xref: /minix3/lib/libm/src/e_jn.c (revision 2fe8fb192fe7e8720e3e7a77f928da545e872a6a)
1*2fe8fb19SBen Gras /* @(#)e_jn.c 5.1 93/09/24 */
2*2fe8fb19SBen Gras /*
3*2fe8fb19SBen Gras  * ====================================================
4*2fe8fb19SBen Gras  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*2fe8fb19SBen Gras  *
6*2fe8fb19SBen Gras  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*2fe8fb19SBen Gras  * Permission to use, copy, modify, and distribute this
8*2fe8fb19SBen Gras  * software is freely granted, provided that this notice
9*2fe8fb19SBen Gras  * is preserved.
10*2fe8fb19SBen Gras  * ====================================================
11*2fe8fb19SBen Gras  */
12*2fe8fb19SBen Gras 
13*2fe8fb19SBen Gras #include <sys/cdefs.h>
14*2fe8fb19SBen Gras #if defined(LIBM_SCCS) && !defined(lint)
15*2fe8fb19SBen Gras __RCSID("$NetBSD: e_jn.c,v 1.14 2010/11/29 15:10:06 drochner Exp $");
16*2fe8fb19SBen Gras #endif
17*2fe8fb19SBen Gras 
18*2fe8fb19SBen Gras /*
19*2fe8fb19SBen Gras  * __ieee754_jn(n, x), __ieee754_yn(n, x)
20*2fe8fb19SBen Gras  * floating point Bessel's function of the 1st and 2nd kind
21*2fe8fb19SBen Gras  * of order n
22*2fe8fb19SBen Gras  *
23*2fe8fb19SBen Gras  * Special cases:
24*2fe8fb19SBen Gras  *	y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
25*2fe8fb19SBen Gras  *	y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
26*2fe8fb19SBen Gras  * Note 2. About jn(n,x), yn(n,x)
27*2fe8fb19SBen Gras  *	For n=0, j0(x) is called,
28*2fe8fb19SBen Gras  *	for n=1, j1(x) is called,
29*2fe8fb19SBen Gras  *	for n<x, forward recursion us used starting
30*2fe8fb19SBen Gras  *	from values of j0(x) and j1(x).
31*2fe8fb19SBen Gras  *	for n>x, a continued fraction approximation to
32*2fe8fb19SBen Gras  *	j(n,x)/j(n-1,x) is evaluated and then backward
33*2fe8fb19SBen Gras  *	recursion is used starting from a supposed value
34*2fe8fb19SBen Gras  *	for j(n,x). The resulting value of j(0,x) is
35*2fe8fb19SBen Gras  *	compared with the actual value to correct the
36*2fe8fb19SBen Gras  *	supposed value of j(n,x).
37*2fe8fb19SBen Gras  *
38*2fe8fb19SBen Gras  *	yn(n,x) is similar in all respects, except
39*2fe8fb19SBen Gras  *	that forward recursion is used for all
40*2fe8fb19SBen Gras  *	values of n>1.
41*2fe8fb19SBen Gras  *
42*2fe8fb19SBen Gras  */
43*2fe8fb19SBen Gras 
44*2fe8fb19SBen Gras #include "namespace.h"
45*2fe8fb19SBen Gras #include "math.h"
46*2fe8fb19SBen Gras #include "math_private.h"
47*2fe8fb19SBen Gras 
48*2fe8fb19SBen Gras static const double
49*2fe8fb19SBen Gras invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
50*2fe8fb19SBen Gras two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
51*2fe8fb19SBen Gras one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
52*2fe8fb19SBen Gras 
53*2fe8fb19SBen Gras static const double zero  =  0.00000000000000000000e+00;
54*2fe8fb19SBen Gras 
55*2fe8fb19SBen Gras double
__ieee754_jn(int n,double x)56*2fe8fb19SBen Gras __ieee754_jn(int n, double x)
57*2fe8fb19SBen Gras {
58*2fe8fb19SBen Gras 	int32_t i,hx,ix,lx, sgn;
59*2fe8fb19SBen Gras 	double a, b, temp, di;
60*2fe8fb19SBen Gras 	double z, w;
61*2fe8fb19SBen Gras 
62*2fe8fb19SBen Gras 	temp = 0;
63*2fe8fb19SBen Gras     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
64*2fe8fb19SBen Gras      * Thus, J(-n,x) = J(n,-x)
65*2fe8fb19SBen Gras      */
66*2fe8fb19SBen Gras 	EXTRACT_WORDS(hx,lx,x);
67*2fe8fb19SBen Gras 	ix = 0x7fffffff&hx;
68*2fe8fb19SBen Gras     /* if J(n,NaN) is NaN */
69*2fe8fb19SBen Gras 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
70*2fe8fb19SBen Gras 	if(n<0){
71*2fe8fb19SBen Gras 		n = -n;
72*2fe8fb19SBen Gras 		x = -x;
73*2fe8fb19SBen Gras 		hx ^= 0x80000000;
74*2fe8fb19SBen Gras 	}
75*2fe8fb19SBen Gras 	if(n==0) return(__ieee754_j0(x));
76*2fe8fb19SBen Gras 	if(n==1) return(__ieee754_j1(x));
77*2fe8fb19SBen Gras 	sgn = (n&1)&(hx>>31);	/* even n -- 0, odd n -- sign(x) */
78*2fe8fb19SBen Gras 	x = fabs(x);
79*2fe8fb19SBen Gras 	if((ix|lx)==0||ix>=0x7ff00000) 	/* if x is 0 or inf */
80*2fe8fb19SBen Gras 	    b = zero;
81*2fe8fb19SBen Gras 	else if((double)n<=x) {
82*2fe8fb19SBen Gras 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
83*2fe8fb19SBen Gras 	    if(ix>=0x52D00000) { /* x > 2**302 */
84*2fe8fb19SBen Gras     /* (x >> n**2)
85*2fe8fb19SBen Gras      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
86*2fe8fb19SBen Gras      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
87*2fe8fb19SBen Gras      *	    Let s=sin(x), c=cos(x),
88*2fe8fb19SBen Gras      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
89*2fe8fb19SBen Gras      *
90*2fe8fb19SBen Gras      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
91*2fe8fb19SBen Gras      *		----------------------------------
92*2fe8fb19SBen Gras      *		   0	 s-c		 c+s
93*2fe8fb19SBen Gras      *		   1	-s-c 		-c+s
94*2fe8fb19SBen Gras      *		   2	-s+c		-c-s
95*2fe8fb19SBen Gras      *		   3	 s+c		 c-s
96*2fe8fb19SBen Gras      */
97*2fe8fb19SBen Gras 		switch(n&3) {
98*2fe8fb19SBen Gras 		    case 0: temp =  cos(x)+sin(x); break;
99*2fe8fb19SBen Gras 		    case 1: temp = -cos(x)+sin(x); break;
100*2fe8fb19SBen Gras 		    case 2: temp = -cos(x)-sin(x); break;
101*2fe8fb19SBen Gras 		    case 3: temp =  cos(x)-sin(x); break;
102*2fe8fb19SBen Gras 		}
103*2fe8fb19SBen Gras 		b = invsqrtpi*temp/sqrt(x);
104*2fe8fb19SBen Gras 	    } else {
105*2fe8fb19SBen Gras 	        a = __ieee754_j0(x);
106*2fe8fb19SBen Gras 	        b = __ieee754_j1(x);
107*2fe8fb19SBen Gras 	        for(i=1;i<n;i++){
108*2fe8fb19SBen Gras 		    temp = b;
109*2fe8fb19SBen Gras 		    b = b*((double)(i+i)/x) - a; /* avoid underflow */
110*2fe8fb19SBen Gras 		    a = temp;
111*2fe8fb19SBen Gras 	        }
112*2fe8fb19SBen Gras 	    }
113*2fe8fb19SBen Gras 	} else {
114*2fe8fb19SBen Gras 	    if(ix<0x3e100000) {	/* x < 2**-29 */
115*2fe8fb19SBen Gras     /* x is tiny, return the first Taylor expansion of J(n,x)
116*2fe8fb19SBen Gras      * J(n,x) = 1/n!*(x/2)^n  - ...
117*2fe8fb19SBen Gras      */
118*2fe8fb19SBen Gras 		if(n>33)	/* underflow */
119*2fe8fb19SBen Gras 		    b = zero;
120*2fe8fb19SBen Gras 		else {
121*2fe8fb19SBen Gras 		    temp = x*0.5; b = temp;
122*2fe8fb19SBen Gras 		    for (a=one,i=2;i<=n;i++) {
123*2fe8fb19SBen Gras 			a *= (double)i;		/* a = n! */
124*2fe8fb19SBen Gras 			b *= temp;		/* b = (x/2)^n */
125*2fe8fb19SBen Gras 		    }
126*2fe8fb19SBen Gras 		    b = b/a;
127*2fe8fb19SBen Gras 		}
128*2fe8fb19SBen Gras 	    } else {
129*2fe8fb19SBen Gras 		/* use backward recurrence */
130*2fe8fb19SBen Gras 		/* 			x      x^2      x^2
131*2fe8fb19SBen Gras 		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
132*2fe8fb19SBen Gras 		 *			2n  - 2(n+1) - 2(n+2)
133*2fe8fb19SBen Gras 		 *
134*2fe8fb19SBen Gras 		 * 			1      1        1
135*2fe8fb19SBen Gras 		 *  (for large x)   =  ----  ------   ------   .....
136*2fe8fb19SBen Gras 		 *			2n   2(n+1)   2(n+2)
137*2fe8fb19SBen Gras 		 *			-- - ------ - ------ -
138*2fe8fb19SBen Gras 		 *			 x     x         x
139*2fe8fb19SBen Gras 		 *
140*2fe8fb19SBen Gras 		 * Let w = 2n/x and h=2/x, then the above quotient
141*2fe8fb19SBen Gras 		 * is equal to the continued fraction:
142*2fe8fb19SBen Gras 		 *		    1
143*2fe8fb19SBen Gras 		 *	= -----------------------
144*2fe8fb19SBen Gras 		 *		       1
145*2fe8fb19SBen Gras 		 *	   w - -----------------
146*2fe8fb19SBen Gras 		 *			  1
147*2fe8fb19SBen Gras 		 * 	        w+h - ---------
148*2fe8fb19SBen Gras 		 *		       w+2h - ...
149*2fe8fb19SBen Gras 		 *
150*2fe8fb19SBen Gras 		 * To determine how many terms needed, let
151*2fe8fb19SBen Gras 		 * Q(0) = w, Q(1) = w(w+h) - 1,
152*2fe8fb19SBen Gras 		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
153*2fe8fb19SBen Gras 		 * When Q(k) > 1e4	good for single
154*2fe8fb19SBen Gras 		 * When Q(k) > 1e9	good for double
155*2fe8fb19SBen Gras 		 * When Q(k) > 1e17	good for quadruple
156*2fe8fb19SBen Gras 		 */
157*2fe8fb19SBen Gras 	    /* determine k */
158*2fe8fb19SBen Gras 		double t,v;
159*2fe8fb19SBen Gras 		double q0,q1,h,tmp; int32_t k,m;
160*2fe8fb19SBen Gras 		w  = (n+n)/(double)x; h = 2.0/(double)x;
161*2fe8fb19SBen Gras 		q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
162*2fe8fb19SBen Gras 		while(q1<1.0e9) {
163*2fe8fb19SBen Gras 			k += 1; z += h;
164*2fe8fb19SBen Gras 			tmp = z*q1 - q0;
165*2fe8fb19SBen Gras 			q0 = q1;
166*2fe8fb19SBen Gras 			q1 = tmp;
167*2fe8fb19SBen Gras 		}
168*2fe8fb19SBen Gras 		m = n+n;
169*2fe8fb19SBen Gras 		for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
170*2fe8fb19SBen Gras 		a = t;
171*2fe8fb19SBen Gras 		b = one;
172*2fe8fb19SBen Gras 		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
173*2fe8fb19SBen Gras 		 *  Hence, if n*(log(2n/x)) > ...
174*2fe8fb19SBen Gras 		 *  single 8.8722839355e+01
175*2fe8fb19SBen Gras 		 *  double 7.09782712893383973096e+02
176*2fe8fb19SBen Gras 		 *  long double 1.1356523406294143949491931077970765006170e+04
177*2fe8fb19SBen Gras 		 *  then recurrent value may overflow and the result is
178*2fe8fb19SBen Gras 		 *  likely underflow to zero
179*2fe8fb19SBen Gras 		 */
180*2fe8fb19SBen Gras 		tmp = n;
181*2fe8fb19SBen Gras 		v = two/x;
182*2fe8fb19SBen Gras 		tmp = tmp*__ieee754_log(fabs(v*tmp));
183*2fe8fb19SBen Gras 		if(tmp<7.09782712893383973096e+02) {
184*2fe8fb19SBen Gras 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
185*2fe8fb19SBen Gras 		        temp = b;
186*2fe8fb19SBen Gras 			b *= di;
187*2fe8fb19SBen Gras 			b  = b/x - a;
188*2fe8fb19SBen Gras 		        a = temp;
189*2fe8fb19SBen Gras 			di -= two;
190*2fe8fb19SBen Gras 	     	    }
191*2fe8fb19SBen Gras 		} else {
192*2fe8fb19SBen Gras 	    	    for(i=n-1,di=(double)(i+i);i>0;i--){
193*2fe8fb19SBen Gras 		        temp = b;
194*2fe8fb19SBen Gras 			b *= di;
195*2fe8fb19SBen Gras 			b  = b/x - a;
196*2fe8fb19SBen Gras 		        a = temp;
197*2fe8fb19SBen Gras 			di -= two;
198*2fe8fb19SBen Gras 		    /* scale b to avoid spurious overflow */
199*2fe8fb19SBen Gras 			if(b>1e100) {
200*2fe8fb19SBen Gras 			    a /= b;
201*2fe8fb19SBen Gras 			    t /= b;
202*2fe8fb19SBen Gras 			    b  = one;
203*2fe8fb19SBen Gras 			}
204*2fe8fb19SBen Gras 	     	    }
205*2fe8fb19SBen Gras 		}
206*2fe8fb19SBen Gras 		z = __ieee754_j0(x);
207*2fe8fb19SBen Gras 		w = __ieee754_j1(x);
208*2fe8fb19SBen Gras 		if (fabs(z) >= fabs(w))
209*2fe8fb19SBen Gras 			b = (t*z/b);
210*2fe8fb19SBen Gras 		else
211*2fe8fb19SBen Gras 			b = (t*w/a);
212*2fe8fb19SBen Gras 	    }
213*2fe8fb19SBen Gras 	}
214*2fe8fb19SBen Gras 	if(sgn==1) return -b; else return b;
215*2fe8fb19SBen Gras }
216*2fe8fb19SBen Gras 
217*2fe8fb19SBen Gras double
__ieee754_yn(int n,double x)218*2fe8fb19SBen Gras __ieee754_yn(int n, double x)
219*2fe8fb19SBen Gras {
220*2fe8fb19SBen Gras 	int32_t i,hx,ix,lx;
221*2fe8fb19SBen Gras 	int32_t sign;
222*2fe8fb19SBen Gras 	double a, b, temp;
223*2fe8fb19SBen Gras 
224*2fe8fb19SBen Gras 	temp = 0;
225*2fe8fb19SBen Gras 	EXTRACT_WORDS(hx,lx,x);
226*2fe8fb19SBen Gras 	ix = 0x7fffffff&hx;
227*2fe8fb19SBen Gras     /* if Y(n,NaN) is NaN */
228*2fe8fb19SBen Gras 	if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
229*2fe8fb19SBen Gras 	if((ix|lx)==0) return -one/zero;
230*2fe8fb19SBen Gras 	if(hx<0) return zero/zero;
231*2fe8fb19SBen Gras 	sign = 1;
232*2fe8fb19SBen Gras 	if(n<0){
233*2fe8fb19SBen Gras 		n = -n;
234*2fe8fb19SBen Gras 		sign = 1 - ((n&1)<<1);
235*2fe8fb19SBen Gras 	}
236*2fe8fb19SBen Gras 	if(n==0) return(__ieee754_y0(x));
237*2fe8fb19SBen Gras 	if(n==1) return(sign*__ieee754_y1(x));
238*2fe8fb19SBen Gras 	if(ix==0x7ff00000) return zero;
239*2fe8fb19SBen Gras 	if(ix>=0x52D00000) { /* x > 2**302 */
240*2fe8fb19SBen Gras     /* (x >> n**2)
241*2fe8fb19SBen Gras      *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
242*2fe8fb19SBen Gras      *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
243*2fe8fb19SBen Gras      *	    Let s=sin(x), c=cos(x),
244*2fe8fb19SBen Gras      *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
245*2fe8fb19SBen Gras      *
246*2fe8fb19SBen Gras      *		   n	sin(xn)*sqt2	cos(xn)*sqt2
247*2fe8fb19SBen Gras      *		----------------------------------
248*2fe8fb19SBen Gras      *		   0	 s-c		 c+s
249*2fe8fb19SBen Gras      *		   1	-s-c 		-c+s
250*2fe8fb19SBen Gras      *		   2	-s+c		-c-s
251*2fe8fb19SBen Gras      *		   3	 s+c		 c-s
252*2fe8fb19SBen Gras      */
253*2fe8fb19SBen Gras 		switch(n&3) {
254*2fe8fb19SBen Gras 		    case 0: temp =  sin(x)-cos(x); break;
255*2fe8fb19SBen Gras 		    case 1: temp = -sin(x)-cos(x); break;
256*2fe8fb19SBen Gras 		    case 2: temp = -sin(x)+cos(x); break;
257*2fe8fb19SBen Gras 		    case 3: temp =  sin(x)+cos(x); break;
258*2fe8fb19SBen Gras 		}
259*2fe8fb19SBen Gras 		b = invsqrtpi*temp/sqrt(x);
260*2fe8fb19SBen Gras 	} else {
261*2fe8fb19SBen Gras 	    u_int32_t high;
262*2fe8fb19SBen Gras 	    a = __ieee754_y0(x);
263*2fe8fb19SBen Gras 	    b = __ieee754_y1(x);
264*2fe8fb19SBen Gras 	/* quit if b is -inf */
265*2fe8fb19SBen Gras 	    GET_HIGH_WORD(high,b);
266*2fe8fb19SBen Gras 	    for(i=1;i<n&&high!=0xfff00000;i++){
267*2fe8fb19SBen Gras 		temp = b;
268*2fe8fb19SBen Gras 		b = ((double)(i+i)/x)*b - a;
269*2fe8fb19SBen Gras 		GET_HIGH_WORD(high,b);
270*2fe8fb19SBen Gras 		a = temp;
271*2fe8fb19SBen Gras 	    }
272*2fe8fb19SBen Gras 	}
273*2fe8fb19SBen Gras 	if(sign>0) return b; else return -b;
274*2fe8fb19SBen Gras }
275