xref: /minix3/lib/libm/src/b_tgamma.c (revision 84d9c625bfea59e274550651111ae9edfdc40fbd)
1*84d9c625SLionel Sambuc /*	$NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $	*/
2*84d9c625SLionel Sambuc 
3*84d9c625SLionel Sambuc /*-
4*84d9c625SLionel Sambuc  * Copyright (c) 1992, 1993
5*84d9c625SLionel Sambuc  *	The Regents of the University of California.  All rights reserved.
6*84d9c625SLionel Sambuc  *
7*84d9c625SLionel Sambuc  * Redistribution and use in source and binary forms, with or without
8*84d9c625SLionel Sambuc  * modification, are permitted provided that the following conditions
9*84d9c625SLionel Sambuc  * are met:
10*84d9c625SLionel Sambuc  * 1. Redistributions of source code must retain the above copyright
11*84d9c625SLionel Sambuc  *    notice, this list of conditions and the following disclaimer.
12*84d9c625SLionel Sambuc  * 2. Redistributions in binary form must reproduce the above copyright
13*84d9c625SLionel Sambuc  *    notice, this list of conditions and the following disclaimer in the
14*84d9c625SLionel Sambuc  *    documentation and/or other materials provided with the distribution.
15*84d9c625SLionel Sambuc  * 3. All advertising materials mentioning features or use of this software
16*84d9c625SLionel Sambuc  *    must display the following acknowledgement:
17*84d9c625SLionel Sambuc  *	This product includes software developed by the University of
18*84d9c625SLionel Sambuc  *	California, Berkeley and its contributors.
19*84d9c625SLionel Sambuc  * 4. Neither the name of the University nor the names of its contributors
20*84d9c625SLionel Sambuc  *    may be used to endorse or promote products derived from this software
21*84d9c625SLionel Sambuc  *    without specific prior written permission.
22*84d9c625SLionel Sambuc  *
23*84d9c625SLionel Sambuc  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24*84d9c625SLionel Sambuc  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25*84d9c625SLionel Sambuc  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26*84d9c625SLionel Sambuc  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27*84d9c625SLionel Sambuc  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28*84d9c625SLionel Sambuc  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29*84d9c625SLionel Sambuc  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30*84d9c625SLionel Sambuc  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31*84d9c625SLionel Sambuc  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32*84d9c625SLionel Sambuc  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33*84d9c625SLionel Sambuc  * SUCH DAMAGE.
34*84d9c625SLionel Sambuc  */
35*84d9c625SLionel Sambuc 
36*84d9c625SLionel Sambuc /* @(#)gamma.c	8.1 (Berkeley) 6/4/93 */
37*84d9c625SLionel Sambuc #include <sys/cdefs.h>
38*84d9c625SLionel Sambuc #if 0
39*84d9c625SLionel Sambuc __FBSDID("$FreeBSD: release/9.0.0/lib/msun/bsdsrc/b_tgamma.c 176449 2008-02-22 02:26:51Z das $");
40*84d9c625SLionel Sambuc #else
41*84d9c625SLionel Sambuc __RCSID("$NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $");
42*84d9c625SLionel Sambuc #endif
43*84d9c625SLionel Sambuc 
44*84d9c625SLionel Sambuc /*
45*84d9c625SLionel Sambuc  * This code by P. McIlroy, Oct 1992;
46*84d9c625SLionel Sambuc  *
47*84d9c625SLionel Sambuc  * The financial support of UUNET Communications Services is greatfully
48*84d9c625SLionel Sambuc  * acknowledged.
49*84d9c625SLionel Sambuc  */
50*84d9c625SLionel Sambuc 
51*84d9c625SLionel Sambuc #include "math.h"
52*84d9c625SLionel Sambuc #include "math_private.h"
53*84d9c625SLionel Sambuc 
54*84d9c625SLionel Sambuc /* METHOD:
55*84d9c625SLionel Sambuc  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
56*84d9c625SLionel Sambuc  * 	At negative integers, return NaN and raise invalid.
57*84d9c625SLionel Sambuc  *
58*84d9c625SLionel Sambuc  * x < 6.5:
59*84d9c625SLionel Sambuc  *	Use argument reduction G(x+1) = xG(x) to reach the
60*84d9c625SLionel Sambuc  *	range [1.066124,2.066124].  Use a rational
61*84d9c625SLionel Sambuc  *	approximation centered at the minimum (x0+1) to
62*84d9c625SLionel Sambuc  *	ensure monotonicity.
63*84d9c625SLionel Sambuc  *
64*84d9c625SLionel Sambuc  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
65*84d9c625SLionel Sambuc  *	adjusted for equal-ripples:
66*84d9c625SLionel Sambuc  *
67*84d9c625SLionel Sambuc  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
68*84d9c625SLionel Sambuc  *
69*84d9c625SLionel Sambuc  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
70*84d9c625SLionel Sambuc  *	avoid premature round-off.
71*84d9c625SLionel Sambuc  *
72*84d9c625SLionel Sambuc  * Special values:
73*84d9c625SLionel Sambuc  *	-Inf:			return NaN and raise invalid;
74*84d9c625SLionel Sambuc  *	negative integer:	return NaN and raise invalid;
75*84d9c625SLionel Sambuc  *	other x ~< 177.79:	return +-0 and raise underflow;
76*84d9c625SLionel Sambuc  *	+-0:			return +-Inf and raise divide-by-zero;
77*84d9c625SLionel Sambuc  *	finite x ~> 171.63:	return +Inf and raise overflow;
78*84d9c625SLionel Sambuc  *	+Inf:			return +Inf;
79*84d9c625SLionel Sambuc  *	NaN: 			return NaN.
80*84d9c625SLionel Sambuc  *
81*84d9c625SLionel Sambuc  * Accuracy: tgamma(x) is accurate to within
82*84d9c625SLionel Sambuc  *	x > 0:  error provably < 0.9ulp.
83*84d9c625SLionel Sambuc  *	Maximum observed in 1,000,000 trials was .87ulp.
84*84d9c625SLionel Sambuc  *	x < 0:
85*84d9c625SLionel Sambuc  *	Maximum observed error < 4ulp in 1,000,000 trials.
86*84d9c625SLionel Sambuc  */
87*84d9c625SLionel Sambuc 
88*84d9c625SLionel Sambuc static double neg_gam(double);
89*84d9c625SLionel Sambuc static double small_gam(double);
90*84d9c625SLionel Sambuc static double smaller_gam(double);
91*84d9c625SLionel Sambuc static struct Double large_gam(double);
92*84d9c625SLionel Sambuc static struct Double ratfun_gam(double, double);
93*84d9c625SLionel Sambuc 
94*84d9c625SLionel Sambuc /*
95*84d9c625SLionel Sambuc  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
96*84d9c625SLionel Sambuc  * [1.066.., 2.066..] accurate to 4.25e-19.
97*84d9c625SLionel Sambuc  */
98*84d9c625SLionel Sambuc #define LEFT -.3955078125	/* left boundary for rat. approx */
99*84d9c625SLionel Sambuc #define x0 .461632144968362356785	/* xmin - 1 */
100*84d9c625SLionel Sambuc 
101*84d9c625SLionel Sambuc #define a0_hi 0.88560319441088874992
102*84d9c625SLionel Sambuc #define a0_lo -.00000000000000004996427036469019695
103*84d9c625SLionel Sambuc #define P0	 6.21389571821820863029017800727e-01
104*84d9c625SLionel Sambuc #define P1	 2.65757198651533466104979197553e-01
105*84d9c625SLionel Sambuc #define P2	 5.53859446429917461063308081748e-03
106*84d9c625SLionel Sambuc #define P3	 1.38456698304096573887145282811e-03
107*84d9c625SLionel Sambuc #define P4	 2.40659950032711365819348969808e-03
108*84d9c625SLionel Sambuc #define Q0	 1.45019531250000000000000000000e+00
109*84d9c625SLionel Sambuc #define Q1	 1.06258521948016171343454061571e+00
110*84d9c625SLionel Sambuc #define Q2	-2.07474561943859936441469926649e-01
111*84d9c625SLionel Sambuc #define Q3	-1.46734131782005422506287573015e-01
112*84d9c625SLionel Sambuc #define Q4	 3.07878176156175520361557573779e-02
113*84d9c625SLionel Sambuc #define Q5	 5.12449347980666221336054633184e-03
114*84d9c625SLionel Sambuc #define Q6	-1.76012741431666995019222898833e-03
115*84d9c625SLionel Sambuc #define Q7	 9.35021023573788935372153030556e-05
116*84d9c625SLionel Sambuc #define Q8	 6.13275507472443958924745652239e-06
117*84d9c625SLionel Sambuc /*
118*84d9c625SLionel Sambuc  * Constants for large x approximation (x in [6, Inf])
119*84d9c625SLionel Sambuc  * (Accurate to 2.8*10^-19 absolute)
120*84d9c625SLionel Sambuc  */
121*84d9c625SLionel Sambuc #define lns2pi_hi 0.418945312500000
122*84d9c625SLionel Sambuc #define lns2pi_lo -.000006779295327258219670263595
123*84d9c625SLionel Sambuc #define Pa0	 8.33333333333333148296162562474e-02
124*84d9c625SLionel Sambuc #define Pa1	-2.77777777774548123579378966497e-03
125*84d9c625SLionel Sambuc #define Pa2	 7.93650778754435631476282786423e-04
126*84d9c625SLionel Sambuc #define Pa3	-5.95235082566672847950717262222e-04
127*84d9c625SLionel Sambuc #define Pa4	 8.41428560346653702135821806252e-04
128*84d9c625SLionel Sambuc #define Pa5	-1.89773526463879200348872089421e-03
129*84d9c625SLionel Sambuc #define Pa6	 5.69394463439411649408050664078e-03
130*84d9c625SLionel Sambuc #define Pa7	-1.44705562421428915453880392761e-02
131*84d9c625SLionel Sambuc 
132*84d9c625SLionel Sambuc static const double zero = 0., one = 1.0, tiny = 1e-300;
133*84d9c625SLionel Sambuc 
134*84d9c625SLionel Sambuc double
tgamma(double x)135*84d9c625SLionel Sambuc tgamma(double x)
136*84d9c625SLionel Sambuc {
137*84d9c625SLionel Sambuc 	struct Double u;
138*84d9c625SLionel Sambuc 
139*84d9c625SLionel Sambuc 	if (x >= 6) {
140*84d9c625SLionel Sambuc 		if(x > 171.63)
141*84d9c625SLionel Sambuc 			return (x / zero);
142*84d9c625SLionel Sambuc 		u = large_gam(x);
143*84d9c625SLionel Sambuc 		return(__exp__D(u.a, u.b));
144*84d9c625SLionel Sambuc 	} else if (x >= 1.0 + LEFT + x0)
145*84d9c625SLionel Sambuc 		return (small_gam(x));
146*84d9c625SLionel Sambuc 	else if (x > 1.e-17)
147*84d9c625SLionel Sambuc 		return (smaller_gam(x));
148*84d9c625SLionel Sambuc 	else if (x > -1.e-17) {
149*84d9c625SLionel Sambuc 		if (x != 0.0)
150*84d9c625SLionel Sambuc 			u.a = one - tiny;	/* raise inexact */
151*84d9c625SLionel Sambuc 		return (one/x);
152*84d9c625SLionel Sambuc 	} else if (!finite(x))
153*84d9c625SLionel Sambuc 		return (x - x);		/* x is NaN or -Inf */
154*84d9c625SLionel Sambuc 	else
155*84d9c625SLionel Sambuc 		return (neg_gam(x));
156*84d9c625SLionel Sambuc }
157*84d9c625SLionel Sambuc /*
158*84d9c625SLionel Sambuc  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
159*84d9c625SLionel Sambuc  */
160*84d9c625SLionel Sambuc static struct Double
large_gam(double x)161*84d9c625SLionel Sambuc large_gam(double x)
162*84d9c625SLionel Sambuc {
163*84d9c625SLionel Sambuc 	double z, p;
164*84d9c625SLionel Sambuc 	struct Double t, u, v;
165*84d9c625SLionel Sambuc 
166*84d9c625SLionel Sambuc 	z = one/(x*x);
167*84d9c625SLionel Sambuc 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
168*84d9c625SLionel Sambuc 	p = p/x;
169*84d9c625SLionel Sambuc 
170*84d9c625SLionel Sambuc 	u = __log__D(x);
171*84d9c625SLionel Sambuc 	u.a -= one;
172*84d9c625SLionel Sambuc 	v.a = (x -= .5);
173*84d9c625SLionel Sambuc 	TRUNC(v.a);
174*84d9c625SLionel Sambuc 	v.b = x - v.a;
175*84d9c625SLionel Sambuc 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
176*84d9c625SLionel Sambuc 	t.b = v.b*u.a + x*u.b;
177*84d9c625SLionel Sambuc 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
178*84d9c625SLionel Sambuc 	t.b += lns2pi_lo; t.b += p;
179*84d9c625SLionel Sambuc 	u.a = lns2pi_hi + t.b; u.a += t.a;
180*84d9c625SLionel Sambuc 	u.b = t.a - u.a;
181*84d9c625SLionel Sambuc 	u.b += lns2pi_hi; u.b += t.b;
182*84d9c625SLionel Sambuc 	return (u);
183*84d9c625SLionel Sambuc }
184*84d9c625SLionel Sambuc /*
185*84d9c625SLionel Sambuc  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
186*84d9c625SLionel Sambuc  * It also has correct monotonicity.
187*84d9c625SLionel Sambuc  */
188*84d9c625SLionel Sambuc static double
small_gam(double x)189*84d9c625SLionel Sambuc small_gam(double x)
190*84d9c625SLionel Sambuc {
191*84d9c625SLionel Sambuc 	double y, ym1, t;
192*84d9c625SLionel Sambuc 	struct Double yy, r;
193*84d9c625SLionel Sambuc 	y = x - one;
194*84d9c625SLionel Sambuc 	ym1 = y - one;
195*84d9c625SLionel Sambuc 	if (y <= 1.0 + (LEFT + x0)) {
196*84d9c625SLionel Sambuc 		yy = ratfun_gam(y - x0, 0);
197*84d9c625SLionel Sambuc 		return (yy.a + yy.b);
198*84d9c625SLionel Sambuc 	}
199*84d9c625SLionel Sambuc 	r.a = y;
200*84d9c625SLionel Sambuc 	TRUNC(r.a);
201*84d9c625SLionel Sambuc 	yy.a = r.a - one;
202*84d9c625SLionel Sambuc 	y = ym1;
203*84d9c625SLionel Sambuc 	yy.b = r.b = y - yy.a;
204*84d9c625SLionel Sambuc 	/* Argument reduction: G(x+1) = x*G(x) */
205*84d9c625SLionel Sambuc 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
206*84d9c625SLionel Sambuc 		t = r.a*yy.a;
207*84d9c625SLionel Sambuc 		r.b = r.a*yy.b + y*r.b;
208*84d9c625SLionel Sambuc 		r.a = t;
209*84d9c625SLionel Sambuc 		TRUNC(r.a);
210*84d9c625SLionel Sambuc 		r.b += (t - r.a);
211*84d9c625SLionel Sambuc 	}
212*84d9c625SLionel Sambuc 	/* Return r*tgamma(y). */
213*84d9c625SLionel Sambuc 	yy = ratfun_gam(y - x0, 0);
214*84d9c625SLionel Sambuc 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
215*84d9c625SLionel Sambuc 	y += yy.a*r.a;
216*84d9c625SLionel Sambuc 	return (y);
217*84d9c625SLionel Sambuc }
218*84d9c625SLionel Sambuc /*
219*84d9c625SLionel Sambuc  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
220*84d9c625SLionel Sambuc  */
221*84d9c625SLionel Sambuc static double
smaller_gam(double x)222*84d9c625SLionel Sambuc smaller_gam(double x)
223*84d9c625SLionel Sambuc {
224*84d9c625SLionel Sambuc 	double t, d;
225*84d9c625SLionel Sambuc 	struct Double r, xx;
226*84d9c625SLionel Sambuc 	if (x < x0 + LEFT) {
227*84d9c625SLionel Sambuc 		t = x, TRUNC(t);
228*84d9c625SLionel Sambuc 		d = (t+x)*(x-t);
229*84d9c625SLionel Sambuc 		t *= t;
230*84d9c625SLionel Sambuc 		xx.a = (t + x), TRUNC(xx.a);
231*84d9c625SLionel Sambuc 		xx.b = x - xx.a; xx.b += t; xx.b += d;
232*84d9c625SLionel Sambuc 		t = (one-x0); t += x;
233*84d9c625SLionel Sambuc 		d = (one-x0); d -= t; d += x;
234*84d9c625SLionel Sambuc 		x = xx.a + xx.b;
235*84d9c625SLionel Sambuc 	} else {
236*84d9c625SLionel Sambuc 		xx.a =  x, TRUNC(xx.a);
237*84d9c625SLionel Sambuc 		xx.b = x - xx.a;
238*84d9c625SLionel Sambuc 		t = x - x0;
239*84d9c625SLionel Sambuc 		d = (-x0 -t); d += x;
240*84d9c625SLionel Sambuc 	}
241*84d9c625SLionel Sambuc 	r = ratfun_gam(t, d);
242*84d9c625SLionel Sambuc 	d = r.a/x, TRUNC(d);
243*84d9c625SLionel Sambuc 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
244*84d9c625SLionel Sambuc 	return (d + r.a/x);
245*84d9c625SLionel Sambuc }
246*84d9c625SLionel Sambuc /*
247*84d9c625SLionel Sambuc  * returns (z+c)^2 * P(z)/Q(z) + a0
248*84d9c625SLionel Sambuc  */
249*84d9c625SLionel Sambuc static struct Double
ratfun_gam(double z,double c)250*84d9c625SLionel Sambuc ratfun_gam(double z, double c)
251*84d9c625SLionel Sambuc {
252*84d9c625SLionel Sambuc 	double p, q;
253*84d9c625SLionel Sambuc 	struct Double r, t;
254*84d9c625SLionel Sambuc 
255*84d9c625SLionel Sambuc 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
256*84d9c625SLionel Sambuc 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
257*84d9c625SLionel Sambuc 
258*84d9c625SLionel Sambuc 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
259*84d9c625SLionel Sambuc 	p = p/q;
260*84d9c625SLionel Sambuc 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
261*84d9c625SLionel Sambuc 	t.b = (z - t.a) + c;
262*84d9c625SLionel Sambuc 	t.b *= (t.a + z);
263*84d9c625SLionel Sambuc 	q = (t.a *= t.a);		/* t = (z+c)^2 */
264*84d9c625SLionel Sambuc 	TRUNC(t.a);
265*84d9c625SLionel Sambuc 	t.b += (q - t.a);
266*84d9c625SLionel Sambuc 	r.a = p, TRUNC(r.a);		/* r = P/Q */
267*84d9c625SLionel Sambuc 	r.b = p - r.a;
268*84d9c625SLionel Sambuc 	t.b = t.b*p + t.a*r.b + a0_lo;
269*84d9c625SLionel Sambuc 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
270*84d9c625SLionel Sambuc 	r.a = t.a + a0_hi, TRUNC(r.a);
271*84d9c625SLionel Sambuc 	r.b = ((a0_hi-r.a) + t.a) + t.b;
272*84d9c625SLionel Sambuc 	return (r);			/* r = a0 + t */
273*84d9c625SLionel Sambuc }
274*84d9c625SLionel Sambuc 
275*84d9c625SLionel Sambuc static double
neg_gam(double x)276*84d9c625SLionel Sambuc neg_gam(double x)
277*84d9c625SLionel Sambuc {
278*84d9c625SLionel Sambuc 	int sgn = 1;
279*84d9c625SLionel Sambuc 	struct Double lg, lsine;
280*84d9c625SLionel Sambuc 	double y, z;
281*84d9c625SLionel Sambuc 
282*84d9c625SLionel Sambuc 	y = ceil(x);
283*84d9c625SLionel Sambuc 	if (y == x)		/* Negative integer. */
284*84d9c625SLionel Sambuc 		return ((x - x) / zero);
285*84d9c625SLionel Sambuc 	z = y - x;
286*84d9c625SLionel Sambuc 	if (z > 0.5)
287*84d9c625SLionel Sambuc 		z = one - z;
288*84d9c625SLionel Sambuc 	y = 0.5 * y;
289*84d9c625SLionel Sambuc 	if (y == ceil(y))
290*84d9c625SLionel Sambuc 		sgn = -1;
291*84d9c625SLionel Sambuc 	if (z < .25)
292*84d9c625SLionel Sambuc 		z = sin(M_PI*z);
293*84d9c625SLionel Sambuc 	else
294*84d9c625SLionel Sambuc 		z = cos(M_PI*(0.5-z));
295*84d9c625SLionel Sambuc 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
296*84d9c625SLionel Sambuc 	if (x < -170) {
297*84d9c625SLionel Sambuc 		if (x < -190)
298*84d9c625SLionel Sambuc 			return ((double)sgn*tiny*tiny);
299*84d9c625SLionel Sambuc 		y = one - x;		/* exact: 128 < |x| < 255 */
300*84d9c625SLionel Sambuc 		lg = large_gam(y);
301*84d9c625SLionel Sambuc 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
302*84d9c625SLionel Sambuc 		lg.a -= lsine.a;		/* exact (opposite signs) */
303*84d9c625SLionel Sambuc 		lg.b -= lsine.b;
304*84d9c625SLionel Sambuc 		y = -(lg.a + lg.b);
305*84d9c625SLionel Sambuc 		z = (y + lg.a) + lg.b;
306*84d9c625SLionel Sambuc 		y = __exp__D(y, z);
307*84d9c625SLionel Sambuc 		if (sgn < 0) y = -y;
308*84d9c625SLionel Sambuc 		return (y);
309*84d9c625SLionel Sambuc 	}
310*84d9c625SLionel Sambuc 	y = one-x;
311*84d9c625SLionel Sambuc 	if (one-y == x)
312*84d9c625SLionel Sambuc 		y = tgamma(y);
313*84d9c625SLionel Sambuc 	else		/* 1-x is inexact */
314*84d9c625SLionel Sambuc 		y = -x*tgamma(-x);
315*84d9c625SLionel Sambuc 	if (sgn < 0) y = -y;
316*84d9c625SLionel Sambuc 	return (M_PI / (y*z));
317*84d9c625SLionel Sambuc }
318