1431 } 1432 1433 // If we have "X || 0", simplify the code to use an uncond branch. 1434 // "X || 1" would have been constant folded to 1. 1435 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1436 !ConstantBool) { 1437 // br(X || 0) -> br(X). 1438 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1439 TrueCount); 1440 } 1441 1442 // Emit the LHS as a conditional. If the LHS conditional is true, we 1443 // want to jump to the TrueBlock. 1444 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1445 // We have the count for entry to the RHS and for the whole expression 1446 // being true, so we can divy up True count between the short circuit and 1447 // the RHS. 1448 uint64_t LHSCount = 1449 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1450 uint64_t RHSCount = TrueCount - LHSCount; 1451 1452 ConditionalEvaluation eval(*this); 1453 { 1454 ApplyDebugLocation DL(*this, Cond); 1455 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1456 EmitBlock(LHSFalse); 1457 } 1458 1459 incrementProfileCounter(CondBOp); 1460 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1461 1462 // Any temporaries created here are conditional. 1463 eval.begin(*this); 1464 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1465 1466 eval.end(*this); 1467 1468 return; 1469 } 1470 } 1471 1472 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1473 // br(!x, t, f) -> br(x, f, t) 1474 if (CondUOp->getOpcode() == UO_LNot) { 1475 // Negate the count. 1476 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1477 // Negate the condition and swap the destination blocks. 1478 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1479 FalseCount); 1480 } 1481 } 1482 1483 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1484 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1485 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1486 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1487 1488 ConditionalEvaluation cond(*this); 1489 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1490 getProfileCount(CondOp)); 1491 1492 // When computing PGO branch weights, we only know the overall count for 1493 // the true block. This code is essentially doing tail duplication of the 1494 // naive code-gen, introducing new edges for which counts are not 1495 // available. Divide the counts proportionally between the LHS and RHS of 1496 // the conditional operator. 1497 uint64_t LHSScaledTrueCount = 0; 1498 if (TrueCount) { 1499 double LHSRatio = 1500 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1501 LHSScaledTrueCount = TrueCount * LHSRatio; 1502 } 1503 1504 cond.begin(*this); 1505 EmitBlock(LHSBlock); 1506 incrementProfileCounter(CondOp); 1507 { 1508 ApplyDebugLocation DL(*this, Cond); 1509 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1510 LHSScaledTrueCount); 1511 } 1512 cond.end(*this); 1513 1514 cond.begin(*this); 1515 EmitBlock(RHSBlock); 1516 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1517 TrueCount - LHSScaledTrueCount); 1518 cond.end(*this); 1519 1520 return; 1521 } 1522 1523 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1524 // Conditional operator handling can give us a throw expression as a 1525 // condition for a case like: 1526 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1527 // Fold this to: 1528 // br(c, throw x, br(y, t, f)) 1529 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1530 return; 1531 } 1532 1533 // If the branch has a condition wrapped by __builtin_unpredictable, 1534 // create metadata that specifies that the branch is unpredictable. 1535 // Don't bother if not optimizing because that metadata would not be used. 1536 llvm::MDNode *Unpredictable = nullptr; 1537 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1538 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1539 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1540 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1541 llvm::MDBuilder MDHelper(getLLVMContext()); 1542 Unpredictable = MDHelper.createUnpredictable(); 1543 } 1544 } 1545 1546 // Create branch weights based on the number of times we get here and the 1547 // number of times the condition should be true. 1548 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1549 llvm::MDNode *Weights = 1550 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1551 1552 // Emit the code with the fully general case. 1553 llvm::Value *CondV; 1554 { 1555 ApplyDebugLocation DL(*this, Cond); 1556 CondV = EvaluateExprAsBool(Cond); 1557 } 1558 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1559 } 1560 1561 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1562 /// specified stmt yet. 1563 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1564 CGM.ErrorUnsupported(S, Type); 1565 } 1566 1567 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1568 /// variable-length array whose elements have a non-zero bit-pattern. 1569 /// 1570 /// \param baseType the inner-most element type of the array 1571 /// \param src - a char* pointing to the bit-pattern for a single 1572 /// base element of the array 1573 /// \param sizeInChars - the total size of the VLA, in chars 1574 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1575 Address dest, Address src, 1576 llvm::Value *sizeInChars) { 1577 CGBuilderTy &Builder = CGF.Builder; 1578 1579 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1580 llvm::Value *baseSizeInChars 1581 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1582 1583 Address begin = 1584 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1585 llvm::Value *end = 1586 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1587 1588 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1589 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1590 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1591 1592 // Make a loop over the VLA. C99 guarantees that the VLA element 1593 // count must be nonzero. 1594 CGF.EmitBlock(loopBB); 1595 1596 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1597 cur->addIncoming(begin.getPointer(), originBB); 1598 1599 CharUnits curAlign = 1600 dest.getAlignment().alignmentOfArrayElement(baseSize); 1601 1602 // memcpy the individual element bit-pattern. 1603 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1604 /*volatile*/ false); 1605 1606 // Go to the next element. 1607 llvm::Value *next = 1608 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1609 1610 // Leave if that's the end of the VLA. 1611 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1612 Builder.CreateCondBr(done, contBB, loopBB); 1613 cur->addIncoming(next, loopBB); 1614 1615 CGF.EmitBlock(contBB); 1616 } 1617 1618 void 1619 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1620 // Ignore empty classes in C++. 1621 if (getLangOpts().CPlusPlus) { 1622 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1623 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1624 return; 1625 } 1626 } 1627 1628 // Cast the dest ptr to the appropriate i8 pointer type. 1629 if (DestPtr.getElementType() != Int8Ty) 1630 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1631 1632 // Get size and alignment info for this aggregate. 1633 CharUnits size = getContext().getTypeSizeInChars(Ty); 1634 1635 llvm::Value *SizeVal; 1636 const VariableArrayType *vla; 1637 1638 // Don't bother emitting a zero-byte memset. 1639 if (size.isZero()) { 1640 // But note that getTypeInfo returns 0 for a VLA. 1641 if (const VariableArrayType *vlaType = 1642 dyn_cast_or_null<VariableArrayType>( 1643 getContext().getAsArrayType(Ty))) { 1644 auto VlaSize = getVLASize(vlaType); 1645 SizeVal = VlaSize.NumElts; 1646 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1647 if (!eltSize.isOne()) 1648 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1649 vla = vlaType; 1650 } else { 1651 return; 1652 } 1653 } else { 1654 SizeVal = CGM.getSize(size); 1655 vla = nullptr; 1656 } 1657 1658 // If the type contains a pointer to data member we can't memset it to zero. 1659 // Instead, create a null constant and copy it to the destination. 1660 // TODO: there are other patterns besides zero that we can usefully memset, 1661 // like -1, which happens to be the pattern used by member-pointers. 1662 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1663 // For a VLA, emit a single element, then splat that over the VLA. 1664 if (vla) Ty = getContext().getBaseElementType(vla); 1665 1666 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1667 1668 llvm::GlobalVariable *NullVariable = 1669 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1670 /*isConstant=*/true, 1671 llvm::GlobalVariable::PrivateLinkage, 1672 NullConstant, Twine()); 1673 CharUnits NullAlign = DestPtr.getAlignment(); 1674 NullVariable->setAlignment(NullAlign.getAsAlign()); 1675 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1676 NullAlign); 1677 1678 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1679 1680 // Get and call the appropriate llvm.memcpy overload. 1681 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1682 return; 1683 } 1684 1685 // Otherwise, just memset the whole thing to zero. This is legal 1686 // because in LLVM, all default initializers (other than the ones we just 1687 // handled above) are guaranteed to have a bit pattern of all zeros. 1688 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1689 } 1690 1691 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1692 // Make sure that there is a block for the indirect goto. 1693 if (!IndirectBranch) 1694 GetIndirectGotoBlock(); 1695 1696 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1697 1698 // Make sure the indirect branch includes all of the address-taken blocks. 1699 IndirectBranch->addDestination(BB); 1700 return llvm::BlockAddress::get(CurFn, BB); 1701 } 1702 1703 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1704 // If we already made the indirect branch for indirect goto, return its block. 1705 if (IndirectBranch) return IndirectBranch->getParent(); 1706 1707 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1708 1709 // Create the PHI node that indirect gotos will add entries to. 1710 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1711 "indirect.goto.dest"); 1712 1713 // Create the indirect branch instruction. 1714 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1715 return IndirectBranch->getParent(); 1716 } 1717 1718 /// Computes the length of an array in elements, as well as the base 1719 /// element type and a properly-typed first element pointer. 1720 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1721 QualType &baseType, 1722 Address &addr) { 1723 const ArrayType *arrayType = origArrayType; 1724 1725 // If it's a VLA, we have to load the stored size. Note that 1726 // this is the size of the VLA in bytes, not its size in elements. 1727 llvm::Value *numVLAElements = nullptr; 1728 if (isa<VariableArrayType>(arrayType)) { 1729 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1730 1731 // Walk into all VLAs. This doesn't require changes to addr, 1732 // which has type T* where T is the first non-VLA element type. 1733 do { 1734 QualType elementType = arrayType->getElementType(); 1735 arrayType = getContext().getAsArrayType(elementType); 1736 1737 // If we only have VLA components, 'addr' requires no adjustment. 1738 if (!arrayType) { 1739 baseType = elementType; 1740 return numVLAElements; 1741 } 1742 } while (isa<VariableArrayType>(arrayType)); 1743 1744 // We get out here only if we find a constant array type 1745 // inside the VLA. 1746 } 1747 1748 // We have some number of constant-length arrays, so addr should 1749 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1750 // down to the first element of addr. 1751 SmallVector<llvm::Value*, 8> gepIndices; 1752 1753 // GEP down to the array type. 1754 llvm::ConstantInt *zero = Builder.getInt32(0); 1755 gepIndices.push_back(zero); 1756 1757 uint64_t countFromCLAs = 1; 1758 QualType eltType; 1759 1760 llvm::ArrayType *llvmArrayType = 1761 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1762 while (llvmArrayType) { 1763 assert(isa<ConstantArrayType>(arrayType)); 1764 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1765 == llvmArrayType->getNumElements()); 1766 1767 gepIndices.push_back(zero); 1768 countFromCLAs *= llvmArrayType->getNumElements(); 1769 eltType = arrayType->getElementType(); 1770 1771 llvmArrayType = 1772 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1773 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1774 assert((!llvmArrayType || arrayType) && 1775 "LLVM and Clang types are out-of-synch"); 1776 } 1777 1778 if (arrayType) { 1779 // From this point onwards, the Clang array type has been emitted 1780 // as some other type (probably a packed struct). Compute the array 1781 // size, and just emit the 'begin' expression as a bitcast. 1782 while (arrayType) { 1783 countFromCLAs *= 1784 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1785 eltType = arrayType->getElementType(); 1786 arrayType = getContext().getAsArrayType(eltType); 1787 } 1788 1789 llvm::Type *baseType = ConvertType(eltType); 1790 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1791 } else { 1792 // Create the actual GEP. 1793 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1794 gepIndices, "array.begin"), 1795 addr.getAlignment()); 1796 } 1797 1798 baseType = eltType; 1799 1800 llvm::Value *numElements 1801 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1802 1803 // If we had any VLA dimensions, factor them in. 1804 if (numVLAElements) 1805 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1806 1807 return numElements; 1808 } 1809 1810 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1811 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1812 assert(vla && "type was not a variable array type!"); 1813 return getVLASize(vla); 1814 } 1815 1816 CodeGenFunction::VlaSizePair 1817 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1818 // The number of elements so far; always size_t. 1819 llvm::Value *numElements = nullptr; 1820 1821 QualType elementType; 1822 do { 1823 elementType = type->getElementType(); 1824 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1825 assert(vlaSize && "no size for VLA!"); 1826 assert(vlaSize->getType() == SizeTy); 1827 1828 if (!numElements) { 1829 numElements = vlaSize; 1830 } else { 1831 // It's undefined behavior if this wraps around, so mark it that way. 1832 // FIXME: Teach -fsanitize=undefined to trap this. 1833 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1834 } 1835 } while ((type = getContext().getAsVariableArrayType(elementType))); 1836 1837 return { numElements, elementType }; 1838 } 1839 1840 CodeGenFunction::VlaSizePair 1841 CodeGenFunction::getVLAElements1D(QualType type) { 1842 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1843 assert(vla && "type was not a variable array type!"); 1844 return getVLAElements1D(vla); 1845 } 1846 1847 CodeGenFunction::VlaSizePair 1848 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1849 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1850 assert(VlaSize && "no size for VLA!"); 1851 assert(VlaSize->getType() == SizeTy); 1852 return { VlaSize, Vla->getElementType() }; 1853 } 1854 1855 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1856 assert(type->isVariablyModifiedType() && 1857 "Must pass variably modified type to EmitVLASizes!"); 1858 1859 EnsureInsertPoint(); 1860 1861 // We're going to walk down into the type and look for VLA 1862 // expressions. 1863 do { 1864 assert(type->isVariablyModifiedType()); 1865 1866 const Type *ty = type.getTypePtr(); 1867 switch (ty->getTypeClass()) { 1868 1869 #define TYPE(Class, Base) 1870 #define ABSTRACT_TYPE(Class, Base) 1871 #define NON_CANONICAL_TYPE(Class, Base) 1872 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1873 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1874 #include "clang/AST/TypeNodes.inc" 1875 llvm_unreachable("unexpected dependent type!"); 1876 1877 // These types are never variably-modified. 1878 case Type::Builtin: 1879 case Type::Complex: 1880 case Type::Vector: 1881 case Type::ExtVector: 1882 case Type::Record: 1883 case Type::Enum: 1884 case Type::Elaborated: 1885 case Type::TemplateSpecialization: 1886 case Type::ObjCTypeParam: 1887 case Type::ObjCObject: 1888 case Type::ObjCInterface: 1889 case Type::ObjCObjectPointer: 1890 llvm_unreachable("type class is never variably-modified!"); 1891 1892 case Type::Adjusted: 1893 type = cast<AdjustedType>(ty)->getAdjustedType(); 1894 break; 1895 1896 case Type::Decayed: 1897 type = cast<DecayedType>(ty)->getPointeeType(); 1898 break; 1899 1900 case Type::Pointer: 1901 type = cast<PointerType>(ty)->getPointeeType(); 1902 break; 1903 1904 case Type::BlockPointer: 1905 type = cast<BlockPointerType>(ty)->getPointeeType(); 1906 break; 1907 1908 case Type::LValueReference: 1909 case Type::RValueReference: 1910 type = cast<ReferenceType>(ty)->getPointeeType(); 1911 break; 1912 1913 case Type::MemberPointer: 1914 type = cast<MemberPointerType>(ty)->getPointeeType(); 1915 break; 1916 1917 case Type::ConstantArray: 1918 case Type::IncompleteArray: 1919 // Losing element qualification here is fine. 1920 type = cast<ArrayType>(ty)->getElementType(); 1921 break; 1922 1923 case Type::VariableArray: { 1924 // Losing element qualification here is fine. 1925 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1926 1927 // Unknown size indication requires no size computation. 1928 // Otherwise, evaluate and record it. 1929 if (const Expr *size = vat->getSizeExpr()) { 1930 // It's possible that we might have emitted this already, 1931 // e.g. with a typedef and a pointer to it. 1932 llvm::Value *&entry = VLASizeMap[size]; 1933 if (!entry) { 1934 llvm::Value *Size = EmitScalarExpr(size); 1935 1936 // C11 6.7.6.2p5: 1937 // If the size is an expression that is not an integer constant 1938 // expression [...] each time it is evaluated it shall have a value 1939 // greater than zero. 1940 if (SanOpts.has(SanitizerKind::VLABound) && 1941 size->getType()->isSignedIntegerType()) { 1942 SanitizerScope SanScope(this); 1943 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1944 llvm::Constant *StaticArgs[] = { 1945 EmitCheckSourceLocation(size->getBeginLoc()), 1946 EmitCheckTypeDescriptor(size->getType())}; 1947 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1948 SanitizerKind::VLABound), 1949 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1950 } 1951 1952 // Always zexting here would be wrong if it weren't 1953 // undefined behavior to have a negative bound. 1954 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1955 } 1956 } 1957 type = vat->getElementType(); 1958 break; 1959 } 1960 1961 case Type::FunctionProto: 1962 case Type::FunctionNoProto: 1963 type = cast<FunctionType>(ty)->getReturnType(); 1964 break; 1965 1966 case Type::Paren: 1967 case Type::TypeOf: 1968 case Type::UnaryTransform: 1969 case Type::Attributed: 1970 case Type::SubstTemplateTypeParm: 1971 case Type::PackExpansion: 1972 case Type::MacroQualified: 1973 // Keep walking after single level desugaring. 1974 type = type.getSingleStepDesugaredType(getContext()); 1975 break; 1976 1977 case Type::Typedef: 1978 case Type::Decltype: 1979 case Type::Auto: 1980 case Type::DeducedTemplateSpecialization: 1981 // Stop walking: nothing to do. 1982 return; 1983 1984 case Type::TypeOfExpr: 1985 // Stop walking: emit typeof expression. 1986 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1987 return; 1988 1989 case Type::Atomic: 1990 type = cast<AtomicType>(ty)->getValueType(); 1991 break; 1992 1993 case Type::Pipe: 1994 type = cast<PipeType>(ty)->getElementType(); 1995 break; 1996 } 1997 } while (type->isVariablyModifiedType()); 1998 } 1999 2000 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2001 if (getContext().getBuiltinVaListType()->isArrayType()) 2002 return EmitPointerWithAlignment(E); 2003 return EmitLValue(E).getAddress(); 2004 } 2005 2006 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2007 return EmitLValue(E).getAddress(); 2008 } 2009 2010 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2011 const APValue &Init) { 2012 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2013 if (CGDebugInfo *Dbg = getDebugInfo()) 2014 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2015 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2016 } 2017 2018 CodeGenFunction::PeepholeProtection 2019 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2020 // At the moment, the only aggressive peephole we do in IR gen 2021 // is trunc(zext) folding, but if we add more, we can easily 2022 // extend this protection. 2023 2024 if (!rvalue.isScalar()) return PeepholeProtection(); 2025 llvm::Value *value = rvalue.getScalarVal(); 2026 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2027 2028 // Just make an extra bitcast. 2029 assert(HaveInsertPoint()); 2030 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2031 Builder.GetInsertBlock()); 2032 2033 PeepholeProtection protection; 2034 protection.Inst = inst; 2035 return protection; 2036 } 2037 2038 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2039 if (!protection.Inst) return; 2040 2041 // In theory, we could try to duplicate the peepholes now, but whatever. 2042 protection.Inst->eraseFromParent(); 2043 } 2044 2045 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2046 QualType Ty, SourceLocation Loc, 2047 SourceLocation AssumptionLoc, 2048 llvm::Value *Alignment, 2049 llvm::Value *OffsetValue) { 2050 llvm::Value *TheCheck; 2051 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2052 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2053 if (SanOpts.has(SanitizerKind::Alignment)) { 2054 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2055 OffsetValue, TheCheck, Assumption); 2056 } 2057 } 2058 2059 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2060 const Expr *E, 2061 SourceLocation AssumptionLoc, 2062 llvm::Value *Alignment, 2063 llvm::Value *OffsetValue) { 2064 if (auto *CE = dyn_cast<CastExpr>(E)) 2065 E = CE->getSubExprAsWritten(); 2066 QualType Ty = E->getType(); 2067 SourceLocation Loc = E->getExprLoc(); 2068 2069 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2070 OffsetValue); 2071 } 2072 2073 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2074 llvm::Value *AnnotatedVal, 2075 StringRef AnnotationStr, 2076 SourceLocation Location) { 2077 llvm::Value *Args[4] = { 2078 AnnotatedVal, 2079 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2080 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2081 CGM.EmitAnnotationLineNo(Location) 2082 }; 2083 return Builder.CreateCall(AnnotationFn, Args); 2084 } 2085 2086 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2087 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2088 // FIXME We create a new bitcast for every annotation because that's what 2089 // llvm-gcc was doing. 2090 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2091 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2092 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2093 I->getAnnotation(), D->getLocation()); 2094 } 2095 2096 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2097 Address Addr) { 2098 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2099 llvm::Value *V = Addr.getPointer(); 2100 llvm::Type *VTy = V->getType(); 2101 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2102 CGM.Int8PtrTy); 2103 2104 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2105 // FIXME Always emit the cast inst so we can differentiate between 2106 // annotation on the first field of a struct and annotation on the struct 2107 // itself. 2108 if (VTy != CGM.Int8PtrTy) 2109 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2110 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2111 V = Builder.CreateBitCast(V, VTy); 2112 } 2113 2114 return Address(V, Addr.getAlignment()); 2115 } 2116 2117 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2118 2119 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2120 : CGF(CGF) { 2121 assert(!CGF->IsSanitizerScope); 2122 CGF->IsSanitizerScope = true; 2123 } 2124 2125 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2126 CGF->IsSanitizerScope = false; 2127 } 2128 2129 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2130 const llvm::Twine &Name, 2131 llvm::BasicBlock *BB, 2132 llvm::BasicBlock::iterator InsertPt) const { 2133 LoopStack.InsertHelper(I); 2134 if (IsSanitizerScope) 2135 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2136 } 2137 2138 void CGBuilderInserter::InsertHelper( 2139 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2140 llvm::BasicBlock::iterator InsertPt) const { 2141 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2142 if (CGF) 2143 CGF->InsertHelper(I, Name, BB, InsertPt); 2144 } 2145 2146 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2147 CodeGenModule &CGM, const FunctionDecl *FD, 2148 std::string &FirstMissing) { 2149 // If there aren't any required features listed then go ahead and return. 2150 if (ReqFeatures.empty()) 2151 return false; 2152 2153 // Now build up the set of caller features and verify that all the required 2154 // features are there. 2155 llvm::StringMap<bool> CallerFeatureMap; 2156 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2157 2158 // If we have at least one of the features in the feature list return 2159 // true, otherwise return false. 2160 return std::all_of( 2161 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2162 SmallVector<StringRef, 1> OrFeatures; 2163 Feature.split(OrFeatures, '|'); 2164 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2165 if (!CallerFeatureMap.lookup(Feature)) { 2166 FirstMissing = Feature.str(); 2167 return false; 2168 } 2169 return true; 2170 }); 2171 }); 2172 } 2173 2174 // Emits an error if we don't have a valid set of target features for the 2175 // called function. 2176 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2177 const FunctionDecl *TargetDecl) { 2178 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2179 } 2180 2181 // Emits an error if we don't have a valid set of target features for the 2182 // called function. 2183 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2184 const FunctionDecl *TargetDecl) { 2185 // Early exit if this is an indirect call. 2186 if (!TargetDecl) 2187 return; 2188 2189 // Get the current enclosing function if it exists. If it doesn't 2190 // we can't check the target features anyhow. 2191 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2192 if (!FD) 2193 return; 2194 2195 // Grab the required features for the call. For a builtin this is listed in 2196 // the td file with the default cpu, for an always_inline function this is any 2197 // listed cpu and any listed features. 2198 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2199 std::string MissingFeature; 2200 if (BuiltinID) { 2201 SmallVector<StringRef, 1> ReqFeatures; 2202 const char *FeatureList = 2203 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2204 // Return if the builtin doesn't have any required features. 2205 if (!FeatureList || StringRef(FeatureList) == "") 2206 return; 2207 StringRef(FeatureList).split(ReqFeatures, ','); 2208 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2209 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2210 << TargetDecl->getDeclName() 2211 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2212 2213 } else if (TargetDecl->hasAttr<TargetAttr>() || 2214 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2215 // Get the required features for the callee. 2216 2217 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2218 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2219 2220 SmallVector<StringRef, 1> ReqFeatures; 2221 llvm::StringMap<bool> CalleeFeatureMap; 2222 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2223 2224 for (const auto &F : ParsedAttr.Features) { 2225 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2226 ReqFeatures.push_back(StringRef(F).substr(1)); 2227 } 2228 2229 for (const auto &F : CalleeFeatureMap) { 2230 // Only positive features are "required". 2231 if (F.getValue()) 2232 ReqFeatures.push_back(F.getKey()); 2233 } 2234 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2235 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2236 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2237 } 2238 } 2239 2240 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2241 if (!CGM.getCodeGenOpts().SanitizeStats) 2242 return; 2243 2244 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2245 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2246 CGM.getSanStats().create(IRB, SSK); 2247 } 2248 2249 llvm::Value * 2250 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2251 llvm::Value *Condition = nullptr; 2252 2253 if (!RO.Conditions.Architecture.empty()) 2254 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2255 2256 if (!RO.Conditions.Features.empty()) { 2257 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2258 Condition = 2259 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2260 } 2261 return Condition; 2262 } 2263 2264 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2265 llvm::Function *Resolver, 2266 CGBuilderTy &Builder, 2267 llvm::Function *FuncToReturn, 2268 bool SupportsIFunc) { 2269 if (SupportsIFunc) { 2270 Builder.CreateRet(FuncToReturn); 2271 return; 2272 } 2273 2274 llvm::SmallVector<llvm::Value *, 10> Args; 2275 llvm::for_each(Resolver->args(), 2276 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2277 2278 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2279 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2280 2281 if (Resolver->getReturnType()->isVoidTy()) 2282 Builder.CreateRetVoid(); 2283 else 2284 Builder.CreateRet(Result); 2285 } 2286 2287 void CodeGenFunction::EmitMultiVersionResolver( 2288 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2289 assert((getContext().getTargetInfo().getTriple().getArch() == 2290 llvm::Triple::x86 || 2291 getContext().getTargetInfo().getTriple().getArch() == 2292 llvm::Triple::x86_64) && 2293 "Only implemented for x86 targets"); 2294 2295 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2296 2297 // Main function's basic block. 2298 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2299 Builder.SetInsertPoint(CurBlock); 2300 EmitX86CpuInit(); 2301 2302 for (const MultiVersionResolverOption &RO : Options) { 2303 Builder.SetInsertPoint(CurBlock); 2304 llvm::Value *Condition = FormResolverCondition(RO); 2305 2306 // The 'default' or 'generic' case. 2307 if (!Condition) { 2308 assert(&RO == Options.end() - 1 && 2309 "Default or Generic case must be last"); 2310 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2311 SupportsIFunc); 2312 return; 2313 } 2314 2315 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2316 CGBuilderTy RetBuilder(*this, RetBlock); 2317 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2318 SupportsIFunc); 2319 CurBlock = createBasicBlock("resolver_else", Resolver); 2320 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2321 } 2322 2323 // If no generic/default, emit an unreachable. 2324 Builder.SetInsertPoint(CurBlock); 2325 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2326 TrapCall->setDoesNotReturn(); 2327 TrapCall->setDoesNotThrow(); 2328 Builder.CreateUnreachable(); 2329 Builder.ClearInsertionPoint(); 2330 } 2331 2332 // Loc - where the diagnostic will point, where in the source code this 2333 // alignment has failed. 2334 // SecondaryLoc - if present (will be present if sufficiently different from 2335 // Loc), the diagnostic will additionally point a "Note:" to this location. 2336 // It should be the location where the __attribute__((assume_aligned)) 2337 // was written e.g. 2338 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2339 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2340 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2341 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2342 llvm::Instruction *Assumption) { 2343 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2344 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2345 llvm::Intrinsic::getDeclaration( 2346 Builder.GetInsertBlock()->getParent()->getParent(), 2347 llvm::Intrinsic::assume) && 2348 "Assumption should be a call to llvm.assume()."); 2349 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2350 "Assumption should be the last instruction of the basic block, " 2351 "since the basic block is still being generated."); 2352 2353 if (!SanOpts.has(SanitizerKind::Alignment)) 2354 return; 2355 2356 // Don't check pointers to volatile data. The behavior here is implementation- 2357 // defined. 2358 if (Ty->getPointeeType().isVolatileQualified()) 2359 return; 2360 2361 // We need to temorairly remove the assumption so we can insert the 2362 // sanitizer check before it, else the check will be dropped by optimizations. 2363 Assumption->removeFromParent(); 2364 2365 { 2366 SanitizerScope SanScope(this); 2367 2368 if (!OffsetValue) 2369 OffsetValue = Builder.getInt1(0); // no offset. 2370 2371 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2372 EmitCheckSourceLocation(SecondaryLoc), 2373 EmitCheckTypeDescriptor(Ty)}; 2374 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2375 EmitCheckValue(Alignment), 2376 EmitCheckValue(OffsetValue)}; 2377 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2378 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2379 } 2380 2381 // We are now in the (new, empty) "cont" basic block. 2382 // Reintroduce the assumption. 2383 Builder.Insert(Assumption); 2384 // FIXME: Assumption still has it's original basic block as it's Parent. 2385 } 2386 2387 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2388 if (CGDebugInfo *DI = getDebugInfo()) 2389 return DI->SourceLocToDebugLoc(Location); 2390 2391 return llvm::DebugLoc(); 2392 } 2393