1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-function state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCleanup.h" 18 #include "CGDebugInfo.h" 19 #include "CGOpenMPRuntime.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenPGO.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ASTLambda.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/Expr.h" 29 #include "clang/AST/StmtCXX.h" 30 #include "clang/AST/StmtObjC.h" 31 #include "clang/Basic/Builtins.h" 32 #include "clang/Basic/CodeGenOptions.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/CodeGen/CGFunctionInfo.h" 35 #include "clang/Frontend/FrontendDiagnostic.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Dominators.h" 40 #include "llvm/IR/FPEnv.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/Support/CRC.h" 46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" 47 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 52 /// markers. 53 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 54 const LangOptions &LangOpts) { 55 if (CGOpts.DisableLifetimeMarkers) 56 return false; 57 58 // Sanitizers may use markers. 59 if (CGOpts.SanitizeAddressUseAfterScope || 60 LangOpts.Sanitize.has(SanitizerKind::HWAddress) || 61 LangOpts.Sanitize.has(SanitizerKind::Memory)) 62 return true; 63 64 // For now, only in optimized builds. 65 return CGOpts.OptimizationLevel != 0; 66 } 67 68 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 69 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 70 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 71 CGBuilderInserterTy(this)), 72 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), 73 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), 74 ShouldEmitLifetimeMarkers( 75 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 76 if (!suppressNewContext) 77 CGM.getCXXABI().getMangleContext().startNewFunction(); 78 EHStack.setCGF(this); 79 80 SetFastMathFlags(CurFPFeatures); 81 SetFPModel(); 82 } 83 84 CodeGenFunction::~CodeGenFunction() { 85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 86 87 if (getLangOpts().OpenMP && CurFn) 88 CGM.getOpenMPRuntime().functionFinished(*this); 89 90 // If we have an OpenMPIRBuilder we want to finalize functions (incl. 91 // outlining etc) at some point. Doing it once the function codegen is done 92 // seems to be a reasonable spot. We do it here, as opposed to the deletion 93 // time of the CodeGenModule, because we have to ensure the IR has not yet 94 // been "emitted" to the outside, thus, modifications are still sensible. 95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) 96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); 97 } 98 99 // Map the LangOption for exception behavior into 100 // the corresponding enum in the IR. 101 llvm::fp::ExceptionBehavior 102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { 103 104 switch (Kind) { 105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; 106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; 107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict; 108 } 109 llvm_unreachable("Unsupported FP Exception Behavior"); 110 } 111 112 void CodeGenFunction::SetFPModel() { 113 llvm::RoundingMode RM = getLangOpts().getFPRoundingMode(); 114 auto fpExceptionBehavior = ToConstrainedExceptMD( 115 getLangOpts().getFPExceptionMode()); 116 117 Builder.setDefaultConstrainedRounding(RM); 118 Builder.setDefaultConstrainedExcept(fpExceptionBehavior); 119 Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore || 120 RM != llvm::RoundingMode::NearestTiesToEven); 121 } 122 123 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { 124 llvm::FastMathFlags FMF; 125 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); 126 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); 127 FMF.setNoInfs(FPFeatures.getNoHonorInfs()); 128 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); 129 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); 130 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); 131 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 132 Builder.setFastMathFlags(FMF); 133 } 134 135 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 136 const Expr *E) 137 : CGF(CGF) { 138 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); 139 } 140 141 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, 142 FPOptions FPFeatures) 143 : CGF(CGF) { 144 ConstructorHelper(FPFeatures); 145 } 146 147 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { 148 OldFPFeatures = CGF.CurFPFeatures; 149 CGF.CurFPFeatures = FPFeatures; 150 151 OldExcept = CGF.Builder.getDefaultConstrainedExcept(); 152 OldRounding = CGF.Builder.getDefaultConstrainedRounding(); 153 154 if (OldFPFeatures == FPFeatures) 155 return; 156 157 FMFGuard.emplace(CGF.Builder); 158 159 llvm::RoundingMode NewRoundingBehavior = 160 static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode()); 161 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); 162 auto NewExceptionBehavior = 163 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( 164 FPFeatures.getFPExceptionMode())); 165 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); 166 167 CGF.SetFastMathFlags(FPFeatures); 168 169 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || 170 isa<CXXConstructorDecl>(CGF.CurFuncDecl) || 171 isa<CXXDestructorDecl>(CGF.CurFuncDecl) || 172 (NewExceptionBehavior == llvm::fp::ebIgnore && 173 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && 174 "FPConstrained should be enabled on entire function"); 175 176 auto mergeFnAttrValue = [&](StringRef Name, bool Value) { 177 auto OldValue = 178 CGF.CurFn->getFnAttribute(Name).getValueAsBool(); 179 auto NewValue = OldValue & Value; 180 if (OldValue != NewValue) 181 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); 182 }; 183 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); 184 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); 185 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); 186 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() && 187 FPFeatures.getAllowReciprocal() && 188 FPFeatures.getAllowApproxFunc() && 189 FPFeatures.getNoSignedZero()); 190 } 191 192 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { 193 CGF.CurFPFeatures = OldFPFeatures; 194 CGF.Builder.setDefaultConstrainedExcept(OldExcept); 195 CGF.Builder.setDefaultConstrainedRounding(OldRounding); 196 } 197 198 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 199 LValueBaseInfo BaseInfo; 200 TBAAAccessInfo TBAAInfo; 201 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 202 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 203 TBAAInfo); 204 } 205 206 /// Given a value of type T* that may not be to a complete object, 207 /// construct an l-value with the natural pointee alignment of T. 208 LValue 209 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 210 LValueBaseInfo BaseInfo; 211 TBAAAccessInfo TBAAInfo; 212 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 213 /* forPointeeType= */ true); 214 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 215 } 216 217 218 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 219 return CGM.getTypes().ConvertTypeForMem(T); 220 } 221 222 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 223 return CGM.getTypes().ConvertType(T); 224 } 225 226 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 227 type = type.getCanonicalType(); 228 while (true) { 229 switch (type->getTypeClass()) { 230 #define TYPE(name, parent) 231 #define ABSTRACT_TYPE(name, parent) 232 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 233 #define DEPENDENT_TYPE(name, parent) case Type::name: 234 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 235 #include "clang/AST/TypeNodes.inc" 236 llvm_unreachable("non-canonical or dependent type in IR-generation"); 237 238 case Type::Auto: 239 case Type::DeducedTemplateSpecialization: 240 llvm_unreachable("undeduced type in IR-generation"); 241 242 // Various scalar types. 243 case Type::Builtin: 244 case Type::Pointer: 245 case Type::BlockPointer: 246 case Type::LValueReference: 247 case Type::RValueReference: 248 case Type::MemberPointer: 249 case Type::Vector: 250 case Type::ExtVector: 251 case Type::ConstantMatrix: 252 case Type::FunctionProto: 253 case Type::FunctionNoProto: 254 case Type::Enum: 255 case Type::ObjCObjectPointer: 256 case Type::Pipe: 257 case Type::ExtInt: 258 return TEK_Scalar; 259 260 // Complexes. 261 case Type::Complex: 262 return TEK_Complex; 263 264 // Arrays, records, and Objective-C objects. 265 case Type::ConstantArray: 266 case Type::IncompleteArray: 267 case Type::VariableArray: 268 case Type::Record: 269 case Type::ObjCObject: 270 case Type::ObjCInterface: 271 return TEK_Aggregate; 272 273 // We operate on atomic values according to their underlying type. 274 case Type::Atomic: 275 type = cast<AtomicType>(type)->getValueType(); 276 continue; 277 } 278 llvm_unreachable("unknown type kind!"); 279 } 280 } 281 282 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 283 // For cleanliness, we try to avoid emitting the return block for 284 // simple cases. 285 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 286 287 if (CurBB) { 288 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 289 290 // We have a valid insert point, reuse it if it is empty or there are no 291 // explicit jumps to the return block. 292 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 293 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 294 delete ReturnBlock.getBlock(); 295 ReturnBlock = JumpDest(); 296 } else 297 EmitBlock(ReturnBlock.getBlock()); 298 return llvm::DebugLoc(); 299 } 300 301 // Otherwise, if the return block is the target of a single direct 302 // branch then we can just put the code in that block instead. This 303 // cleans up functions which started with a unified return block. 304 if (ReturnBlock.getBlock()->hasOneUse()) { 305 llvm::BranchInst *BI = 306 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 307 if (BI && BI->isUnconditional() && 308 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 309 // Record/return the DebugLoc of the simple 'return' expression to be used 310 // later by the actual 'ret' instruction. 311 llvm::DebugLoc Loc = BI->getDebugLoc(); 312 Builder.SetInsertPoint(BI->getParent()); 313 BI->eraseFromParent(); 314 delete ReturnBlock.getBlock(); 315 ReturnBlock = JumpDest(); 316 return Loc; 317 } 318 } 319 320 // FIXME: We are at an unreachable point, there is no reason to emit the block 321 // unless it has uses. However, we still need a place to put the debug 322 // region.end for now. 323 324 EmitBlock(ReturnBlock.getBlock()); 325 return llvm::DebugLoc(); 326 } 327 328 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 329 if (!BB) return; 330 if (!BB->use_empty()) 331 return CGF.CurFn->getBasicBlockList().push_back(BB); 332 delete BB; 333 } 334 335 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 336 assert(BreakContinueStack.empty() && 337 "mismatched push/pop in break/continue stack!"); 338 339 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 340 && NumSimpleReturnExprs == NumReturnExprs 341 && ReturnBlock.getBlock()->use_empty(); 342 // Usually the return expression is evaluated before the cleanup 343 // code. If the function contains only a simple return statement, 344 // such as a constant, the location before the cleanup code becomes 345 // the last useful breakpoint in the function, because the simple 346 // return expression will be evaluated after the cleanup code. To be 347 // safe, set the debug location for cleanup code to the location of 348 // the return statement. Otherwise the cleanup code should be at the 349 // end of the function's lexical scope. 350 // 351 // If there are multiple branches to the return block, the branch 352 // instructions will get the location of the return statements and 353 // all will be fine. 354 if (CGDebugInfo *DI = getDebugInfo()) { 355 if (OnlySimpleReturnStmts) 356 DI->EmitLocation(Builder, LastStopPoint); 357 else 358 DI->EmitLocation(Builder, EndLoc); 359 } 360 361 // Pop any cleanups that might have been associated with the 362 // parameters. Do this in whatever block we're currently in; it's 363 // important to do this before we enter the return block or return 364 // edges will be *really* confused. 365 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 366 bool HasOnlyLifetimeMarkers = 367 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 368 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 369 if (HasCleanups) { 370 // Make sure the line table doesn't jump back into the body for 371 // the ret after it's been at EndLoc. 372 Optional<ApplyDebugLocation> AL; 373 if (CGDebugInfo *DI = getDebugInfo()) { 374 if (OnlySimpleReturnStmts) 375 DI->EmitLocation(Builder, EndLoc); 376 else 377 // We may not have a valid end location. Try to apply it anyway, and 378 // fall back to an artificial location if needed. 379 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); 380 } 381 382 PopCleanupBlocks(PrologueCleanupDepth); 383 } 384 385 // Emit function epilog (to return). 386 llvm::DebugLoc Loc = EmitReturnBlock(); 387 388 if (ShouldInstrumentFunction()) { 389 if (CGM.getCodeGenOpts().InstrumentFunctions) 390 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 391 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 392 CurFn->addFnAttr("instrument-function-exit-inlined", 393 "__cyg_profile_func_exit"); 394 } 395 396 // Emit debug descriptor for function end. 397 if (CGDebugInfo *DI = getDebugInfo()) 398 DI->EmitFunctionEnd(Builder, CurFn); 399 400 // Reset the debug location to that of the simple 'return' expression, if any 401 // rather than that of the end of the function's scope '}'. 402 ApplyDebugLocation AL(*this, Loc); 403 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 404 EmitEndEHSpec(CurCodeDecl); 405 406 assert(EHStack.empty() && 407 "did not remove all scopes from cleanup stack!"); 408 409 // If someone did an indirect goto, emit the indirect goto block at the end of 410 // the function. 411 if (IndirectBranch) { 412 EmitBlock(IndirectBranch->getParent()); 413 Builder.ClearInsertionPoint(); 414 } 415 416 // If some of our locals escaped, insert a call to llvm.localescape in the 417 // entry block. 418 if (!EscapedLocals.empty()) { 419 // Invert the map from local to index into a simple vector. There should be 420 // no holes. 421 SmallVector<llvm::Value *, 4> EscapeArgs; 422 EscapeArgs.resize(EscapedLocals.size()); 423 for (auto &Pair : EscapedLocals) 424 EscapeArgs[Pair.second] = Pair.first; 425 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 426 &CGM.getModule(), llvm::Intrinsic::localescape); 427 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 428 } 429 430 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 431 llvm::Instruction *Ptr = AllocaInsertPt; 432 AllocaInsertPt = nullptr; 433 Ptr->eraseFromParent(); 434 435 // If someone took the address of a label but never did an indirect goto, we 436 // made a zero entry PHI node, which is illegal, zap it now. 437 if (IndirectBranch) { 438 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 439 if (PN->getNumIncomingValues() == 0) { 440 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 441 PN->eraseFromParent(); 442 } 443 } 444 445 EmitIfUsed(*this, EHResumeBlock); 446 EmitIfUsed(*this, TerminateLandingPad); 447 EmitIfUsed(*this, TerminateHandler); 448 EmitIfUsed(*this, UnreachableBlock); 449 450 for (const auto &FuncletAndParent : TerminateFunclets) 451 EmitIfUsed(*this, FuncletAndParent.second); 452 453 if (CGM.getCodeGenOpts().EmitDeclMetadata) 454 EmitDeclMetadata(); 455 456 for (const auto &R : DeferredReplacements) { 457 if (llvm::Value *Old = R.first) { 458 Old->replaceAllUsesWith(R.second); 459 cast<llvm::Instruction>(Old)->eraseFromParent(); 460 } 461 } 462 DeferredReplacements.clear(); 463 464 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 465 // PHIs if the current function is a coroutine. We don't do it for all 466 // functions as it may result in slight increase in numbers of instructions 467 // if compiled with no optimizations. We do it for coroutine as the lifetime 468 // of CleanupDestSlot alloca make correct coroutine frame building very 469 // difficult. 470 if (NormalCleanupDest.isValid() && isCoroutine()) { 471 llvm::DominatorTree DT(*CurFn); 472 llvm::PromoteMemToReg( 473 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 474 NormalCleanupDest = Address::invalid(); 475 } 476 477 // Scan function arguments for vector width. 478 for (llvm::Argument &A : CurFn->args()) 479 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 480 LargestVectorWidth = 481 std::max((uint64_t)LargestVectorWidth, 482 VT->getPrimitiveSizeInBits().getKnownMinSize()); 483 484 // Update vector width based on return type. 485 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 486 LargestVectorWidth = 487 std::max((uint64_t)LargestVectorWidth, 488 VT->getPrimitiveSizeInBits().getKnownMinSize()); 489 490 // Add the required-vector-width attribute. This contains the max width from: 491 // 1. min-vector-width attribute used in the source program. 492 // 2. Any builtins used that have a vector width specified. 493 // 3. Values passed in and out of inline assembly. 494 // 4. Width of vector arguments and return types for this function. 495 // 5. Width of vector aguments and return types for functions called by this 496 // function. 497 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 498 499 // Add vscale attribute if appropriate. 500 if (getLangOpts().ArmSveVectorBits) { 501 unsigned VScale = getLangOpts().ArmSveVectorBits / 128; 502 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(getLLVMContext(), 503 VScale, VScale)); 504 } 505 506 // If we generated an unreachable return block, delete it now. 507 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { 508 Builder.ClearInsertionPoint(); 509 ReturnBlock.getBlock()->eraseFromParent(); 510 } 511 if (ReturnValue.isValid()) { 512 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); 513 if (RetAlloca && RetAlloca->use_empty()) { 514 RetAlloca->eraseFromParent(); 515 ReturnValue = Address::invalid(); 516 } 517 } 518 } 519 520 /// ShouldInstrumentFunction - Return true if the current function should be 521 /// instrumented with __cyg_profile_func_* calls 522 bool CodeGenFunction::ShouldInstrumentFunction() { 523 if (!CGM.getCodeGenOpts().InstrumentFunctions && 524 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 525 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 526 return false; 527 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 528 return false; 529 return true; 530 } 531 532 /// ShouldXRayInstrument - Return true if the current function should be 533 /// instrumented with XRay nop sleds. 534 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 535 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 536 } 537 538 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 539 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 540 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 541 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 542 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 543 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 544 XRayInstrKind::Custom); 545 } 546 547 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 548 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 549 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 550 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 551 XRayInstrKind::Typed); 552 } 553 554 llvm::Constant * 555 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 556 llvm::Constant *Addr) { 557 // Addresses stored in prologue data can't require run-time fixups and must 558 // be PC-relative. Run-time fixups are undesirable because they necessitate 559 // writable text segments, which are unsafe. And absolute addresses are 560 // undesirable because they break PIE mode. 561 562 // Add a layer of indirection through a private global. Taking its address 563 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 564 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 565 /*isConstant=*/true, 566 llvm::GlobalValue::PrivateLinkage, Addr); 567 568 // Create a PC-relative address. 569 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 570 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 571 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 572 return (IntPtrTy == Int32Ty) 573 ? PCRelAsInt 574 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 575 } 576 577 llvm::Value * 578 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 579 llvm::Value *EncodedAddr) { 580 // Reconstruct the address of the global. 581 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 582 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 583 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 584 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 585 586 // Load the original pointer through the global. 587 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 588 "decoded_addr"); 589 } 590 591 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 592 llvm::Function *Fn) 593 { 594 if (!FD->hasAttr<OpenCLKernelAttr>()) 595 return; 596 597 llvm::LLVMContext &Context = getLLVMContext(); 598 599 CGM.GenOpenCLArgMetadata(Fn, FD, this); 600 601 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 602 QualType HintQTy = A->getTypeHint(); 603 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 604 bool IsSignedInteger = 605 HintQTy->isSignedIntegerType() || 606 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 607 llvm::Metadata *AttrMDArgs[] = { 608 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 609 CGM.getTypes().ConvertType(A->getTypeHint()))), 610 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 611 llvm::IntegerType::get(Context, 32), 612 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 613 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 614 } 615 616 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 617 llvm::Metadata *AttrMDArgs[] = { 618 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 619 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 620 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 621 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 622 } 623 624 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 625 llvm::Metadata *AttrMDArgs[] = { 626 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 627 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 628 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 629 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 630 } 631 632 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 633 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 634 llvm::Metadata *AttrMDArgs[] = { 635 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 636 Fn->setMetadata("intel_reqd_sub_group_size", 637 llvm::MDNode::get(Context, AttrMDArgs)); 638 } 639 } 640 641 /// Determine whether the function F ends with a return stmt. 642 static bool endsWithReturn(const Decl* F) { 643 const Stmt *Body = nullptr; 644 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 645 Body = FD->getBody(); 646 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 647 Body = OMD->getBody(); 648 649 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 650 auto LastStmt = CS->body_rbegin(); 651 if (LastStmt != CS->body_rend()) 652 return isa<ReturnStmt>(*LastStmt); 653 } 654 return false; 655 } 656 657 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 658 if (SanOpts.has(SanitizerKind::Thread)) { 659 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 660 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 661 } 662 } 663 664 /// Check if the return value of this function requires sanitization. 665 bool CodeGenFunction::requiresReturnValueCheck() const { 666 return requiresReturnValueNullabilityCheck() || 667 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && 668 CurCodeDecl->getAttr<ReturnsNonNullAttr>()); 669 } 670 671 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 672 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 673 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 674 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 675 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 676 return false; 677 678 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 679 return false; 680 681 if (MD->getNumParams() == 2) { 682 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 683 if (!PT || !PT->isVoidPointerType() || 684 !PT->getPointeeType().isConstQualified()) 685 return false; 686 } 687 688 return true; 689 } 690 691 /// Return the UBSan prologue signature for \p FD if one is available. 692 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 693 const FunctionDecl *FD) { 694 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 695 if (!MD->isStatic()) 696 return nullptr; 697 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 698 } 699 700 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, 701 llvm::Function *Fn, 702 const CGFunctionInfo &FnInfo, 703 const FunctionArgList &Args, 704 SourceLocation Loc, 705 SourceLocation StartLoc) { 706 assert(!CurFn && 707 "Do not use a CodeGenFunction object for more than one function"); 708 709 const Decl *D = GD.getDecl(); 710 711 DidCallStackSave = false; 712 CurCodeDecl = D; 713 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 714 if (FD->usesSEHTry()) 715 CurSEHParent = FD; 716 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 717 FnRetTy = RetTy; 718 CurFn = Fn; 719 CurFnInfo = &FnInfo; 720 assert(CurFn->isDeclaration() && "Function already has body?"); 721 722 // If this function is ignored for any of the enabled sanitizers, 723 // disable the sanitizer for the function. 724 do { 725 #define SANITIZER(NAME, ID) \ 726 if (SanOpts.empty()) \ 727 break; \ 728 if (SanOpts.has(SanitizerKind::ID)) \ 729 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ 730 SanOpts.set(SanitizerKind::ID, false); 731 732 #include "clang/Basic/Sanitizers.def" 733 #undef SANITIZER 734 } while (0); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 739 SanitizerMask mask = Attr->getMask(); 740 SanOpts.Mask &= ~mask; 741 if (mask & SanitizerKind::Address) 742 SanOpts.set(SanitizerKind::KernelAddress, false); 743 if (mask & SanitizerKind::KernelAddress) 744 SanOpts.set(SanitizerKind::Address, false); 745 if (mask & SanitizerKind::HWAddress) 746 SanOpts.set(SanitizerKind::KernelHWAddress, false); 747 if (mask & SanitizerKind::KernelHWAddress) 748 SanOpts.set(SanitizerKind::HWAddress, false); 749 } 750 } 751 752 // Apply sanitizer attributes to the function. 753 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 754 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 755 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 756 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 757 if (SanOpts.has(SanitizerKind::MemTag)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 766 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 767 768 // Apply fuzzing attribute to the function. 769 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 770 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 771 772 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 773 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 774 if (SanOpts.has(SanitizerKind::Thread)) { 775 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 776 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 777 if (OMD->getMethodFamily() == OMF_dealloc || 778 OMD->getMethodFamily() == OMF_initialize || 779 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 780 markAsIgnoreThreadCheckingAtRuntime(Fn); 781 } 782 } 783 } 784 785 // Ignore unrelated casts in STL allocate() since the allocator must cast 786 // from void* to T* before object initialization completes. Don't match on the 787 // namespace because not all allocators are in std:: 788 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 789 if (matchesStlAllocatorFn(D, getContext())) 790 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 791 } 792 793 // Ignore null checks in coroutine functions since the coroutines passes 794 // are not aware of how to move the extra UBSan instructions across the split 795 // coroutine boundaries. 796 if (D && SanOpts.has(SanitizerKind::Null)) 797 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 798 if (FD->getBody() && 799 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) 800 SanOpts.Mask &= ~SanitizerKind::Null; 801 802 // Apply xray attributes to the function (as a string, for now) 803 bool AlwaysXRayAttr = false; 804 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { 805 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 806 XRayInstrKind::FunctionEntry) || 807 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 808 XRayInstrKind::FunctionExit)) { 809 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { 810 Fn->addFnAttr("function-instrument", "xray-always"); 811 AlwaysXRayAttr = true; 812 } 813 if (XRayAttr->neverXRayInstrument()) 814 Fn->addFnAttr("function-instrument", "xray-never"); 815 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 816 if (ShouldXRayInstrumentFunction()) 817 Fn->addFnAttr("xray-log-args", 818 llvm::utostr(LogArgs->getArgumentCount())); 819 } 820 } else { 821 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 822 Fn->addFnAttr( 823 "xray-instruction-threshold", 824 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 825 } 826 827 if (ShouldXRayInstrumentFunction()) { 828 if (CGM.getCodeGenOpts().XRayIgnoreLoops) 829 Fn->addFnAttr("xray-ignore-loops"); 830 831 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 832 XRayInstrKind::FunctionExit)) 833 Fn->addFnAttr("xray-skip-exit"); 834 835 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 836 XRayInstrKind::FunctionEntry)) 837 Fn->addFnAttr("xray-skip-entry"); 838 839 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; 840 if (FuncGroups > 1) { 841 auto FuncName = llvm::makeArrayRef<uint8_t>( 842 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); 843 auto Group = crc32(FuncName) % FuncGroups; 844 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && 845 !AlwaysXRayAttr) 846 Fn->addFnAttr("function-instrument", "xray-never"); 847 } 848 } 849 850 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) 851 if (CGM.isProfileInstrExcluded(Fn, Loc)) 852 Fn->addFnAttr(llvm::Attribute::NoProfile); 853 854 unsigned Count, Offset; 855 if (const auto *Attr = 856 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { 857 Count = Attr->getCount(); 858 Offset = Attr->getOffset(); 859 } else { 860 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; 861 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; 862 } 863 if (Count && Offset <= Count) { 864 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); 865 if (Offset) 866 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); 867 } 868 869 // Add no-jump-tables value. 870 if (CGM.getCodeGenOpts().NoUseJumpTables) 871 Fn->addFnAttr("no-jump-tables", "true"); 872 873 // Add no-inline-line-tables value. 874 if (CGM.getCodeGenOpts().NoInlineLineTables) 875 Fn->addFnAttr("no-inline-line-tables"); 876 877 // Add profile-sample-accurate value. 878 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 879 Fn->addFnAttr("profile-sample-accurate"); 880 881 if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) 882 Fn->addFnAttr("use-sample-profile"); 883 884 if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) 885 Fn->addFnAttr("cfi-canonical-jump-table"); 886 887 if (getLangOpts().OpenCL) { 888 // Add metadata for a kernel function. 889 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 890 EmitOpenCLKernelMetadata(FD, Fn); 891 } 892 893 // If we are checking function types, emit a function type signature as 894 // prologue data. 895 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 896 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 897 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 898 // Remove any (C++17) exception specifications, to allow calling e.g. a 899 // noexcept function through a non-noexcept pointer. 900 auto ProtoTy = 901 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 902 EST_None); 903 llvm::Constant *FTRTTIConst = 904 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 905 llvm::Constant *FTRTTIConstEncoded = 906 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 907 llvm::Constant *PrologueStructElems[] = {PrologueSig, 908 FTRTTIConstEncoded}; 909 llvm::Constant *PrologueStructConst = 910 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 911 Fn->setPrologueData(PrologueStructConst); 912 } 913 } 914 } 915 916 // If we're checking nullability, we need to know whether we can check the 917 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 918 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 919 auto Nullability = FnRetTy->getNullability(getContext()); 920 if (Nullability && *Nullability == NullabilityKind::NonNull) { 921 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 922 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 923 RetValNullabilityPrecondition = 924 llvm::ConstantInt::getTrue(getLLVMContext()); 925 } 926 } 927 928 // If we're in C++ mode and the function name is "main", it is guaranteed 929 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 930 // used within a program"). 931 // 932 // OpenCL C 2.0 v2.2-11 s6.9.i: 933 // Recursion is not supported. 934 // 935 // SYCL v1.2.1 s3.10: 936 // kernels cannot include RTTI information, exception classes, 937 // recursive code, virtual functions or make use of C++ libraries that 938 // are not compiled for the device. 939 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 940 if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || 941 getLangOpts().SYCLIsDevice || 942 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())) 943 Fn->addFnAttr(llvm::Attribute::NoRecurse); 944 } 945 946 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 947 Builder.setIsFPConstrained(FD->hasAttr<StrictFPAttr>()); 948 if (FD->hasAttr<StrictFPAttr>()) 949 Fn->addFnAttr(llvm::Attribute::StrictFP); 950 } 951 952 // If a custom alignment is used, force realigning to this alignment on 953 // any main function which certainly will need it. 954 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 955 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 956 CGM.getCodeGenOpts().StackAlignment) 957 Fn->addFnAttr("stackrealign"); 958 959 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 960 961 // Create a marker to make it easy to insert allocas into the entryblock 962 // later. Don't create this with the builder, because we don't want it 963 // folded. 964 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 965 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 966 967 ReturnBlock = getJumpDestInCurrentScope("return"); 968 969 Builder.SetInsertPoint(EntryBB); 970 971 // If we're checking the return value, allocate space for a pointer to a 972 // precise source location of the checked return statement. 973 if (requiresReturnValueCheck()) { 974 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 975 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 976 } 977 978 // Emit subprogram debug descriptor. 979 if (CGDebugInfo *DI = getDebugInfo()) { 980 // Reconstruct the type from the argument list so that implicit parameters, 981 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 982 // convention. 983 CallingConv CC = CallingConv::CC_C; 984 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 985 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 986 CC = SrcFnTy->getCallConv(); 987 SmallVector<QualType, 16> ArgTypes; 988 for (const VarDecl *VD : Args) 989 ArgTypes.push_back(VD->getType()); 990 QualType FnType = getContext().getFunctionType( 991 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 992 DI->emitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk); 993 } 994 995 if (ShouldInstrumentFunction()) { 996 if (CGM.getCodeGenOpts().InstrumentFunctions) 997 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 998 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 999 CurFn->addFnAttr("instrument-function-entry-inlined", 1000 "__cyg_profile_func_enter"); 1001 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1002 CurFn->addFnAttr("instrument-function-entry-inlined", 1003 "__cyg_profile_func_enter_bare"); 1004 } 1005 1006 // Since emitting the mcount call here impacts optimizations such as function 1007 // inlining, we just add an attribute to insert a mcount call in backend. 1008 // The attribute "counting-function" is set to mcount function name which is 1009 // architecture dependent. 1010 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1011 // Calls to fentry/mcount should not be generated if function has 1012 // the no_instrument_function attribute. 1013 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1014 if (CGM.getCodeGenOpts().CallFEntry) 1015 Fn->addFnAttr("fentry-call", "true"); 1016 else { 1017 Fn->addFnAttr("instrument-function-entry-inlined", 1018 getTarget().getMCountName()); 1019 } 1020 if (CGM.getCodeGenOpts().MNopMCount) { 1021 if (!CGM.getCodeGenOpts().CallFEntry) 1022 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1023 << "-mnop-mcount" << "-mfentry"; 1024 Fn->addFnAttr("mnop-mcount"); 1025 } 1026 1027 if (CGM.getCodeGenOpts().RecordMCount) { 1028 if (!CGM.getCodeGenOpts().CallFEntry) 1029 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) 1030 << "-mrecord-mcount" << "-mfentry"; 1031 Fn->addFnAttr("mrecord-mcount"); 1032 } 1033 } 1034 } 1035 1036 if (CGM.getCodeGenOpts().PackedStack) { 1037 if (getContext().getTargetInfo().getTriple().getArch() != 1038 llvm::Triple::systemz) 1039 CGM.getDiags().Report(diag::err_opt_not_valid_on_target) 1040 << "-mpacked-stack"; 1041 Fn->addFnAttr("packed-stack"); 1042 } 1043 1044 if (RetTy->isVoidType()) { 1045 // Void type; nothing to return. 1046 ReturnValue = Address::invalid(); 1047 1048 // Count the implicit return. 1049 if (!endsWithReturn(D)) 1050 ++NumReturnExprs; 1051 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1052 // Indirect return; emit returned value directly into sret slot. 1053 // This reduces code size, and affects correctness in C++. 1054 auto AI = CurFn->arg_begin(); 1055 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1056 ++AI; 1057 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1058 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { 1059 ReturnValuePointer = 1060 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr"); 1061 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast( 1062 ReturnValue.getPointer(), Int8PtrTy), 1063 ReturnValuePointer); 1064 } 1065 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1066 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1067 // Load the sret pointer from the argument struct and return into that. 1068 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1069 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1070 --EI; 1071 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1072 llvm::Type *Ty = 1073 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); 1074 ReturnValuePointer = Address(Addr, getPointerAlign()); 1075 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); 1076 ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy)); 1077 } else { 1078 ReturnValue = CreateIRTemp(RetTy, "retval"); 1079 1080 // Tell the epilog emitter to autorelease the result. We do this 1081 // now so that various specialized functions can suppress it 1082 // during their IR-generation. 1083 if (getLangOpts().ObjCAutoRefCount && 1084 !CurFnInfo->isReturnsRetained() && 1085 RetTy->isObjCRetainableType()) 1086 AutoreleaseResult = true; 1087 } 1088 1089 EmitStartEHSpec(CurCodeDecl); 1090 1091 PrologueCleanupDepth = EHStack.stable_begin(); 1092 1093 // Emit OpenMP specific initialization of the device functions. 1094 if (getLangOpts().OpenMP && CurCodeDecl) 1095 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1096 1097 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1098 1099 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1100 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1101 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1102 if (MD->getParent()->isLambda() && 1103 MD->getOverloadedOperator() == OO_Call) { 1104 // We're in a lambda; figure out the captures. 1105 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1106 LambdaThisCaptureField); 1107 if (LambdaThisCaptureField) { 1108 // If the lambda captures the object referred to by '*this' - either by 1109 // value or by reference, make sure CXXThisValue points to the correct 1110 // object. 1111 1112 // Get the lvalue for the field (which is a copy of the enclosing object 1113 // or contains the address of the enclosing object). 1114 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1115 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1116 // If the enclosing object was captured by value, just use its address. 1117 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); 1118 } else { 1119 // Load the lvalue pointed to by the field, since '*this' was captured 1120 // by reference. 1121 CXXThisValue = 1122 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1123 } 1124 } 1125 for (auto *FD : MD->getParent()->fields()) { 1126 if (FD->hasCapturedVLAType()) { 1127 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1128 SourceLocation()).getScalarVal(); 1129 auto VAT = FD->getCapturedVLAType(); 1130 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1131 } 1132 } 1133 } else { 1134 // Not in a lambda; just use 'this' from the method. 1135 // FIXME: Should we generate a new load for each use of 'this'? The 1136 // fast register allocator would be happier... 1137 CXXThisValue = CXXABIThisValue; 1138 } 1139 1140 // Check the 'this' pointer once per function, if it's available. 1141 if (CXXABIThisValue) { 1142 SanitizerSet SkippedChecks; 1143 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1144 QualType ThisTy = MD->getThisType(); 1145 1146 // If this is the call operator of a lambda with no capture-default, it 1147 // may have a static invoker function, which may call this operator with 1148 // a null 'this' pointer. 1149 if (isLambdaCallOperator(MD) && 1150 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1151 SkippedChecks.set(SanitizerKind::Null, true); 1152 1153 EmitTypeCheck( 1154 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, 1155 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); 1156 } 1157 } 1158 1159 // If any of the arguments have a variably modified type, make sure to 1160 // emit the type size. 1161 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1162 i != e; ++i) { 1163 const VarDecl *VD = *i; 1164 1165 // Dig out the type as written from ParmVarDecls; it's unclear whether 1166 // the standard (C99 6.9.1p10) requires this, but we're following the 1167 // precedent set by gcc. 1168 QualType Ty; 1169 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1170 Ty = PVD->getOriginalType(); 1171 else 1172 Ty = VD->getType(); 1173 1174 if (Ty->isVariablyModifiedType()) 1175 EmitVariablyModifiedType(Ty); 1176 } 1177 // Emit a location at the end of the prologue. 1178 if (CGDebugInfo *DI = getDebugInfo()) 1179 DI->EmitLocation(Builder, StartLoc); 1180 1181 // TODO: Do we need to handle this in two places like we do with 1182 // target-features/target-cpu? 1183 if (CurFuncDecl) 1184 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1185 LargestVectorWidth = VecWidth->getVectorWidth(); 1186 } 1187 1188 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1189 incrementProfileCounter(Body); 1190 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1191 EmitCompoundStmtWithoutScope(*S); 1192 else 1193 EmitStmt(Body); 1194 1195 // This is checked after emitting the function body so we know if there 1196 // are any permitted infinite loops. 1197 if (checkIfFunctionMustProgress()) 1198 CurFn->addFnAttr(llvm::Attribute::MustProgress); 1199 } 1200 1201 /// When instrumenting to collect profile data, the counts for some blocks 1202 /// such as switch cases need to not include the fall-through counts, so 1203 /// emit a branch around the instrumentation code. When not instrumenting, 1204 /// this just calls EmitBlock(). 1205 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1206 const Stmt *S) { 1207 llvm::BasicBlock *SkipCountBB = nullptr; 1208 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1209 // When instrumenting for profiling, the fallthrough to certain 1210 // statements needs to skip over the instrumentation code so that we 1211 // get an accurate count. 1212 SkipCountBB = createBasicBlock("skipcount"); 1213 EmitBranch(SkipCountBB); 1214 } 1215 EmitBlock(BB); 1216 uint64_t CurrentCount = getCurrentProfileCount(); 1217 incrementProfileCounter(S); 1218 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1219 if (SkipCountBB) 1220 EmitBlock(SkipCountBB); 1221 } 1222 1223 /// Tries to mark the given function nounwind based on the 1224 /// non-existence of any throwing calls within it. We believe this is 1225 /// lightweight enough to do at -O0. 1226 static void TryMarkNoThrow(llvm::Function *F) { 1227 // LLVM treats 'nounwind' on a function as part of the type, so we 1228 // can't do this on functions that can be overwritten. 1229 if (F->isInterposable()) return; 1230 1231 for (llvm::BasicBlock &BB : *F) 1232 for (llvm::Instruction &I : BB) 1233 if (I.mayThrow()) 1234 return; 1235 1236 F->setDoesNotThrow(); 1237 } 1238 1239 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1240 FunctionArgList &Args) { 1241 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1242 QualType ResTy = FD->getReturnType(); 1243 1244 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1245 if (MD && MD->isInstance()) { 1246 if (CGM.getCXXABI().HasThisReturn(GD)) 1247 ResTy = MD->getThisType(); 1248 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1249 ResTy = CGM.getContext().VoidPtrTy; 1250 CGM.getCXXABI().buildThisParam(*this, Args); 1251 } 1252 1253 // The base version of an inheriting constructor whose constructed base is a 1254 // virtual base is not passed any arguments (because it doesn't actually call 1255 // the inherited constructor). 1256 bool PassedParams = true; 1257 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1258 if (auto Inherited = CD->getInheritedConstructor()) 1259 PassedParams = 1260 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1261 1262 if (PassedParams) { 1263 for (auto *Param : FD->parameters()) { 1264 Args.push_back(Param); 1265 if (!Param->hasAttr<PassObjectSizeAttr>()) 1266 continue; 1267 1268 auto *Implicit = ImplicitParamDecl::Create( 1269 getContext(), Param->getDeclContext(), Param->getLocation(), 1270 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1271 SizeArguments[Param] = Implicit; 1272 Args.push_back(Implicit); 1273 } 1274 } 1275 1276 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1277 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1278 1279 return ResTy; 1280 } 1281 1282 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1283 const CGFunctionInfo &FnInfo) { 1284 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1285 CurGD = GD; 1286 1287 FunctionArgList Args; 1288 QualType ResTy = BuildFunctionArgList(GD, Args); 1289 1290 // Check if we should generate debug info for this function. 1291 if (FD->hasAttr<NoDebugAttr>()) 1292 DebugInfo = nullptr; // disable debug info indefinitely for this function 1293 1294 // The function might not have a body if we're generating thunks for a 1295 // function declaration. 1296 SourceRange BodyRange; 1297 if (Stmt *Body = FD->getBody()) 1298 BodyRange = Body->getSourceRange(); 1299 else 1300 BodyRange = FD->getLocation(); 1301 CurEHLocation = BodyRange.getEnd(); 1302 1303 // Use the location of the start of the function to determine where 1304 // the function definition is located. By default use the location 1305 // of the declaration as the location for the subprogram. A function 1306 // may lack a declaration in the source code if it is created by code 1307 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1308 SourceLocation Loc = FD->getLocation(); 1309 1310 // If this is a function specialization then use the pattern body 1311 // as the location for the function. 1312 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1313 if (SpecDecl->hasBody(SpecDecl)) 1314 Loc = SpecDecl->getLocation(); 1315 1316 Stmt *Body = FD->getBody(); 1317 1318 if (Body) { 1319 // Coroutines always emit lifetime markers. 1320 if (isa<CoroutineBodyStmt>(Body)) 1321 ShouldEmitLifetimeMarkers = true; 1322 1323 // Initialize helper which will detect jumps which can cause invalid 1324 // lifetime markers. 1325 if (ShouldEmitLifetimeMarkers) 1326 Bypasses.Init(Body); 1327 } 1328 1329 // Emit the standard function prologue. 1330 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1331 1332 // Save parameters for coroutine function. 1333 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) 1334 for (const auto *ParamDecl : FD->parameters()) 1335 FnArgs.push_back(ParamDecl); 1336 1337 // Generate the body of the function. 1338 PGO.assignRegionCounters(GD, CurFn); 1339 if (isa<CXXDestructorDecl>(FD)) 1340 EmitDestructorBody(Args); 1341 else if (isa<CXXConstructorDecl>(FD)) 1342 EmitConstructorBody(Args); 1343 else if (getLangOpts().CUDA && 1344 !getLangOpts().CUDAIsDevice && 1345 FD->hasAttr<CUDAGlobalAttr>()) 1346 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1347 else if (isa<CXXMethodDecl>(FD) && 1348 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1349 // The lambda static invoker function is special, because it forwards or 1350 // clones the body of the function call operator (but is actually static). 1351 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1352 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1353 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1354 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1355 // Implicit copy-assignment gets the same special treatment as implicit 1356 // copy-constructors. 1357 emitImplicitAssignmentOperatorBody(Args); 1358 } else if (Body) { 1359 EmitFunctionBody(Body); 1360 } else 1361 llvm_unreachable("no definition for emitted function"); 1362 1363 // C++11 [stmt.return]p2: 1364 // Flowing off the end of a function [...] results in undefined behavior in 1365 // a value-returning function. 1366 // C11 6.9.1p12: 1367 // If the '}' that terminates a function is reached, and the value of the 1368 // function call is used by the caller, the behavior is undefined. 1369 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1370 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1371 bool ShouldEmitUnreachable = 1372 CGM.getCodeGenOpts().StrictReturn || 1373 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); 1374 if (SanOpts.has(SanitizerKind::Return)) { 1375 SanitizerScope SanScope(this); 1376 llvm::Value *IsFalse = Builder.getFalse(); 1377 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1378 SanitizerHandler::MissingReturn, 1379 EmitCheckSourceLocation(FD->getLocation()), None); 1380 } else if (ShouldEmitUnreachable) { 1381 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1382 EmitTrapCall(llvm::Intrinsic::trap); 1383 } 1384 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1385 Builder.CreateUnreachable(); 1386 Builder.ClearInsertionPoint(); 1387 } 1388 } 1389 1390 // Emit the standard function epilogue. 1391 FinishFunction(BodyRange.getEnd()); 1392 1393 // If we haven't marked the function nothrow through other means, do 1394 // a quick pass now to see if we can. 1395 if (!CurFn->doesNotThrow()) 1396 TryMarkNoThrow(CurFn); 1397 } 1398 1399 /// ContainsLabel - Return true if the statement contains a label in it. If 1400 /// this statement is not executed normally, it not containing a label means 1401 /// that we can just remove the code. 1402 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1403 // Null statement, not a label! 1404 if (!S) return false; 1405 1406 // If this is a label, we have to emit the code, consider something like: 1407 // if (0) { ... foo: bar(); } goto foo; 1408 // 1409 // TODO: If anyone cared, we could track __label__'s, since we know that you 1410 // can't jump to one from outside their declared region. 1411 if (isa<LabelStmt>(S)) 1412 return true; 1413 1414 // If this is a case/default statement, and we haven't seen a switch, we have 1415 // to emit the code. 1416 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1417 return true; 1418 1419 // If this is a switch statement, we want to ignore cases below it. 1420 if (isa<SwitchStmt>(S)) 1421 IgnoreCaseStmts = true; 1422 1423 // Scan subexpressions for verboten labels. 1424 for (const Stmt *SubStmt : S->children()) 1425 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1426 return true; 1427 1428 return false; 1429 } 1430 1431 /// containsBreak - Return true if the statement contains a break out of it. 1432 /// If the statement (recursively) contains a switch or loop with a break 1433 /// inside of it, this is fine. 1434 bool CodeGenFunction::containsBreak(const Stmt *S) { 1435 // Null statement, not a label! 1436 if (!S) return false; 1437 1438 // If this is a switch or loop that defines its own break scope, then we can 1439 // include it and anything inside of it. 1440 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1441 isa<ForStmt>(S)) 1442 return false; 1443 1444 if (isa<BreakStmt>(S)) 1445 return true; 1446 1447 // Scan subexpressions for verboten breaks. 1448 for (const Stmt *SubStmt : S->children()) 1449 if (containsBreak(SubStmt)) 1450 return true; 1451 1452 return false; 1453 } 1454 1455 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1456 if (!S) return false; 1457 1458 // Some statement kinds add a scope and thus never add a decl to the current 1459 // scope. Note, this list is longer than the list of statements that might 1460 // have an unscoped decl nested within them, but this way is conservatively 1461 // correct even if more statement kinds are added. 1462 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1463 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1464 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1465 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1466 return false; 1467 1468 if (isa<DeclStmt>(S)) 1469 return true; 1470 1471 for (const Stmt *SubStmt : S->children()) 1472 if (mightAddDeclToScope(SubStmt)) 1473 return true; 1474 1475 return false; 1476 } 1477 1478 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1479 /// to a constant, or if it does but contains a label, return false. If it 1480 /// constant folds return true and set the boolean result in Result. 1481 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1482 bool &ResultBool, 1483 bool AllowLabels) { 1484 llvm::APSInt ResultInt; 1485 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1486 return false; 1487 1488 ResultBool = ResultInt.getBoolValue(); 1489 return true; 1490 } 1491 1492 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1493 /// to a constant, or if it does but contains a label, return false. If it 1494 /// constant folds return true and set the folded value. 1495 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1496 llvm::APSInt &ResultInt, 1497 bool AllowLabels) { 1498 // FIXME: Rename and handle conversion of other evaluatable things 1499 // to bool. 1500 Expr::EvalResult Result; 1501 if (!Cond->EvaluateAsInt(Result, getContext())) 1502 return false; // Not foldable, not integer or not fully evaluatable. 1503 1504 llvm::APSInt Int = Result.Val.getInt(); 1505 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1506 return false; // Contains a label. 1507 1508 ResultInt = Int; 1509 return true; 1510 } 1511 1512 /// Determine whether the given condition is an instrumentable condition 1513 /// (i.e. no "&&" or "||"). 1514 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { 1515 // Bypass simplistic logical-NOT operator before determining whether the 1516 // condition contains any other logical operator. 1517 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens())) 1518 if (UnOp->getOpcode() == UO_LNot) 1519 C = UnOp->getSubExpr(); 1520 1521 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens()); 1522 return (!BOp || !BOp->isLogicalOp()); 1523 } 1524 1525 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that 1526 /// increments a profile counter based on the semantics of the given logical 1527 /// operator opcode. This is used to instrument branch condition coverage for 1528 /// logical operators. 1529 void CodeGenFunction::EmitBranchToCounterBlock( 1530 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, 1531 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, 1532 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { 1533 // If not instrumenting, just emit a branch. 1534 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); 1535 if (!InstrumentRegions || !isInstrumentedCondition(Cond)) 1536 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); 1537 1538 llvm::BasicBlock *ThenBlock = NULL; 1539 llvm::BasicBlock *ElseBlock = NULL; 1540 llvm::BasicBlock *NextBlock = NULL; 1541 1542 // Create the block we'll use to increment the appropriate counter. 1543 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); 1544 1545 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This 1546 // means we need to evaluate the condition and increment the counter on TRUE: 1547 // 1548 // if (Cond) 1549 // goto CounterIncrBlock; 1550 // else 1551 // goto FalseBlock; 1552 // 1553 // CounterIncrBlock: 1554 // Counter++; 1555 // goto TrueBlock; 1556 1557 if (LOp == BO_LAnd) { 1558 ThenBlock = CounterIncrBlock; 1559 ElseBlock = FalseBlock; 1560 NextBlock = TrueBlock; 1561 } 1562 1563 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means 1564 // we need to evaluate the condition and increment the counter on FALSE: 1565 // 1566 // if (Cond) 1567 // goto TrueBlock; 1568 // else 1569 // goto CounterIncrBlock; 1570 // 1571 // CounterIncrBlock: 1572 // Counter++; 1573 // goto FalseBlock; 1574 1575 else if (LOp == BO_LOr) { 1576 ThenBlock = TrueBlock; 1577 ElseBlock = CounterIncrBlock; 1578 NextBlock = FalseBlock; 1579 } else { 1580 llvm_unreachable("Expected Opcode must be that of a Logical Operator"); 1581 } 1582 1583 // Emit Branch based on condition. 1584 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); 1585 1586 // Emit the block containing the counter increment(s). 1587 EmitBlock(CounterIncrBlock); 1588 1589 // Increment corresponding counter; if index not provided, use Cond as index. 1590 incrementProfileCounter(CntrIdx ? CntrIdx : Cond); 1591 1592 // Go to the next block. 1593 EmitBranch(NextBlock); 1594 } 1595 1596 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1597 /// statement) to the specified blocks. Based on the condition, this might try 1598 /// to simplify the codegen of the conditional based on the branch. 1599 /// \param LH The value of the likelihood attribute on the True branch. 1600 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1601 llvm::BasicBlock *TrueBlock, 1602 llvm::BasicBlock *FalseBlock, 1603 uint64_t TrueCount, 1604 Stmt::Likelihood LH) { 1605 Cond = Cond->IgnoreParens(); 1606 1607 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1608 1609 // Handle X && Y in a condition. 1610 if (CondBOp->getOpcode() == BO_LAnd) { 1611 // If we have "1 && X", simplify the code. "0 && X" would have constant 1612 // folded if the case was simple enough. 1613 bool ConstantBool = false; 1614 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1615 ConstantBool) { 1616 // br(1 && X) -> br(X). 1617 incrementProfileCounter(CondBOp); 1618 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1619 FalseBlock, TrueCount, LH); 1620 } 1621 1622 // If we have "X && 1", simplify the code to use an uncond branch. 1623 // "X && 0" would have been constant folded to 0. 1624 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1625 ConstantBool) { 1626 // br(X && 1) -> br(X). 1627 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, 1628 FalseBlock, TrueCount, LH, CondBOp); 1629 } 1630 1631 // Emit the LHS as a conditional. If the LHS conditional is false, we 1632 // want to jump to the FalseBlock. 1633 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1634 // The counter tells us how often we evaluate RHS, and all of TrueCount 1635 // can be propagated to that branch. 1636 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1637 1638 ConditionalEvaluation eval(*this); 1639 { 1640 ApplyDebugLocation DL(*this, Cond); 1641 // Propagate the likelihood attribute like __builtin_expect 1642 // __builtin_expect(X && Y, 1) -> X and Y are likely 1643 // __builtin_expect(X && Y, 0) -> only Y is unlikely 1644 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, 1645 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); 1646 EmitBlock(LHSTrue); 1647 } 1648 1649 incrementProfileCounter(CondBOp); 1650 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1651 1652 // Any temporaries created here are conditional. 1653 eval.begin(*this); 1654 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, 1655 FalseBlock, TrueCount, LH); 1656 eval.end(*this); 1657 1658 return; 1659 } 1660 1661 if (CondBOp->getOpcode() == BO_LOr) { 1662 // If we have "0 || X", simplify the code. "1 || X" would have constant 1663 // folded if the case was simple enough. 1664 bool ConstantBool = false; 1665 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1666 !ConstantBool) { 1667 // br(0 || X) -> br(X). 1668 incrementProfileCounter(CondBOp); 1669 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, 1670 FalseBlock, TrueCount, LH); 1671 } 1672 1673 // If we have "X || 0", simplify the code to use an uncond branch. 1674 // "X || 1" would have been constant folded to 1. 1675 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1676 !ConstantBool) { 1677 // br(X || 0) -> br(X). 1678 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, 1679 FalseBlock, TrueCount, LH, CondBOp); 1680 } 1681 1682 // Emit the LHS as a conditional. If the LHS conditional is true, we 1683 // want to jump to the TrueBlock. 1684 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1685 // We have the count for entry to the RHS and for the whole expression 1686 // being true, so we can divy up True count between the short circuit and 1687 // the RHS. 1688 uint64_t LHSCount = 1689 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1690 uint64_t RHSCount = TrueCount - LHSCount; 1691 1692 ConditionalEvaluation eval(*this); 1693 { 1694 // Propagate the likelihood attribute like __builtin_expect 1695 // __builtin_expect(X || Y, 1) -> only Y is likely 1696 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely 1697 ApplyDebugLocation DL(*this, Cond); 1698 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, 1699 LH == Stmt::LH_Likely ? Stmt::LH_None : LH); 1700 EmitBlock(LHSFalse); 1701 } 1702 1703 incrementProfileCounter(CondBOp); 1704 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1705 1706 // Any temporaries created here are conditional. 1707 eval.begin(*this); 1708 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, 1709 RHSCount, LH); 1710 1711 eval.end(*this); 1712 1713 return; 1714 } 1715 } 1716 1717 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1718 // br(!x, t, f) -> br(x, f, t) 1719 if (CondUOp->getOpcode() == UO_LNot) { 1720 // Negate the count. 1721 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1722 // The values of the enum are chosen to make this negation possible. 1723 LH = static_cast<Stmt::Likelihood>(-LH); 1724 // Negate the condition and swap the destination blocks. 1725 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1726 FalseCount, LH); 1727 } 1728 } 1729 1730 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1731 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1732 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1733 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1734 1735 // The ConditionalOperator itself has no likelihood information for its 1736 // true and false branches. This matches the behavior of __builtin_expect. 1737 ConditionalEvaluation cond(*this); 1738 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1739 getProfileCount(CondOp), Stmt::LH_None); 1740 1741 // When computing PGO branch weights, we only know the overall count for 1742 // the true block. This code is essentially doing tail duplication of the 1743 // naive code-gen, introducing new edges for which counts are not 1744 // available. Divide the counts proportionally between the LHS and RHS of 1745 // the conditional operator. 1746 uint64_t LHSScaledTrueCount = 0; 1747 if (TrueCount) { 1748 double LHSRatio = 1749 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1750 LHSScaledTrueCount = TrueCount * LHSRatio; 1751 } 1752 1753 cond.begin(*this); 1754 EmitBlock(LHSBlock); 1755 incrementProfileCounter(CondOp); 1756 { 1757 ApplyDebugLocation DL(*this, Cond); 1758 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1759 LHSScaledTrueCount, LH); 1760 } 1761 cond.end(*this); 1762 1763 cond.begin(*this); 1764 EmitBlock(RHSBlock); 1765 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1766 TrueCount - LHSScaledTrueCount, LH); 1767 cond.end(*this); 1768 1769 return; 1770 } 1771 1772 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1773 // Conditional operator handling can give us a throw expression as a 1774 // condition for a case like: 1775 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1776 // Fold this to: 1777 // br(c, throw x, br(y, t, f)) 1778 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1779 return; 1780 } 1781 1782 // Emit the code with the fully general case. 1783 llvm::Value *CondV; 1784 { 1785 ApplyDebugLocation DL(*this, Cond); 1786 CondV = EvaluateExprAsBool(Cond); 1787 } 1788 1789 llvm::MDNode *Weights = nullptr; 1790 llvm::MDNode *Unpredictable = nullptr; 1791 1792 // If the branch has a condition wrapped by __builtin_unpredictable, 1793 // create metadata that specifies that the branch is unpredictable. 1794 // Don't bother if not optimizing because that metadata would not be used. 1795 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1796 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1797 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1798 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1799 llvm::MDBuilder MDHelper(getLLVMContext()); 1800 Unpredictable = MDHelper.createUnpredictable(); 1801 } 1802 } 1803 1804 // If there is a Likelihood knowledge for the cond, lower it. 1805 // Note that if not optimizing this won't emit anything. 1806 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); 1807 if (CondV != NewCondV) 1808 CondV = NewCondV; 1809 else { 1810 // Otherwise, lower profile counts. Note that we do this even at -O0. 1811 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1812 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); 1813 } 1814 1815 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1816 } 1817 1818 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1819 /// specified stmt yet. 1820 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1821 CGM.ErrorUnsupported(S, Type); 1822 } 1823 1824 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1825 /// variable-length array whose elements have a non-zero bit-pattern. 1826 /// 1827 /// \param baseType the inner-most element type of the array 1828 /// \param src - a char* pointing to the bit-pattern for a single 1829 /// base element of the array 1830 /// \param sizeInChars - the total size of the VLA, in chars 1831 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1832 Address dest, Address src, 1833 llvm::Value *sizeInChars) { 1834 CGBuilderTy &Builder = CGF.Builder; 1835 1836 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1837 llvm::Value *baseSizeInChars 1838 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1839 1840 Address begin = 1841 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1842 llvm::Value *end = Builder.CreateInBoundsGEP( 1843 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); 1844 1845 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1846 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1847 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1848 1849 // Make a loop over the VLA. C99 guarantees that the VLA element 1850 // count must be nonzero. 1851 CGF.EmitBlock(loopBB); 1852 1853 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1854 cur->addIncoming(begin.getPointer(), originBB); 1855 1856 CharUnits curAlign = 1857 dest.getAlignment().alignmentOfArrayElement(baseSize); 1858 1859 // memcpy the individual element bit-pattern. 1860 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1861 /*volatile*/ false); 1862 1863 // Go to the next element. 1864 llvm::Value *next = 1865 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1866 1867 // Leave if that's the end of the VLA. 1868 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1869 Builder.CreateCondBr(done, contBB, loopBB); 1870 cur->addIncoming(next, loopBB); 1871 1872 CGF.EmitBlock(contBB); 1873 } 1874 1875 void 1876 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1877 // Ignore empty classes in C++. 1878 if (getLangOpts().CPlusPlus) { 1879 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1880 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1881 return; 1882 } 1883 } 1884 1885 // Cast the dest ptr to the appropriate i8 pointer type. 1886 if (DestPtr.getElementType() != Int8Ty) 1887 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1888 1889 // Get size and alignment info for this aggregate. 1890 CharUnits size = getContext().getTypeSizeInChars(Ty); 1891 1892 llvm::Value *SizeVal; 1893 const VariableArrayType *vla; 1894 1895 // Don't bother emitting a zero-byte memset. 1896 if (size.isZero()) { 1897 // But note that getTypeInfo returns 0 for a VLA. 1898 if (const VariableArrayType *vlaType = 1899 dyn_cast_or_null<VariableArrayType>( 1900 getContext().getAsArrayType(Ty))) { 1901 auto VlaSize = getVLASize(vlaType); 1902 SizeVal = VlaSize.NumElts; 1903 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1904 if (!eltSize.isOne()) 1905 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1906 vla = vlaType; 1907 } else { 1908 return; 1909 } 1910 } else { 1911 SizeVal = CGM.getSize(size); 1912 vla = nullptr; 1913 } 1914 1915 // If the type contains a pointer to data member we can't memset it to zero. 1916 // Instead, create a null constant and copy it to the destination. 1917 // TODO: there are other patterns besides zero that we can usefully memset, 1918 // like -1, which happens to be the pattern used by member-pointers. 1919 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1920 // For a VLA, emit a single element, then splat that over the VLA. 1921 if (vla) Ty = getContext().getBaseElementType(vla); 1922 1923 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1924 1925 llvm::GlobalVariable *NullVariable = 1926 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1927 /*isConstant=*/true, 1928 llvm::GlobalVariable::PrivateLinkage, 1929 NullConstant, Twine()); 1930 CharUnits NullAlign = DestPtr.getAlignment(); 1931 NullVariable->setAlignment(NullAlign.getAsAlign()); 1932 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1933 NullAlign); 1934 1935 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1936 1937 // Get and call the appropriate llvm.memcpy overload. 1938 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1939 return; 1940 } 1941 1942 // Otherwise, just memset the whole thing to zero. This is legal 1943 // because in LLVM, all default initializers (other than the ones we just 1944 // handled above) are guaranteed to have a bit pattern of all zeros. 1945 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1946 } 1947 1948 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1949 // Make sure that there is a block for the indirect goto. 1950 if (!IndirectBranch) 1951 GetIndirectGotoBlock(); 1952 1953 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1954 1955 // Make sure the indirect branch includes all of the address-taken blocks. 1956 IndirectBranch->addDestination(BB); 1957 return llvm::BlockAddress::get(CurFn, BB); 1958 } 1959 1960 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1961 // If we already made the indirect branch for indirect goto, return its block. 1962 if (IndirectBranch) return IndirectBranch->getParent(); 1963 1964 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1965 1966 // Create the PHI node that indirect gotos will add entries to. 1967 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1968 "indirect.goto.dest"); 1969 1970 // Create the indirect branch instruction. 1971 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1972 return IndirectBranch->getParent(); 1973 } 1974 1975 /// Computes the length of an array in elements, as well as the base 1976 /// element type and a properly-typed first element pointer. 1977 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1978 QualType &baseType, 1979 Address &addr) { 1980 const ArrayType *arrayType = origArrayType; 1981 1982 // If it's a VLA, we have to load the stored size. Note that 1983 // this is the size of the VLA in bytes, not its size in elements. 1984 llvm::Value *numVLAElements = nullptr; 1985 if (isa<VariableArrayType>(arrayType)) { 1986 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1987 1988 // Walk into all VLAs. This doesn't require changes to addr, 1989 // which has type T* where T is the first non-VLA element type. 1990 do { 1991 QualType elementType = arrayType->getElementType(); 1992 arrayType = getContext().getAsArrayType(elementType); 1993 1994 // If we only have VLA components, 'addr' requires no adjustment. 1995 if (!arrayType) { 1996 baseType = elementType; 1997 return numVLAElements; 1998 } 1999 } while (isa<VariableArrayType>(arrayType)); 2000 2001 // We get out here only if we find a constant array type 2002 // inside the VLA. 2003 } 2004 2005 // We have some number of constant-length arrays, so addr should 2006 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 2007 // down to the first element of addr. 2008 SmallVector<llvm::Value*, 8> gepIndices; 2009 2010 // GEP down to the array type. 2011 llvm::ConstantInt *zero = Builder.getInt32(0); 2012 gepIndices.push_back(zero); 2013 2014 uint64_t countFromCLAs = 1; 2015 QualType eltType; 2016 2017 llvm::ArrayType *llvmArrayType = 2018 dyn_cast<llvm::ArrayType>(addr.getElementType()); 2019 while (llvmArrayType) { 2020 assert(isa<ConstantArrayType>(arrayType)); 2021 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 2022 == llvmArrayType->getNumElements()); 2023 2024 gepIndices.push_back(zero); 2025 countFromCLAs *= llvmArrayType->getNumElements(); 2026 eltType = arrayType->getElementType(); 2027 2028 llvmArrayType = 2029 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 2030 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 2031 assert((!llvmArrayType || arrayType) && 2032 "LLVM and Clang types are out-of-synch"); 2033 } 2034 2035 if (arrayType) { 2036 // From this point onwards, the Clang array type has been emitted 2037 // as some other type (probably a packed struct). Compute the array 2038 // size, and just emit the 'begin' expression as a bitcast. 2039 while (arrayType) { 2040 countFromCLAs *= 2041 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 2042 eltType = arrayType->getElementType(); 2043 arrayType = getContext().getAsArrayType(eltType); 2044 } 2045 2046 llvm::Type *baseType = ConvertType(eltType); 2047 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 2048 } else { 2049 // Create the actual GEP. 2050 addr = Address(Builder.CreateInBoundsGEP( 2051 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), 2052 addr.getAlignment()); 2053 } 2054 2055 baseType = eltType; 2056 2057 llvm::Value *numElements 2058 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 2059 2060 // If we had any VLA dimensions, factor them in. 2061 if (numVLAElements) 2062 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 2063 2064 return numElements; 2065 } 2066 2067 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 2068 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2069 assert(vla && "type was not a variable array type!"); 2070 return getVLASize(vla); 2071 } 2072 2073 CodeGenFunction::VlaSizePair 2074 CodeGenFunction::getVLASize(const VariableArrayType *type) { 2075 // The number of elements so far; always size_t. 2076 llvm::Value *numElements = nullptr; 2077 2078 QualType elementType; 2079 do { 2080 elementType = type->getElementType(); 2081 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 2082 assert(vlaSize && "no size for VLA!"); 2083 assert(vlaSize->getType() == SizeTy); 2084 2085 if (!numElements) { 2086 numElements = vlaSize; 2087 } else { 2088 // It's undefined behavior if this wraps around, so mark it that way. 2089 // FIXME: Teach -fsanitize=undefined to trap this. 2090 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2091 } 2092 } while ((type = getContext().getAsVariableArrayType(elementType))); 2093 2094 return { numElements, elementType }; 2095 } 2096 2097 CodeGenFunction::VlaSizePair 2098 CodeGenFunction::getVLAElements1D(QualType type) { 2099 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2100 assert(vla && "type was not a variable array type!"); 2101 return getVLAElements1D(vla); 2102 } 2103 2104 CodeGenFunction::VlaSizePair 2105 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2106 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2107 assert(VlaSize && "no size for VLA!"); 2108 assert(VlaSize->getType() == SizeTy); 2109 return { VlaSize, Vla->getElementType() }; 2110 } 2111 2112 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2113 assert(type->isVariablyModifiedType() && 2114 "Must pass variably modified type to EmitVLASizes!"); 2115 2116 EnsureInsertPoint(); 2117 2118 // We're going to walk down into the type and look for VLA 2119 // expressions. 2120 do { 2121 assert(type->isVariablyModifiedType()); 2122 2123 const Type *ty = type.getTypePtr(); 2124 switch (ty->getTypeClass()) { 2125 2126 #define TYPE(Class, Base) 2127 #define ABSTRACT_TYPE(Class, Base) 2128 #define NON_CANONICAL_TYPE(Class, Base) 2129 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2130 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2131 #include "clang/AST/TypeNodes.inc" 2132 llvm_unreachable("unexpected dependent type!"); 2133 2134 // These types are never variably-modified. 2135 case Type::Builtin: 2136 case Type::Complex: 2137 case Type::Vector: 2138 case Type::ExtVector: 2139 case Type::ConstantMatrix: 2140 case Type::Record: 2141 case Type::Enum: 2142 case Type::Elaborated: 2143 case Type::TemplateSpecialization: 2144 case Type::ObjCTypeParam: 2145 case Type::ObjCObject: 2146 case Type::ObjCInterface: 2147 case Type::ObjCObjectPointer: 2148 case Type::ExtInt: 2149 llvm_unreachable("type class is never variably-modified!"); 2150 2151 case Type::Adjusted: 2152 type = cast<AdjustedType>(ty)->getAdjustedType(); 2153 break; 2154 2155 case Type::Decayed: 2156 type = cast<DecayedType>(ty)->getPointeeType(); 2157 break; 2158 2159 case Type::Pointer: 2160 type = cast<PointerType>(ty)->getPointeeType(); 2161 break; 2162 2163 case Type::BlockPointer: 2164 type = cast<BlockPointerType>(ty)->getPointeeType(); 2165 break; 2166 2167 case Type::LValueReference: 2168 case Type::RValueReference: 2169 type = cast<ReferenceType>(ty)->getPointeeType(); 2170 break; 2171 2172 case Type::MemberPointer: 2173 type = cast<MemberPointerType>(ty)->getPointeeType(); 2174 break; 2175 2176 case Type::ConstantArray: 2177 case Type::IncompleteArray: 2178 // Losing element qualification here is fine. 2179 type = cast<ArrayType>(ty)->getElementType(); 2180 break; 2181 2182 case Type::VariableArray: { 2183 // Losing element qualification here is fine. 2184 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2185 2186 // Unknown size indication requires no size computation. 2187 // Otherwise, evaluate and record it. 2188 if (const Expr *size = vat->getSizeExpr()) { 2189 // It's possible that we might have emitted this already, 2190 // e.g. with a typedef and a pointer to it. 2191 llvm::Value *&entry = VLASizeMap[size]; 2192 if (!entry) { 2193 llvm::Value *Size = EmitScalarExpr(size); 2194 2195 // C11 6.7.6.2p5: 2196 // If the size is an expression that is not an integer constant 2197 // expression [...] each time it is evaluated it shall have a value 2198 // greater than zero. 2199 if (SanOpts.has(SanitizerKind::VLABound) && 2200 size->getType()->isSignedIntegerType()) { 2201 SanitizerScope SanScope(this); 2202 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2203 llvm::Constant *StaticArgs[] = { 2204 EmitCheckSourceLocation(size->getBeginLoc()), 2205 EmitCheckTypeDescriptor(size->getType())}; 2206 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2207 SanitizerKind::VLABound), 2208 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2209 } 2210 2211 // Always zexting here would be wrong if it weren't 2212 // undefined behavior to have a negative bound. 2213 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2214 } 2215 } 2216 type = vat->getElementType(); 2217 break; 2218 } 2219 2220 case Type::FunctionProto: 2221 case Type::FunctionNoProto: 2222 type = cast<FunctionType>(ty)->getReturnType(); 2223 break; 2224 2225 case Type::Paren: 2226 case Type::TypeOf: 2227 case Type::UnaryTransform: 2228 case Type::Attributed: 2229 case Type::SubstTemplateTypeParm: 2230 case Type::MacroQualified: 2231 // Keep walking after single level desugaring. 2232 type = type.getSingleStepDesugaredType(getContext()); 2233 break; 2234 2235 case Type::Typedef: 2236 case Type::Decltype: 2237 case Type::Auto: 2238 case Type::DeducedTemplateSpecialization: 2239 // Stop walking: nothing to do. 2240 return; 2241 2242 case Type::TypeOfExpr: 2243 // Stop walking: emit typeof expression. 2244 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2245 return; 2246 2247 case Type::Atomic: 2248 type = cast<AtomicType>(ty)->getValueType(); 2249 break; 2250 2251 case Type::Pipe: 2252 type = cast<PipeType>(ty)->getElementType(); 2253 break; 2254 } 2255 } while (type->isVariablyModifiedType()); 2256 } 2257 2258 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2259 if (getContext().getBuiltinVaListType()->isArrayType()) 2260 return EmitPointerWithAlignment(E); 2261 return EmitLValue(E).getAddress(*this); 2262 } 2263 2264 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2265 return EmitLValue(E).getAddress(*this); 2266 } 2267 2268 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2269 const APValue &Init) { 2270 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); 2271 if (CGDebugInfo *Dbg = getDebugInfo()) 2272 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) 2273 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2274 } 2275 2276 CodeGenFunction::PeepholeProtection 2277 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2278 // At the moment, the only aggressive peephole we do in IR gen 2279 // is trunc(zext) folding, but if we add more, we can easily 2280 // extend this protection. 2281 2282 if (!rvalue.isScalar()) return PeepholeProtection(); 2283 llvm::Value *value = rvalue.getScalarVal(); 2284 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2285 2286 // Just make an extra bitcast. 2287 assert(HaveInsertPoint()); 2288 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2289 Builder.GetInsertBlock()); 2290 2291 PeepholeProtection protection; 2292 protection.Inst = inst; 2293 return protection; 2294 } 2295 2296 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2297 if (!protection.Inst) return; 2298 2299 // In theory, we could try to duplicate the peepholes now, but whatever. 2300 protection.Inst->eraseFromParent(); 2301 } 2302 2303 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2304 QualType Ty, SourceLocation Loc, 2305 SourceLocation AssumptionLoc, 2306 llvm::Value *Alignment, 2307 llvm::Value *OffsetValue) { 2308 if (Alignment->getType() != IntPtrTy) 2309 Alignment = 2310 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); 2311 if (OffsetValue && OffsetValue->getType() != IntPtrTy) 2312 OffsetValue = 2313 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); 2314 llvm::Value *TheCheck = nullptr; 2315 if (SanOpts.has(SanitizerKind::Alignment)) { 2316 llvm::Value *PtrIntValue = 2317 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); 2318 2319 if (OffsetValue) { 2320 bool IsOffsetZero = false; 2321 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) 2322 IsOffsetZero = CI->isZero(); 2323 2324 if (!IsOffsetZero) 2325 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); 2326 } 2327 2328 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); 2329 llvm::Value *Mask = 2330 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); 2331 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); 2332 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); 2333 } 2334 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2335 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); 2336 2337 if (!SanOpts.has(SanitizerKind::Alignment)) 2338 return; 2339 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2340 OffsetValue, TheCheck, Assumption); 2341 } 2342 2343 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, 2344 const Expr *E, 2345 SourceLocation AssumptionLoc, 2346 llvm::Value *Alignment, 2347 llvm::Value *OffsetValue) { 2348 if (auto *CE = dyn_cast<CastExpr>(E)) 2349 E = CE->getSubExprAsWritten(); 2350 QualType Ty = E->getType(); 2351 SourceLocation Loc = E->getExprLoc(); 2352 2353 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2354 OffsetValue); 2355 } 2356 2357 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, 2358 llvm::Value *AnnotatedVal, 2359 StringRef AnnotationStr, 2360 SourceLocation Location, 2361 const AnnotateAttr *Attr) { 2362 SmallVector<llvm::Value *, 5> Args = { 2363 AnnotatedVal, 2364 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2365 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2366 CGM.EmitAnnotationLineNo(Location), 2367 }; 2368 if (Attr) 2369 Args.push_back(CGM.EmitAnnotationArgs(Attr)); 2370 return Builder.CreateCall(AnnotationFn, Args); 2371 } 2372 2373 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2374 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2375 // FIXME We create a new bitcast for every annotation because that's what 2376 // llvm-gcc was doing. 2377 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2378 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2379 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2380 I->getAnnotation(), D->getLocation(), I); 2381 } 2382 2383 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2384 Address Addr) { 2385 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2386 llvm::Value *V = Addr.getPointer(); 2387 llvm::Type *VTy = V->getType(); 2388 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2389 CGM.Int8PtrTy); 2390 2391 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2392 // FIXME Always emit the cast inst so we can differentiate between 2393 // annotation on the first field of a struct and annotation on the struct 2394 // itself. 2395 if (VTy != CGM.Int8PtrTy) 2396 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2397 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); 2398 V = Builder.CreateBitCast(V, VTy); 2399 } 2400 2401 return Address(V, Addr.getAlignment()); 2402 } 2403 2404 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2405 2406 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2407 : CGF(CGF) { 2408 assert(!CGF->IsSanitizerScope); 2409 CGF->IsSanitizerScope = true; 2410 } 2411 2412 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2413 CGF->IsSanitizerScope = false; 2414 } 2415 2416 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2417 const llvm::Twine &Name, 2418 llvm::BasicBlock *BB, 2419 llvm::BasicBlock::iterator InsertPt) const { 2420 LoopStack.InsertHelper(I); 2421 if (IsSanitizerScope) 2422 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2423 } 2424 2425 void CGBuilderInserter::InsertHelper( 2426 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2427 llvm::BasicBlock::iterator InsertPt) const { 2428 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2429 if (CGF) 2430 CGF->InsertHelper(I, Name, BB, InsertPt); 2431 } 2432 2433 // Emits an error if we don't have a valid set of target features for the 2434 // called function. 2435 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2436 const FunctionDecl *TargetDecl) { 2437 return checkTargetFeatures(E->getBeginLoc(), TargetDecl); 2438 } 2439 2440 // Emits an error if we don't have a valid set of target features for the 2441 // called function. 2442 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, 2443 const FunctionDecl *TargetDecl) { 2444 // Early exit if this is an indirect call. 2445 if (!TargetDecl) 2446 return; 2447 2448 // Get the current enclosing function if it exists. If it doesn't 2449 // we can't check the target features anyhow. 2450 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 2451 if (!FD) 2452 return; 2453 2454 // Grab the required features for the call. For a builtin this is listed in 2455 // the td file with the default cpu, for an always_inline function this is any 2456 // listed cpu and any listed features. 2457 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2458 std::string MissingFeature; 2459 llvm::StringMap<bool> CallerFeatureMap; 2460 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); 2461 if (BuiltinID) { 2462 StringRef FeatureList( 2463 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); 2464 // Return if the builtin doesn't have any required features. 2465 if (FeatureList.empty()) 2466 return; 2467 assert(FeatureList.find(' ') == StringRef::npos && 2468 "Space in feature list"); 2469 TargetFeatures TF(CallerFeatureMap); 2470 if (!TF.hasRequiredFeatures(FeatureList)) 2471 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) 2472 << TargetDecl->getDeclName() << FeatureList; 2473 } else if (!TargetDecl->isMultiVersion() && 2474 TargetDecl->hasAttr<TargetAttr>()) { 2475 // Get the required features for the callee. 2476 2477 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2478 ParsedTargetAttr ParsedAttr = 2479 CGM.getContext().filterFunctionTargetAttrs(TD); 2480 2481 SmallVector<StringRef, 1> ReqFeatures; 2482 llvm::StringMap<bool> CalleeFeatureMap; 2483 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2484 2485 for (const auto &F : ParsedAttr.Features) { 2486 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2487 ReqFeatures.push_back(StringRef(F).substr(1)); 2488 } 2489 2490 for (const auto &F : CalleeFeatureMap) { 2491 // Only positive features are "required". 2492 if (F.getValue()) 2493 ReqFeatures.push_back(F.getKey()); 2494 } 2495 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { 2496 if (!CallerFeatureMap.lookup(Feature)) { 2497 MissingFeature = Feature.str(); 2498 return false; 2499 } 2500 return true; 2501 })) 2502 CGM.getDiags().Report(Loc, diag::err_function_needs_feature) 2503 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2504 } 2505 } 2506 2507 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2508 if (!CGM.getCodeGenOpts().SanitizeStats) 2509 return; 2510 2511 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2512 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2513 CGM.getSanStats().create(IRB, SSK); 2514 } 2515 2516 llvm::Value * 2517 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2518 llvm::Value *Condition = nullptr; 2519 2520 if (!RO.Conditions.Architecture.empty()) 2521 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2522 2523 if (!RO.Conditions.Features.empty()) { 2524 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2525 Condition = 2526 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2527 } 2528 return Condition; 2529 } 2530 2531 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2532 llvm::Function *Resolver, 2533 CGBuilderTy &Builder, 2534 llvm::Function *FuncToReturn, 2535 bool SupportsIFunc) { 2536 if (SupportsIFunc) { 2537 Builder.CreateRet(FuncToReturn); 2538 return; 2539 } 2540 2541 llvm::SmallVector<llvm::Value *, 10> Args; 2542 llvm::for_each(Resolver->args(), 2543 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2544 2545 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2546 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2547 2548 if (Resolver->getReturnType()->isVoidTy()) 2549 Builder.CreateRetVoid(); 2550 else 2551 Builder.CreateRet(Result); 2552 } 2553 2554 void CodeGenFunction::EmitMultiVersionResolver( 2555 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2556 assert(getContext().getTargetInfo().getTriple().isX86() && 2557 "Only implemented for x86 targets"); 2558 2559 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2560 2561 // Main function's basic block. 2562 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2563 Builder.SetInsertPoint(CurBlock); 2564 EmitX86CpuInit(); 2565 2566 for (const MultiVersionResolverOption &RO : Options) { 2567 Builder.SetInsertPoint(CurBlock); 2568 llvm::Value *Condition = FormResolverCondition(RO); 2569 2570 // The 'default' or 'generic' case. 2571 if (!Condition) { 2572 assert(&RO == Options.end() - 1 && 2573 "Default or Generic case must be last"); 2574 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2575 SupportsIFunc); 2576 return; 2577 } 2578 2579 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2580 CGBuilderTy RetBuilder(*this, RetBlock); 2581 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2582 SupportsIFunc); 2583 CurBlock = createBasicBlock("resolver_else", Resolver); 2584 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2585 } 2586 2587 // If no generic/default, emit an unreachable. 2588 Builder.SetInsertPoint(CurBlock); 2589 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2590 TrapCall->setDoesNotReturn(); 2591 TrapCall->setDoesNotThrow(); 2592 Builder.CreateUnreachable(); 2593 Builder.ClearInsertionPoint(); 2594 } 2595 2596 // Loc - where the diagnostic will point, where in the source code this 2597 // alignment has failed. 2598 // SecondaryLoc - if present (will be present if sufficiently different from 2599 // Loc), the diagnostic will additionally point a "Note:" to this location. 2600 // It should be the location where the __attribute__((assume_aligned)) 2601 // was written e.g. 2602 void CodeGenFunction::emitAlignmentAssumptionCheck( 2603 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2604 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2605 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2606 llvm::Instruction *Assumption) { 2607 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2608 cast<llvm::CallInst>(Assumption)->getCalledOperand() == 2609 llvm::Intrinsic::getDeclaration( 2610 Builder.GetInsertBlock()->getParent()->getParent(), 2611 llvm::Intrinsic::assume) && 2612 "Assumption should be a call to llvm.assume()."); 2613 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2614 "Assumption should be the last instruction of the basic block, " 2615 "since the basic block is still being generated."); 2616 2617 if (!SanOpts.has(SanitizerKind::Alignment)) 2618 return; 2619 2620 // Don't check pointers to volatile data. The behavior here is implementation- 2621 // defined. 2622 if (Ty->getPointeeType().isVolatileQualified()) 2623 return; 2624 2625 // We need to temorairly remove the assumption so we can insert the 2626 // sanitizer check before it, else the check will be dropped by optimizations. 2627 Assumption->removeFromParent(); 2628 2629 { 2630 SanitizerScope SanScope(this); 2631 2632 if (!OffsetValue) 2633 OffsetValue = Builder.getInt1(0); // no offset. 2634 2635 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2636 EmitCheckSourceLocation(SecondaryLoc), 2637 EmitCheckTypeDescriptor(Ty)}; 2638 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2639 EmitCheckValue(Alignment), 2640 EmitCheckValue(OffsetValue)}; 2641 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2642 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2643 } 2644 2645 // We are now in the (new, empty) "cont" basic block. 2646 // Reintroduce the assumption. 2647 Builder.Insert(Assumption); 2648 // FIXME: Assumption still has it's original basic block as it's Parent. 2649 } 2650 2651 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2652 if (CGDebugInfo *DI = getDebugInfo()) 2653 return DI->SourceLocToDebugLoc(Location); 2654 2655 return llvm::DebugLoc(); 2656 } 2657 2658 llvm::Value * 2659 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, 2660 Stmt::Likelihood LH) { 2661 switch (LH) { 2662 case Stmt::LH_None: 2663 return Cond; 2664 case Stmt::LH_Likely: 2665 case Stmt::LH_Unlikely: 2666 // Don't generate llvm.expect on -O0 as the backend won't use it for 2667 // anything. 2668 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2669 return Cond; 2670 llvm::Type *CondTy = Cond->getType(); 2671 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); 2672 llvm::Function *FnExpect = 2673 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); 2674 llvm::Value *ExpectedValueOfCond = 2675 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); 2676 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, 2677 Cond->getName() + ".expval"); 2678 } 2679 llvm_unreachable("Unknown Likelihood"); 2680 } 2681