xref: /minix3/lib/libm/src/e_pow.c (revision 2fe8fb192fe7e8720e3e7a77f928da545e872a6a)
1*2fe8fb19SBen Gras /* @(#)e_pow.c 5.1 93/09/24 */
2*2fe8fb19SBen Gras /*
3*2fe8fb19SBen Gras  * ====================================================
4*2fe8fb19SBen Gras  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*2fe8fb19SBen Gras  *
6*2fe8fb19SBen Gras  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*2fe8fb19SBen Gras  * Permission to use, copy, modify, and distribute this
8*2fe8fb19SBen Gras  * software is freely granted, provided that this notice
9*2fe8fb19SBen Gras  * is preserved.
10*2fe8fb19SBen Gras  * ====================================================
11*2fe8fb19SBen Gras  */
12*2fe8fb19SBen Gras 
13*2fe8fb19SBen Gras #include <sys/cdefs.h>
14*2fe8fb19SBen Gras #if defined(LIBM_SCCS) && !defined(lint)
15*2fe8fb19SBen Gras __RCSID("$NetBSD: e_pow.c,v 1.16 2010/04/23 19:17:07 drochner Exp $");
16*2fe8fb19SBen Gras #endif
17*2fe8fb19SBen Gras 
18*2fe8fb19SBen Gras /* __ieee754_pow(x,y) return x**y
19*2fe8fb19SBen Gras  *
20*2fe8fb19SBen Gras  *		      n
21*2fe8fb19SBen Gras  * Method:  Let x =  2   * (1+f)
22*2fe8fb19SBen Gras  *	1. Compute and return log2(x) in two pieces:
23*2fe8fb19SBen Gras  *		log2(x) = w1 + w2,
24*2fe8fb19SBen Gras  *	   where w1 has 53-24 = 29 bit trailing zeros.
25*2fe8fb19SBen Gras  *	2. Perform y*log2(x) = n+y' by simulating multi-precision
26*2fe8fb19SBen Gras  *	   arithmetic, where |y'|<=0.5.
27*2fe8fb19SBen Gras  *	3. Return x**y = 2**n*exp(y'*log2)
28*2fe8fb19SBen Gras  *
29*2fe8fb19SBen Gras  * Special cases:
30*2fe8fb19SBen Gras  *	1.  (anything) ** 0  is 1
31*2fe8fb19SBen Gras  *	2.  (anything) ** 1  is itself
32*2fe8fb19SBen Gras  *	3.  (anything) ** NAN is NAN
33*2fe8fb19SBen Gras  *	4.  NAN ** (anything except 0) is NAN
34*2fe8fb19SBen Gras  *	5.  +-(|x| > 1) **  +INF is +INF
35*2fe8fb19SBen Gras  *	6.  +-(|x| > 1) **  -INF is +0
36*2fe8fb19SBen Gras  *	7.  +-(|x| < 1) **  +INF is +0
37*2fe8fb19SBen Gras  *	8.  +-(|x| < 1) **  -INF is +INF
38*2fe8fb19SBen Gras  *	9.  +-1         ** +-INF is NAN
39*2fe8fb19SBen Gras  *	10. +0 ** (+anything except 0, NAN)               is +0
40*2fe8fb19SBen Gras  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
41*2fe8fb19SBen Gras  *	12. +0 ** (-anything except 0, NAN)               is +INF
42*2fe8fb19SBen Gras  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
43*2fe8fb19SBen Gras  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
44*2fe8fb19SBen Gras  *	15. +INF ** (+anything except 0,NAN) is +INF
45*2fe8fb19SBen Gras  *	16. +INF ** (-anything except 0,NAN) is +0
46*2fe8fb19SBen Gras  *	17. -INF ** (anything)  = -0 ** (-anything)
47*2fe8fb19SBen Gras  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
48*2fe8fb19SBen Gras  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
49*2fe8fb19SBen Gras  *
50*2fe8fb19SBen Gras  * Accuracy:
51*2fe8fb19SBen Gras  *	pow(x,y) returns x**y nearly rounded. In particular
52*2fe8fb19SBen Gras  *			pow(integer,integer)
53*2fe8fb19SBen Gras  *	always returns the correct integer provided it is
54*2fe8fb19SBen Gras  *	representable.
55*2fe8fb19SBen Gras  *
56*2fe8fb19SBen Gras  * Constants :
57*2fe8fb19SBen Gras  * The hexadecimal values are the intended ones for the following
58*2fe8fb19SBen Gras  * constants. The decimal values may be used, provided that the
59*2fe8fb19SBen Gras  * compiler will convert from decimal to binary accurately enough
60*2fe8fb19SBen Gras  * to produce the hexadecimal values shown.
61*2fe8fb19SBen Gras  */
62*2fe8fb19SBen Gras 
63*2fe8fb19SBen Gras #include "namespace.h"
64*2fe8fb19SBen Gras #include "math.h"
65*2fe8fb19SBen Gras #include "math_private.h"
66*2fe8fb19SBen Gras 
67*2fe8fb19SBen Gras static const double
68*2fe8fb19SBen Gras bp[] = {1.0, 1.5,},
69*2fe8fb19SBen Gras dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
70*2fe8fb19SBen Gras dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
71*2fe8fb19SBen Gras zero    =  0.0,
72*2fe8fb19SBen Gras one	=  1.0,
73*2fe8fb19SBen Gras two	=  2.0,
74*2fe8fb19SBen Gras two53	=  9007199254740992.0,	/* 0x43400000, 0x00000000 */
75*2fe8fb19SBen Gras huge	=  1.0e300,
76*2fe8fb19SBen Gras tiny    =  1.0e-300,
77*2fe8fb19SBen Gras 	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
78*2fe8fb19SBen Gras L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
79*2fe8fb19SBen Gras L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
80*2fe8fb19SBen Gras L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
81*2fe8fb19SBen Gras L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
82*2fe8fb19SBen Gras L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
83*2fe8fb19SBen Gras L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
84*2fe8fb19SBen Gras P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
85*2fe8fb19SBen Gras P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
86*2fe8fb19SBen Gras P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
87*2fe8fb19SBen Gras P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
88*2fe8fb19SBen Gras P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
89*2fe8fb19SBen Gras lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
90*2fe8fb19SBen Gras lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
91*2fe8fb19SBen Gras lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
92*2fe8fb19SBen Gras ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
93*2fe8fb19SBen Gras cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
94*2fe8fb19SBen Gras cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
95*2fe8fb19SBen Gras cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
96*2fe8fb19SBen Gras ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
97*2fe8fb19SBen Gras ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
98*2fe8fb19SBen Gras ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
99*2fe8fb19SBen Gras 
100*2fe8fb19SBen Gras double
__ieee754_pow(double x,double y)101*2fe8fb19SBen Gras __ieee754_pow(double x, double y)
102*2fe8fb19SBen Gras {
103*2fe8fb19SBen Gras 	double z,ax,z_h,z_l,p_h,p_l;
104*2fe8fb19SBen Gras 	double yy1,t1,t2,r,s,t,u,v,w;
105*2fe8fb19SBen Gras 	int32_t i,j,k,yisint,n;
106*2fe8fb19SBen Gras 	int32_t hx,hy,ix,iy;
107*2fe8fb19SBen Gras 	u_int32_t lx,ly;
108*2fe8fb19SBen Gras 
109*2fe8fb19SBen Gras 	EXTRACT_WORDS(hx,lx,x);
110*2fe8fb19SBen Gras 	EXTRACT_WORDS(hy,ly,y);
111*2fe8fb19SBen Gras 	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
112*2fe8fb19SBen Gras 
113*2fe8fb19SBen Gras     /* y==zero: x**0 = 1 */
114*2fe8fb19SBen Gras 	if((iy|ly)==0) return one;
115*2fe8fb19SBen Gras 
116*2fe8fb19SBen Gras     /* +-NaN return x+y */
117*2fe8fb19SBen Gras 	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
118*2fe8fb19SBen Gras 	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
119*2fe8fb19SBen Gras 		return x+y;
120*2fe8fb19SBen Gras 
121*2fe8fb19SBen Gras     /* determine if y is an odd int when x < 0
122*2fe8fb19SBen Gras      * yisint = 0	... y is not an integer
123*2fe8fb19SBen Gras      * yisint = 1	... y is an odd int
124*2fe8fb19SBen Gras      * yisint = 2	... y is an even int
125*2fe8fb19SBen Gras      */
126*2fe8fb19SBen Gras 	yisint  = 0;
127*2fe8fb19SBen Gras 	if(hx<0) {
128*2fe8fb19SBen Gras 	    if(iy>=0x43400000) yisint = 2; /* even integer y */
129*2fe8fb19SBen Gras 	    else if(iy>=0x3ff00000) {
130*2fe8fb19SBen Gras 		k = (iy>>20)-0x3ff;	   /* exponent */
131*2fe8fb19SBen Gras 		if(k>20) {
132*2fe8fb19SBen Gras 		    j = ly>>(52-k);
133*2fe8fb19SBen Gras 		    if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
134*2fe8fb19SBen Gras 		} else if(ly==0) {
135*2fe8fb19SBen Gras 		    j = iy>>(20-k);
136*2fe8fb19SBen Gras 		    if((j<<(20-k))==iy) yisint = 2-(j&1);
137*2fe8fb19SBen Gras 		}
138*2fe8fb19SBen Gras 	    }
139*2fe8fb19SBen Gras 	}
140*2fe8fb19SBen Gras 
141*2fe8fb19SBen Gras     /* special value of y */
142*2fe8fb19SBen Gras 	if(ly==0) {
143*2fe8fb19SBen Gras 	    if (iy==0x7ff00000) {	/* y is +-inf */
144*2fe8fb19SBen Gras 	        if(((ix-0x3ff00000)|lx)==0)
145*2fe8fb19SBen Gras 		    return  y - y;	/* inf**+-1 is NaN */
146*2fe8fb19SBen Gras 	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
147*2fe8fb19SBen Gras 		    return (hy>=0)? y: zero;
148*2fe8fb19SBen Gras 	        else			/* (|x|<1)**-,+inf = inf,0 */
149*2fe8fb19SBen Gras 		    return (hy<0)?-y: zero;
150*2fe8fb19SBen Gras 	    }
151*2fe8fb19SBen Gras 	    if(iy==0x3ff00000) {	/* y is  +-1 */
152*2fe8fb19SBen Gras 		if(hy<0) return one/x; else return x;
153*2fe8fb19SBen Gras 	    }
154*2fe8fb19SBen Gras 	    if(hy==0x40000000) return x*x; /* y is  2 */
155*2fe8fb19SBen Gras 	    if(hy==0x3fe00000) {	/* y is  0.5 */
156*2fe8fb19SBen Gras 		if(hx>=0)	/* x >= +0 */
157*2fe8fb19SBen Gras 		return __ieee754_sqrt(x);
158*2fe8fb19SBen Gras 	    }
159*2fe8fb19SBen Gras 	}
160*2fe8fb19SBen Gras 
161*2fe8fb19SBen Gras 	ax   = fabs(x);
162*2fe8fb19SBen Gras     /* special value of x */
163*2fe8fb19SBen Gras 	if(lx==0) {
164*2fe8fb19SBen Gras 	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
165*2fe8fb19SBen Gras 		z = ax;			/*x is +-0,+-inf,+-1*/
166*2fe8fb19SBen Gras 		if(hy<0) z = one/z;	/* z = (1/|x|) */
167*2fe8fb19SBen Gras 		if(hx<0) {
168*2fe8fb19SBen Gras 		    if(((ix-0x3ff00000)|yisint)==0) {
169*2fe8fb19SBen Gras 			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
170*2fe8fb19SBen Gras 		    } else if(yisint==1)
171*2fe8fb19SBen Gras 			z = -z;		/* (x<0)**odd = -(|x|**odd) */
172*2fe8fb19SBen Gras 		}
173*2fe8fb19SBen Gras 		return z;
174*2fe8fb19SBen Gras 	    }
175*2fe8fb19SBen Gras 	}
176*2fe8fb19SBen Gras 
177*2fe8fb19SBen Gras 	n = (hx>>31)+1;
178*2fe8fb19SBen Gras 
179*2fe8fb19SBen Gras     /* (x<0)**(non-int) is NaN */
180*2fe8fb19SBen Gras 	if((n|yisint)==0) return (x-x)/(x-x);
181*2fe8fb19SBen Gras 
182*2fe8fb19SBen Gras 	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
183*2fe8fb19SBen Gras 	if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
184*2fe8fb19SBen Gras 
185*2fe8fb19SBen Gras     /* |y| is huge */
186*2fe8fb19SBen Gras 	if(iy>0x41e00000) { /* if |y| > 2**31 */
187*2fe8fb19SBen Gras 	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
188*2fe8fb19SBen Gras 		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
189*2fe8fb19SBen Gras 		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
190*2fe8fb19SBen Gras 	    }
191*2fe8fb19SBen Gras 	/* over/underflow if x is not close to one */
192*2fe8fb19SBen Gras 	    if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
193*2fe8fb19SBen Gras 	    if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
194*2fe8fb19SBen Gras 	/* now |1-x| is tiny <= 2**-20, suffice to compute
195*2fe8fb19SBen Gras 	   log(x) by x-x^2/2+x^3/3-x^4/4 */
196*2fe8fb19SBen Gras 	    t = ax-one;		/* t has 20 trailing zeros */
197*2fe8fb19SBen Gras 	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
198*2fe8fb19SBen Gras 	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
199*2fe8fb19SBen Gras 	    v = t*ivln2_l-w*ivln2;
200*2fe8fb19SBen Gras 	    t1 = u+v;
201*2fe8fb19SBen Gras 	    SET_LOW_WORD(t1,0);
202*2fe8fb19SBen Gras 	    t2 = v-(t1-u);
203*2fe8fb19SBen Gras 	} else {
204*2fe8fb19SBen Gras 	    double ss,s2,s_h,s_l,t_h,t_l;
205*2fe8fb19SBen Gras 	    n = 0;
206*2fe8fb19SBen Gras 	/* take care subnormal number */
207*2fe8fb19SBen Gras 	    if(ix<0x00100000)
208*2fe8fb19SBen Gras 		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
209*2fe8fb19SBen Gras 	    n  += ((ix)>>20)-0x3ff;
210*2fe8fb19SBen Gras 	    j  = ix&0x000fffff;
211*2fe8fb19SBen Gras 	/* determine interval */
212*2fe8fb19SBen Gras 	    ix = j|0x3ff00000;		/* normalize ix */
213*2fe8fb19SBen Gras 	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
214*2fe8fb19SBen Gras 	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
215*2fe8fb19SBen Gras 	    else {k=0;n+=1;ix -= 0x00100000;}
216*2fe8fb19SBen Gras 	    SET_HIGH_WORD(ax,ix);
217*2fe8fb19SBen Gras 
218*2fe8fb19SBen Gras 	/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
219*2fe8fb19SBen Gras 	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
220*2fe8fb19SBen Gras 	    v = one/(ax+bp[k]);
221*2fe8fb19SBen Gras 	    ss = u*v;
222*2fe8fb19SBen Gras 	    s_h = ss;
223*2fe8fb19SBen Gras 	    SET_LOW_WORD(s_h,0);
224*2fe8fb19SBen Gras 	/* t_h=ax+bp[k] High */
225*2fe8fb19SBen Gras 	    t_h = zero;
226*2fe8fb19SBen Gras 	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
227*2fe8fb19SBen Gras 	    t_l = ax - (t_h-bp[k]);
228*2fe8fb19SBen Gras 	    s_l = v*((u-s_h*t_h)-s_h*t_l);
229*2fe8fb19SBen Gras 	/* compute log(ax) */
230*2fe8fb19SBen Gras 	    s2 = ss*ss;
231*2fe8fb19SBen Gras 	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
232*2fe8fb19SBen Gras 	    r += s_l*(s_h+ss);
233*2fe8fb19SBen Gras 	    s2  = s_h*s_h;
234*2fe8fb19SBen Gras 	    t_h = 3.0+s2+r;
235*2fe8fb19SBen Gras 	    SET_LOW_WORD(t_h,0);
236*2fe8fb19SBen Gras 	    t_l = r-((t_h-3.0)-s2);
237*2fe8fb19SBen Gras 	/* u+v = ss*(1+...) */
238*2fe8fb19SBen Gras 	    u = s_h*t_h;
239*2fe8fb19SBen Gras 	    v = s_l*t_h+t_l*ss;
240*2fe8fb19SBen Gras 	/* 2/(3log2)*(ss+...) */
241*2fe8fb19SBen Gras 	    p_h = u+v;
242*2fe8fb19SBen Gras 	    SET_LOW_WORD(p_h,0);
243*2fe8fb19SBen Gras 	    p_l = v-(p_h-u);
244*2fe8fb19SBen Gras 	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
245*2fe8fb19SBen Gras 	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
246*2fe8fb19SBen Gras 	/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
247*2fe8fb19SBen Gras 	    t = (double)n;
248*2fe8fb19SBen Gras 	    t1 = (((z_h+z_l)+dp_h[k])+t);
249*2fe8fb19SBen Gras 	    SET_LOW_WORD(t1,0);
250*2fe8fb19SBen Gras 	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
251*2fe8fb19SBen Gras 	}
252*2fe8fb19SBen Gras 
253*2fe8fb19SBen Gras     /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
254*2fe8fb19SBen Gras 	yy1  = y;
255*2fe8fb19SBen Gras 	SET_LOW_WORD(yy1,0);
256*2fe8fb19SBen Gras 	p_l = (y-yy1)*t1+y*t2;
257*2fe8fb19SBen Gras 	p_h = yy1*t1;
258*2fe8fb19SBen Gras 	z = p_l+p_h;
259*2fe8fb19SBen Gras 	EXTRACT_WORDS(j,i,z);
260*2fe8fb19SBen Gras 	if (j>=0x40900000) {				/* z >= 1024 */
261*2fe8fb19SBen Gras 	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
262*2fe8fb19SBen Gras 		return s*huge*huge;			/* overflow */
263*2fe8fb19SBen Gras 	    else {
264*2fe8fb19SBen Gras 		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
265*2fe8fb19SBen Gras 	    }
266*2fe8fb19SBen Gras 	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
267*2fe8fb19SBen Gras 	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
268*2fe8fb19SBen Gras 		return s*tiny*tiny;		/* underflow */
269*2fe8fb19SBen Gras 	    else {
270*2fe8fb19SBen Gras 		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
271*2fe8fb19SBen Gras 	    }
272*2fe8fb19SBen Gras 	}
273*2fe8fb19SBen Gras     /*
274*2fe8fb19SBen Gras      * compute 2**(p_h+p_l)
275*2fe8fb19SBen Gras      */
276*2fe8fb19SBen Gras 	i = j&0x7fffffff;
277*2fe8fb19SBen Gras 	k = (i>>20)-0x3ff;
278*2fe8fb19SBen Gras 	n = 0;
279*2fe8fb19SBen Gras 	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
280*2fe8fb19SBen Gras 	    n = j+(0x00100000>>(k+1));
281*2fe8fb19SBen Gras 	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
282*2fe8fb19SBen Gras 	    t = zero;
283*2fe8fb19SBen Gras 	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
284*2fe8fb19SBen Gras 	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
285*2fe8fb19SBen Gras 	    if(j<0) n = -n;
286*2fe8fb19SBen Gras 	    p_h -= t;
287*2fe8fb19SBen Gras 	}
288*2fe8fb19SBen Gras 	t = p_l+p_h;
289*2fe8fb19SBen Gras 	SET_LOW_WORD(t,0);
290*2fe8fb19SBen Gras 	u = t*lg2_h;
291*2fe8fb19SBen Gras 	v = (p_l-(t-p_h))*lg2+t*lg2_l;
292*2fe8fb19SBen Gras 	z = u+v;
293*2fe8fb19SBen Gras 	w = v-(z-u);
294*2fe8fb19SBen Gras 	t  = z*z;
295*2fe8fb19SBen Gras 	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
296*2fe8fb19SBen Gras 	r  = (z*t1)/(t1-two)-(w+z*w);
297*2fe8fb19SBen Gras 	z  = one-(r-z);
298*2fe8fb19SBen Gras 	GET_HIGH_WORD(j,z);
299*2fe8fb19SBen Gras 	j += (n<<20);
300*2fe8fb19SBen Gras 	if((j>>20)<=0) z = scalbn(z,n);	/* subnormal output */
301*2fe8fb19SBen Gras 	else SET_HIGH_WORD(z,j);
302*2fe8fb19SBen Gras 	return s*z;
303*2fe8fb19SBen Gras }
304