xref: /netbsd-src/bin/sh/memalloc.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: memalloc.c,v 1.32 2018/08/22 20:08:54 kre Exp $	*/
2 
3 /*-
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Kenneth Almquist.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 #ifndef lint
37 #if 0
38 static char sccsid[] = "@(#)memalloc.c	8.3 (Berkeley) 5/4/95";
39 #else
40 __RCSID("$NetBSD: memalloc.c,v 1.32 2018/08/22 20:08:54 kre Exp $");
41 #endif
42 #endif /* not lint */
43 
44 #include <stdlib.h>
45 #include <unistd.h>
46 
47 #include "shell.h"
48 #include "output.h"
49 #include "memalloc.h"
50 #include "error.h"
51 #include "machdep.h"
52 #include "mystring.h"
53 
54 /*
55  * Like malloc, but returns an error when out of space.
56  */
57 
58 pointer
59 ckmalloc(size_t nbytes)
60 {
61 	pointer p;
62 
63 	p = malloc(nbytes);
64 	if (p == NULL)
65 		error("Out of space");
66 	return p;
67 }
68 
69 
70 /*
71  * Same for realloc.
72  */
73 
74 pointer
75 ckrealloc(pointer p, int nbytes)
76 {
77 	p = realloc(p, nbytes);
78 	if (p == NULL)
79 		error("Out of space");
80 	return p;
81 }
82 
83 
84 /*
85  * Make a copy of a string in safe storage.
86  */
87 
88 char *
89 savestr(const char *s)
90 {
91 	char *p;
92 
93 	p = ckmalloc(strlen(s) + 1);
94 	scopy(s, p);
95 	return p;
96 }
97 
98 
99 /*
100  * Parse trees for commands are allocated in lifo order, so we use a stack
101  * to make this more efficient, and also to avoid all sorts of exception
102  * handling code to handle interrupts in the middle of a parse.
103  *
104  * The size 504 was chosen because the Ultrix malloc handles that size
105  * well.
106  */
107 
108 #define MINSIZE 504		/* minimum size of a block */
109 
110 struct stack_block {
111 	struct stack_block *prev;
112 	char space[MINSIZE];
113 };
114 
115 struct stack_block stackbase;
116 struct stack_block *stackp = &stackbase;
117 struct stackmark *markp;
118 char *stacknxt = stackbase.space;
119 int stacknleft = MINSIZE;
120 int sstrnleft;
121 int herefd = -1;
122 
123 pointer
124 stalloc(int nbytes)
125 {
126 	char *p;
127 
128 	nbytes = SHELL_ALIGN(nbytes);
129 	if (nbytes > stacknleft) {
130 		int blocksize;
131 		struct stack_block *sp;
132 
133 		blocksize = nbytes;
134 		if (blocksize < MINSIZE)
135 			blocksize = MINSIZE;
136 		INTOFF;
137 		sp = ckmalloc(sizeof(struct stack_block) - MINSIZE + blocksize);
138 		sp->prev = stackp;
139 		stacknxt = sp->space;
140 		stacknleft = blocksize;
141 		stackp = sp;
142 		INTON;
143 	}
144 	p = stacknxt;
145 	stacknxt += nbytes;
146 	stacknleft -= nbytes;
147 	return p;
148 }
149 
150 
151 void
152 stunalloc(pointer p)
153 {
154 	if (p == NULL) {		/*DEBUG */
155 		write(2, "stunalloc\n", 10);
156 		abort();
157 	}
158 	stacknleft += stacknxt - (char *)p;
159 	stacknxt = p;
160 }
161 
162 
163 /* save the current status of the sh stack */
164 void
165 setstackmark(struct stackmark *mark)
166 {
167 	mark->stackp = stackp;
168 	mark->stacknxt = stacknxt;
169 	mark->stacknleft = stacknleft;
170 	mark->sstrnleft = sstrnleft;
171 	mark->marknext = markp;
172 	markp = mark;
173 }
174 
175 /* reset the stack mark, and remove it from the list of marks */
176 void
177 popstackmark(struct stackmark *mark)
178 {
179 	markp = mark->marknext;		/* delete mark from the list */
180 	rststackmark(mark);		/* and reset stack */
181 }
182 
183 /* reset the shell stack to its state recorded in the stack mark */
184 void
185 rststackmark(struct stackmark *mark)
186 {
187 	struct stack_block *sp;
188 
189 	INTOFF;
190 	while (stackp != mark->stackp) {
191 		/* delete any recently allocated mem blocks */
192 		sp = stackp;
193 		stackp = sp->prev;
194 		ckfree(sp);
195 	}
196 	stacknxt = mark->stacknxt;
197 	stacknleft = mark->stacknleft;
198 	sstrnleft = mark->sstrnleft;
199 	INTON;
200 }
201 
202 
203 /*
204  * When the parser reads in a string, it wants to stick the string on the
205  * stack and only adjust the stack pointer when it knows how big the
206  * string is.  Stackblock (defined in stack.h) returns a pointer to a block
207  * of space on top of the stack and stackblocklen returns the length of
208  * this block.  Growstackblock will grow this space by at least one byte,
209  * possibly moving it (like realloc).  Grabstackblock actually allocates the
210  * part of the block that has been used.
211  */
212 
213 void
214 growstackblock(void)
215 {
216 	int newlen = SHELL_ALIGN(stacknleft * 2 + 100);
217 
218 	INTOFF;
219 	if (stacknxt == stackp->space && stackp != &stackbase) {
220 		struct stack_block *oldstackp;
221 		struct stackmark *xmark;
222 		struct stack_block *sp;
223 
224 		oldstackp = stackp;
225 		sp = stackp;
226 		stackp = sp->prev;
227 		sp = ckrealloc((pointer)sp,
228 		    sizeof(struct stack_block) - MINSIZE + newlen);
229 		sp->prev = stackp;
230 		stackp = sp;
231 		stacknxt = sp->space;
232 		sstrnleft += newlen - stacknleft;
233 		stacknleft = newlen;
234 
235 		/*
236 		 * Stack marks pointing to the start of the old block
237 		 * must be relocated to point to the new block
238 		 */
239 		xmark = markp;
240 		while (xmark != NULL && xmark->stackp == oldstackp) {
241 			xmark->stackp = stackp;
242 			xmark->stacknxt = stacknxt;
243 			xmark->sstrnleft += stacknleft - xmark->stacknleft;
244 			xmark->stacknleft = stacknleft;
245 			xmark = xmark->marknext;
246 		}
247 	} else {
248 		char *oldspace = stacknxt;
249 		int oldlen = stacknleft;
250 		char *p = stalloc(newlen);
251 
252 		(void)memcpy(p, oldspace, oldlen);
253 		stacknxt = p;			/* free the space */
254 		stacknleft += newlen;		/* we just allocated */
255 	}
256 	INTON;
257 }
258 
259 void
260 grabstackblock(int len)
261 {
262 	len = SHELL_ALIGN(len);
263 	stacknxt += len;
264 	stacknleft -= len;
265 }
266 
267 /*
268  * The following routines are somewhat easier to use than the above.
269  * The user declares a variable of type STACKSTR, which may be declared
270  * to be a register.  The macro STARTSTACKSTR initializes things.  Then
271  * the user uses the macro STPUTC to add characters to the string.  In
272  * effect, STPUTC(c, p) is the same as *p++ = c except that the stack is
273  * grown as necessary.  When the user is done, she can just leave the
274  * string there and refer to it using stackblock().  Or she can allocate
275  * the space for it using grabstackstr().  If it is necessary to allow
276  * someone else to use the stack temporarily and then continue to grow
277  * the string, the user should use grabstack to allocate the space, and
278  * then call ungrabstr(p) to return to the previous mode of operation.
279  *
280  * USTPUTC is like STPUTC except that it doesn't check for overflow.
281  * CHECKSTACKSPACE can be called before USTPUTC to ensure that there
282  * is space for at least one character.
283  */
284 
285 char *
286 growstackstr(void)
287 {
288 	int len = stackblocksize();
289 	if (herefd >= 0 && len >= 1024) {
290 		xwrite(herefd, stackblock(), len);
291 		sstrnleft = len - 1;
292 		return stackblock();
293 	}
294 	growstackblock();
295 	sstrnleft = stackblocksize() - len - 1;
296 	return stackblock() + len;
297 }
298 
299 /*
300  * Called from CHECKSTRSPACE.
301  */
302 
303 char *
304 makestrspace(void)
305 {
306 	int len = stackblocksize() - sstrnleft;
307 	growstackblock();
308 	sstrnleft = stackblocksize() - len;
309 	return stackblock() + len;
310 }
311 
312 /*
313  * Note that this only works to release stack space for reuse
314  * if nothing else has allocated space on the stack since the grabstackstr()
315  *
316  * "s" is the start of the area to be released, and "p" represents the end
317  * of the string we have stored beyond there and are now releasing.
318  * (ie: "p" should be the same as in the call to grabstackstr()).
319  *
320  * stunalloc(s) and ungrabstackstr(s, p) are almost interchangable after
321  * a grabstackstr(), however the latter also returns string space so we
322  * can just continue with STPUTC() etc without needing a new STARTSTACKSTR(s)
323  */
324 void
325 ungrabstackstr(char *s, char *p)
326 {
327 #ifdef DEBUG
328 	if (s < stacknxt || stacknxt + stacknleft < s)
329 		abort();
330 #endif
331 	stacknleft += stacknxt - s;
332 	stacknxt = s;
333 	sstrnleft = stacknleft - (p - s);
334 }
335