1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "PatternInit.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Attr.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/Decl.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclOpenMP.h" 30 #include "clang/Basic/CodeGenOptions.h" 31 #include "clang/Basic/SourceManager.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/Type.h" 40 41 using namespace clang; 42 using namespace CodeGen; 43 44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 45 "Clang max alignment greater than what LLVM supports?"); 46 47 void CodeGenFunction::EmitDecl(const Decl &D) { 48 switch (D.getKind()) { 49 case Decl::BuiltinTemplate: 50 case Decl::TranslationUnit: 51 case Decl::ExternCContext: 52 case Decl::Namespace: 53 case Decl::UnresolvedUsingTypename: 54 case Decl::ClassTemplateSpecialization: 55 case Decl::ClassTemplatePartialSpecialization: 56 case Decl::VarTemplateSpecialization: 57 case Decl::VarTemplatePartialSpecialization: 58 case Decl::TemplateTypeParm: 59 case Decl::UnresolvedUsingValue: 60 case Decl::NonTypeTemplateParm: 61 case Decl::CXXDeductionGuide: 62 case Decl::CXXMethod: 63 case Decl::CXXConstructor: 64 case Decl::CXXDestructor: 65 case Decl::CXXConversion: 66 case Decl::Field: 67 case Decl::MSProperty: 68 case Decl::IndirectField: 69 case Decl::ObjCIvar: 70 case Decl::ObjCAtDefsField: 71 case Decl::ParmVar: 72 case Decl::ImplicitParam: 73 case Decl::ClassTemplate: 74 case Decl::VarTemplate: 75 case Decl::FunctionTemplate: 76 case Decl::TypeAliasTemplate: 77 case Decl::TemplateTemplateParm: 78 case Decl::ObjCMethod: 79 case Decl::ObjCCategory: 80 case Decl::ObjCProtocol: 81 case Decl::ObjCInterface: 82 case Decl::ObjCCategoryImpl: 83 case Decl::ObjCImplementation: 84 case Decl::ObjCProperty: 85 case Decl::ObjCCompatibleAlias: 86 case Decl::PragmaComment: 87 case Decl::PragmaDetectMismatch: 88 case Decl::AccessSpec: 89 case Decl::LinkageSpec: 90 case Decl::Export: 91 case Decl::ObjCPropertyImpl: 92 case Decl::FileScopeAsm: 93 case Decl::Friend: 94 case Decl::FriendTemplate: 95 case Decl::Block: 96 case Decl::Captured: 97 case Decl::ClassScopeFunctionSpecialization: 98 case Decl::UsingShadow: 99 case Decl::ConstructorUsingShadow: 100 case Decl::ObjCTypeParam: 101 case Decl::Binding: 102 llvm_unreachable("Declaration should not be in declstmts!"); 103 case Decl::Record: // struct/union/class X; 104 case Decl::CXXRecord: // struct/union/class X; [C++] 105 if (CGDebugInfo *DI = getDebugInfo()) 106 if (cast<RecordDecl>(D).getDefinition()) 107 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D))); 108 return; 109 case Decl::Enum: // enum X; 110 if (CGDebugInfo *DI = getDebugInfo()) 111 if (cast<EnumDecl>(D).getDefinition()) 112 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D))); 113 return; 114 case Decl::Function: // void X(); 115 case Decl::EnumConstant: // enum ? { X = ? } 116 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 117 case Decl::Label: // __label__ x; 118 case Decl::Import: 119 case Decl::MSGuid: // __declspec(uuid("...")) 120 case Decl::TemplateParamObject: 121 case Decl::OMPThreadPrivate: 122 case Decl::OMPAllocate: 123 case Decl::OMPCapturedExpr: 124 case Decl::OMPRequires: 125 case Decl::Empty: 126 case Decl::Concept: 127 case Decl::LifetimeExtendedTemporary: 128 case Decl::RequiresExprBody: 129 // None of these decls require codegen support. 130 return; 131 132 case Decl::NamespaceAlias: 133 if (CGDebugInfo *DI = getDebugInfo()) 134 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 135 return; 136 case Decl::Using: // using X; [C++] 137 if (CGDebugInfo *DI = getDebugInfo()) 138 DI->EmitUsingDecl(cast<UsingDecl>(D)); 139 return; 140 case Decl::UsingPack: 141 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 142 EmitDecl(*Using); 143 return; 144 case Decl::UsingDirective: // using namespace X; [C++] 145 if (CGDebugInfo *DI = getDebugInfo()) 146 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 147 return; 148 case Decl::Var: 149 case Decl::Decomposition: { 150 const VarDecl &VD = cast<VarDecl>(D); 151 assert(VD.isLocalVarDecl() && 152 "Should not see file-scope variables inside a function!"); 153 EmitVarDecl(VD); 154 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 155 for (auto *B : DD->bindings()) 156 if (auto *HD = B->getHoldingVar()) 157 EmitVarDecl(*HD); 158 return; 159 } 160 161 case Decl::OMPDeclareReduction: 162 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 163 164 case Decl::OMPDeclareMapper: 165 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 166 167 case Decl::Typedef: // typedef int X; 168 case Decl::TypeAlias: { // using X = int; [C++0x] 169 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); 170 if (CGDebugInfo *DI = getDebugInfo()) 171 DI->EmitAndRetainType(Ty); 172 if (Ty->isVariablyModifiedType()) 173 EmitVariablyModifiedType(Ty); 174 return; 175 } 176 } 177 } 178 179 /// EmitVarDecl - This method handles emission of any variable declaration 180 /// inside a function, including static vars etc. 181 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 182 if (D.hasExternalStorage()) 183 // Don't emit it now, allow it to be emitted lazily on its first use. 184 return; 185 186 // Some function-scope variable does not have static storage but still 187 // needs to be emitted like a static variable, e.g. a function-scope 188 // variable in constant address space in OpenCL. 189 if (D.getStorageDuration() != SD_Automatic) { 190 // Static sampler variables translated to function calls. 191 if (D.getType()->isSamplerT()) 192 return; 193 194 llvm::GlobalValue::LinkageTypes Linkage = 195 CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false); 196 197 // FIXME: We need to force the emission/use of a guard variable for 198 // some variables even if we can constant-evaluate them because 199 // we can't guarantee every translation unit will constant-evaluate them. 200 201 return EmitStaticVarDecl(D, Linkage); 202 } 203 204 if (D.getType().getAddressSpace() == LangAS::opencl_local) 205 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 206 207 assert(D.hasLocalStorage()); 208 return EmitAutoVarDecl(D); 209 } 210 211 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 212 if (CGM.getLangOpts().CPlusPlus) 213 return CGM.getMangledName(&D).str(); 214 215 // If this isn't C++, we don't need a mangled name, just a pretty one. 216 assert(!D.isExternallyVisible() && "name shouldn't matter"); 217 std::string ContextName; 218 const DeclContext *DC = D.getDeclContext(); 219 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 220 DC = cast<DeclContext>(CD->getNonClosureContext()); 221 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 222 ContextName = std::string(CGM.getMangledName(FD)); 223 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 224 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 225 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 226 ContextName = OMD->getSelector().getAsString(); 227 else 228 llvm_unreachable("Unknown context for static var decl"); 229 230 ContextName += "." + D.getNameAsString(); 231 return ContextName; 232 } 233 234 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 235 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 236 // In general, we don't always emit static var decls once before we reference 237 // them. It is possible to reference them before emitting the function that 238 // contains them, and it is possible to emit the containing function multiple 239 // times. 240 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 241 return ExistingGV; 242 243 QualType Ty = D.getType(); 244 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 245 246 // Use the label if the variable is renamed with the asm-label extension. 247 std::string Name; 248 if (D.hasAttr<AsmLabelAttr>()) 249 Name = std::string(getMangledName(&D)); 250 else 251 Name = getStaticDeclName(*this, D); 252 253 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 254 LangAS AS = GetGlobalVarAddressSpace(&D); 255 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 256 257 // OpenCL variables in local address space and CUDA shared 258 // variables cannot have an initializer. 259 llvm::Constant *Init = nullptr; 260 if (Ty.getAddressSpace() == LangAS::opencl_local || 261 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 262 Init = llvm::UndefValue::get(LTy); 263 else 264 Init = EmitNullConstant(Ty); 265 266 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 267 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 268 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 269 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 270 271 if (supportsCOMDAT() && GV->isWeakForLinker()) 272 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 273 274 if (D.getTLSKind()) 275 setTLSMode(GV, D); 276 277 setGVProperties(GV, &D); 278 279 // Make sure the result is of the correct type. 280 LangAS ExpectedAS = Ty.getAddressSpace(); 281 llvm::Constant *Addr = GV; 282 if (AS != ExpectedAS) { 283 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 284 *this, GV, AS, ExpectedAS, 285 LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); 286 } 287 288 setStaticLocalDeclAddress(&D, Addr); 289 290 // Ensure that the static local gets initialized by making sure the parent 291 // function gets emitted eventually. 292 const Decl *DC = cast<Decl>(D.getDeclContext()); 293 294 // We can't name blocks or captured statements directly, so try to emit their 295 // parents. 296 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 297 DC = DC->getNonClosureContext(); 298 // FIXME: Ensure that global blocks get emitted. 299 if (!DC) 300 return Addr; 301 } 302 303 GlobalDecl GD; 304 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 305 GD = GlobalDecl(CD, Ctor_Base); 306 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 307 GD = GlobalDecl(DD, Dtor_Base); 308 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 309 GD = GlobalDecl(FD); 310 else { 311 // Don't do anything for Obj-C method decls or global closures. We should 312 // never defer them. 313 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 314 } 315 if (GD.getDecl()) { 316 // Disable emission of the parent function for the OpenMP device codegen. 317 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 318 (void)GetAddrOfGlobal(GD); 319 } 320 321 return Addr; 322 } 323 324 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 325 /// global variable that has already been created for it. If the initializer 326 /// has a different type than GV does, this may free GV and return a different 327 /// one. Otherwise it just returns GV. 328 llvm::GlobalVariable * 329 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 330 llvm::GlobalVariable *GV) { 331 ConstantEmitter emitter(*this); 332 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 333 334 // If constant emission failed, then this should be a C++ static 335 // initializer. 336 if (!Init) { 337 if (!getLangOpts().CPlusPlus) 338 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 339 else if (HaveInsertPoint()) { 340 // Since we have a static initializer, this global variable can't 341 // be constant. 342 GV->setConstant(false); 343 344 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 345 } 346 return GV; 347 } 348 349 // The initializer may differ in type from the global. Rewrite 350 // the global to match the initializer. (We have to do this 351 // because some types, like unions, can't be completely represented 352 // in the LLVM type system.) 353 if (GV->getValueType() != Init->getType()) { 354 llvm::GlobalVariable *OldGV = GV; 355 356 GV = new llvm::GlobalVariable( 357 CGM.getModule(), Init->getType(), OldGV->isConstant(), 358 OldGV->getLinkage(), Init, "", 359 /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(), 360 OldGV->getType()->getPointerAddressSpace()); 361 GV->setVisibility(OldGV->getVisibility()); 362 GV->setDSOLocal(OldGV->isDSOLocal()); 363 GV->setComdat(OldGV->getComdat()); 364 365 // Steal the name of the old global 366 GV->takeName(OldGV); 367 368 // Replace all uses of the old global with the new global 369 llvm::Constant *NewPtrForOldDecl = 370 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 371 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 372 373 // Erase the old global, since it is no longer used. 374 OldGV->eraseFromParent(); 375 } 376 377 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 378 GV->setInitializer(Init); 379 380 emitter.finalize(GV); 381 382 if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor && 383 HaveInsertPoint()) { 384 // We have a constant initializer, but a nontrivial destructor. We still 385 // need to perform a guarded "initialization" in order to register the 386 // destructor. 387 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 388 } 389 390 return GV; 391 } 392 393 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 394 llvm::GlobalValue::LinkageTypes Linkage) { 395 // Check to see if we already have a global variable for this 396 // declaration. This can happen when double-emitting function 397 // bodies, e.g. with complete and base constructors. 398 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 399 CharUnits alignment = getContext().getDeclAlign(&D); 400 401 // Store into LocalDeclMap before generating initializer to handle 402 // circular references. 403 setAddrOfLocalVar(&D, Address(addr, alignment)); 404 405 // We can't have a VLA here, but we can have a pointer to a VLA, 406 // even though that doesn't really make any sense. 407 // Make sure to evaluate VLA bounds now so that we have them for later. 408 if (D.getType()->isVariablyModifiedType()) 409 EmitVariablyModifiedType(D.getType()); 410 411 // Save the type in case adding the initializer forces a type change. 412 llvm::Type *expectedType = addr->getType(); 413 414 llvm::GlobalVariable *var = 415 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 416 417 // CUDA's local and local static __shared__ variables should not 418 // have any non-empty initializers. This is ensured by Sema. 419 // Whatever initializer such variable may have when it gets here is 420 // a no-op and should not be emitted. 421 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 422 D.hasAttr<CUDASharedAttr>(); 423 // If this value has an initializer, emit it. 424 if (D.getInit() && !isCudaSharedVar) 425 var = AddInitializerToStaticVarDecl(D, var); 426 427 var->setAlignment(alignment.getAsAlign()); 428 429 if (D.hasAttr<AnnotateAttr>()) 430 CGM.AddGlobalAnnotations(&D, var); 431 432 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 433 var->addAttribute("bss-section", SA->getName()); 434 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 435 var->addAttribute("data-section", SA->getName()); 436 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 437 var->addAttribute("rodata-section", SA->getName()); 438 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 439 var->addAttribute("relro-section", SA->getName()); 440 441 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 442 var->setSection(SA->getName()); 443 444 if (D.hasAttr<RetainAttr>()) 445 CGM.addUsedGlobal(var); 446 else if (D.hasAttr<UsedAttr>()) 447 CGM.addUsedOrCompilerUsedGlobal(var); 448 449 // We may have to cast the constant because of the initializer 450 // mismatch above. 451 // 452 // FIXME: It is really dangerous to store this in the map; if anyone 453 // RAUW's the GV uses of this constant will be invalid. 454 llvm::Constant *castedAddr = 455 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 456 if (var != castedAddr) 457 LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); 458 CGM.setStaticLocalDeclAddress(&D, castedAddr); 459 460 CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); 461 462 // Emit global variable debug descriptor for static vars. 463 CGDebugInfo *DI = getDebugInfo(); 464 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 465 DI->setLocation(D.getLocation()); 466 DI->EmitGlobalVariable(var, &D); 467 } 468 } 469 470 namespace { 471 struct DestroyObject final : EHScopeStack::Cleanup { 472 DestroyObject(Address addr, QualType type, 473 CodeGenFunction::Destroyer *destroyer, 474 bool useEHCleanupForArray) 475 : addr(addr), type(type), destroyer(destroyer), 476 useEHCleanupForArray(useEHCleanupForArray) {} 477 478 Address addr; 479 QualType type; 480 CodeGenFunction::Destroyer *destroyer; 481 bool useEHCleanupForArray; 482 483 void Emit(CodeGenFunction &CGF, Flags flags) override { 484 // Don't use an EH cleanup recursively from an EH cleanup. 485 bool useEHCleanupForArray = 486 flags.isForNormalCleanup() && this->useEHCleanupForArray; 487 488 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 489 } 490 }; 491 492 template <class Derived> 493 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 494 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 495 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 496 497 llvm::Value *NRVOFlag; 498 Address Loc; 499 QualType Ty; 500 501 void Emit(CodeGenFunction &CGF, Flags flags) override { 502 // Along the exceptions path we always execute the dtor. 503 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 504 505 llvm::BasicBlock *SkipDtorBB = nullptr; 506 if (NRVO) { 507 // If we exited via NRVO, we skip the destructor call. 508 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 509 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 510 llvm::Value *DidNRVO = 511 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 512 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 513 CGF.EmitBlock(RunDtorBB); 514 } 515 516 static_cast<Derived *>(this)->emitDestructorCall(CGF); 517 518 if (NRVO) CGF.EmitBlock(SkipDtorBB); 519 } 520 521 virtual ~DestroyNRVOVariable() = default; 522 }; 523 524 struct DestroyNRVOVariableCXX final 525 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 526 DestroyNRVOVariableCXX(Address addr, QualType type, 527 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 528 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 529 Dtor(Dtor) {} 530 531 const CXXDestructorDecl *Dtor; 532 533 void emitDestructorCall(CodeGenFunction &CGF) { 534 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 535 /*ForVirtualBase=*/false, 536 /*Delegating=*/false, Loc, Ty); 537 } 538 }; 539 540 struct DestroyNRVOVariableC final 541 : DestroyNRVOVariable<DestroyNRVOVariableC> { 542 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 543 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 544 545 void emitDestructorCall(CodeGenFunction &CGF) { 546 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 547 } 548 }; 549 550 struct CallStackRestore final : EHScopeStack::Cleanup { 551 Address Stack; 552 CallStackRestore(Address Stack) : Stack(Stack) {} 553 bool isRedundantBeforeReturn() override { return true; } 554 void Emit(CodeGenFunction &CGF, Flags flags) override { 555 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 556 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 557 CGF.Builder.CreateCall(F, V); 558 } 559 }; 560 561 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 562 const VarDecl &Var; 563 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 564 565 void Emit(CodeGenFunction &CGF, Flags flags) override { 566 // Compute the address of the local variable, in case it's a 567 // byref or something. 568 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 569 Var.getType(), VK_LValue, SourceLocation()); 570 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 571 SourceLocation()); 572 CGF.EmitExtendGCLifetime(value); 573 } 574 }; 575 576 struct CallCleanupFunction final : EHScopeStack::Cleanup { 577 llvm::Constant *CleanupFn; 578 const CGFunctionInfo &FnInfo; 579 const VarDecl &Var; 580 581 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 582 const VarDecl *Var) 583 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 584 585 void Emit(CodeGenFunction &CGF, Flags flags) override { 586 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 587 Var.getType(), VK_LValue, SourceLocation()); 588 // Compute the address of the local variable, in case it's a byref 589 // or something. 590 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 591 592 // In some cases, the type of the function argument will be different from 593 // the type of the pointer. An example of this is 594 // void f(void* arg); 595 // __attribute__((cleanup(f))) void *g; 596 // 597 // To fix this we insert a bitcast here. 598 QualType ArgTy = FnInfo.arg_begin()->type; 599 llvm::Value *Arg = 600 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 601 602 CallArgList Args; 603 Args.add(RValue::get(Arg), 604 CGF.getContext().getPointerType(Var.getType())); 605 auto Callee = CGCallee::forDirect(CleanupFn); 606 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 607 } 608 }; 609 } // end anonymous namespace 610 611 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 612 /// variable with lifetime. 613 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 614 Address addr, 615 Qualifiers::ObjCLifetime lifetime) { 616 switch (lifetime) { 617 case Qualifiers::OCL_None: 618 llvm_unreachable("present but none"); 619 620 case Qualifiers::OCL_ExplicitNone: 621 // nothing to do 622 break; 623 624 case Qualifiers::OCL_Strong: { 625 CodeGenFunction::Destroyer *destroyer = 626 (var.hasAttr<ObjCPreciseLifetimeAttr>() 627 ? CodeGenFunction::destroyARCStrongPrecise 628 : CodeGenFunction::destroyARCStrongImprecise); 629 630 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 631 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 632 cleanupKind & EHCleanup); 633 break; 634 } 635 case Qualifiers::OCL_Autoreleasing: 636 // nothing to do 637 break; 638 639 case Qualifiers::OCL_Weak: 640 // __weak objects always get EH cleanups; otherwise, exceptions 641 // could cause really nasty crashes instead of mere leaks. 642 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 643 CodeGenFunction::destroyARCWeak, 644 /*useEHCleanup*/ true); 645 break; 646 } 647 } 648 649 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 650 if (const Expr *e = dyn_cast<Expr>(s)) { 651 // Skip the most common kinds of expressions that make 652 // hierarchy-walking expensive. 653 s = e = e->IgnoreParenCasts(); 654 655 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 656 return (ref->getDecl() == &var); 657 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 658 const BlockDecl *block = be->getBlockDecl(); 659 for (const auto &I : block->captures()) { 660 if (I.getVariable() == &var) 661 return true; 662 } 663 } 664 } 665 666 for (const Stmt *SubStmt : s->children()) 667 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 668 if (SubStmt && isAccessedBy(var, SubStmt)) 669 return true; 670 671 return false; 672 } 673 674 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 675 if (!decl) return false; 676 if (!isa<VarDecl>(decl)) return false; 677 const VarDecl *var = cast<VarDecl>(decl); 678 return isAccessedBy(*var, e); 679 } 680 681 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 682 const LValue &destLV, const Expr *init) { 683 bool needsCast = false; 684 685 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 686 switch (castExpr->getCastKind()) { 687 // Look through casts that don't require representation changes. 688 case CK_NoOp: 689 case CK_BitCast: 690 case CK_BlockPointerToObjCPointerCast: 691 needsCast = true; 692 break; 693 694 // If we find an l-value to r-value cast from a __weak variable, 695 // emit this operation as a copy or move. 696 case CK_LValueToRValue: { 697 const Expr *srcExpr = castExpr->getSubExpr(); 698 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 699 return false; 700 701 // Emit the source l-value. 702 LValue srcLV = CGF.EmitLValue(srcExpr); 703 704 // Handle a formal type change to avoid asserting. 705 auto srcAddr = srcLV.getAddress(CGF); 706 if (needsCast) { 707 srcAddr = CGF.Builder.CreateElementBitCast( 708 srcAddr, destLV.getAddress(CGF).getElementType()); 709 } 710 711 // If it was an l-value, use objc_copyWeak. 712 if (srcExpr->getValueKind() == VK_LValue) { 713 CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr); 714 } else { 715 assert(srcExpr->getValueKind() == VK_XValue); 716 CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr); 717 } 718 return true; 719 } 720 721 // Stop at anything else. 722 default: 723 return false; 724 } 725 726 init = castExpr->getSubExpr(); 727 } 728 return false; 729 } 730 731 static void drillIntoBlockVariable(CodeGenFunction &CGF, 732 LValue &lvalue, 733 const VarDecl *var) { 734 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var)); 735 } 736 737 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 738 SourceLocation Loc) { 739 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 740 return; 741 742 auto Nullability = LHS.getType()->getNullability(getContext()); 743 if (!Nullability || *Nullability != NullabilityKind::NonNull) 744 return; 745 746 // Check if the right hand side of the assignment is nonnull, if the left 747 // hand side must be nonnull. 748 SanitizerScope SanScope(this); 749 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 750 llvm::Constant *StaticData[] = { 751 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 752 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 753 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 754 EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, 755 SanitizerHandler::TypeMismatch, StaticData, RHS); 756 } 757 758 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 759 LValue lvalue, bool capturedByInit) { 760 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 761 if (!lifetime) { 762 llvm::Value *value = EmitScalarExpr(init); 763 if (capturedByInit) 764 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 765 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 766 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 767 return; 768 } 769 770 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 771 init = DIE->getExpr(); 772 773 // If we're emitting a value with lifetime, we have to do the 774 // initialization *before* we leave the cleanup scopes. 775 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) { 776 CodeGenFunction::RunCleanupsScope Scope(*this); 777 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit); 778 } 779 780 // We have to maintain the illusion that the variable is 781 // zero-initialized. If the variable might be accessed in its 782 // initializer, zero-initialize before running the initializer, then 783 // actually perform the initialization with an assign. 784 bool accessedByInit = false; 785 if (lifetime != Qualifiers::OCL_ExplicitNone) 786 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 787 if (accessedByInit) { 788 LValue tempLV = lvalue; 789 // Drill down to the __block object if necessary. 790 if (capturedByInit) { 791 // We can use a simple GEP for this because it can't have been 792 // moved yet. 793 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this), 794 cast<VarDecl>(D), 795 /*follow*/ false)); 796 } 797 798 auto ty = 799 cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType()); 800 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 801 802 // If __weak, we want to use a barrier under certain conditions. 803 if (lifetime == Qualifiers::OCL_Weak) 804 EmitARCInitWeak(tempLV.getAddress(*this), zero); 805 806 // Otherwise just do a simple store. 807 else 808 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 809 } 810 811 // Emit the initializer. 812 llvm::Value *value = nullptr; 813 814 switch (lifetime) { 815 case Qualifiers::OCL_None: 816 llvm_unreachable("present but none"); 817 818 case Qualifiers::OCL_Strong: { 819 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 820 value = EmitARCRetainScalarExpr(init); 821 break; 822 } 823 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 824 // that we omit the retain, and causes non-autoreleased return values to be 825 // immediately released. 826 LLVM_FALLTHROUGH; 827 } 828 829 case Qualifiers::OCL_ExplicitNone: 830 value = EmitARCUnsafeUnretainedScalarExpr(init); 831 break; 832 833 case Qualifiers::OCL_Weak: { 834 // If it's not accessed by the initializer, try to emit the 835 // initialization with a copy or move. 836 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 837 return; 838 } 839 840 // No way to optimize a producing initializer into this. It's not 841 // worth optimizing for, because the value will immediately 842 // disappear in the common case. 843 value = EmitScalarExpr(init); 844 845 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 846 if (accessedByInit) 847 EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true); 848 else 849 EmitARCInitWeak(lvalue.getAddress(*this), value); 850 return; 851 } 852 853 case Qualifiers::OCL_Autoreleasing: 854 value = EmitARCRetainAutoreleaseScalarExpr(init); 855 break; 856 } 857 858 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 859 860 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 861 862 // If the variable might have been accessed by its initializer, we 863 // might have to initialize with a barrier. We have to do this for 864 // both __weak and __strong, but __weak got filtered out above. 865 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 866 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 867 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 868 EmitARCRelease(oldValue, ARCImpreciseLifetime); 869 return; 870 } 871 872 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 873 } 874 875 /// Decide whether we can emit the non-zero parts of the specified initializer 876 /// with equal or fewer than NumStores scalar stores. 877 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 878 unsigned &NumStores) { 879 // Zero and Undef never requires any extra stores. 880 if (isa<llvm::ConstantAggregateZero>(Init) || 881 isa<llvm::ConstantPointerNull>(Init) || 882 isa<llvm::UndefValue>(Init)) 883 return true; 884 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 885 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 886 isa<llvm::ConstantExpr>(Init)) 887 return Init->isNullValue() || NumStores--; 888 889 // See if we can emit each element. 890 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 891 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 892 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 893 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 894 return false; 895 } 896 return true; 897 } 898 899 if (llvm::ConstantDataSequential *CDS = 900 dyn_cast<llvm::ConstantDataSequential>(Init)) { 901 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 902 llvm::Constant *Elt = CDS->getElementAsConstant(i); 903 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 904 return false; 905 } 906 return true; 907 } 908 909 // Anything else is hard and scary. 910 return false; 911 } 912 913 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 914 /// the scalar stores that would be required. 915 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 916 llvm::Constant *Init, Address Loc, 917 bool isVolatile, CGBuilderTy &Builder, 918 bool IsAutoInit) { 919 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 920 "called emitStoresForInitAfterBZero for zero or undef value."); 921 922 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 923 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 924 isa<llvm::ConstantExpr>(Init)) { 925 auto *I = Builder.CreateStore(Init, Loc, isVolatile); 926 if (IsAutoInit) 927 I->addAnnotationMetadata("auto-init"); 928 return; 929 } 930 931 if (llvm::ConstantDataSequential *CDS = 932 dyn_cast<llvm::ConstantDataSequential>(Init)) { 933 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 934 llvm::Constant *Elt = CDS->getElementAsConstant(i); 935 936 // If necessary, get a pointer to the element and emit it. 937 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 938 emitStoresForInitAfterBZero( 939 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 940 Builder, IsAutoInit); 941 } 942 return; 943 } 944 945 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 946 "Unknown value type!"); 947 948 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 949 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 950 951 // If necessary, get a pointer to the element and emit it. 952 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 953 emitStoresForInitAfterBZero(CGM, Elt, 954 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 955 isVolatile, Builder, IsAutoInit); 956 } 957 } 958 959 /// Decide whether we should use bzero plus some stores to initialize a local 960 /// variable instead of using a memcpy from a constant global. It is beneficial 961 /// to use bzero if the global is all zeros, or mostly zeros and large. 962 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 963 uint64_t GlobalSize) { 964 // If a global is all zeros, always use a bzero. 965 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 966 967 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 968 // do it if it will require 6 or fewer scalar stores. 969 // TODO: Should budget depends on the size? Avoiding a large global warrants 970 // plopping in more stores. 971 unsigned StoreBudget = 6; 972 uint64_t SizeLimit = 32; 973 974 return GlobalSize > SizeLimit && 975 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 976 } 977 978 /// Decide whether we should use memset to initialize a local variable instead 979 /// of using a memcpy from a constant global. Assumes we've already decided to 980 /// not user bzero. 981 /// FIXME We could be more clever, as we are for bzero above, and generate 982 /// memset followed by stores. It's unclear that's worth the effort. 983 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 984 uint64_t GlobalSize, 985 const llvm::DataLayout &DL) { 986 uint64_t SizeLimit = 32; 987 if (GlobalSize <= SizeLimit) 988 return nullptr; 989 return llvm::isBytewiseValue(Init, DL); 990 } 991 992 /// Decide whether we want to split a constant structure or array store into a 993 /// sequence of its fields' stores. This may cost us code size and compilation 994 /// speed, but plays better with store optimizations. 995 static bool shouldSplitConstantStore(CodeGenModule &CGM, 996 uint64_t GlobalByteSize) { 997 // Don't break things that occupy more than one cacheline. 998 uint64_t ByteSizeLimit = 64; 999 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1000 return false; 1001 if (GlobalByteSize <= ByteSizeLimit) 1002 return true; 1003 return false; 1004 } 1005 1006 enum class IsPattern { No, Yes }; 1007 1008 /// Generate a constant filled with either a pattern or zeroes. 1009 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 1010 llvm::Type *Ty) { 1011 if (isPattern == IsPattern::Yes) 1012 return initializationPatternFor(CGM, Ty); 1013 else 1014 return llvm::Constant::getNullValue(Ty); 1015 } 1016 1017 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1018 llvm::Constant *constant); 1019 1020 /// Helper function for constWithPadding() to deal with padding in structures. 1021 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1022 IsPattern isPattern, 1023 llvm::StructType *STy, 1024 llvm::Constant *constant) { 1025 const llvm::DataLayout &DL = CGM.getDataLayout(); 1026 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1027 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1028 unsigned SizeSoFar = 0; 1029 SmallVector<llvm::Constant *, 8> Values; 1030 bool NestedIntact = true; 1031 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1032 unsigned CurOff = Layout->getElementOffset(i); 1033 if (SizeSoFar < CurOff) { 1034 assert(!STy->isPacked()); 1035 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1036 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1037 } 1038 llvm::Constant *CurOp; 1039 if (constant->isZeroValue()) 1040 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1041 else 1042 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1043 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1044 if (CurOp != NewOp) 1045 NestedIntact = false; 1046 Values.push_back(NewOp); 1047 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1048 } 1049 unsigned TotalSize = Layout->getSizeInBytes(); 1050 if (SizeSoFar < TotalSize) { 1051 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1052 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1053 } 1054 if (NestedIntact && Values.size() == STy->getNumElements()) 1055 return constant; 1056 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1057 } 1058 1059 /// Replace all padding bytes in a given constant with either a pattern byte or 1060 /// 0x00. 1061 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1062 llvm::Constant *constant) { 1063 llvm::Type *OrigTy = constant->getType(); 1064 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1065 return constStructWithPadding(CGM, isPattern, STy, constant); 1066 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1067 llvm::SmallVector<llvm::Constant *, 8> Values; 1068 uint64_t Size = ArrayTy->getNumElements(); 1069 if (!Size) 1070 return constant; 1071 llvm::Type *ElemTy = ArrayTy->getElementType(); 1072 bool ZeroInitializer = constant->isNullValue(); 1073 llvm::Constant *OpValue, *PaddedOp; 1074 if (ZeroInitializer) { 1075 OpValue = llvm::Constant::getNullValue(ElemTy); 1076 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1077 } 1078 for (unsigned Op = 0; Op != Size; ++Op) { 1079 if (!ZeroInitializer) { 1080 OpValue = constant->getAggregateElement(Op); 1081 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1082 } 1083 Values.push_back(PaddedOp); 1084 } 1085 auto *NewElemTy = Values[0]->getType(); 1086 if (NewElemTy == ElemTy) 1087 return constant; 1088 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1089 return llvm::ConstantArray::get(NewArrayTy, Values); 1090 } 1091 // FIXME: Add handling for tail padding in vectors. Vectors don't 1092 // have padding between or inside elements, but the total amount of 1093 // data can be less than the allocated size. 1094 return constant; 1095 } 1096 1097 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1098 llvm::Constant *Constant, 1099 CharUnits Align) { 1100 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1101 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1102 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1103 return CC->getNameAsString(); 1104 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1105 return CD->getNameAsString(); 1106 return std::string(getMangledName(FD)); 1107 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1108 return OM->getNameAsString(); 1109 } else if (isa<BlockDecl>(DC)) { 1110 return "<block>"; 1111 } else if (isa<CapturedDecl>(DC)) { 1112 return "<captured>"; 1113 } else { 1114 llvm_unreachable("expected a function or method"); 1115 } 1116 }; 1117 1118 // Form a simple per-variable cache of these values in case we find we 1119 // want to reuse them. 1120 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1121 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1122 auto *Ty = Constant->getType(); 1123 bool isConstant = true; 1124 llvm::GlobalVariable *InsertBefore = nullptr; 1125 unsigned AS = 1126 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace()); 1127 std::string Name; 1128 if (D.hasGlobalStorage()) 1129 Name = getMangledName(&D).str() + ".const"; 1130 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1131 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1132 else 1133 llvm_unreachable("local variable has no parent function or method"); 1134 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1135 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1136 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1137 GV->setAlignment(Align.getAsAlign()); 1138 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1139 CacheEntry = GV; 1140 } else if (CacheEntry->getAlignment() < Align.getQuantity()) { 1141 CacheEntry->setAlignment(Align.getAsAlign()); 1142 } 1143 1144 return Address(CacheEntry, Align); 1145 } 1146 1147 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1148 const VarDecl &D, 1149 CGBuilderTy &Builder, 1150 llvm::Constant *Constant, 1151 CharUnits Align) { 1152 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1153 llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), 1154 SrcPtr.getAddressSpace()); 1155 if (SrcPtr.getType() != BP) 1156 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1157 return SrcPtr; 1158 } 1159 1160 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1161 Address Loc, bool isVolatile, 1162 CGBuilderTy &Builder, 1163 llvm::Constant *constant, bool IsAutoInit) { 1164 auto *Ty = constant->getType(); 1165 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1166 if (!ConstantSize) 1167 return; 1168 1169 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1170 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1171 if (canDoSingleStore) { 1172 auto *I = Builder.CreateStore(constant, Loc, isVolatile); 1173 if (IsAutoInit) 1174 I->addAnnotationMetadata("auto-init"); 1175 return; 1176 } 1177 1178 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1179 1180 // If the initializer is all or mostly the same, codegen with bzero / memset 1181 // then do a few stores afterward. 1182 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1183 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), 1184 SizeVal, isVolatile); 1185 if (IsAutoInit) 1186 I->addAnnotationMetadata("auto-init"); 1187 1188 bool valueAlreadyCorrect = 1189 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1190 if (!valueAlreadyCorrect) { 1191 Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); 1192 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder, 1193 IsAutoInit); 1194 } 1195 return; 1196 } 1197 1198 // If the initializer is a repeated byte pattern, use memset. 1199 llvm::Value *Pattern = 1200 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1201 if (Pattern) { 1202 uint64_t Value = 0x00; 1203 if (!isa<llvm::UndefValue>(Pattern)) { 1204 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1205 assert(AP.getBitWidth() <= 8); 1206 Value = AP.getLimitedValue(); 1207 } 1208 auto *I = Builder.CreateMemSet( 1209 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile); 1210 if (IsAutoInit) 1211 I->addAnnotationMetadata("auto-init"); 1212 return; 1213 } 1214 1215 // If the initializer is small, use a handful of stores. 1216 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1217 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1218 // FIXME: handle the case when STy != Loc.getElementType(). 1219 if (STy == Loc.getElementType()) { 1220 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1221 Address EltPtr = Builder.CreateStructGEP(Loc, i); 1222 emitStoresForConstant( 1223 CGM, D, EltPtr, isVolatile, Builder, 1224 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1225 IsAutoInit); 1226 } 1227 return; 1228 } 1229 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1230 // FIXME: handle the case when ATy != Loc.getElementType(). 1231 if (ATy == Loc.getElementType()) { 1232 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1233 Address EltPtr = Builder.CreateConstArrayGEP(Loc, i); 1234 emitStoresForConstant( 1235 CGM, D, EltPtr, isVolatile, Builder, 1236 cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)), 1237 IsAutoInit); 1238 } 1239 return; 1240 } 1241 } 1242 } 1243 1244 // Copy from a global. 1245 auto *I = 1246 Builder.CreateMemCpy(Loc, 1247 createUnnamedGlobalForMemcpyFrom( 1248 CGM, D, Builder, constant, Loc.getAlignment()), 1249 SizeVal, isVolatile); 1250 if (IsAutoInit) 1251 I->addAnnotationMetadata("auto-init"); 1252 } 1253 1254 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1255 Address Loc, bool isVolatile, 1256 CGBuilderTy &Builder) { 1257 llvm::Type *ElTy = Loc.getElementType(); 1258 llvm::Constant *constant = 1259 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1260 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1261 /*IsAutoInit=*/true); 1262 } 1263 1264 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1265 Address Loc, bool isVolatile, 1266 CGBuilderTy &Builder) { 1267 llvm::Type *ElTy = Loc.getElementType(); 1268 llvm::Constant *constant = constWithPadding( 1269 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1270 assert(!isa<llvm::UndefValue>(constant)); 1271 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1272 /*IsAutoInit=*/true); 1273 } 1274 1275 static bool containsUndef(llvm::Constant *constant) { 1276 auto *Ty = constant->getType(); 1277 if (isa<llvm::UndefValue>(constant)) 1278 return true; 1279 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1280 for (llvm::Use &Op : constant->operands()) 1281 if (containsUndef(cast<llvm::Constant>(Op))) 1282 return true; 1283 return false; 1284 } 1285 1286 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1287 llvm::Constant *constant) { 1288 auto *Ty = constant->getType(); 1289 if (isa<llvm::UndefValue>(constant)) 1290 return patternOrZeroFor(CGM, isPattern, Ty); 1291 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1292 return constant; 1293 if (!containsUndef(constant)) 1294 return constant; 1295 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1296 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1297 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1298 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1299 } 1300 if (Ty->isStructTy()) 1301 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1302 if (Ty->isArrayTy()) 1303 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1304 assert(Ty->isVectorTy()); 1305 return llvm::ConstantVector::get(Values); 1306 } 1307 1308 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1309 /// variable declaration with auto, register, or no storage class specifier. 1310 /// These turn into simple stack objects, or GlobalValues depending on target. 1311 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1312 AutoVarEmission emission = EmitAutoVarAlloca(D); 1313 EmitAutoVarInit(emission); 1314 EmitAutoVarCleanups(emission); 1315 } 1316 1317 /// Emit a lifetime.begin marker if some criteria are satisfied. 1318 /// \return a pointer to the temporary size Value if a marker was emitted, null 1319 /// otherwise 1320 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, 1321 llvm::Value *Addr) { 1322 if (!ShouldEmitLifetimeMarkers) 1323 return nullptr; 1324 1325 assert(Addr->getType()->getPointerAddressSpace() == 1326 CGM.getDataLayout().getAllocaAddrSpace() && 1327 "Pointer should be in alloca address space"); 1328 llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); 1329 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1330 llvm::CallInst *C = 1331 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1332 C->setDoesNotThrow(); 1333 return SizeV; 1334 } 1335 1336 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1337 assert(Addr->getType()->getPointerAddressSpace() == 1338 CGM.getDataLayout().getAllocaAddrSpace() && 1339 "Pointer should be in alloca address space"); 1340 Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); 1341 llvm::CallInst *C = 1342 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1343 C->setDoesNotThrow(); 1344 } 1345 1346 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1347 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1348 // For each dimension stores its QualType and corresponding 1349 // size-expression Value. 1350 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1351 SmallVector<IdentifierInfo *, 4> VLAExprNames; 1352 1353 // Break down the array into individual dimensions. 1354 QualType Type1D = D.getType(); 1355 while (getContext().getAsVariableArrayType(Type1D)) { 1356 auto VlaSize = getVLAElements1D(Type1D); 1357 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1358 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1359 else { 1360 // Generate a locally unique name for the size expression. 1361 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1362 SmallString<12> Buffer; 1363 StringRef NameRef = Name.toStringRef(Buffer); 1364 auto &Ident = getContext().Idents.getOwn(NameRef); 1365 VLAExprNames.push_back(&Ident); 1366 auto SizeExprAddr = 1367 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1368 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1369 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1370 Type1D.getUnqualifiedType()); 1371 } 1372 Type1D = VlaSize.Type; 1373 } 1374 1375 if (!EmitDebugInfo) 1376 return; 1377 1378 // Register each dimension's size-expression with a DILocalVariable, 1379 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1380 // to describe this array. 1381 unsigned NameIdx = 0; 1382 for (auto &VlaSize : Dimensions) { 1383 llvm::Metadata *MD; 1384 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1385 MD = llvm::ConstantAsMetadata::get(C); 1386 else { 1387 // Create an artificial VarDecl to generate debug info for. 1388 IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1389 auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); 1390 auto QT = getContext().getIntTypeForBitwidth( 1391 VlaExprTy->getScalarSizeInBits(), false); 1392 auto *ArtificialDecl = VarDecl::Create( 1393 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1394 D.getLocation(), D.getLocation(), NameIdent, QT, 1395 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1396 ArtificialDecl->setImplicit(); 1397 1398 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1399 Builder); 1400 } 1401 assert(MD && "No Size expression debug node created"); 1402 DI->registerVLASizeExpression(VlaSize.Type, MD); 1403 } 1404 } 1405 1406 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1407 /// local variable. Does not emit initialization or destruction. 1408 CodeGenFunction::AutoVarEmission 1409 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1410 QualType Ty = D.getType(); 1411 assert( 1412 Ty.getAddressSpace() == LangAS::Default || 1413 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1414 1415 AutoVarEmission emission(D); 1416 1417 bool isEscapingByRef = D.isEscapingByref(); 1418 emission.IsEscapingByRef = isEscapingByRef; 1419 1420 CharUnits alignment = getContext().getDeclAlign(&D); 1421 1422 // If the type is variably-modified, emit all the VLA sizes for it. 1423 if (Ty->isVariablyModifiedType()) 1424 EmitVariablyModifiedType(Ty); 1425 1426 auto *DI = getDebugInfo(); 1427 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1428 1429 Address address = Address::invalid(); 1430 Address AllocaAddr = Address::invalid(); 1431 Address OpenMPLocalAddr = Address::invalid(); 1432 if (CGM.getLangOpts().OpenMPIRBuilder) 1433 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1434 else 1435 OpenMPLocalAddr = 1436 getLangOpts().OpenMP 1437 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1438 : Address::invalid(); 1439 1440 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1441 1442 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1443 address = OpenMPLocalAddr; 1444 } else if (Ty->isConstantSizeType()) { 1445 // If this value is an array or struct with a statically determinable 1446 // constant initializer, there are optimizations we can do. 1447 // 1448 // TODO: We should constant-evaluate the initializer of any variable, 1449 // as long as it is initialized by a constant expression. Currently, 1450 // isConstantInitializer produces wrong answers for structs with 1451 // reference or bitfield members, and a few other cases, and checking 1452 // for POD-ness protects us from some of these. 1453 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1454 (D.isConstexpr() || 1455 ((Ty.isPODType(getContext()) || 1456 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1457 D.getInit()->isConstantInitializer(getContext(), false)))) { 1458 1459 // If the variable's a const type, and it's neither an NRVO 1460 // candidate nor a __block variable and has no mutable members, 1461 // emit it as a global instead. 1462 // Exception is if a variable is located in non-constant address space 1463 // in OpenCL. 1464 if ((!getLangOpts().OpenCL || 1465 Ty.getAddressSpace() == LangAS::opencl_constant) && 1466 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1467 !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { 1468 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1469 1470 // Signal this condition to later callbacks. 1471 emission.Addr = Address::invalid(); 1472 assert(emission.wasEmittedAsGlobal()); 1473 return emission; 1474 } 1475 1476 // Otherwise, tell the initialization code that we're in this case. 1477 emission.IsConstantAggregate = true; 1478 } 1479 1480 // A normal fixed sized variable becomes an alloca in the entry block, 1481 // unless: 1482 // - it's an NRVO variable. 1483 // - we are compiling OpenMP and it's an OpenMP local variable. 1484 if (NRVO) { 1485 // The named return value optimization: allocate this variable in the 1486 // return slot, so that we can elide the copy when returning this 1487 // variable (C++0x [class.copy]p34). 1488 address = ReturnValue; 1489 1490 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1491 const auto *RD = RecordTy->getDecl(); 1492 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1493 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1494 RD->isNonTrivialToPrimitiveDestroy()) { 1495 // Create a flag that is used to indicate when the NRVO was applied 1496 // to this variable. Set it to zero to indicate that NRVO was not 1497 // applied. 1498 llvm::Value *Zero = Builder.getFalse(); 1499 Address NRVOFlag = 1500 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1501 EnsureInsertPoint(); 1502 Builder.CreateStore(Zero, NRVOFlag); 1503 1504 // Record the NRVO flag for this variable. 1505 NRVOFlags[&D] = NRVOFlag.getPointer(); 1506 emission.NRVOFlag = NRVOFlag.getPointer(); 1507 } 1508 } 1509 } else { 1510 CharUnits allocaAlignment; 1511 llvm::Type *allocaTy; 1512 if (isEscapingByRef) { 1513 auto &byrefInfo = getBlockByrefInfo(&D); 1514 allocaTy = byrefInfo.Type; 1515 allocaAlignment = byrefInfo.ByrefAlignment; 1516 } else { 1517 allocaTy = ConvertTypeForMem(Ty); 1518 allocaAlignment = alignment; 1519 } 1520 1521 // Create the alloca. Note that we set the name separately from 1522 // building the instruction so that it's there even in no-asserts 1523 // builds. 1524 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1525 /*ArraySize=*/nullptr, &AllocaAddr); 1526 1527 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1528 // the catch parameter starts in the catchpad instruction, and we can't 1529 // insert code in those basic blocks. 1530 bool IsMSCatchParam = 1531 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1532 1533 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1534 // if we don't have a valid insertion point (?). 1535 if (HaveInsertPoint() && !IsMSCatchParam) { 1536 // If there's a jump into the lifetime of this variable, its lifetime 1537 // gets broken up into several regions in IR, which requires more work 1538 // to handle correctly. For now, just omit the intrinsics; this is a 1539 // rare case, and it's better to just be conservatively correct. 1540 // PR28267. 1541 // 1542 // We have to do this in all language modes if there's a jump past the 1543 // declaration. We also have to do it in C if there's a jump to an 1544 // earlier point in the current block because non-VLA lifetimes begin as 1545 // soon as the containing block is entered, not when its variables 1546 // actually come into scope; suppressing the lifetime annotations 1547 // completely in this case is unnecessarily pessimistic, but again, this 1548 // is rare. 1549 if (!Bypasses.IsBypassed(&D) && 1550 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1551 llvm::TypeSize size = 1552 CGM.getDataLayout().getTypeAllocSize(allocaTy); 1553 emission.SizeForLifetimeMarkers = 1554 size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer()) 1555 : EmitLifetimeStart(size.getFixedSize(), 1556 AllocaAddr.getPointer()); 1557 } 1558 } else { 1559 assert(!emission.useLifetimeMarkers()); 1560 } 1561 } 1562 } else { 1563 EnsureInsertPoint(); 1564 1565 if (!DidCallStackSave) { 1566 // Save the stack. 1567 Address Stack = 1568 CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); 1569 1570 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 1571 llvm::Value *V = Builder.CreateCall(F); 1572 Builder.CreateStore(V, Stack); 1573 1574 DidCallStackSave = true; 1575 1576 // Push a cleanup block and restore the stack there. 1577 // FIXME: in general circumstances, this should be an EH cleanup. 1578 pushStackRestore(NormalCleanup, Stack); 1579 } 1580 1581 auto VlaSize = getVLASize(Ty); 1582 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1583 1584 // Allocate memory for the array. 1585 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1586 &AllocaAddr); 1587 1588 // If we have debug info enabled, properly describe the VLA dimensions for 1589 // this type by registering the vla size expression for each of the 1590 // dimensions. 1591 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1592 } 1593 1594 setAddrOfLocalVar(&D, address); 1595 emission.Addr = address; 1596 emission.AllocaAddr = AllocaAddr; 1597 1598 // Emit debug info for local var declaration. 1599 if (EmitDebugInfo && HaveInsertPoint()) { 1600 Address DebugAddr = address; 1601 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1602 DI->setLocation(D.getLocation()); 1603 1604 // If NRVO, use a pointer to the return address. 1605 if (UsePointerValue) 1606 DebugAddr = ReturnValuePointer; 1607 1608 (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder, 1609 UsePointerValue); 1610 } 1611 1612 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1613 EmitVarAnnotations(&D, address.getPointer()); 1614 1615 // Make sure we call @llvm.lifetime.end. 1616 if (emission.useLifetimeMarkers()) 1617 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1618 emission.getOriginalAllocatedAddress(), 1619 emission.getSizeForLifetimeMarkers()); 1620 1621 return emission; 1622 } 1623 1624 static bool isCapturedBy(const VarDecl &, const Expr *); 1625 1626 /// Determines whether the given __block variable is potentially 1627 /// captured by the given statement. 1628 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1629 if (const Expr *E = dyn_cast<Expr>(S)) 1630 return isCapturedBy(Var, E); 1631 for (const Stmt *SubStmt : S->children()) 1632 if (isCapturedBy(Var, SubStmt)) 1633 return true; 1634 return false; 1635 } 1636 1637 /// Determines whether the given __block variable is potentially 1638 /// captured by the given expression. 1639 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1640 // Skip the most common kinds of expressions that make 1641 // hierarchy-walking expensive. 1642 E = E->IgnoreParenCasts(); 1643 1644 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1645 const BlockDecl *Block = BE->getBlockDecl(); 1646 for (const auto &I : Block->captures()) { 1647 if (I.getVariable() == &Var) 1648 return true; 1649 } 1650 1651 // No need to walk into the subexpressions. 1652 return false; 1653 } 1654 1655 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1656 const CompoundStmt *CS = SE->getSubStmt(); 1657 for (const auto *BI : CS->body()) 1658 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1659 if (isCapturedBy(Var, BIE)) 1660 return true; 1661 } 1662 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1663 // special case declarations 1664 for (const auto *I : DS->decls()) { 1665 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1666 const Expr *Init = VD->getInit(); 1667 if (Init && isCapturedBy(Var, Init)) 1668 return true; 1669 } 1670 } 1671 } 1672 else 1673 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1674 // Later, provide code to poke into statements for capture analysis. 1675 return true; 1676 return false; 1677 } 1678 1679 for (const Stmt *SubStmt : E->children()) 1680 if (isCapturedBy(Var, SubStmt)) 1681 return true; 1682 1683 return false; 1684 } 1685 1686 /// Determine whether the given initializer is trivial in the sense 1687 /// that it requires no code to be generated. 1688 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1689 if (!Init) 1690 return true; 1691 1692 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1693 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1694 if (Constructor->isTrivial() && 1695 Constructor->isDefaultConstructor() && 1696 !Construct->requiresZeroInitialization()) 1697 return true; 1698 1699 return false; 1700 } 1701 1702 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1703 const VarDecl &D, 1704 Address Loc) { 1705 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1706 CharUnits Size = getContext().getTypeSizeInChars(type); 1707 bool isVolatile = type.isVolatileQualified(); 1708 if (!Size.isZero()) { 1709 switch (trivialAutoVarInit) { 1710 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1711 llvm_unreachable("Uninitialized handled by caller"); 1712 case LangOptions::TrivialAutoVarInitKind::Zero: 1713 if (CGM.stopAutoInit()) 1714 return; 1715 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1716 break; 1717 case LangOptions::TrivialAutoVarInitKind::Pattern: 1718 if (CGM.stopAutoInit()) 1719 return; 1720 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1721 break; 1722 } 1723 return; 1724 } 1725 1726 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1727 // them, so emit a memcpy with the VLA size to initialize each element. 1728 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1729 // will catch that code, but there exists code which generates zero-sized 1730 // VLAs. Be nice and initialize whatever they requested. 1731 const auto *VlaType = getContext().getAsVariableArrayType(type); 1732 if (!VlaType) 1733 return; 1734 auto VlaSize = getVLASize(VlaType); 1735 auto SizeVal = VlaSize.NumElts; 1736 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1737 switch (trivialAutoVarInit) { 1738 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1739 llvm_unreachable("Uninitialized handled by caller"); 1740 1741 case LangOptions::TrivialAutoVarInitKind::Zero: { 1742 if (CGM.stopAutoInit()) 1743 return; 1744 if (!EltSize.isOne()) 1745 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1746 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), 1747 SizeVal, isVolatile); 1748 I->addAnnotationMetadata("auto-init"); 1749 break; 1750 } 1751 1752 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1753 if (CGM.stopAutoInit()) 1754 return; 1755 llvm::Type *ElTy = Loc.getElementType(); 1756 llvm::Constant *Constant = constWithPadding( 1757 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1758 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1759 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1760 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1761 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1762 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1763 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1764 "vla.iszerosized"); 1765 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1766 EmitBlock(SetupBB); 1767 if (!EltSize.isOne()) 1768 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1769 llvm::Value *BaseSizeInChars = 1770 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1771 Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); 1772 llvm::Value *End = Builder.CreateInBoundsGEP( 1773 Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end"); 1774 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1775 EmitBlock(LoopBB); 1776 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1777 Cur->addIncoming(Begin.getPointer(), OriginBB); 1778 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1779 auto *I = 1780 Builder.CreateMemCpy(Address(Cur, CurAlign), 1781 createUnnamedGlobalForMemcpyFrom( 1782 CGM, D, Builder, Constant, ConstantAlign), 1783 BaseSizeInChars, isVolatile); 1784 I->addAnnotationMetadata("auto-init"); 1785 llvm::Value *Next = 1786 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1787 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1788 Builder.CreateCondBr(Done, ContBB, LoopBB); 1789 Cur->addIncoming(Next, LoopBB); 1790 EmitBlock(ContBB); 1791 } break; 1792 } 1793 } 1794 1795 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1796 assert(emission.Variable && "emission was not valid!"); 1797 1798 // If this was emitted as a global constant, we're done. 1799 if (emission.wasEmittedAsGlobal()) return; 1800 1801 const VarDecl &D = *emission.Variable; 1802 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1803 QualType type = D.getType(); 1804 1805 // If this local has an initializer, emit it now. 1806 const Expr *Init = D.getInit(); 1807 1808 // If we are at an unreachable point, we don't need to emit the initializer 1809 // unless it contains a label. 1810 if (!HaveInsertPoint()) { 1811 if (!Init || !ContainsLabel(Init)) return; 1812 EnsureInsertPoint(); 1813 } 1814 1815 // Initialize the structure of a __block variable. 1816 if (emission.IsEscapingByRef) 1817 emitByrefStructureInit(emission); 1818 1819 // Initialize the variable here if it doesn't have a initializer and it is a 1820 // C struct that is non-trivial to initialize or an array containing such a 1821 // struct. 1822 if (!Init && 1823 type.isNonTrivialToPrimitiveDefaultInitialize() == 1824 QualType::PDIK_Struct) { 1825 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1826 if (emission.IsEscapingByRef) 1827 drillIntoBlockVariable(*this, Dst, &D); 1828 defaultInitNonTrivialCStructVar(Dst); 1829 return; 1830 } 1831 1832 // Check whether this is a byref variable that's potentially 1833 // captured and moved by its own initializer. If so, we'll need to 1834 // emit the initializer first, then copy into the variable. 1835 bool capturedByInit = 1836 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1837 1838 bool locIsByrefHeader = !capturedByInit; 1839 const Address Loc = 1840 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1841 1842 // Note: constexpr already initializes everything correctly. 1843 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1844 (D.isConstexpr() 1845 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1846 : (D.getAttr<UninitializedAttr>() 1847 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1848 : getContext().getLangOpts().getTrivialAutoVarInit())); 1849 1850 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1851 if (trivialAutoVarInit == 1852 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1853 return; 1854 1855 // Only initialize a __block's storage: we always initialize the header. 1856 if (emission.IsEscapingByRef && !locIsByrefHeader) 1857 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1858 1859 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1860 }; 1861 1862 if (isTrivialInitializer(Init)) 1863 return initializeWhatIsTechnicallyUninitialized(Loc); 1864 1865 llvm::Constant *constant = nullptr; 1866 if (emission.IsConstantAggregate || 1867 D.mightBeUsableInConstantExpressions(getContext())) { 1868 assert(!capturedByInit && "constant init contains a capturing block?"); 1869 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1870 if (constant && !constant->isZeroValue() && 1871 (trivialAutoVarInit != 1872 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1873 IsPattern isPattern = 1874 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1875 ? IsPattern::Yes 1876 : IsPattern::No; 1877 // C guarantees that brace-init with fewer initializers than members in 1878 // the aggregate will initialize the rest of the aggregate as-if it were 1879 // static initialization. In turn static initialization guarantees that 1880 // padding is initialized to zero bits. We could instead pattern-init if D 1881 // has any ImplicitValueInitExpr, but that seems to be unintuitive 1882 // behavior. 1883 constant = constWithPadding(CGM, IsPattern::No, 1884 replaceUndef(CGM, isPattern, constant)); 1885 } 1886 } 1887 1888 if (!constant) { 1889 initializeWhatIsTechnicallyUninitialized(Loc); 1890 LValue lv = MakeAddrLValue(Loc, type); 1891 lv.setNonGC(true); 1892 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1893 } 1894 1895 if (!emission.IsConstantAggregate) { 1896 // For simple scalar/complex initialization, store the value directly. 1897 LValue lv = MakeAddrLValue(Loc, type); 1898 lv.setNonGC(true); 1899 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 1900 } 1901 1902 llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); 1903 emitStoresForConstant( 1904 CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP), 1905 type.isVolatileQualified(), Builder, constant, /*IsAutoInit=*/false); 1906 } 1907 1908 /// Emit an expression as an initializer for an object (variable, field, etc.) 1909 /// at the given location. The expression is not necessarily the normal 1910 /// initializer for the object, and the address is not necessarily 1911 /// its normal location. 1912 /// 1913 /// \param init the initializing expression 1914 /// \param D the object to act as if we're initializing 1915 /// \param lvalue the lvalue to initialize 1916 /// \param capturedByInit true if \p D is a __block variable 1917 /// whose address is potentially changed by the initializer 1918 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 1919 LValue lvalue, bool capturedByInit) { 1920 QualType type = D->getType(); 1921 1922 if (type->isReferenceType()) { 1923 RValue rvalue = EmitReferenceBindingToExpr(init); 1924 if (capturedByInit) 1925 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1926 EmitStoreThroughLValue(rvalue, lvalue, true); 1927 return; 1928 } 1929 switch (getEvaluationKind(type)) { 1930 case TEK_Scalar: 1931 EmitScalarInit(init, D, lvalue, capturedByInit); 1932 return; 1933 case TEK_Complex: { 1934 ComplexPairTy complex = EmitComplexExpr(init); 1935 if (capturedByInit) 1936 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1937 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1938 return; 1939 } 1940 case TEK_Aggregate: 1941 if (type->isAtomicType()) { 1942 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1943 } else { 1944 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 1945 if (isa<VarDecl>(D)) 1946 Overlap = AggValueSlot::DoesNotOverlap; 1947 else if (auto *FD = dyn_cast<FieldDecl>(D)) 1948 Overlap = getOverlapForFieldInit(FD); 1949 // TODO: how can we delay here if D is captured by its initializer? 1950 EmitAggExpr(init, AggValueSlot::forLValue( 1951 lvalue, *this, AggValueSlot::IsDestructed, 1952 AggValueSlot::DoesNotNeedGCBarriers, 1953 AggValueSlot::IsNotAliased, Overlap)); 1954 } 1955 return; 1956 } 1957 llvm_unreachable("bad evaluation kind"); 1958 } 1959 1960 /// Enter a destroy cleanup for the given local variable. 1961 void CodeGenFunction::emitAutoVarTypeCleanup( 1962 const CodeGenFunction::AutoVarEmission &emission, 1963 QualType::DestructionKind dtorKind) { 1964 assert(dtorKind != QualType::DK_none); 1965 1966 // Note that for __block variables, we want to destroy the 1967 // original stack object, not the possibly forwarded object. 1968 Address addr = emission.getObjectAddress(*this); 1969 1970 const VarDecl *var = emission.Variable; 1971 QualType type = var->getType(); 1972 1973 CleanupKind cleanupKind = NormalAndEHCleanup; 1974 CodeGenFunction::Destroyer *destroyer = nullptr; 1975 1976 switch (dtorKind) { 1977 case QualType::DK_none: 1978 llvm_unreachable("no cleanup for trivially-destructible variable"); 1979 1980 case QualType::DK_cxx_destructor: 1981 // If there's an NRVO flag on the emission, we need a different 1982 // cleanup. 1983 if (emission.NRVOFlag) { 1984 assert(!type->isArrayType()); 1985 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1986 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 1987 emission.NRVOFlag); 1988 return; 1989 } 1990 break; 1991 1992 case QualType::DK_objc_strong_lifetime: 1993 // Suppress cleanups for pseudo-strong variables. 1994 if (var->isARCPseudoStrong()) return; 1995 1996 // Otherwise, consider whether to use an EH cleanup or not. 1997 cleanupKind = getARCCleanupKind(); 1998 1999 // Use the imprecise destroyer by default. 2000 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 2001 destroyer = CodeGenFunction::destroyARCStrongImprecise; 2002 break; 2003 2004 case QualType::DK_objc_weak_lifetime: 2005 break; 2006 2007 case QualType::DK_nontrivial_c_struct: 2008 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 2009 if (emission.NRVOFlag) { 2010 assert(!type->isArrayType()); 2011 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 2012 emission.NRVOFlag, type); 2013 return; 2014 } 2015 break; 2016 } 2017 2018 // If we haven't chosen a more specific destroyer, use the default. 2019 if (!destroyer) destroyer = getDestroyer(dtorKind); 2020 2021 // Use an EH cleanup in array destructors iff the destructor itself 2022 // is being pushed as an EH cleanup. 2023 bool useEHCleanup = (cleanupKind & EHCleanup); 2024 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 2025 useEHCleanup); 2026 } 2027 2028 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 2029 assert(emission.Variable && "emission was not valid!"); 2030 2031 // If this was emitted as a global constant, we're done. 2032 if (emission.wasEmittedAsGlobal()) return; 2033 2034 // If we don't have an insertion point, we're done. Sema prevents 2035 // us from jumping into any of these scopes anyway. 2036 if (!HaveInsertPoint()) return; 2037 2038 const VarDecl &D = *emission.Variable; 2039 2040 // Check the type for a cleanup. 2041 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2042 emitAutoVarTypeCleanup(emission, dtorKind); 2043 2044 // In GC mode, honor objc_precise_lifetime. 2045 if (getLangOpts().getGC() != LangOptions::NonGC && 2046 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2047 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2048 } 2049 2050 // Handle the cleanup attribute. 2051 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2052 const FunctionDecl *FD = CA->getFunctionDecl(); 2053 2054 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2055 assert(F && "Could not find function!"); 2056 2057 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2058 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2059 } 2060 2061 // If this is a block variable, call _Block_object_destroy 2062 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2063 // mode. 2064 if (emission.IsEscapingByRef && 2065 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2066 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2067 if (emission.Variable->getType().isObjCGCWeak()) 2068 Flags |= BLOCK_FIELD_IS_WEAK; 2069 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2070 /*LoadBlockVarAddr*/ false, 2071 cxxDestructorCanThrow(emission.Variable->getType())); 2072 } 2073 } 2074 2075 CodeGenFunction::Destroyer * 2076 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2077 switch (kind) { 2078 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2079 case QualType::DK_cxx_destructor: 2080 return destroyCXXObject; 2081 case QualType::DK_objc_strong_lifetime: 2082 return destroyARCStrongPrecise; 2083 case QualType::DK_objc_weak_lifetime: 2084 return destroyARCWeak; 2085 case QualType::DK_nontrivial_c_struct: 2086 return destroyNonTrivialCStruct; 2087 } 2088 llvm_unreachable("Unknown DestructionKind"); 2089 } 2090 2091 /// pushEHDestroy - Push the standard destructor for the given type as 2092 /// an EH-only cleanup. 2093 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2094 Address addr, QualType type) { 2095 assert(dtorKind && "cannot push destructor for trivial type"); 2096 assert(needsEHCleanup(dtorKind)); 2097 2098 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2099 } 2100 2101 /// pushDestroy - Push the standard destructor for the given type as 2102 /// at least a normal cleanup. 2103 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2104 Address addr, QualType type) { 2105 assert(dtorKind && "cannot push destructor for trivial type"); 2106 2107 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2108 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2109 cleanupKind & EHCleanup); 2110 } 2111 2112 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2113 QualType type, Destroyer *destroyer, 2114 bool useEHCleanupForArray) { 2115 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2116 destroyer, useEHCleanupForArray); 2117 } 2118 2119 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2120 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2121 } 2122 2123 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind, 2124 Address addr, QualType type, 2125 Destroyer *destroyer, 2126 bool useEHCleanupForArray) { 2127 // If we're not in a conditional branch, we don't need to bother generating a 2128 // conditional cleanup. 2129 if (!isInConditionalBranch()) { 2130 // Push an EH-only cleanup for the object now. 2131 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2132 // around in case a temporary's destructor throws an exception. 2133 if (cleanupKind & EHCleanup) 2134 EHStack.pushCleanup<DestroyObject>( 2135 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, 2136 destroyer, useEHCleanupForArray); 2137 2138 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>( 2139 cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray); 2140 } 2141 2142 // Otherwise, we should only destroy the object if it's been initialized. 2143 // Re-use the active flag and saved address across both the EH and end of 2144 // scope cleanups. 2145 2146 using SavedType = typename DominatingValue<Address>::saved_type; 2147 using ConditionalCleanupType = 2148 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType, 2149 Destroyer *, bool>; 2150 2151 Address ActiveFlag = createCleanupActiveFlag(); 2152 SavedType SavedAddr = saveValueInCond(addr); 2153 2154 if (cleanupKind & EHCleanup) { 2155 EHStack.pushCleanup<ConditionalCleanupType>( 2156 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type, 2157 destroyer, useEHCleanupForArray); 2158 initFullExprCleanupWithFlag(ActiveFlag); 2159 } 2160 2161 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>( 2162 cleanupKind, ActiveFlag, SavedAddr, type, destroyer, 2163 useEHCleanupForArray); 2164 } 2165 2166 /// emitDestroy - Immediately perform the destruction of the given 2167 /// object. 2168 /// 2169 /// \param addr - the address of the object; a type* 2170 /// \param type - the type of the object; if an array type, all 2171 /// objects are destroyed in reverse order 2172 /// \param destroyer - the function to call to destroy individual 2173 /// elements 2174 /// \param useEHCleanupForArray - whether an EH cleanup should be 2175 /// used when destroying array elements, in case one of the 2176 /// destructions throws an exception 2177 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2178 Destroyer *destroyer, 2179 bool useEHCleanupForArray) { 2180 const ArrayType *arrayType = getContext().getAsArrayType(type); 2181 if (!arrayType) 2182 return destroyer(*this, addr, type); 2183 2184 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2185 2186 CharUnits elementAlign = 2187 addr.getAlignment() 2188 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2189 2190 // Normally we have to check whether the array is zero-length. 2191 bool checkZeroLength = true; 2192 2193 // But if the array length is constant, we can suppress that. 2194 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2195 // ...and if it's constant zero, we can just skip the entire thing. 2196 if (constLength->isZero()) return; 2197 checkZeroLength = false; 2198 } 2199 2200 llvm::Value *begin = addr.getPointer(); 2201 llvm::Value *end = 2202 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length); 2203 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2204 checkZeroLength, useEHCleanupForArray); 2205 } 2206 2207 /// emitArrayDestroy - Destroys all the elements of the given array, 2208 /// beginning from last to first. The array cannot be zero-length. 2209 /// 2210 /// \param begin - a type* denoting the first element of the array 2211 /// \param end - a type* denoting one past the end of the array 2212 /// \param elementType - the element type of the array 2213 /// \param destroyer - the function to call to destroy elements 2214 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2215 /// the remaining elements in case the destruction of a single 2216 /// element throws 2217 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2218 llvm::Value *end, 2219 QualType elementType, 2220 CharUnits elementAlign, 2221 Destroyer *destroyer, 2222 bool checkZeroLength, 2223 bool useEHCleanup) { 2224 assert(!elementType->isArrayType()); 2225 2226 // The basic structure here is a do-while loop, because we don't 2227 // need to check for the zero-element case. 2228 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2229 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2230 2231 if (checkZeroLength) { 2232 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2233 "arraydestroy.isempty"); 2234 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2235 } 2236 2237 // Enter the loop body, making that address the current address. 2238 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2239 EmitBlock(bodyBB); 2240 llvm::PHINode *elementPast = 2241 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2242 elementPast->addIncoming(end, entryBB); 2243 2244 // Shift the address back by one element. 2245 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2246 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 2247 "arraydestroy.element"); 2248 2249 if (useEHCleanup) 2250 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2251 destroyer); 2252 2253 // Perform the actual destruction there. 2254 destroyer(*this, Address(element, elementAlign), elementType); 2255 2256 if (useEHCleanup) 2257 PopCleanupBlock(); 2258 2259 // Check whether we've reached the end. 2260 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2261 Builder.CreateCondBr(done, doneBB, bodyBB); 2262 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2263 2264 // Done. 2265 EmitBlock(doneBB); 2266 } 2267 2268 /// Perform partial array destruction as if in an EH cleanup. Unlike 2269 /// emitArrayDestroy, the element type here may still be an array type. 2270 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2271 llvm::Value *begin, llvm::Value *end, 2272 QualType type, CharUnits elementAlign, 2273 CodeGenFunction::Destroyer *destroyer) { 2274 // If the element type is itself an array, drill down. 2275 unsigned arrayDepth = 0; 2276 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2277 // VLAs don't require a GEP index to walk into. 2278 if (!isa<VariableArrayType>(arrayType)) 2279 arrayDepth++; 2280 type = arrayType->getElementType(); 2281 } 2282 2283 if (arrayDepth) { 2284 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2285 2286 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2287 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 2288 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 2289 } 2290 2291 // Destroy the array. We don't ever need an EH cleanup because we 2292 // assume that we're in an EH cleanup ourselves, so a throwing 2293 // destructor causes an immediate terminate. 2294 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2295 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2296 } 2297 2298 namespace { 2299 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2300 /// array destroy where the end pointer is regularly determined and 2301 /// does not need to be loaded from a local. 2302 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2303 llvm::Value *ArrayBegin; 2304 llvm::Value *ArrayEnd; 2305 QualType ElementType; 2306 CodeGenFunction::Destroyer *Destroyer; 2307 CharUnits ElementAlign; 2308 public: 2309 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2310 QualType elementType, CharUnits elementAlign, 2311 CodeGenFunction::Destroyer *destroyer) 2312 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2313 ElementType(elementType), Destroyer(destroyer), 2314 ElementAlign(elementAlign) {} 2315 2316 void Emit(CodeGenFunction &CGF, Flags flags) override { 2317 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2318 ElementType, ElementAlign, Destroyer); 2319 } 2320 }; 2321 2322 /// IrregularPartialArrayDestroy - a cleanup which performs a 2323 /// partial array destroy where the end pointer is irregularly 2324 /// determined and must be loaded from a local. 2325 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2326 llvm::Value *ArrayBegin; 2327 Address ArrayEndPointer; 2328 QualType ElementType; 2329 CodeGenFunction::Destroyer *Destroyer; 2330 CharUnits ElementAlign; 2331 public: 2332 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2333 Address arrayEndPointer, 2334 QualType elementType, 2335 CharUnits elementAlign, 2336 CodeGenFunction::Destroyer *destroyer) 2337 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2338 ElementType(elementType), Destroyer(destroyer), 2339 ElementAlign(elementAlign) {} 2340 2341 void Emit(CodeGenFunction &CGF, Flags flags) override { 2342 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2343 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2344 ElementType, ElementAlign, Destroyer); 2345 } 2346 }; 2347 } // end anonymous namespace 2348 2349 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 2350 /// already-constructed elements of the given array. The cleanup 2351 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2352 /// 2353 /// \param elementType - the immediate element type of the array; 2354 /// possibly still an array type 2355 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2356 Address arrayEndPointer, 2357 QualType elementType, 2358 CharUnits elementAlign, 2359 Destroyer *destroyer) { 2360 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 2361 arrayBegin, arrayEndPointer, 2362 elementType, elementAlign, 2363 destroyer); 2364 } 2365 2366 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2367 /// already-constructed elements of the given array. The cleanup 2368 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2369 /// 2370 /// \param elementType - the immediate element type of the array; 2371 /// possibly still an array type 2372 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2373 llvm::Value *arrayEnd, 2374 QualType elementType, 2375 CharUnits elementAlign, 2376 Destroyer *destroyer) { 2377 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2378 arrayBegin, arrayEnd, 2379 elementType, elementAlign, 2380 destroyer); 2381 } 2382 2383 /// Lazily declare the @llvm.lifetime.start intrinsic. 2384 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2385 if (LifetimeStartFn) 2386 return LifetimeStartFn; 2387 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), 2388 llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2389 return LifetimeStartFn; 2390 } 2391 2392 /// Lazily declare the @llvm.lifetime.end intrinsic. 2393 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2394 if (LifetimeEndFn) 2395 return LifetimeEndFn; 2396 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), 2397 llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2398 return LifetimeEndFn; 2399 } 2400 2401 namespace { 2402 /// A cleanup to perform a release of an object at the end of a 2403 /// function. This is used to balance out the incoming +1 of a 2404 /// ns_consumed argument when we can't reasonably do that just by 2405 /// not doing the initial retain for a __block argument. 2406 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2407 ConsumeARCParameter(llvm::Value *param, 2408 ARCPreciseLifetime_t precise) 2409 : Param(param), Precise(precise) {} 2410 2411 llvm::Value *Param; 2412 ARCPreciseLifetime_t Precise; 2413 2414 void Emit(CodeGenFunction &CGF, Flags flags) override { 2415 CGF.EmitARCRelease(Param, Precise); 2416 } 2417 }; 2418 } // end anonymous namespace 2419 2420 /// Emit an alloca (or GlobalValue depending on target) 2421 /// for the specified parameter and set up LocalDeclMap. 2422 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2423 unsigned ArgNo) { 2424 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2425 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2426 "Invalid argument to EmitParmDecl"); 2427 2428 Arg.getAnyValue()->setName(D.getName()); 2429 2430 QualType Ty = D.getType(); 2431 2432 // Use better IR generation for certain implicit parameters. 2433 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2434 // The only implicit argument a block has is its literal. 2435 // This may be passed as an inalloca'ed value on Windows x86. 2436 if (BlockInfo) { 2437 llvm::Value *V = Arg.isIndirect() 2438 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2439 : Arg.getDirectValue(); 2440 setBlockContextParameter(IPD, ArgNo, V); 2441 return; 2442 } 2443 } 2444 2445 Address DeclPtr = Address::invalid(); 2446 bool DoStore = false; 2447 bool IsScalar = hasScalarEvaluationKind(Ty); 2448 // If we already have a pointer to the argument, reuse the input pointer. 2449 if (Arg.isIndirect()) { 2450 DeclPtr = Arg.getIndirectAddress(); 2451 // If we have a prettier pointer type at this point, bitcast to that. 2452 unsigned AS = DeclPtr.getType()->getAddressSpace(); 2453 llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); 2454 if (DeclPtr.getType() != IRTy) 2455 DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); 2456 // Indirect argument is in alloca address space, which may be different 2457 // from the default address space. 2458 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2459 auto *V = DeclPtr.getPointer(); 2460 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2461 auto DestLangAS = 2462 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2463 if (SrcLangAS != DestLangAS) { 2464 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2465 CGM.getDataLayout().getAllocaAddrSpace()); 2466 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2467 auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); 2468 DeclPtr = Address(getTargetHooks().performAddrSpaceCast( 2469 *this, V, SrcLangAS, DestLangAS, T, true), 2470 DeclPtr.getAlignment()); 2471 } 2472 2473 // Push a destructor cleanup for this parameter if the ABI requires it. 2474 // Don't push a cleanup in a thunk for a method that will also emit a 2475 // cleanup. 2476 if (Ty->isRecordType() && !CurFuncIsThunk && 2477 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2478 if (QualType::DestructionKind DtorKind = 2479 D.needsDestruction(getContext())) { 2480 assert((DtorKind == QualType::DK_cxx_destructor || 2481 DtorKind == QualType::DK_nontrivial_c_struct) && 2482 "unexpected destructor type"); 2483 pushDestroy(DtorKind, DeclPtr, Ty); 2484 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2485 EHStack.stable_begin(); 2486 } 2487 } 2488 } else { 2489 // Check if the parameter address is controlled by OpenMP runtime. 2490 Address OpenMPLocalAddr = 2491 getLangOpts().OpenMP 2492 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2493 : Address::invalid(); 2494 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2495 DeclPtr = OpenMPLocalAddr; 2496 } else { 2497 // Otherwise, create a temporary to hold the value. 2498 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2499 D.getName() + ".addr"); 2500 } 2501 DoStore = true; 2502 } 2503 2504 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2505 2506 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2507 if (IsScalar) { 2508 Qualifiers qs = Ty.getQualifiers(); 2509 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2510 // We honor __attribute__((ns_consumed)) for types with lifetime. 2511 // For __strong, it's handled by just skipping the initial retain; 2512 // otherwise we have to balance out the initial +1 with an extra 2513 // cleanup to do the release at the end of the function. 2514 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2515 2516 // If a parameter is pseudo-strong then we can omit the implicit retain. 2517 if (D.isARCPseudoStrong()) { 2518 assert(lt == Qualifiers::OCL_Strong && 2519 "pseudo-strong variable isn't strong?"); 2520 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2521 lt = Qualifiers::OCL_ExplicitNone; 2522 } 2523 2524 // Load objects passed indirectly. 2525 if (Arg.isIndirect() && !ArgVal) 2526 ArgVal = Builder.CreateLoad(DeclPtr); 2527 2528 if (lt == Qualifiers::OCL_Strong) { 2529 if (!isConsumed) { 2530 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2531 // use objc_storeStrong(&dest, value) for retaining the 2532 // object. But first, store a null into 'dest' because 2533 // objc_storeStrong attempts to release its old value. 2534 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2535 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2536 EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true); 2537 DoStore = false; 2538 } 2539 else 2540 // Don't use objc_retainBlock for block pointers, because we 2541 // don't want to Block_copy something just because we got it 2542 // as a parameter. 2543 ArgVal = EmitARCRetainNonBlock(ArgVal); 2544 } 2545 } else { 2546 // Push the cleanup for a consumed parameter. 2547 if (isConsumed) { 2548 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2549 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2550 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2551 precise); 2552 } 2553 2554 if (lt == Qualifiers::OCL_Weak) { 2555 EmitARCInitWeak(DeclPtr, ArgVal); 2556 DoStore = false; // The weak init is a store, no need to do two. 2557 } 2558 } 2559 2560 // Enter the cleanup scope. 2561 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2562 } 2563 } 2564 2565 // Store the initial value into the alloca. 2566 if (DoStore) 2567 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2568 2569 setAddrOfLocalVar(&D, DeclPtr); 2570 2571 // Emit debug info for param declarations in non-thunk functions. 2572 if (CGDebugInfo *DI = getDebugInfo()) { 2573 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) { 2574 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable( 2575 &D, DeclPtr.getPointer(), ArgNo, Builder); 2576 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D)) 2577 DI->getParamDbgMappings().insert({Var, DILocalVar}); 2578 } 2579 } 2580 2581 if (D.hasAttr<AnnotateAttr>()) 2582 EmitVarAnnotations(&D, DeclPtr.getPointer()); 2583 2584 // We can only check return value nullability if all arguments to the 2585 // function satisfy their nullability preconditions. This makes it necessary 2586 // to emit null checks for args in the function body itself. 2587 if (requiresReturnValueNullabilityCheck()) { 2588 auto Nullability = Ty->getNullability(getContext()); 2589 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2590 SanitizerScope SanScope(this); 2591 RetValNullabilityPrecondition = 2592 Builder.CreateAnd(RetValNullabilityPrecondition, 2593 Builder.CreateIsNotNull(Arg.getAnyValue())); 2594 } 2595 } 2596 } 2597 2598 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2599 CodeGenFunction *CGF) { 2600 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2601 return; 2602 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2603 } 2604 2605 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2606 CodeGenFunction *CGF) { 2607 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2608 (!LangOpts.EmitAllDecls && !D->isUsed())) 2609 return; 2610 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2611 } 2612 2613 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2614 getOpenMPRuntime().processRequiresDirective(D); 2615 } 2616 2617 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) { 2618 for (const Expr *E : D->varlists()) { 2619 const auto *DE = cast<DeclRefExpr>(E); 2620 const auto *VD = cast<VarDecl>(DE->getDecl()); 2621 2622 // Skip all but globals. 2623 if (!VD->hasGlobalStorage()) 2624 continue; 2625 2626 // Check if the global has been materialized yet or not. If not, we are done 2627 // as any later generation will utilize the OMPAllocateDeclAttr. However, if 2628 // we already emitted the global we might have done so before the 2629 // OMPAllocateDeclAttr was attached, leading to the wrong address space 2630 // (potentially). While not pretty, common practise is to remove the old IR 2631 // global and generate a new one, so we do that here too. Uses are replaced 2632 // properly. 2633 StringRef MangledName = getMangledName(VD); 2634 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2635 if (!Entry) 2636 continue; 2637 2638 // We can also keep the existing global if the address space is what we 2639 // expect it to be, if not, it is replaced. 2640 QualType ASTTy = VD->getType(); 2641 clang::LangAS GVAS = GetGlobalVarAddressSpace(VD); 2642 auto TargetAS = getContext().getTargetAddressSpace(GVAS); 2643 if (Entry->getType()->getAddressSpace() == TargetAS) 2644 continue; 2645 2646 // Make a new global with the correct type / address space. 2647 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 2648 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS); 2649 2650 // Replace all uses of the old global with a cast. Since we mutate the type 2651 // in place we neeed an intermediate that takes the spot of the old entry 2652 // until we can create the cast. 2653 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable( 2654 getModule(), Entry->getValueType(), false, 2655 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr, 2656 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace()); 2657 Entry->replaceAllUsesWith(DummyGV); 2658 2659 Entry->mutateType(PTy); 2660 llvm::Constant *NewPtrForOldDecl = 2661 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2662 Entry, DummyGV->getType()); 2663 2664 // Now we have a casted version of the changed global, the dummy can be 2665 // replaced and deleted. 2666 DummyGV->replaceAllUsesWith(NewPtrForOldDecl); 2667 DummyGV->eraseFromParent(); 2668 } 2669 } 2670