1*2fe8fb19SBen Gras /* @(#)e_pow.c 5.1 93/09/24 */
2*2fe8fb19SBen Gras /*
3*2fe8fb19SBen Gras * ====================================================
4*2fe8fb19SBen Gras * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*2fe8fb19SBen Gras *
6*2fe8fb19SBen Gras * Developed at SunPro, a Sun Microsystems, Inc. business.
7*2fe8fb19SBen Gras * Permission to use, copy, modify, and distribute this
8*2fe8fb19SBen Gras * software is freely granted, provided that this notice
9*2fe8fb19SBen Gras * is preserved.
10*2fe8fb19SBen Gras * ====================================================
11*2fe8fb19SBen Gras */
12*2fe8fb19SBen Gras
13*2fe8fb19SBen Gras #include <sys/cdefs.h>
14*2fe8fb19SBen Gras #if defined(LIBM_SCCS) && !defined(lint)
15*2fe8fb19SBen Gras __RCSID("$NetBSD: e_pow.c,v 1.16 2010/04/23 19:17:07 drochner Exp $");
16*2fe8fb19SBen Gras #endif
17*2fe8fb19SBen Gras
18*2fe8fb19SBen Gras /* __ieee754_pow(x,y) return x**y
19*2fe8fb19SBen Gras *
20*2fe8fb19SBen Gras * n
21*2fe8fb19SBen Gras * Method: Let x = 2 * (1+f)
22*2fe8fb19SBen Gras * 1. Compute and return log2(x) in two pieces:
23*2fe8fb19SBen Gras * log2(x) = w1 + w2,
24*2fe8fb19SBen Gras * where w1 has 53-24 = 29 bit trailing zeros.
25*2fe8fb19SBen Gras * 2. Perform y*log2(x) = n+y' by simulating multi-precision
26*2fe8fb19SBen Gras * arithmetic, where |y'|<=0.5.
27*2fe8fb19SBen Gras * 3. Return x**y = 2**n*exp(y'*log2)
28*2fe8fb19SBen Gras *
29*2fe8fb19SBen Gras * Special cases:
30*2fe8fb19SBen Gras * 1. (anything) ** 0 is 1
31*2fe8fb19SBen Gras * 2. (anything) ** 1 is itself
32*2fe8fb19SBen Gras * 3. (anything) ** NAN is NAN
33*2fe8fb19SBen Gras * 4. NAN ** (anything except 0) is NAN
34*2fe8fb19SBen Gras * 5. +-(|x| > 1) ** +INF is +INF
35*2fe8fb19SBen Gras * 6. +-(|x| > 1) ** -INF is +0
36*2fe8fb19SBen Gras * 7. +-(|x| < 1) ** +INF is +0
37*2fe8fb19SBen Gras * 8. +-(|x| < 1) ** -INF is +INF
38*2fe8fb19SBen Gras * 9. +-1 ** +-INF is NAN
39*2fe8fb19SBen Gras * 10. +0 ** (+anything except 0, NAN) is +0
40*2fe8fb19SBen Gras * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
41*2fe8fb19SBen Gras * 12. +0 ** (-anything except 0, NAN) is +INF
42*2fe8fb19SBen Gras * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
43*2fe8fb19SBen Gras * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
44*2fe8fb19SBen Gras * 15. +INF ** (+anything except 0,NAN) is +INF
45*2fe8fb19SBen Gras * 16. +INF ** (-anything except 0,NAN) is +0
46*2fe8fb19SBen Gras * 17. -INF ** (anything) = -0 ** (-anything)
47*2fe8fb19SBen Gras * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
48*2fe8fb19SBen Gras * 19. (-anything except 0 and inf) ** (non-integer) is NAN
49*2fe8fb19SBen Gras *
50*2fe8fb19SBen Gras * Accuracy:
51*2fe8fb19SBen Gras * pow(x,y) returns x**y nearly rounded. In particular
52*2fe8fb19SBen Gras * pow(integer,integer)
53*2fe8fb19SBen Gras * always returns the correct integer provided it is
54*2fe8fb19SBen Gras * representable.
55*2fe8fb19SBen Gras *
56*2fe8fb19SBen Gras * Constants :
57*2fe8fb19SBen Gras * The hexadecimal values are the intended ones for the following
58*2fe8fb19SBen Gras * constants. The decimal values may be used, provided that the
59*2fe8fb19SBen Gras * compiler will convert from decimal to binary accurately enough
60*2fe8fb19SBen Gras * to produce the hexadecimal values shown.
61*2fe8fb19SBen Gras */
62*2fe8fb19SBen Gras
63*2fe8fb19SBen Gras #include "namespace.h"
64*2fe8fb19SBen Gras #include "math.h"
65*2fe8fb19SBen Gras #include "math_private.h"
66*2fe8fb19SBen Gras
67*2fe8fb19SBen Gras static const double
68*2fe8fb19SBen Gras bp[] = {1.0, 1.5,},
69*2fe8fb19SBen Gras dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
70*2fe8fb19SBen Gras dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
71*2fe8fb19SBen Gras zero = 0.0,
72*2fe8fb19SBen Gras one = 1.0,
73*2fe8fb19SBen Gras two = 2.0,
74*2fe8fb19SBen Gras two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
75*2fe8fb19SBen Gras huge = 1.0e300,
76*2fe8fb19SBen Gras tiny = 1.0e-300,
77*2fe8fb19SBen Gras /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
78*2fe8fb19SBen Gras L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
79*2fe8fb19SBen Gras L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
80*2fe8fb19SBen Gras L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
81*2fe8fb19SBen Gras L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
82*2fe8fb19SBen Gras L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
83*2fe8fb19SBen Gras L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
84*2fe8fb19SBen Gras P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
85*2fe8fb19SBen Gras P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
86*2fe8fb19SBen Gras P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
87*2fe8fb19SBen Gras P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
88*2fe8fb19SBen Gras P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
89*2fe8fb19SBen Gras lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
90*2fe8fb19SBen Gras lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
91*2fe8fb19SBen Gras lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
92*2fe8fb19SBen Gras ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
93*2fe8fb19SBen Gras cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
94*2fe8fb19SBen Gras cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
95*2fe8fb19SBen Gras cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
96*2fe8fb19SBen Gras ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
97*2fe8fb19SBen Gras ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
98*2fe8fb19SBen Gras ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
99*2fe8fb19SBen Gras
100*2fe8fb19SBen Gras double
__ieee754_pow(double x,double y)101*2fe8fb19SBen Gras __ieee754_pow(double x, double y)
102*2fe8fb19SBen Gras {
103*2fe8fb19SBen Gras double z,ax,z_h,z_l,p_h,p_l;
104*2fe8fb19SBen Gras double yy1,t1,t2,r,s,t,u,v,w;
105*2fe8fb19SBen Gras int32_t i,j,k,yisint,n;
106*2fe8fb19SBen Gras int32_t hx,hy,ix,iy;
107*2fe8fb19SBen Gras u_int32_t lx,ly;
108*2fe8fb19SBen Gras
109*2fe8fb19SBen Gras EXTRACT_WORDS(hx,lx,x);
110*2fe8fb19SBen Gras EXTRACT_WORDS(hy,ly,y);
111*2fe8fb19SBen Gras ix = hx&0x7fffffff; iy = hy&0x7fffffff;
112*2fe8fb19SBen Gras
113*2fe8fb19SBen Gras /* y==zero: x**0 = 1 */
114*2fe8fb19SBen Gras if((iy|ly)==0) return one;
115*2fe8fb19SBen Gras
116*2fe8fb19SBen Gras /* +-NaN return x+y */
117*2fe8fb19SBen Gras if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
118*2fe8fb19SBen Gras iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
119*2fe8fb19SBen Gras return x+y;
120*2fe8fb19SBen Gras
121*2fe8fb19SBen Gras /* determine if y is an odd int when x < 0
122*2fe8fb19SBen Gras * yisint = 0 ... y is not an integer
123*2fe8fb19SBen Gras * yisint = 1 ... y is an odd int
124*2fe8fb19SBen Gras * yisint = 2 ... y is an even int
125*2fe8fb19SBen Gras */
126*2fe8fb19SBen Gras yisint = 0;
127*2fe8fb19SBen Gras if(hx<0) {
128*2fe8fb19SBen Gras if(iy>=0x43400000) yisint = 2; /* even integer y */
129*2fe8fb19SBen Gras else if(iy>=0x3ff00000) {
130*2fe8fb19SBen Gras k = (iy>>20)-0x3ff; /* exponent */
131*2fe8fb19SBen Gras if(k>20) {
132*2fe8fb19SBen Gras j = ly>>(52-k);
133*2fe8fb19SBen Gras if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
134*2fe8fb19SBen Gras } else if(ly==0) {
135*2fe8fb19SBen Gras j = iy>>(20-k);
136*2fe8fb19SBen Gras if((j<<(20-k))==iy) yisint = 2-(j&1);
137*2fe8fb19SBen Gras }
138*2fe8fb19SBen Gras }
139*2fe8fb19SBen Gras }
140*2fe8fb19SBen Gras
141*2fe8fb19SBen Gras /* special value of y */
142*2fe8fb19SBen Gras if(ly==0) {
143*2fe8fb19SBen Gras if (iy==0x7ff00000) { /* y is +-inf */
144*2fe8fb19SBen Gras if(((ix-0x3ff00000)|lx)==0)
145*2fe8fb19SBen Gras return y - y; /* inf**+-1 is NaN */
146*2fe8fb19SBen Gras else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
147*2fe8fb19SBen Gras return (hy>=0)? y: zero;
148*2fe8fb19SBen Gras else /* (|x|<1)**-,+inf = inf,0 */
149*2fe8fb19SBen Gras return (hy<0)?-y: zero;
150*2fe8fb19SBen Gras }
151*2fe8fb19SBen Gras if(iy==0x3ff00000) { /* y is +-1 */
152*2fe8fb19SBen Gras if(hy<0) return one/x; else return x;
153*2fe8fb19SBen Gras }
154*2fe8fb19SBen Gras if(hy==0x40000000) return x*x; /* y is 2 */
155*2fe8fb19SBen Gras if(hy==0x3fe00000) { /* y is 0.5 */
156*2fe8fb19SBen Gras if(hx>=0) /* x >= +0 */
157*2fe8fb19SBen Gras return __ieee754_sqrt(x);
158*2fe8fb19SBen Gras }
159*2fe8fb19SBen Gras }
160*2fe8fb19SBen Gras
161*2fe8fb19SBen Gras ax = fabs(x);
162*2fe8fb19SBen Gras /* special value of x */
163*2fe8fb19SBen Gras if(lx==0) {
164*2fe8fb19SBen Gras if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
165*2fe8fb19SBen Gras z = ax; /*x is +-0,+-inf,+-1*/
166*2fe8fb19SBen Gras if(hy<0) z = one/z; /* z = (1/|x|) */
167*2fe8fb19SBen Gras if(hx<0) {
168*2fe8fb19SBen Gras if(((ix-0x3ff00000)|yisint)==0) {
169*2fe8fb19SBen Gras z = (z-z)/(z-z); /* (-1)**non-int is NaN */
170*2fe8fb19SBen Gras } else if(yisint==1)
171*2fe8fb19SBen Gras z = -z; /* (x<0)**odd = -(|x|**odd) */
172*2fe8fb19SBen Gras }
173*2fe8fb19SBen Gras return z;
174*2fe8fb19SBen Gras }
175*2fe8fb19SBen Gras }
176*2fe8fb19SBen Gras
177*2fe8fb19SBen Gras n = (hx>>31)+1;
178*2fe8fb19SBen Gras
179*2fe8fb19SBen Gras /* (x<0)**(non-int) is NaN */
180*2fe8fb19SBen Gras if((n|yisint)==0) return (x-x)/(x-x);
181*2fe8fb19SBen Gras
182*2fe8fb19SBen Gras s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
183*2fe8fb19SBen Gras if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
184*2fe8fb19SBen Gras
185*2fe8fb19SBen Gras /* |y| is huge */
186*2fe8fb19SBen Gras if(iy>0x41e00000) { /* if |y| > 2**31 */
187*2fe8fb19SBen Gras if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
188*2fe8fb19SBen Gras if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
189*2fe8fb19SBen Gras if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
190*2fe8fb19SBen Gras }
191*2fe8fb19SBen Gras /* over/underflow if x is not close to one */
192*2fe8fb19SBen Gras if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
193*2fe8fb19SBen Gras if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
194*2fe8fb19SBen Gras /* now |1-x| is tiny <= 2**-20, suffice to compute
195*2fe8fb19SBen Gras log(x) by x-x^2/2+x^3/3-x^4/4 */
196*2fe8fb19SBen Gras t = ax-one; /* t has 20 trailing zeros */
197*2fe8fb19SBen Gras w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
198*2fe8fb19SBen Gras u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
199*2fe8fb19SBen Gras v = t*ivln2_l-w*ivln2;
200*2fe8fb19SBen Gras t1 = u+v;
201*2fe8fb19SBen Gras SET_LOW_WORD(t1,0);
202*2fe8fb19SBen Gras t2 = v-(t1-u);
203*2fe8fb19SBen Gras } else {
204*2fe8fb19SBen Gras double ss,s2,s_h,s_l,t_h,t_l;
205*2fe8fb19SBen Gras n = 0;
206*2fe8fb19SBen Gras /* take care subnormal number */
207*2fe8fb19SBen Gras if(ix<0x00100000)
208*2fe8fb19SBen Gras {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
209*2fe8fb19SBen Gras n += ((ix)>>20)-0x3ff;
210*2fe8fb19SBen Gras j = ix&0x000fffff;
211*2fe8fb19SBen Gras /* determine interval */
212*2fe8fb19SBen Gras ix = j|0x3ff00000; /* normalize ix */
213*2fe8fb19SBen Gras if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
214*2fe8fb19SBen Gras else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
215*2fe8fb19SBen Gras else {k=0;n+=1;ix -= 0x00100000;}
216*2fe8fb19SBen Gras SET_HIGH_WORD(ax,ix);
217*2fe8fb19SBen Gras
218*2fe8fb19SBen Gras /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
219*2fe8fb19SBen Gras u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
220*2fe8fb19SBen Gras v = one/(ax+bp[k]);
221*2fe8fb19SBen Gras ss = u*v;
222*2fe8fb19SBen Gras s_h = ss;
223*2fe8fb19SBen Gras SET_LOW_WORD(s_h,0);
224*2fe8fb19SBen Gras /* t_h=ax+bp[k] High */
225*2fe8fb19SBen Gras t_h = zero;
226*2fe8fb19SBen Gras SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
227*2fe8fb19SBen Gras t_l = ax - (t_h-bp[k]);
228*2fe8fb19SBen Gras s_l = v*((u-s_h*t_h)-s_h*t_l);
229*2fe8fb19SBen Gras /* compute log(ax) */
230*2fe8fb19SBen Gras s2 = ss*ss;
231*2fe8fb19SBen Gras r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
232*2fe8fb19SBen Gras r += s_l*(s_h+ss);
233*2fe8fb19SBen Gras s2 = s_h*s_h;
234*2fe8fb19SBen Gras t_h = 3.0+s2+r;
235*2fe8fb19SBen Gras SET_LOW_WORD(t_h,0);
236*2fe8fb19SBen Gras t_l = r-((t_h-3.0)-s2);
237*2fe8fb19SBen Gras /* u+v = ss*(1+...) */
238*2fe8fb19SBen Gras u = s_h*t_h;
239*2fe8fb19SBen Gras v = s_l*t_h+t_l*ss;
240*2fe8fb19SBen Gras /* 2/(3log2)*(ss+...) */
241*2fe8fb19SBen Gras p_h = u+v;
242*2fe8fb19SBen Gras SET_LOW_WORD(p_h,0);
243*2fe8fb19SBen Gras p_l = v-(p_h-u);
244*2fe8fb19SBen Gras z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
245*2fe8fb19SBen Gras z_l = cp_l*p_h+p_l*cp+dp_l[k];
246*2fe8fb19SBen Gras /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
247*2fe8fb19SBen Gras t = (double)n;
248*2fe8fb19SBen Gras t1 = (((z_h+z_l)+dp_h[k])+t);
249*2fe8fb19SBen Gras SET_LOW_WORD(t1,0);
250*2fe8fb19SBen Gras t2 = z_l-(((t1-t)-dp_h[k])-z_h);
251*2fe8fb19SBen Gras }
252*2fe8fb19SBen Gras
253*2fe8fb19SBen Gras /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
254*2fe8fb19SBen Gras yy1 = y;
255*2fe8fb19SBen Gras SET_LOW_WORD(yy1,0);
256*2fe8fb19SBen Gras p_l = (y-yy1)*t1+y*t2;
257*2fe8fb19SBen Gras p_h = yy1*t1;
258*2fe8fb19SBen Gras z = p_l+p_h;
259*2fe8fb19SBen Gras EXTRACT_WORDS(j,i,z);
260*2fe8fb19SBen Gras if (j>=0x40900000) { /* z >= 1024 */
261*2fe8fb19SBen Gras if(((j-0x40900000)|i)!=0) /* if z > 1024 */
262*2fe8fb19SBen Gras return s*huge*huge; /* overflow */
263*2fe8fb19SBen Gras else {
264*2fe8fb19SBen Gras if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
265*2fe8fb19SBen Gras }
266*2fe8fb19SBen Gras } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
267*2fe8fb19SBen Gras if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
268*2fe8fb19SBen Gras return s*tiny*tiny; /* underflow */
269*2fe8fb19SBen Gras else {
270*2fe8fb19SBen Gras if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
271*2fe8fb19SBen Gras }
272*2fe8fb19SBen Gras }
273*2fe8fb19SBen Gras /*
274*2fe8fb19SBen Gras * compute 2**(p_h+p_l)
275*2fe8fb19SBen Gras */
276*2fe8fb19SBen Gras i = j&0x7fffffff;
277*2fe8fb19SBen Gras k = (i>>20)-0x3ff;
278*2fe8fb19SBen Gras n = 0;
279*2fe8fb19SBen Gras if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
280*2fe8fb19SBen Gras n = j+(0x00100000>>(k+1));
281*2fe8fb19SBen Gras k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
282*2fe8fb19SBen Gras t = zero;
283*2fe8fb19SBen Gras SET_HIGH_WORD(t,n&~(0x000fffff>>k));
284*2fe8fb19SBen Gras n = ((n&0x000fffff)|0x00100000)>>(20-k);
285*2fe8fb19SBen Gras if(j<0) n = -n;
286*2fe8fb19SBen Gras p_h -= t;
287*2fe8fb19SBen Gras }
288*2fe8fb19SBen Gras t = p_l+p_h;
289*2fe8fb19SBen Gras SET_LOW_WORD(t,0);
290*2fe8fb19SBen Gras u = t*lg2_h;
291*2fe8fb19SBen Gras v = (p_l-(t-p_h))*lg2+t*lg2_l;
292*2fe8fb19SBen Gras z = u+v;
293*2fe8fb19SBen Gras w = v-(z-u);
294*2fe8fb19SBen Gras t = z*z;
295*2fe8fb19SBen Gras t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
296*2fe8fb19SBen Gras r = (z*t1)/(t1-two)-(w+z*w);
297*2fe8fb19SBen Gras z = one-(r-z);
298*2fe8fb19SBen Gras GET_HIGH_WORD(j,z);
299*2fe8fb19SBen Gras j += (n<<20);
300*2fe8fb19SBen Gras if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
301*2fe8fb19SBen Gras else SET_HIGH_WORD(z,j);
302*2fe8fb19SBen Gras return s*z;
303*2fe8fb19SBen Gras }
304